
12
The Classical Lie Algebras

Our aim in this chapter is to study the classical Lie algebras sl(n,C), so(n,C),
and sp(n,C) for n ≥ 2. We shall show that, with two exceptions, all these Lie
algebras are simple. We shall also find their root systems and the associated
Dynkin diagrams and describe their Killing forms. The main result we prove is
the following theorem.

Theorem 12.1

If L is a classical Lie algebra other than so(2,C) and so(4,C), then L is simple.

We also explain how the root systems we have determined can be used
to rule out most isomorphisms between different classical Lie algebras (while
suggesting the presence of those that do exist). This will lead us to a complete
classification of the classical Lie algebras up to isomorphism.

In the following section, we describe a programme that will enable us to
deal with each of the families of classical Lie algebras in a similar way. We then
carry out this programme for each family in turn.
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126 12. The Classical Lie Algebras

12.1 General Strategy

Let L be a classical Lie algebra. In each case, it follows from the definitions
given in §4.3 that L has a large subalgebra H of diagonal matrices. The maps
adh for h ∈ H are diagonalisable, as was first seen in Exercise 1.17, so H

consists of semisimple elements.
We can immediately say a bit more about the action of H. The subspace

L ∩ Span{eij : i �= j} of off-diagonal matrices in L is also invariant under adh

for h ∈ H and hence the action of adH on this space is diagonalisable. Let

L ∩ Span{eij : i �= j} =
⊕
α∈Φ

Lα,

where for α ∈ H�, Lα is the α-eigenspace of H on the off-diagonal part of L

and
Φ = {α ∈ H∗ : α �= 0, Lα �= 0}.

This gives us the decomposition

(�) L = L0 ⊕
⊕
α∈Φ

Lα,

which looks very much like a root space decomposition. We shall first show
that H = L0, from which it will follow that H is a Cartan subalgebra of L.

Lemma 12.2

Let L ⊆ gl(n,C) and H be as in (�) above. Suppose that for all non-zero h ∈ H

there is some α ∈ Φ such that α(h) �= 0. Then H is a Cartan subalgebra of L.

Proof

We know already that H is abelian and that all the elements of H are semisim-
ple. It remains to show that H is maximal with these properties. Suppose that
x ∈ L and that [H, x] = 0. (Equivalently, x ∈ L0.)

Using the direct sum decomposition (�), we may write x as x = hx +∑
α∈Φ cαxα, where xα ∈ Lα, cα ∈ C, and hx ∈ H. For all h ∈ H, we have

0 = [h, x] =
∑
α

cαα(h)xα.

By the hypothesis, for every α ∈ Φ there is some h ∈ H such that α(h) �= 0, so
cα = 0 for each α and hence x ∈ H.
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To show that the classical Lie algebras (with the two exceptions mentioned
in Theorem 12.1) are simple, we first need to show that they are semisimple.
We shall use the following criterion.

Proposition 12.3

Let L be a complex Lie algebra with Cartan subalgebra H. Let

L = H ⊕
⊕
α∈Φ

Lα

be the direct sum decomposition of L into simultaneous eigenspaces for the
elements of ad H, where Φ is the set of non-zero α ∈ H� such that Lα �= 0. (So
we assume that H = L0.) Suppose that the following conditions hold:

(i) For each 0 �= h ∈ H, there is some α ∈ Φ such that α(h) �= 0.

(ii) For each α ∈ Φ, the space Lα is 1-dimensional.

(iii) If α ∈ Φ, then −α ∈ Φ, and if Lα is spanned by xα, then [[xα, x−α], xα] �= 0.

Then L is semisimple.

Proof

By Exercise 4.6, it is enough to show that L has no non-zero abelian ideals.
Let A be an abelian ideal of L. By hypothesis, H acts diagonalisably on L and
[H, A] ⊆ A, so H also acts diagonalisably on A. We can therefore decompose
A as

A = (A ∩ H) ⊕
⊕
α∈Φ

(A ∩ Lα) .

Suppose for a contradiction that A ∩ Lα �= 0 for some α ∈ Φ. Then, because
Lα is 1-dimensional, we must have Lα ⊆ A. Since A is an ideal, this implies
that [Lα, L−α] ⊆ A, so A contains an element h of the form h = [xα, x−α],
where xα spans Lα and x−α spans L−α. Since A is abelian and both xα and h

are known to lie in A, we deduce that [h, xα] = 0. However, condition (iii) says
that [h, xα] �= 0, a contradiction.

We have therefore proved that A = A ∩ H; that is, A ⊆ H. If A contains
some non-zero element h, then, by condition (i), we know that there is some
α ∈ Φ such that α(h) �= 0. But then [h, xα] = α(h)xα ∈ Lα and also [h, xα] ∈ A,
so xα ∈ Lα∩A, which contradicts the previous paragraph. Therefore A = 0.

Note that since [Lα, L−α] ⊆ L0 = H, condition (iii) holds if and only if
α([Lα, L−α]) �= 0. Therefore, to show that this condition holds, it is enough to
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verify that [[Lα, L−α], Lα] �= 0 for one member of each pair of roots ±α; this
will help to reduce the amount of calculation required.

Having found a Cartan subalgebra of L and shown that L is semisimple, we
will then attempt to identify the root system. We must find a base for Φ, and
then for β, γ in the base we must find the Cartan number 〈β, γ〉. To do this,
we shall use the identity

〈β, γ〉 = β(hγ),

where hγ is part of the standard basis of the subalgebra sl(γ) associated to the
root γ (see §10.4). To find hγ will be an easy calculation for which we can use
the work done in checking condition (iii) of Proposition 12.3.

Now, to show that L is simple, it is enough, by the following proposition, to
show that Φ is irreducible, or equivalently (by Exercise 11.7) that the Dynkin
diagram of Φ is connected.

Proposition 12.4

Let L be a complex semisimple Lie algebra with Cartan subalgebra H and root
system Φ. If Φ is irreducible, then L is simple.

Proof

By the root space decomposition, we may write L as

L = H ⊕
⊕
α∈Φ

Lα.

Suppose that L has a proper non-zero ideal I. Since H consists of semisim-
ple elements, it acts diagonalisably on I, and so I has a basis of common
eigenvectors for the elements of ad H. As we know that each root space Lα is
1-dimensional, this implies that

I = H1 ⊕
⊕

α∈Φ1

Lα

for some subspace H1 of H = L0 and some subset Φ1 of Φ. Similarly, we have

I⊥ = H2 ⊕
⊕

α∈Φ2

Lα,

where I⊥ is the perpendicular space to I with respect to the Killing form. As
I ⊕ I⊥ = L, we must have H1 ⊕ H2 = H, Φ1 ∩ Φ2 = ∅, and Φ1 ∪ Φ2 = Φ.
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If Φ2 is empty, then Lα ⊆ I for all α ∈ Φ. As L is generated by its root
spaces, this implies that I = L, a contradiction. Similarly, Φ1 is non-empty.
Now, given α ∈ Φ1 and β ∈ Φ2, we have

〈α, β〉 = α(hβ) = 0

as α(hβ)eα = [hβ , eα] ∈ I⊥ ∩ I = 0, so (α, β) = 0 for all α ∈ Φ1 and β ∈ Φ2,
which shows that Φ is reducible.

In summary, our programme is:

(1) Find the subalgebra H of diagonal matrices in L and determine the
decomposition (�). This will show directly that conditions (i) and
(ii) of Proposition 12.3 hold.

(2) Check that [[Lα, L−α], Lα] �= 0 for each root α ∈ Φ.

By Lemma 12.2 and Proposition 12.3, we now know that L is semisimple
and that H is a Cartan subalgebra of L.

(3) Find a base for Φ.

(4) For γ, β in the base, find hγ and eβ and hence 〈β, γ〉 = β(hγ). This
will determine the Dynkin diagram of our root system, from which
we can verify that Φ is irreducible and L is simple.

12.2 sl(� + 1, C)

For this Lie algebra, most of the work has already been done.

(1) We saw at the start of Chapter 10 that the root space decomposition of
L = sl(� + 1,C) is

L = H ⊕
⊕
i�=j

Lεi−εj
,

where εi(h) is the i-th entry of h and the root space Lεi−εj is spanned
by eij . Thus Φ = {± (εi − εj) : 1 ≤ i < j ≤ l + 1}.

(2) If i < j, then [eij , eji] = eii − ejj = hij and [hij , eij ] = 2eij �= 0.

(3) We know from Exercise 11.4 that the root system Φ has as a base {αi : 1 ≤
i ≤ �}, where αi = εi − εi+1.
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(4) From (2) we see that standard basis elements for the subalgebras sl(αi)
can be taken as eαi

= ei,i+1, fαi
= ei+1,i, hαi

= eii − ei+1,i+1. Calculation
shows that

〈αi, αj〉 = αi(hαj ) =

⎧⎪⎪⎨
⎪⎪⎩

2 i = j

−1 |i − j| = 1

0 otherwise,

so the Cartan matrix of Φ is as calculated in Example 11.17(1) and the
Dynkin diagram is

α1 α2 α�−1 α�
. . . .

This diagram is connected, so L is simple. We say that the root system of
sl(� + 1,C) has type A�.

12.3 so(2� + 1, C)

Let L = glS(2� + 1,C) for � ≥ 1, where

S =

⎛
⎝1 0 0

0 0 I�

0 I� 0

⎞
⎠ .

Recall that this means

L =
{
x ∈ gl(2� + 1,C) : xtS = −Sx

}
.

We write elements of L as block matrices, of shapes adapted to the blocks of S.
Calculation shows, using Exercise 2.12, that

L =

⎧⎨
⎩
⎛
⎝ 0 ct −bt

b m p

−c q −mt

⎞
⎠ : p = −pt and q = −qt

⎫⎬
⎭ .

As usual, let H be the set of diagonal matrices in L. It will be convenient
to label the matrix entries from 0 to 2�. Let h ∈ H have diagonal entries
0, a1, . . . , a�, −a1, . . . ,−a�, so with our numbering convention,

h =
�∑

i=1

ai(eii − ei+�,i+�).
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(1a) We start by finding the root spaces for H. Consider the subspace of L

spanned by matrices whose non-zero entries occur only in the positions
labelled by b and c. This subspace has as a basis bi = ei,0 − e0,�+i and
ci = e0,i − e�+i,0 for 1 ≤ i ≤ �. (Note that bi and ci are matrices, not
scalars!) We calculate that

[h, bi] = aibi, [h, ci] = −aici.

(1b) We extend to a basis of L by the matrices

mij = eij − e�+j,�+i for 1 ≤ i �= j ≤ �,

pij = ei,�+j − ej,�+i for 1 ≤ i < j ≤ l,

qji = pt
ij = e�+j,i − e�+i,j for 1 ≤ i < j ≤ l.

Again we are fortunate that the obvious basis elements are in fact simul-
taneous eigenvectors for the action of H. Calculation shows that

[h, mij ] = (ai − aj)mij ,

[h, pij ] = (ai + aj)pij ,

[h, qji] = −(ai + aj)qji.

We can now list the roots. For 1 ≤ i ≤ �, let εi ∈ H� be the map sending
h to ai, its entry in position i.

root εi −εi εi − εj εi + εj −(εi + εj)

eigenvector bi ci mij (i �= j) pij (i < j) qji (i < j)

(2) We check that [h, xα] �= 0, where h = [xα, x−α].

(2a) For α = εi, we have

hi := [bi, ci] = eii − e�+i,�+i

and, by (1a), [hi, bi] = bi.

(2b) For α = εi − εj and i < j, we have

hij := [mij , mji] = (eii − e�+i,�+i) − (ejj − e�+j,�+j)

and, by (1b), [hij , mij ] = 2mij .

(2c) Finally, for α = εi + εj , for i < j, we have

kij := [pij , qji] = (eii − e�+i,�+i) + (ejj − e�+j,�+j)

and, by (1b), [kij , pij ] = 2pij .
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(3) We claim that a base for our root system is given by

B = {αi : 1 ≤ i < �} ∪ {β�},

where αi = εi − εi+1 and β� = ε�. To see this, note that when 1 ≤ i < �,

εi = αi + αi+1 + . . . + α�−1 + β�,

and that when 1 ≤ i < j ≤ �,

εi − εj = αi + αi+1 + . . . + αj−1,

εi + εj = αi + . . . αj−1 + 2(αj + αj+1 + . . . + α�−1 + β�).

Going through the table of roots shows that if γ ∈ Φ then either γ or
−γ appears above as a non-negative linear combination of elements of B.
Since B has � elements and � = dimH, this is enough to show that B is
a base of Φ.

(4) We now determine the Cartan matrix. For i < �, we take eαi
= mi,i+1,

and then hαi = hi,i+1 follows from (2b). We take eβ�
= b�, and then from

(2a) we see that hβ = 2(e�,� − e2�,2�).

For 1 ≤ i, j < �, we calculate that

[hαj , eαi ] =

⎧⎪⎪⎨
⎪⎪⎩

2eαj i = j

−eαj
|i − j| = 1

0 otherwise.

Hence

〈αi, αj〉 =

⎧⎪⎪⎨
⎪⎪⎩

2 i = j

−1 |i − j| = 1

0 otherwise.

Similarly, by calculating [hβ�
, eαi

] and [hαi
, eβ�

], we find that

〈αi, β�〉 =

{
−2 i = � − 1

0 otherwise,

〈β�, αi〉 =

{
−1 i = � − 1

0 otherwise.

This shows that the Dynkin diagram of Φ is

. . .
α1 α2 α�−2 α�−1 β�

.

As the Dynkin diagram is connected, Φ is irreducible and so L is simple.
The root system of so(2� + 1,C) is said to have type B�.
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12.4 so(2�, C)

Let L = glS(2�,C), where

S =
(

0 I�

I� 0

)
.

We write elements of L as block matrices, of shapes adapted to the blocks of S.
Calculation shows that

L =
{(

m p

q −mt

)
: p = −pt and q = −qt

}
.

We see that if � = 1 then the Lie algebra is 1-dimensional, and so, by definition,
not simple or semisimple. For this reason, we assumed in the statement of
Theorem 12.1 that � ≥ 2.

As usual, we let H be the set of diagonal matrices in L. We label the matrix
entries from 1 up to 2�. This means that we can use the calculations already
done for so(2�+1,C) by ignoring the row and column of matrices labelled by 0.

(1) All the work needed to find the root spaces in so(2�,C) is done for us by
step (1b) for so(2� + 1,C). Taking the notation from this part, we get the
following roots:

root εi − εj εi + εj −(εi + εj)

eigenvector mij (i �= j) pij (i < j) qji (i < j)

(2) The work already done in steps (2b) and (2c) for sl(2� + 1,C) shows that
[[Lα, L−α], Lα] �= 0 for each root α.

(3) We claim that a base for our root system is given by

B = {αi : 1 ≤ i < �} ∪ {β�},

where αi = εi − εi+1 and β� = ε�−1 + ε�. To see this, note that when
1 ≤ i < j < �,

εi − εj = αi + αi+1 + . . . + αj−1,

εi + εj = (αi + αi+1 + . . . + α�−2) + (αj + αj+1 + . . . + α�−1 + β�).

This shows that if γ ∈ Φ, then either γ or −γ is a non-negative linear
combination of elements of B with integer coefficients, so B is a base for
our root system.
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(4) We calculate the Cartan integers. The work already done for so(2� + 1,C)
gives us the Cartan numbers 〈αi, αj〉 for i, j < �. For the remaining ones,
we take eβ�

= p�−1,� and then we find from step (2c) for so(2� + 1,C) that

hβ�
= (e�−1,�−1 − e2�−1,2�−1) + (e�,� − e2�,2�).

Hence

〈αj , β�〉 =

{
−1 j = � − 2

0 otherwise,

〈β�, αj〉 =

{
−1 j = � − 2

0 otherwise.

If � = 2, then the base has only the two orthogonal roots α1 and β2, so in
this case, Φ is reducible. In fact, so(4,C) is isomorphic to sl(2,C)⊕sl(2,C),
as you were asked to prove in Exercise 10.8. This explains the other Lie
algebra excluded from the statement of Theorem 12.1.

If � ≥ 3, then our calculation shows that the Dynkin diagram of Φ is

. . .
α1 α2 α�−2

β�

α�−1

As this diagram is connected, the Lie algebra is simple. When � = 3, the
Dynkin diagram is the same as that of A3, the root system of sl(3,C), so we
might expect that so(6,C) should be isomorphic to sl(4,C). This is indeed
the case; see Exercise 14.1. For � ≥ 4, the root system of so(2�,C) is said
to have type D�.

12.5 sp(2�, C)

Let L = glS(2�,C), where S is the matrix

S =
(

0 I�

−I� 0

)
.

We write elements of L as block matrices, of shapes adapted to the blocks of S.
Calculation shows that

L =
{(

m p

q −mt

)
: p = pt and q = qt

}
.
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We see that when � = 1, this is the same Lie algebra as sl(2,C). In what follows,
we shall assume that � ≥ 2.

Let H be the set of diagonal matrices in L. We label the matrix en-
tries in the usual way from 1 to 2�. Let h ∈ H have diagonal entries
a1, . . . , a�, −a1, . . . ,−a�, that is,

h =
�∑

i=1

ai(eii − ei+�,i+�).

(1) We take the following basis for the root spaces of L:

mij = eij − e�+j,�+i for 1 ≤ i �= j ≤ �,

pij = ei,�+j + ej,�+i for 1 ≤ i < j ≤ �, pii = ei,�+i for 1 ≤ i ≤ �,

qji = pt
ij = e�+j,i + e�+i,j for 1 ≤ i < j ≤ �, qii = e�+i,i for 1 ≤ i ≤ �.

Calculation shows that

[h, mij ] = (ai − aj)mij ,

[h, pij ] = (ai + aj)pij ,

[h, qji] = −(ai + aj)qji.

Notice that for pij and qji it is allowed that i = j, and in these cases we
get the eigenvalues 2ai and −2ai, respectively.

We can now list the roots. Write εi for the element in H∗ sending h to ai.

root εi − εj εi + εj −(εi + εj) 2εi −2εi

eigenvector mij (i �= j) pij (i < j) qji (i < j) pii qii

(2) For each root α, we must check that [h, xα] �= 0, where h = [xα, x−α].
When α = εi − εj , this has been done in step (2b) for so(2� + 1,C). If
α = εi + εj , then xα = pij and x−α = qji and

h = (eii − e�+i,�+i) + (ejj − e�+j,�+j)

if i �= j, and h = eii − e�+i,�+i if i = j. Hence [h, xα] = 2xα in both cases.

(3) Let αi = εi − εi+1 for 1 ≤ i ≤ � − 1 as before, and let β� = 2ε�. We
claim that {α1, . . . , α�−1, β�} is a base for Φ. By the same argument as
used before, this follows once we observe that for 1 ≤ i < j ≤ �

εi − εj = αi + αi+1 + . . . + αj−1,

εi + εj = αi + αi+1 + . . . + αj−1 + 2(αj + . . . + α�−1) + β�,

2εi = 2(αi + αi+1 + . . . + α�−1) + β�.
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(4) We calculate the Cartan integers. The numbers 〈αi, αj〉 are already known.
Take eβ�

= p��, then we find that hβ�
= e�,� − e2�,2� and so

〈αi, β�〉 =

{
−1 i = � − 1

0 otherwise,

〈β�, αj〉 =

{
−2 i = � − 1

0 otherwise.

The Dynkin diagram of Φ is

. . .
α1 α2 α�−2 α�−1 β�

,

which is connected, so L is simple. The root system of sp(2�,C) is said
to have type C�. Since the root systems C2 and B2 have the same Dynkin
diagram, we might expect that the Lie algebras sp(4,C) and so(5,C) would
be isomorphic. This is the case, see Exercise 13.1.

12.6 Killing Forms of the Classical Lie Algebras

Now that we know that (with two exceptions) the classical Lie algebras are
simple, we can use some of our earlier work to compute their Killing forms. We
shall see that they can all be given by a simple closed formula.

Lemma 12.5

Let L ⊆ gl(n,C) be a simple classical Lie algebra. Let β : L × L → C be the
symmetric bilinear form

β(x, y) := tr(xy).

Then β is non-degenerate.

Proof

Let J = {x ∈ L : β(x, y) = 0 for all y ∈ L}. It follows from the associative
property of trace, as in Exercise 9.3, that J is an ideal of L. Since L is simple,
and clearly β is not identically zero, we must have J = 0. Therefore β is non-
degenerate.

In Exercise 9.11, we showed that any two non-degenerate symmetric associa-
tive bilinear forms on a simple Lie algebra are scalar multiples of one another.
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Hence, by Cartan’s Second Criterion (Theorem 9.9), if κ is the Killing form
on L, then κ = λβ for some non-zero scalar λ ∈ C. To determine the scalar
λ, we use the root space decomposition to compute κ(h, h′) for h, h′ ∈ H. For
example, for sl(�+1,C) let h ∈ H, with diagonal entries a1, . . . , a�+1, and sim-
ilarly let h′ ∈ H with diagonal entries a′

1, . . . , a
′
�+1. Then, using the root space

decomposition given in step (1) of §12.2, we get

κ(h, h′) =
∑
α∈Φ

α(h)α(h′) = 2
∑
i<j

(ai − aj)(a′
i − a′

j).

Putting h = h′, and a1 = 1, a2 = −1 and all other entries zero, we get
κ(h, h) = 8+4(�−1) = 4(�+1). Since trh2 = 2, this implies that λ = 2(�+1).

For the remaining three families, see Exercise 12.3 below (or its solution in
Appendix E). We get κ(x, y) = λ tr(xy), where

λ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2(� + 1) L = sl(� + 1,C)

2� − 1 L = so(2� + 1,C)

2(� + 1) L = sp(2�,C)

2(� − 1) L = so(2�,C).

12.7 Root Systems and Isomorphisms

Let L be a complex semisimple Lie algebra. We have seen how to define the
root system associated to a Cartan subalgebra of L. Could two different Cartan
subalgebras of L give different root systems? The following theorem, whose
proof may be found in Appendix C, shows that the answer is no.

Theorem 12.6

Let L be a complex semisimple Lie algebra. If Φ1 and Φ2 are the root systems
associated to two Cartan subalgebras of L, then Φ1 is isomorphic to Φ2.

Suppose now that L1 and L2 are complex semisimple Lie algebras that have
non-isomorphic root systems (with respect to some Cartan subalgebras). Then,
by the theorem, L1 and L2 cannot be isomorphic. Thus we can use root systems
to rule out isomorphisms between the classical Lie algebras. This does most of
the work needed to prove the following proposition.
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Proposition 12.7

The only isomorphisms between classical Lie algebras are:

(1) so(3,C) ∼= sp(2,C) ∼= sl(2,C); root systems of type A1,

(2) so(4,C) ∼= sl(2,C) ⊕ sl(2,C); root systems of type A1 × A1,

(3) so(5,C) ∼= sp(4,C); root systems of types B2 and C2,

(4) so(6,C) ∼= sl(4,C); root systems of types D3 and A3.

Note that we have not yet proved the existence of all these isomorphisms.
However, we have already seen the first two (see Exercises 1.14 and 10.8). The
third isomorphism appears in Exercise 12.2 below and the last is discussed
in Chapter 15. We are therefore led to conjecture that the converse of The-
orem 12.6 also holds; that is, if two complex semisimple Lie algebras have
isomorphic root systems, then they are isomorphic as Lie algebras.

We shall see in Chapter 14 that this is a corollary of Serre’s Theorem.
Thus isomorphisms of root systems precisely reflect isomorphisms of complex
semisimple Lie algebras. To classify the complex semisimple Lie algebras, we
should therefore first classify root systems. This is the subject of the next
chapter.

EXERCISES

12.1. Show that the dimensions of the classical Lie algebras are as follows

dim sl(� + 1,C) = �2 + 2�,

dim so(2� + 1,C) = 2�2 + �,

dim sp(2�,C) = 2�2 + �,

dim so(2�,C) = 2�2 − �.

12.2.� Show that the Lie algebras sp(4,C) and so(5,C) are isomorphic.
(For instance, use the root space decomposition to show that they
have bases affording the same structure constants.)

12.3.† This exercise gives a way to establish the semisimplicity of the clas-
sical Lie algebras using the Killing form.

(i) Let L be a classical Lie algebra, and let H be the subalgebra of
diagonal matrices, with eigenspace decomposition

L = H ⊕
⊕
α∈Φ

Lα,



Exercises 139

so H is self-centralising. Assume also that the following condi-
tions hold

(a) For each α ∈ Φ, the space Lα is 1-dimensional. If α ∈ Φ,
then −α ∈ Φ.

(b) For each α ∈ Φ, the space [Lα, L−α] is non-zero.

(c) The Killing form restricted to H is non-degenerate, and for
h ∈ H, if κ(h, h) = 0 then h = 0.

Show that the Killing form of L is then non-degenerate.

In the earlier sections of this chapter, we have found the roots with
respect to H explicitly. We can make use of this and find the Killing
form restricted to H explicitly.

(ii) Use the root space decomposition of sl(� + 1,C) to show that
if κ is the Killing form of sl(� + 1,C), then

κ(h, h′) = 2n tr(hh′) for all h, h′ ∈ H.

Hence, show that condition (c) above holds for the restriction
of κ to H and deduce that sl(� + 1,C) is semisimple.

(iii) Use similar methods to prove that the orthogonal and symplectic
Lie algebras are semisimple.

12.4.†� Let L be a Lie algebra with a faithful irreducible representation.
Show that either L is semisimple or Z(L) is 1-dimensional and L =
Z(L)⊕L′, where the derived algebra L′ is semisimple. (This gives yet
another way to prove the semisimplicity of the classical Lie algebras.)




