
11
Root Systems

The essential properties of the roots of complex semisimple Lie algebras may
be captured in the idea of an abstract “root system”. In this chapter, we shall
develop the basic theory of root systems. Our eventual aim, achieved in Chap-
ters 13 and 14, will be to use root systems to classify the complex semisimple
Lie algebras.

Root systems have since been discovered to be important in many other
areas of mathematics, so while this is probably your first encounter with root
systems, it may well not be your last! In MathSciNet, the main database for
research papers in mathematics, there are, at the time of writing, 297 papers
whose title contains the words “root system”, and many thousands more in
which root systems are mentioned in the text.

11.1 Definition of Root Systems

Let E be a finite-dimensional real vector space endowed with an inner product
written (−,−). Given a non-zero vector v ∈ E, let sv be the reflection in the
hyperplane normal to v. Thus sv sends v to −v and fixes all elements y such
that (y, v) = 0. As an easy exercise, the reader may check that

sv(x) = x − 2(x, v)
(v, v)

v for all x ∈ E
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110 11. Root Systems

and that sv preserves the inner product, that is,

(sv(x), sv(y)) = (x, y) for all x, y ∈ E.

As it is a very useful convention, we shall write

〈x, v〉 :=
2(x, v)
(v, v)

,

noting that the symbol 〈x, v〉 is only linear with respect to its first variable, x.
With this notation, we can now define root systems.

Definition 11.1

A subset R of a real inner-product space E is a root system if it satisfies the
following axioms.

(R1) R is finite, it spans E, and it does not contain 0.

(R2) If α ∈ R, then the only scalar multiples of α in R are ±α.

(R3) If α ∈ R, then the reflection sα permutes the elements of R.

(R4) If α, β ∈ R, then 〈β, α〉 ∈ Z.

The elements of R are called roots.

Example 11.2

The root space decomposition gives our main example. Let L be a complex
semisimple Lie algebra, and suppose that Φ is the set of roots of L with respect
to some fixed Cartan subalgebra H. Let E denote the real span of Φ. By
Proposition 10.15, the symmetric bilinear form on E induced by the Killing
form (−,−) is an inner product.

We can use the results of §10.5 and §10.6 to show that Φ is a root system
in E. By definition, 0 �∈ Φ and, as we observed early on, Φ is finite. We showed
that (R2) holds in Proposition 10.9. To show that (R3) holds, we note that if
α, β ∈ Φ then

sα(β) = β − 2(β, α)
(α, α)

α = β − β(hα)α,

which lies in Φ by Proposition 10.10. To get the second equality above, we used
the identity of Exercise 10.4, which may be proved as follows:

β(hα) = κ(tβ , hα) = κ

(
tβ ,

2tα
(tα, tα)

)
=

2(β, α)
(α, α)

= 〈β, α〉 .

As the eigenvalues of hα are integers, this identity also establishes (R4).
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Exercise 11.1

We work in R�+1, with the Euclidean inner product. Let εi be the vector
in R�+1 with i-th entry 1 and all other entries zero. Define

R := {±(εi − εj) : 1 ≤ i < j ≤ � + 1}
and let E = SpanR = {∑αiεi :

∑
αi = 0}. Show that R is a root

system in E.

Remark 11.3

We shall see that our axioms isolate all the essential properties of roots of
Lie algebras. For this reason, there is no need in this chapter to keep the full
body of theory we have developed in mind — doing so would burden us with
extraneous notions while needlessly reducing the applicability of our arguments.
In any case, we shall see later that every root system is the set of roots of a
complex semisimple Lie algebra, so our problem is no more general than is
necessary: “It is the mark of the educated mind to use for each subject the
degree of exactness which it admits” (Aristotle).

11.2 First Steps in the Classification

The following lemma gives the first indication that the axioms for root systems
are quite restrictive.

Lemma 11.4 (Finiteness Lemma)

Suppose that R is a root system in the real inner-product space E. Let α, β ∈ R

with β �= ±α. Then
〈α, β〉 〈β, α〉 ∈ {0, 1, 2, 3}.

Proof

Thanks to (R4), the product in question is an integer: We must establish the
bounds. For any non-zero v, w ∈ E, the angle θ between v and w is such that
(v, w)2 = (v, v)(w, w) cos2 θ. This gives

〈α, β〉 〈β, α〉 = 4 cos2 θ ≤ 4.

Suppose we have cos2 θ = 1. Then θ is an integer multiple of π and so α and β

are linearly dependent, contrary to our assumption.
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We now use this lemma to show that there are only a few possibilities for
the integers 〈α, β〉. Take two roots α, β in a root system R with α �= ±β. We
may choose the labelling so that (β, β) ≥ (α, α) and hence

|〈β, α〉| =
2 |(β, α)|
(α, α)

≥ 2 |(α, β)|
(β, β)

= |〈α, β〉| .

By the Finiteness Lemma, the possibilities are:

〈α, β〉 〈β, α〉 θ
(β, β)
(α, α)

0 0 π/2 undetermined
1 1 π/3 1

−1 −1 2π/3 1
1 2 π/4 2

−1 −2 3π/4 2
1 3 π/6 3

−1 −3 5π/6 3

Given roots α and β, we would like to know when their sum and difference
lie in R. Our table gives some information about this question.

Proposition 11.5

Let α, β ∈ R.

(a) If the angle between α and β is strictly obtuse, then α + β ∈ R.

(b) If the angle between α and β is strictly acute and (β, β) ≥ (α, α), then
α − β ∈ R.

Proof

In either case, we may assume that (β, β) ≥ (α, α). By (R3), we know that
sβ(α) = α − 〈α, β〉 β lies in R. The table shows that if θ is strictly acute, then
〈α, β〉 = 1, and if θ is strictly obtuse, then 〈α, β〉 = −1.

Example 11.6

Let E = R2 with the Euclidean inner product. We shall find all root systems R

contained in E. Take a root α of the shortest possible length. Since R spans E,
it must contain some root β �= ±α. By considering −β if necessary, we may
assume that β makes an obtuse angle with α. Moreover, we may assume that
this angle, say θ, is as large as possible.
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(a) Suppose that θ = 2π/3. Using Proposition 11.5, we find that R contains
the six roots shown below.

α−α

α+β

−α−β

β

−β

One can check that this set is closed under the action of the reflections
sα, sβ , sα+β . As s−α = sα, and so on, this is sufficient to verify (R3). We
have therefore found a root system in E. This root system is said to have
type A2. (The 2 refers to the dimension of the underlying space.)

(b) Suppose that θ = 3π/4. Proposition 11.5 shows that α + β is a root, and
applying sα to β shows that 2α + β is a root, so R must contain

α−α

2α+β

−2α−β

α+β

−α−β

β

−β.

This root system is said to have type B2. A further root would make an
angle of at most π/8 with one of the existing roots, so this must be all of R.

(c) Suppose that θ = 5π/6. We leave it to the reader to show that R must be

α

β

and to determine the correct labels for the remaining roots. This root
system is said to have type G2.
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(d) Suppose that β is perpendicular to α. This gives us the root system of
type A1 × A1.

β−β

α

−α

Here, as (α, β) = 0, the reflection sα fixes the roots ±β lying in the space
perpendicular to α, so there is no interaction between the roots ±α and ±β.
In particular, knowing the length of α tells us nothing about the length of β.
These considerations suggest the following definition.

Definition 11.7

The root system R is irreducible if R cannot be expressed as a disjoint union
of two non-empty subsets R1 ∪R2 such that (α, β) = 0 for α ∈ R1 and β ∈ R2.

Note that if such a decomposition exists, then R1 and R2 are root systems
in their respective spans. The next lemma tells us that it will be enough to
classify the irreducible root systems.

Lemma 11.8

Let R be a root system in the real vector space E. We may write R as a disjoint
union

R = R1 ∪ R2 ∪ . . . ∪ Rk,

where each Ri is an irreducible root system in the space Ei spanned by Ri, and
E is a direct sum of the orthogonal subspaces E1, . . . , Ek.

Proof

Define an equivalence relation ∼ on R by letting α ∼ β if there exist
γ1, γ2, . . . , γs in R with α = γ1 and β = γs such that (γi, γi+1) �= 0 for 1 ≤ i < s.
Let the Ri be the equivalence classes for this relation. It is clear that they sat-
isfy axioms (R1), (R2), and (R4); you are asked to check (R3) in the following
exercise. That each Ri is irreducible follows immediately from the construction.

As every root appears in some Ei, the sum of the Ei spans E. Suppose that
v1 + . . . + vk = 0, where vi ∈ Ei. Taking inner products with vj , we get

0 = (v1, vj) + . . . + (vj , vj) + . . . + (vk, vj) = (vj , vj)

so each vj = 0. Hence E = E1 ⊕ . . . ⊕ Ek.
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Exercise 11.2

Show that if (α, β) �= 0, then (α, sα(β)) �= 0. Deduce that the equivalence
classes defined in the proof of the lemma satisfy (R3).

11.3 Bases for Root Systems

Let R be a root system in the real inner-product space E. Because R spans
E, any maximal linearly independent subset of R is a vector space basis for R.
Proposition 11.5 suggests that it might be convenient if we could find such a
subset where every pair of elements made an obtuse angle. In fact, we can ask
for something stronger, as in the following.

Definition 11.9

A subset B of R is a base for the root system R if

(B1) B is a vector space basis for E, and

(B2) every β ∈ R can be written as β =
∑

α∈B kαα with kα ∈ Z, where all the
non-zero coefficients kα have the same sign.

Exercise 11.3

Show that if B is a base for a root system, then the angle between any
two distinct elements of B is obtuse (that is, at least π/2).

We say that a root β ∈ R is positive with respect to B if the coefficients given
in (B2) are positive, and otherwise it is negative with respect to B.

Exercise 11.4

Let R = {±(εi − εj) : 1 ≤ i < j ≤ � + 1} be the root system in Exercise
11.1. Let αi = εi − εi+1 for 1 ≤ i ≤ �. Show that B = {α1, . . . , α�} is a
base for R and find the positive roots.

A natural way to label the elements of R as positive or negative is to fix
a hyperplane of codimension 1 in E which does not contain any element of
R and then to label the roots of one side of the hyperplane as positive and
those on the other side as negative. Suppose that R has a base B compatible
with this labelling. Then the elements of B must lie on the positive side of the
hyperplane. For example, the diagram below shows a possible base for the root
system in Example 11.6(b).
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{α, β} is a base of the root system of type B2

Note that the roots in the base are those nearest to the hyperplane. This
observation motivates the proof of our next theorem.

Theorem 11.10

Every root system has a base.

Proof

Let R be a root system in the real inner-product space E. We may assume that
E has dimension at least 2, as the case dim E = 1 is obvious. We may choose a
vector z ∈ E which does not lie in the perpendicular space of any of the roots.
Such a vector must exist, as E has dimension at least 2, so it is not the union
of finitely many hyperplanes (see Exercise 11.8 or Exercise 11.12).

Let R+ be the set of α ∈ R which lie on the positive side of z, that is, those
α for which (z, α) > 0. Let

B := {α ∈ R+ : α is not the sum of two elements in R+}.

We claim that B is a base for R.
We first show that (B2) holds. If β ∈ R, then either β ∈ R+ or −β ∈ R+, so

it is sufficient to prove that every β ∈ R+ can be expressed as β =
∑

α∈B kαα

for some kα ∈ Z with each kα ≥ 0. If this fails, then we may pick, from the
elements of R+ that are not of this form, an element β ∈ R+ such that the
inner product (z, β) is as small as possible. As β �∈ B, there exist β1, β2 ∈ R+

such that β = β1 + β2. By linearity,

(z, β) = (z, β1) + (z, β2)

is the sum of two positive numbers, and therefore 0 < (z, βi) < (z, β) for
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i = 1, 2. Now at least one of β1, β2 cannot be expressed as a positive integral
linear combination of the elements of B; this contradicts the choice of β.

It remains to show that B is linearly independent. First note that if α and β

are distinct elements of B, then by Exercise 11.3 the angle between them must
be obtuse. Suppose that

∑
α∈B rαα = 0, where rα ∈ R. Collecting all the terms

with positive coefficients to one side gives an element

x :=
∑

α : rα>0

rαα =
∑

β : rβ<0

(−rβ)β.

Hence
(x, x) =

∑
α : rα>0
β : rβ<0

rα(−rβ)(α, β) ≤ 0

and so x = 0. Therefore

0 = (x, z) =
∑

α : rα>0

rα(α, z),

where each (α, z) > 0 as α ∈ R+, so we must have rα = 0 for all α, and
similarly rβ = 0 for all β.

Let R+ denote the set of all positive roots in a root system R with respect
to a base B, and let R− be the set of all negative roots. Then R = R+ ∪ R−,
a disjoint union. The set B is contained in R+; the elements of B are called
simple roots. The reflections sα for α ∈ B are known as simple reflections.

Remark 11.11

A root system R will usually have many possible bases. For example, if B is a
base then so is {−α : α ∈ B}. In particular, the terms “positive” and “negative”
roots are always taken with reference to a fixed base B.

Exercise 11.5

Let R be a root system with a base B. Take any γ ∈ R. Show that the
set {sγ(α) : α ∈ B} is also a base of R.

11.3.1 The Weyl Group of a Root System

For each root α ∈ R, we have defined a reflection sα which acts as an invertible
linear map on E. We may therefore consider the group of invertible linear
transformations of E generated by the reflections sα for α ∈ R. This is known
as the Weyl group of R and is denoted by W or W (R).
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Lemma 11.12

The Weyl group W associated to R is finite.

Proof

By axiom (R3), the elements of W permute R, so there is a group homomor-
phism from W into the group of all permutations of R, which is a finite group
because R is finite. We claim that this homomorphism is injective, and so W

is finite.
Suppose that g ∈ W is in the kernel of this homomorphism. Then, by

definition, g fixes all the roots in R. But E is spanned by the roots, so g fixes
all elements in a basis of E, and so g must be the identity map.

11.3.2 Recovering the Roots

Suppose that we are given a base B for a root system R. We shall show that
this alone gives us enough information to recover R. To do this, we use the Weyl
group and prove that every root β is of the form β = g(α) for some α ∈ B

and some g in the subgroup W0 := 〈sγ : γ ∈ B〉 of W . (We shall also see that
W = W0.) Thus, if we repeatedly apply reflections in the simple roots, we will
eventually recover the full root system.

Some evidence for this statement is given by Example 11.6: in each case we
started with a pair of roots {α, β}, and knowing only the positions of α and
β, we used repeated reflections to construct the unique root system containing
these roots as a base.

Lemma 11.13

If α ∈ B, then the reflection sα permutes the set of positive roots other than α.

Proof

Suppose that β ∈ R+ and β �= α. We know that β =
∑

γ∈B kγγ for some
kγ ≥ 0. Since β �= α and β ∈ R, there is some γ ∈ B with kγ �= 0 and γ �= α.
We know that sα(β) ∈ R; and from sα(β) = β − 〈β, α〉 α we see that the
coefficient of γ in sα(β) is kγ , which is positive. As all the non-zero coefficients
in the expression of sα(β) as a linear combination of base elements must have
the same sign, this tells us that sα(β) lies in R+.
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Proposition 11.14

Suppose that β ∈ R. There exists g ∈ W0 and α ∈ B such that β = g(α).

Proof

Suppose first of all that β ∈ R+ and that β =
∑

γ∈B kγγ with kγ ∈ Z, kγ ≥ 0.
We shall proceed by induction on the height of β defined by

ht(β) =
∑
γ∈B

kγ .

If ht(β) = 1, then β ∈ B, so we may take α = β and let g be the identity
map. For the inductive step, suppose that ht(β) = n ≥ 2. By axiom (R2), at
least two of the kγ are strictly positive.

We claim that there is some γ ∈ B such that (β, γ) > 0. If not, then
(β, γ) ≤ 0 for all γ ∈ B and so

(β, β) =
∑

γ

kγ(β, γ) ≤ 0,

which is a contradiction because β �= 0. We may therefore choose some γ ∈ B

with (β, γ) > 0. Then 〈β, γ〉 > 0 and so

ht(sγ(β)) = ht(β) − 〈β, γ〉 < ht(β).

(We have sγ(β) ∈ R+ by the previous lemma.) The inductive hypothesis now
implies that there exists α ∈ B and h ∈ W0 such that sγ(β) = h(α). Hence
β = sγ(h(α)) so we may take g = sγh, which lies in W0.

Now suppose that β ∈ R−, so −β ∈ R+. By the first part, −β = g(α) for
some g ∈ W0 and α ∈ B. By linearity of g, we get β = g(−α) = g(sα(α)),
where gsα ∈ W0.

We end this section by proving that a base for a root system determines its
full Weyl group. We need the following straightforward result.

Exercise 11.6

Suppose that α is a root and that g ∈ W . Show that gsαg−1 = sgα.

Lemma 11.15

We have W0 = W ; that is, W is generated by the sα for α ∈ B.
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Proof

By definition, W is generated by the reflections sβ for β ∈ R, so it is sufficient
to prove that sβ ∈ W0 for any β ∈ R. By Proposition 11.14, we know that given
β there is some g ∈ W0 and α ∈ B such that β = g(α). Now the reflection sβ

is equal to gsαg−1 ∈ W0 by the previous exercise.

11.4 Cartan Matrices and Dynkin Diagrams

Although in general a root system can have many different bases, the following
theorem shows that from a geometric point of view they are all essentially
the same. As the proof of this theorem is slightly technical, we postpone it to
Appendix D.

Theorem 11.16

Let R be a root system and suppose that B and B′ are two bases of R, as
defined in Definition 11.9. Then there exists an element g in the Weyl group
W (R) such that B′ = {g(α) : α ∈ B}.

Let B be a base in a root system R. Fix an order on the elements of B, say
(α1, . . . , α�). The Cartan matrix of R is defined to be the � × � matrix with
ij-th entry 〈αi, αj〉. Since for any root β we have

〈sβ(αi), sβ(αj)〉 = 〈αi, αj〉 ,

it follows from Theorem 11.16 that the Cartan matrix depends only on the
ordering adopted with our chosen base B and not on the base itself. Note that
by (R4) the entries of the Cartan matrix are integers.

Example 11.17

(1) Let R be as in Exercise 11.4(ii). Calculation shows that the Cartan matrix
with respect to the ordered base (α1, . . . , α�) is⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 . . . 0 0
−1 2 −1 . . . 0 0
0 −1 2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2 −1
0 0 0 . . . −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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(2) Let R be the root system which we have drawn in Example 11.6(b). This
has ordered base (α, β), and the corresponding Cartan matrix is

C =
(

2 −1
−2 2

)
.

Another way to record the information given in the Cartan matrix is in
a graph Δ = Δ(R), defined as follows. The vertices of Δ are labelled by the
simple roots of B. Between the vertices labelled by simple roots α and β, we
draw dαβ lines, where

dαβ := 〈α, β〉 〈β, α〉 ∈ {0, 1, 2, 3} .

If dαβ > 1, which happens whenever α and β have different lengths and are
not orthogonal, we draw an arrow pointing from the longer root to the shorter
root. This graph is called the Dynkin diagram of R. By Theorem 11.16, the
Dynkin diagram of R is independent of the choice of base.

The graph with the same vertices and edges, but without the arrows, is
known as the Coxeter graph of R.

Example 11.18

Using the base given in Exercise 11.4(ii), the Dynkin diagram of the root system
introduced in Exercise 11.1 is

α1 α2 α�−2 α�−1
. . . .

The Dynkin diagram for the root system in Example 11.6(b) is
β α

.

Exercise 11.7

Show that a root system is irreducible if and only if its Dynkin diagram
is connected; that is, given any two vertices, there is a path joining them.

Given a Dynkin diagram, one can read off the numbers 〈αi, αj〉 and so
recover the Cartan matrix. In fact, more is true: The next section shows that
a root system is essentially determined by its Dynkin diagram.

11.4.1 Isomorphisms of Root Systems

Definition 11.19

Let R and R′ be root systems in the real inner-product spaces E and E′,
respectively. We say that R and R′ are isomorphic if there is a vector space
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isomorphism ϕ : E → E′ such that

(a) ϕ(R) = R′, and

(b) for any two roots α, β ∈ R, 〈α, β〉 = 〈ϕ(α), ϕ(β)〉.

Recall that if θ is the angle between roots α and β, then 4 cos2 θ =
〈α, β〉 〈β, α〉, so condition (b) says that ϕ should preserve angles between root
vectors. For irreducible root systems, a stronger geometric characterisation is
possible — see Exercise 11.15 at the end of this chapter.

Example 11.20

Let R be a root system in the inner-product space E. We used that the reflection
maps sα for α ∈ R are isomorphisms (from R to itself) when we defined the
Cartan matrix of a root system.

An example of an isomorphism that is not distance preserving is given by
scaling: For any non-zero c ∈ C, the set cR = {cα : α ∈ R} is a root system in
E, and the map v �→ cv induces an isomorphism between R and cR.

It follows immediately from the definition of isomorphism that isomorphic
root systems have the same Dynkin diagram. We now prove that the converse
holds.

Proposition 11.21

Let R and R′ be root systems in the real vector spaces E and E′, respectively.
If the Dynkin diagrams of R and R′ are the same, then the root systems are
isomorphic.

Proof

We may choose bases B = {α1, . . . , α�} in R and B′ = {α′
1, . . . , α

′
�} in R′ so

that for all i, j one has
〈αi, αj〉 =

〈
α′

i, α
′
j

〉
.

Let ϕ : E → E′ be the linear map which maps αi to α′
i. By definition, this is

a vector space isomorphism satisfying condition 11.19(b). We must show that
ϕ(R) = R′.

Let v ∈ E and αi ∈ B. We have

ϕ (sαi
(v)) = ϕ (v − 〈v, αi〉 αi)

= ϕ(v) − 〈v, αi〉 α′
i.
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We claim that 〈v, αi〉 = 〈ϕ(v), α′
i〉. To show this, express v as a linear combi-

nation of α1, . . . , αn and then use that 〈−,−〉 is linear in its first component.
Therefore the last equation may be written as

ϕ(sαi
(v)) = sα′

i
(ϕ(v)).

By Lemma 11.15, the simple reflections sαi generate the Weyl group of R.
Hence the image under ϕ of the orbit of v ∈ E under the Weyl group of R

is contained in the orbit of ϕ(v) under the Weyl group of R′. Now Proposi-
tion 11.14 tells us that {g(α) : g ∈ W0, α ∈ B} = R so, since ϕ(B) = B′, we
must have ϕ(R) ⊆ R′.

The same argument may be applied to the inverse of ϕ to show that
ϕ−1(R′) ⊆ R. Hence ϕ(R) = R′, as required.

EXERCISES

11.8. Let E be a real inner-product space of dimension n ≥ 2. Show that E

is not the union of finitely many hyperplanes of dimension n−1. For
a more general result, see Exercise 11.12 below.

11.9.† Let E be a finite-dimensional real inner-product space. Let b1, . . . , bn

be a vector space basis of E. Show that there is some z ∈ E such
that (z, bi) > 0 for all i.

11.10. Let R be as in Exercise 11.1 with � = 2. We may regard the reflec-
tions sαj

for j = 1, 2 as linear maps on R3. Determine sαj
(εi) for

1 ≤ i ≤ 3 and 1 ≤ j ≤ 2. Hence show that W (R) is isomorphic to
the symmetric group S3.

11.11. Suppose that R is a root system in E, that R′ is a root system in E′,
and that ϕ : E → E′ is a linear map which induces an isomorphism
of root systems. Show that for α ∈ R one then has

sα = ϕ−1 ◦ sϕ(α) ◦ ϕ.

Prove that the Weyl group associated to R is isomorphic to the Weyl
group associated to R′. (If you know what it means, prove that the
pairs (R, W (R)) and (R′, W (R′)) are isomorphic as G-spaces.)

11.12.† Suppose that E is a finite-dimensional vector space over an infinite
field. Suppose U1, U2, . . . , Un are proper subspaces of E of the same
dimension. Show that the set-theoretic union

⋃n
i=1 Ui is not a sub-

space. In particular, it is a proper subset of E.
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11.13. Suppose that R is a root system in the real inner-product space E.
Show that

Ř :=
{

2α

(α, α)
: α ∈ R

}

is also a root system in E. Show that the Cartan matrix of Ř is
the transpose of the Cartan matrix of Ř (when each is taken with
respect to suitable ordering of the roots) and that the Weyl groups
of R and Ř are isomorphic. One says Ř is the dual root system to R.

11.14.† Show that if R is a root system and α, β ∈ R are roots with α �= ±β

then the subgroup of the Weyl group W (R) generated by sα, sβ

is a dihedral group with rotational subgroup generated by sαsβ .
Hence, or otherwise, find the Weyl groups of the root systems in
Example 11.6.

Hint : A group generated by two elements x and y, each of order 2,
is dihedral of order 2m, where m is the order of xy.

11.15.� Let R and R′ be irreducible root systems in the real inner-product
spaces E and E′. Prove that R and R′ are isomorphic if and only
if there exist a scalar λ ∈ R and a vector space isomorphism
ϕ : E → E′ such that ϕ(R) = R′ and

(ϕ(u), ϕ(v)) = λ(u, v) for all u, v ∈ E.




