
13
The Classification of Root Systems

In §11.4, we saw how to define the Dynkin diagram of a root system. By The-
orem 11.16, which states that any two bases of a root system are conjugate by
an element of the Weyl group, this diagram is unique up to the labelling of
the vertices. (The labels merely indicate our notation for elements of the base;
and so have no essential importance.) Conversely, we saw in §11.4.1 that a root
system is determined up to isomorphism by its Dynkin diagram.

From the point of view of classifying complex semisimple Lie algebras, there
is no need to distinguish between isomorphic root systems. Hence the problem
of finding all root systems can be reduced to the problem of finding all Dynkin
diagrams; this gives us a very convenient way to organise the classification.

We shall prove that apart from the four infinite families of root systems
associated to the classical Lie algebras there are just five more root systems,
the so-called exceptional root systems. We end this chapter by saying a little
about how they may be constructed.
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142 13. The Classification of Root Systems

13.1 Classification of Dynkin Diagrams

Our aim in this section is to prove the following theorem.

Theorem 13.1

Given an irreducible root system R, the unlabelled Dynkin diagram associated
to R is either a member of one of the four families

A� for � ≥ 1: . . .

B� for � ≥ 2: . . .

C� for � ≥ 3: . . .

D� for � ≥ 4: . . .

where each of the diagrams above has � vertices, or one of the five exceptional
diagrams

E6:

E7:

E8:

F4:

G2:

Note that there are no repetitions in this list. For example, we have not
included C2 in the list, as it is the same diagram as B2, and so the associated
root systems are isomorphic. (Exercise 13.1 at the end of this chapter asks you
to construct an explicit isomorphism.)

Let Δ be a connected Dynkin diagram. As a first approximation, we shall
determine the possible underlying graphs for Δ, ignoring for the moment any
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arrows that may appear. To find these graphs, we do not need to know that
they come from root systems. Instead it is convenient to work with more general
sets of vectors.

Definition 13.2

Let E be a real inner-product space with inner product (−,−). A subset A of E

consisting of linearly independent vectors v1, v2, . . . , vn is said to be admissible
if it satisfies the following conditions:

(a) (vi, vi) = 1 for all i and (vi, vj) ≤ 0 if i �= j.

(b) If i �= j, then 4(vi, vj)2 ∈ {0, 1, 2, 3} .

To the admissible set A, we associate the graph ΓA with vertices labelled by
the vectors v1, . . . , vn, and with dij := 4(vi, vj)2 ∈ {0, 1, 2, 3} edges between vi

and vj for i �= j.

Example 13.3

Suppose that B is a base of a root system. Set A := {α/
√

(α, α) : α ∈ B}.
Then A is easily seen to be an admissible set. Moreover, the graph ΓA is the
Coxeter graph of B, as defined in §11.4.

We now find all the connected graphs that correspond to admissible sets.
Let A be an admissible set in the real inner-product space E with connected
graph Γ = ΓA. The first easy observation we make is that any subset of A is
also admissible. We shall use this several times below.

Lemma 13.4

The number of pairs of vertices joined by at least one edge is at most |A| − 1.

Proof

Suppose A = {v1, . . . , vn}. Set v =
∑n

i=1 vi. As A is linearly independent,
v �= 0. Hence (v, v) = n + 2

∑
i<j(vi, vj) > 0 and so

n >
∑
i<j

−2(vi, vj) =
∑
i<j

√
dij ≥ N,

where N is the number of pairs {vi, vj} such that dij ≥ 1; this is the number
that interests us.
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Corollary 13.5

The graph Γ does not contain any cycles.

Proof

Suppose that Γ does have a cycle. Let A′ be the subset of A consisting of
the vectors involved in this cycle. Then A′ is an admissible set with the same
number (or more) edges as vertices, in contradiction to the previous lemma.

Lemma 13.6

No vertex of Γ is incident to four or more edges.

Proof

Take a vertex v of Γ , and let v1, v2, . . . , vk be all the vertices in Γ joined to v.
Since Γ does not contain any cycles, we must have (vi, vj) = 0 for i �= j. Con-
sider the subspace U with basis v1, v2, . . . , vk, v. The Gram–Schmidt process
allows us to extend v1, . . . , vk to an orthonormal basis of U , say by adjoining
v0; necessarily (v, v0) �= 0. We may express v in terms of this orthonormal basis
as

v =
k∑

i=0

(v, vi)vi.

By assumption, v is a unit vector, so expanding (v, v) gives 1 = (v, v) =∑k
i=0(v, vi)2. Since (v, v0)2 > 0, this shows that

k∑
i=1

(v, vi)2 < 1.

Now, as A is admissible and (v, vi) �= 0, we know that (v, vi)2 ≥ 1
4 for 1 ≤ i ≤ k.

Hence k ≤ 3.

An immediate corollary of this lemma is the following.

Corollary 13.7

If Γ is connected and has a triple edge, then Γ = .
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Lemma 13.8 (Shrinking Lemma)

Suppose Γ has a subgraph which is a line, that is, of the form
v1 v2

. . .
vk

where there are no multiple edges between the vertices shown. Define A′ =
(A \ {v1, v2, . . . , vk}) ∪ {v} where v =

∑k
i=1 vi. Then A′ is admissible and the

graph ΓA′ is obtained from ΓA by shrinking the line to a single vertex.

Proof

Clearly A′ is linearly independent, so we need only verify the conditions on the
inner products. By assumption, we have 2(vi, vi+1) = −1 for 1 ≤ i ≤ k − 1 and
(vi, vj) = 0 for i �= j otherwise. This allows us to calculate (v, v). We find that

(v, v) = k + 2
k−1∑
i=1

(vi, vi+1) = k − (k − 1) = 1.

Suppose that w ∈ A and w �= vi for 1 ≤ i ≤ k. Then w is joined to at most one
of v1, . . . , vk (otherwise there would be a cycle). Therefore either (w, v) = 0
or (w, v) = (w, vi) for some 1 ≤ i ≤ k and then 4(w, v)2 ∈ {0, 1, 2, 3}, so
A′ satisfies the defining conditions for an admissible set. These remarks also
determine the graph ΓA′ .

Say that a vertex of Γ is a branch vertex if it is incident to three or more
edges; by Lemma 13.6 such a vertex is incident to exactly three edges.

Lemma 13.9

The graph Γ has

(i) no more than one double edge;

(ii) no more than one branch vertex; and

(iii) not both a double edge and a branch vertex.

Proof

Suppose Γ has two (or more) double edges. Since Γ is connected, it has a
subgraph consisting of two double edges connected by a line of the form

. . . .
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By the Shrinking Lemma, we obtain an admissible set with graph

which contradicts Lemma 13.6. The proofs of the remaining two parts are very
similar, so we leave them to the reader.

For the final steps of the proof of Theorem 13.1, we shall need the following
calculation of an inner product.

Lemma 13.10

Suppose that Γ has a line as a subgraph:
v1 v2

. . .
vp

Let v =
∑p

i=1 ivi. Then (v, v) = p(p+1)
2 .

Proof

The shape of the subgraph tells us that 2(vi, vi+1) = −1 for 1 ≤ i ≤ p − 1 and
that (vi, vj) = 0 for i �= j otherwise, so

(v, v) =
p∑

i=1

i2 + 2
p−1∑
i=1

(vi, vi+1)i(i + 1) =
p∑

i=1

i2 −
p−1∑
i=1

i(i + 1) = p2 −
p−1∑
i=1

i,

which is equal to p(p + 1)/2.

Proposition 13.11

If Γ has a double edge, then Γ is one of
. . . ,

Proof

By Lemma 13.9, any such Γ has the form

v1
. . .

vp wq
. . .

w1

where, without loss of generality, p ≥ q. Let v =
∑p

i=1 ivi and w =
∑q

i=1 iwi.
By the calculation above, we have

(v, v) =
p(p + 1)

2
, (w, w) =

q(q + 1)
2

.
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We see from the graph that 4(vp, wq)2 = 2 and (vi, wj) = 0 in all other cases.
Hence

(v, w)2 = (pvp, qwq)2 =
p2q2

2
.

As v and w are linearly independent, the Cauchy–Schwarz inequality implies
that (v, w)2 < (v, v)(w, w). Substituting, we get 2pq < (p+1)(q+1), and hence

(p − 1)(q − 1) = pq − p − q + 1 < 2

so either q = 1 or p = q = 2.

Proposition 13.12

If Γ has a branch point, then either Γ is Dn for some n ≥ 4 or Γ is E6, E7,
or E8.

Proof

By Lemma 13.9, any such Γ has the form

v1
. . .

vp z

xr

wq

x1

w1

.. .

. ..

where, without loss of generality, p ≥ q ≥ r. We must show that either q = r = 1
or q = 2, r = 1, and p ≤ 4.

As in the proof of the last proposition, we let v =
∑p

i=1 ivi, w =
∑q

i=1 iwi,
and x =

∑r
i=1 ixi. Then v, w, x are pairwise orthogonal. Let v̂ = v/‖v‖,

ŵ = w/‖w‖, and x̂ = x/‖x‖. The space U spanned by v, w, x, z has as an
orthonormal basis

{v̂, ŵ, x̂, z0}
for some choice of z0 which will satisfy (z, z0) �= 0. We may write

z = (z, v̂)v̂ + (z, ŵ)ŵ + (z, x̂)x̂ + (z, z0)z0.

As z is a unit vector and (z, z0) �= 0, we get

(z, ṽ)2 + (z, w̃)2 + (z, x̃)2 < 1.
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We know the lengths of v, w, x from Lemma 13.10. Furthermore, (z, v)2 =
(z, pvp)2 = p2/4, and similarly (z, w)2 = q2/4 and (z, x)2 = r2/4. Substituting
these into the previous inequality gives

2p2

4p(p + 1)
+

2q2

4q(q + 1)
+

2r2

4r(r + 1)
< 1.

By elementary steps, this is equivalent to

1
p + 1

+
1

q + 1
+

1
r + 1

> 1.

Since 1
p+1 ≤ 1

q+1 ≤ 1
r+1 ≤ 1

2 , we have 1 < 3
r+1 and hence r < 2, so we must

have r = 1. Repeating this argument gives that q < 3, so q = 1 or q = 2. If
q = 2, then we see that p < 5. On the other hand, if q = 1, then there is no
restriction on p.

We have now found all connected graphs which come from admissible sets.
We return to our connected Dynkin diagram Δ. We saw in Example 13.3 that
the Coxeter graph of Δ, say Δ̄, must appear somewhere in our collection. If Δ

has no multiple edges, then, by Proposition 13.12, Δ = Δ̄ is one of the graphs
listed in Theorem 13.1.

If Δ has a double edge, then Proposition 13.11 tells us that there are two
possibilities for Δ̄. In the case of B2 and F4, we get essentially the same graph
whichever way we put the arrow; otherwise there are two different choices,
giving Bn and Cn for n ≥ 3. Finally, if Δ has a triple edge, then Corollary 13.7
tells us that Δ = G2. This completes the proof of Theorem 13.1.

13.2 Constructions

We now want to show that all the Dynkin diagrams listed in Theorem 13.1
actually occur as the Dynkin diagram of some root system.

Our analysis of the classical Lie algebras sl�+1, so2�+1, sp2�, and so2� in
Chapter 12 gives us constructions of root systems of types A, B, C, and D

respectively. We discuss the Weyl groups of these root systems in Appendix D.
For the exceptional Dynkin diagrams G2, F4, E6, E7, and E8, we have to do
more work. For completeness, we give constructions of all the corresponding
root systems, but as those of type E are rather large and difficult to work with,
we do not go into any details for this type.

In each case, we shall take for the underlying space E a subspace of a
Euclidean space Rm. Let εi be the vector with 1 in position i and 0 elsewhere.
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When describing bases, we shall follow the pattern established in Chapter 12
by taking as many simple roots as possible from the set {α1, . . . , αm−1}, where

αi := εi − εi+1.

For these elements, we have

〈αi, αj〉 =

⎧⎪⎪⎨
⎪⎪⎩

2 i = j

−1 |i − j| = 1

0 otherwise,

so the corresponding part of the Dynkin diagram is a line,

. . .
αi−1 αi αi+1

. . .

and the corresponding part of the Cartan matrix is⎛
⎜⎜⎜⎜⎜⎜⎝

...
...

...
. . . 2 −1 0 . . .

. . . −1 2 −1 . . .

. . . 0 −1 2 . . .
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Both of these will be familiar from root systems of type A.

13.2.1 Type G2

We have already given one construction of a root system of type G2 in Exam-
ple 11.6(c). We give another here, which is more typical of the other construc-
tions that follow. Let E =

{
v =

∑3
i=1 ciεi ∈ R3 :

∑
ci = 0

}
, let

I =
{
m1ε1 + m2ε2 + m3ε3 ∈ R3 : m1, m2, m3 ∈ Z

}
,

and let
R = {α ∈ I ∩ E : (α, α) = 2 or (α, α) = 6} .

This is motivated by noting that the ratio of the length of a long root to the
length of a short root in a root system of type G2 is

√
3. By direct calculation,

one finds that

R =
{±(εi − εj), i �= j

} ∪ {±(2εi − εj − εk), {i, j, k} = {1, 2, 3}}.
This gives 12 roots in total, as expected from the diagram in Example 11.6(c).
To find a base, we need to find α, β ∈ R of different lengths, making an angle
of 5π/6. One suitable choice is α = ε1 − ε2 and β = ε2 + ε3 − 2ε1.

The Weyl group for G2 is generated by the simple reflections sα and sβ . By
Exercise 11.14(ii), it is the dihedral group of order 12.
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13.2.2 Type F4

Since the Dynkin diagram F4 contains the Dynkin diagram B3, we might hope
to construct the corresponding root system by extending the root system of B3.
Therefore we look for β ∈ R4 so that B = (ε1 − ε2, ε2 − ε3, ε3, β) is a base with
Cartan numbers given by the labelled Dynkin diagram:

ε1−ε2 ε2−ε3 ε3 β

It is easy to see that the only possible choices for β are β = − 1
2 (ε1 + ε2 +

ε3) ± 1
2ε4. Therefore it seems hopeful to set

R = {±εi : 1 ≤ i ≤ 4} ∪ {±εi ± εj : 1 ≤ i �= j ≤ 4} ∪ { 1
2 (±ε1 ± ε2 ± ε3 ± ε4)}.

One can check directly that axioms (R1) up to (R4) hold; see Exercise 13.3. It
remains to check that

β1 = ε1 − ε2,

β2 = ε2 − ε3,

β3 = ε3,

β4 =
1
2
(−ε1 − ε2 − ε3 + ε4),

defines a base for R. Note that R has 48 elements, so we need to find 24 positive
roots. Each εi is a positive root, and if 1 ≤ i < j ≤ 3 then so are εi − εj and
εi + εj . Furthermore, for 1 ≤ i ≤ 3, also ε4 ± εi are positive roots.

This already gives us 16 roots. In total, there are 16 roots of the form
1
2 (
∑±εi). As one would expect, half of these turn out to be positive roots.

Obviously each must have a summand equal to β4. There are 3 positive roots
of the form β4 + εj , and also 3 of the form β4 + εj + εk. Then there is β4 itself,
and finally β4 + ε1 + ε2 + ε3 = 1

2

∑
εi.

The Weyl group is known to have order 27 32, but its structure is too com-
plicated to be discussed here.

13.2.3 Type E

To construct the root systems of types E, it will be convenient to first construct
a root system of type E8 and then to find root systems of types E6 and E7

inside it.
Let E = R8 and let

R =
{

±εi ± εj : i < j
}

∪
{1

2

8∑
i=1

±εi

}
,
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where in the second set an even number of + signs are chosen.
The first set in the union contributes 112 roots and the second 128, giving

240 roots in all. Assuming that R is a root system, we claim that a base for R

is given by B = {β1, β2, . . . , β8}, where

β1 =
1
2

(
−ε1 − ε8 +

7∑
i=2

εi

)
,

β2 = −ε1 − ε2,

βi = εi−2 − εi−1 if 3 ≤ i ≤ 8.

To see that B is a base, one first verifies that the roots ±εi −εj for i < j can be
written as linear combinations of the elements of B with positive coefficients.
The remaining positive roots are those of the form

1
2

(
−ε8 +

7∑
i=1

±εi

)
,

where there are an odd number of + signs chosen in the sum. To check this,
subtract off β1, and then verify that the result is a positive integral linear
combination of the remaining roots. (This is where the condition on the signs
comes in.) The labelled Dynkin diagram is

β1 β3 β4

β2

β5 β6 β7 β8
.

Omitting the root β8 gives a base for a root system of type E7, and omitting
the roots β7 and β8 gives a base for a root system of type E6. We leave it to the
keen reader to explicitly construct these root systems. (Details may be found in
Bourbaki, Lie Groups and Lie Algebras [6], Chapter 5, Section 4, Number 4.)

EXERCISES

13.1. Find an explicit isomorphism between the root systems of types B2

and C2. That is, find a linear map between the vector spaces for B2

and C2, respectively, which interchanges a long root with a short
root, and preserves the Cartan numbers.

13.2. Show that the root systems of types Bn and Cn are dual to one
another in the sense defined in Exercise 11.13.
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13.3. Check that the construction of F4 given in §13.2.2 really does give a
root system. This can be simplified by noting that R contains

{±εi : 1 ≤ i ≤ 3} ∪ {±εi ± εj : 1 ≤ i �= j ≤ 3},

which is the root system of type B3 we constructed in Chapter 12.




