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The Root Space Decomposition

We are now ready to embark on the classification of the complex semisimple Lie
algebras. So far we have proved the simplicity of only one family of Lie algebras,
namely the algebras sl(n,C) for n ≥ 2 (see Exercise 9.7). There is, however, a
strong sense in which their behaviour is typical of all complex semisimple Lie
algebras. We therefore begin by looking at the structures of sl(2,C) and sl(3,C)
in the belief that this will motivate the strategy adopted in this chapter.

In §3.2.4, we proved that sl(2,C) was the unique 3-dimensional semisimple
complex Lie algebra by proceeding as follows:

(1) We first showed that if L was a 3-dimensional Lie algebra such that L = L′,
then there was some h ∈ L such that adh was diagonalisable.

(2) We then took a basis of L consisting of eigenvectors for adh and by find-
ing the structure constants with respect to this basis showed that L was
isomorphic to sl(2,C).

In the case of sl(3,C), a suitable replacement for the element h ∈ sl(2,C) is
the 2-dimensional subalgebra H of diagonal matrices in sl(3,C). One can see
directly that sl(3,C) decomposes into a direct sum of common eigenspaces for
the elements of ad H. Suppose h ∈ H has diagonal entries a1, a2, a3. Then

[h, eij ] = (ai − aj)eij

so the elements eij for i �= j are common eigenvectors for the elements of ad H.
Moreover, as H is abelian, H is contained in the kernel of every element of
adH.
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92 10. The Root Space Decomposition

It will be helpful to express this decomposition using the language of weights
and weight spaces introduced in Chapter 5. Define εi : H → C by εi(h) = ai.
We have

(adh)eij = (εi − εj)(h)eij .

Here εi − εj is a weight and eij is in its associated weight space. In fact one
can check that if Lij is the weight space for εi − εj , that is

Lij = {x ∈ sl(3,C) : (adh)x = (εi − εj)(h)x for all h ∈ H} ,

then we have Lij = Span{eij} for i �= j. Hence there is a direct sum decompo-
sition

sl(3,C) = H ⊕
⊕
i�=j

Lij .

The existence of this decomposition can be seen in a more abstract way.
Let L be a complex semisimple Lie algebra and let H be an abelian subalgebra
of L consisting of semisimple elements. By definition, adh is diagonalisable
for every h ∈ H. Moreover, as commuting linear maps may be simultaneously
diagonalised, H acts diagonalisably on L in the adjoint representation. We may
therefore decompose L into a direct sum of weight spaces for the adjoint action
of H.

Our strategy is therefore:

(1) to find an abelian Lie subalgebra H of L that consists entirely of
semisimple elements; and

(2) to decompose L into weight spaces for the action of adH and
then exploit this decomposition to determine information about the
structure constants of L.

In the following section, we identify the desirable properties of the sub-
algebra H and prove some preliminary results about the decomposition. We
then show that subalgebras H with these desirable properties always exist and
complete step (2).

10.1 Preliminary Results

Suppose that L is a complex semisimple Lie algebra containing an abelian
subalgebra H consisting of semisimple elements. What information does this
give us about L?



10.1 Preliminary Results 93

We have seen that L has a basis of common eigenvectors for the elements
of adH. Given a common eigenvector x ∈ L, the eigenvalues are given by the
associated weight, α : H → C, defined by

(adh)x = α(h)x for all h ∈ H.

Weights are elements of the dual space H�. For each α ∈ H�, let

Lα := {x ∈ L : [h, x] = α(h)x for all h ∈ H}
denote the corresponding weight space. One of these weight spaces is the zero
weight space:

L0 = {z ∈ L : [h, z] = 0 for all h ∈ H} .

This is the same as the centraliser of H in L, CL(H). As H is abelian, we have
H ⊆ L0.

Let Φ denote the set of non-zero α ∈ H� for which Lα is non-zero. We can
write the decomposition of L into weight spaces for H as

L = L0 ⊕
⊕
α∈Φ

Lα. (�)

Since L is finite-dimensional, this implies that Φ is finite.

Lemma 10.1

Suppose that α, β ∈ H�. Then

(i) [Lα, Lβ ] ⊆ Lα+β .

(ii) If α + β �= 0, then κ(Lα, Lβ) = 0.

(iii) The restriction of κ to L0 is non-degenerate.

Proof

(i) Take x ∈ Lα and y ∈ Lβ . We must show that [x, y], if non-zero, is an
eigenvector for each ad h ∈ H, with eigenvalue α(h) + β(h). Using the Jacobi
identity we get

[h, [x, y]] = [[h, x], y] + [x, [h, y]] = [α(h)x, y] + [x, β(h)y]

= α(h)[x, y] + β(h)[x, y]

= (α + β)(h)[x, y].

(ii) Since α + β �= 0, there is some h ∈ H such that (α + β)(h) �= 0. Now, for
any x ∈ Lα and y ∈ Lβ , we have, using the associativity of the Killing form,

α(h)κ(x, y) = κ([h, x], y) = −κ([x, h], y) = −κ(x, [h, y]) = −β(h)κ(x, y),
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and hence
(α + β)(h)κ(x, y) = 0.

Since by assumption (α + β)(h) �= 0, we must have κ(x, y) = 0.
(iii) Suppose that z ∈ L0 and κ(z, x) = 0 for all x in L0. By (ii), we know

that L0 ⊥ Lα for all α �= 0. If x ∈ L, then by (�) we can write x as

x = x0 +
∑
α∈Φ

xα

with xα ∈ Lα. By linearity, κ(z, x) = 0 for all x ∈ L. Since κ is non-degenerate,
it follows that z = 0, as required.

Exercise 10.1

Show that if x ∈ Lα where α �= 0, then adx is nilpotent.

If H is small, then the decomposition (�) is likely to be rather coarse,
with few non-zero weight spaces other than L0. Furthermore, if H is properly
contained in L0, then we get little information about how the elements in L0

that are not in H act on L. This is illustrated by the following exercise.

Exercise 10.2

Let L = sl(n,C), where n ≥ 2, and let H = Span{h}, where h = e11−e22.
Find L0 = CL(H), and determine the direct sum decomposition (�) with
respect to H.

We conclude that for the decomposition (�) of L into weight spaces to be
as useful as possible, H should be as large as possible, and ideally we would
have H = L0 = CL(H).

Definition 10.2

A Lie subalgebra H of a Lie algebra L is said to be a Cartan subalgebra (or
CSA) if H is abelian and every element h ∈ H is semisimple, and moreover H

is maximal with these properties.

Note that we do not assume L is semisimple in this definition. For example,
the subalgebra H of sl(3,C) considered in the introduction to this chapter is a
Cartan subalgebra of sl(3,C). One straightforward way to see this is to show
that Csl(3,C)(H) = H; thus H is not contained in any larger abelian subalgebra
of sl(3,C).

We remark that some texts use a “maximal toral subalgebra” in place of
what we have called a Cartan subalgebra. The connection is discussed at the
end of Appendix C, where we establish that the two types of algebras are the
same.



10.2 Cartan Subalgebras 95

10.2 Cartan Subalgebras

Let L be a complex semisimple Lie algebra. We shall show that L has a non-zero
Cartan subalgebra. We first note that L must contain semisimple elements. If
x ∈ L has Jordan decomposition x = s + n, then by Theorem 9.15 both s

and n belong to L. If the semisimple part s were always zero, then by Engel’s
Theorem (in its second version), L would be nilpotent and therefore solvable.
Hence we can find a non-zero semisimple element s ∈ L. We can now obtain
a non-zero Cartan subalgebra of L by taking any subalgebra which contains
s and which is maximal subject to being abelian and consisting of semisimple
elements. (Such a subalgebra must exist because L is finite-dimensional.)

We shall now show that if H is a Cartan subalgebra then H = CL(H). The
proof of this statement is slightly technical, so the reader may prefer to defer
or skip some of the details. In this case, she should continue reading at §10.3.

Lemma 10.3

Let H be a Cartan subalgebra of L. Suppose that h ∈ H is such that the
dimension of CL(h) is minimal. Then every s ∈ H is central in CL(h), and so
CL(h) ⊆ CL(s). Hence CL(h) = CL(H).

Proof

We shall show that if s is not central in CL(h), then there is a linear combination
of s and h whose centraliser has smaller dimension than CL(h).

First we construct a suitable basis for L. We start by taking a basis of
CL(h) ∩ CL(s), {c1, . . . , cn}, say. As s is semisimple and s ∈ CL(h), ad s acts
diagonalisably on CL(h). We may therefore extend this basis to a basis of CL(h)
consisting of ad s eigenvectors, say by adjoining {x1, . . . , xp}. Similarly we may
extend {c1, . . . , cn} to a basis of CL(s) consisting of adh eigenvectors, say by
adjoining {y1, . . . , yq}. We leave it to the reader to check that

{c1, . . . , cn, x1, . . . , xp, y1, . . . , yq}
is a basis of CL(h)+CL(s). Finally, as adh and ad s commute and act diagonal-
isably on L, we may extend this basis to a basis of L by adjoining simultaneous
eigenvectors for adh and ad s, say {w1, . . . , wr}.

Note that if [s, xj ] = 0 then xj ∈ CL(s) ∩ CL(h), a contradiction. Similarly,
one can check that [h, yk] �= 0. Let [h, wl] = θlwl and [s, wl] = σlwl. Again we
have θl, σl �= 0 for 1 ≤ l ≤ r. The following table summarises the eigenvalues



96 10. The Root Space Decomposition

of ad s, adh, and ad s + λ adh, where λ �= 0:

ci xj yk wl

ad s 0 �= 0 0 σl

adh 0 0 �= 0 θl

ad s + λ adh 0 �= 0 �= 0 σl + λθl

Thus, if we choose λ so that λ �= 0 and λ �= −σl/θl for any l, then we will have

CL(s + λh) = CL(s) ∩ CL(h).

By hypothesis, CL(h) �⊆ CL(s), so this subspace is of smaller dimension than
CL(h); this contradicts the choice of h.

Now, since CL(H) is the intersection of the CL(s) for s ∈ H, it follows
that CL(h) ⊆ CL(H). The other inclusion is obvious, so we have proved that
CL(h) = CL(H).

Theorem 10.4

If H is a Cartan subalgebra of L and h ∈ H is such that CL(h) = CL(H), then
CL(h) = H. Hence H is self-centralising.

Proof

Since H is abelian, H is certainly contained in CL(h). Suppose x ∈ CL(h) has
abstract Jordan decomposition x = s+n. As x commutes with h, Theorem 9.15
implies that both s and n lie in CL(h), so we must show that s ∈ H and n = 0.

We almost know already that s ∈ H. Namely, since CL(h) = CL(H), we
have that s commutes with every element of H and therefore H + Span{s} is
an abelian subalgebra of L consisting of semisimple elements. It contains the
Cartan subalgebra H and hence by maximality s ∈ H.

To show that the only nilpotent element in CL(H) is 0 takes slightly more
work.

Step 1: CL(h) is nilpotent. Take x ∈ CL(h) with x = s + n as above. Since
s ∈ H, it must be central in CL(h), so, regarded as linear maps from CL(h)
to itself, we have adx = adn. Thus for every x ∈ CL(h), adx : CL(h) →
CL(h) is nilpotent. It now follows from the second version of Engel’s Theorem
(Theorem 6.3) that CL(h) is a nilpotent Lie algebra.

Step 2: Every element in CL(h) is semisimple. Let x ∈ CL(h) have abstract
Jordan decomposition x = s+n as above. As CL(h) is nilpotent, it is certainly
solvable, so by Lie’s Theorem (Theorem 6.5) there is a basis of L in which



10.3 Definition of the Root Space Decomposition 97

the maps adx for x ∈ CL(h) are represented by upper triangular matrices.
As ad n : L → L is nilpotent, its matrix must be strictly upper triangular.
Therefore

κ(n, z) = tr(adn ◦ ad z) = 0

for all z ∈ CL(h). By Lemma 10.1(iii), the restriction of κ to CL(H) is non-
degenerate, so we deduce n = 0, as required.

10.3 Definition of the Root Space
Decomposition

Let H be a Cartan subalgebra of our semisimple Lie algebra L. As H = CL(H),
the direct sum decomposition of L into weight spaces for H considered in §10.1
may be written as

L = H ⊕
⊕
α∈Φ

Lα,

where Φ is the set of α ∈ H� such that α �= 0 and Lα �= 0. Since L is finite-
dimensional, Φ is finite.

If α ∈ Φ, then we say that α is a root of L and Lα is the associated root
space. The direct sum decomposition above is the root space decomposition. It
should be noted that the roots and root spaces depend on the choice of Cartan
subalgebra H.

10.4 Subalgebras Isomorphic to sl(2, C)

We shall now associate to each root α ∈ Φ a Lie subalgebra of L isomorphic
to sl(2,C). These subalgebras will enable us to apply the results in Chapter 8
on representations of sl(2,C) to deduce several strong results on the structure
of L. Chapters 11 and 12 give many examples of the theory we develop in the
next three sections. See also Exercise 10.6 for a more immediate example.

Lemma 10.5

Suppose that α ∈ Φ and that x is a non-zero element in Lα. Then −α is a root
and there exists y ∈ L−α such that Span{x, y, [x, y]} is a Lie subalgebra of L

isomorphic to sl(2,C).
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Proof

First we claim that there is some y ∈ L−α such that κ(x, y) �= 0 and [x, y] �= 0.
Since κ is non-degenerate, there is some w ∈ L such that κ(x, w) �= 0. Write
w = y0 +

∑
β∈Φ yβ with y0 ∈ L0 and yβ ∈ Lβ . When we expand κ(x, y), we

find by Lemma 10.1(ii) that the only way a non-zero term can occur is if −α is
a root and y−α �= 0, so we may take y = y−α. Now, since α is non-zero, there
is some t ∈ H such that α(t) �= 0. For this t, we have

κ(t, [x, y]) = κ([t, x], y) = α(t)κ(x, y) �= 0

and so [x, y] �= 0.
Let S := Span{x, y, [x, y]}. By Lemma 10.1(i), [x, y] lies in L0 = H. As x

and y are simultaneous eigenvectors for all elements of ad H, and so in particular
for ad[x, y], this shows that S is a Lie subalgebra of L. It remains to show that
S is isomorphic to sl(2,C).

Let h := [x, y] ∈ S. We claim that α(h) �= 0. If not, then [h, x] = α(h)x = 0;
similarly [h, y] = −α(h)y = 0, so ad h : L → L commutes with ad x : L → L

and ad y : L → L. By Proposition 5.7, adh : L → L is a nilpotent map.
On the other hand, because H is a Cartan subalgebra, h is semisimple. The
only element of L that is both semisimple and nilpotent is 0, so h = 0, a
contradiction.

Thus S is a 3-dimensional complex Lie algebra with S′ = S. By §3.2.4, S

is isomorphic to sl(2,C).

Using this lemma, we may associate to each α ∈ Φ a subalgebra sl(α) of
L isomorphic to sl(2,C). The following exercise gives a standard basis for this
Lie algebra.

Exercise 10.3

Show that for each α ∈ Φ, sl(α) has a basis {eα, fα, hα} such that

(i) eα ∈ Lα, fα ∈ L−α, hα ∈ H, and α(hα) = 2.

(ii) The map θ : sl(α) → sl(2,C) defined by θ(eα) = e, θ(fα) = f ,
θ(hα) = h is a Lie algebra isomorphism.

Hint: With the notation used in the statement of the lemma, one can
take eα = x and fα = λy for a suitable choice of λ ∈ C.
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10.5 Root Strings and Eigenvalues

We can use the Killing form to define an isomorphism between H and H� as
follows. Given h ∈ H, let θh denote the map θh ∈ H� defined by

θh(k) = κ(h, k) for all k ∈ H.

By Lemma 10.1(iii) the Killing form is non-degenerate on restriction to H, so
the map h �→ θh is an isomorphism between H and H�. (If you did Exercise 9.10
then you will have seen this before; the proof is outlined in Appendix A.) In
particular, associated to each root α ∈ Φ there is a unique element tα ∈ H such
that

κ(tα, k) = α(k) for all k ∈ H.

One very useful property of this correspondence is the following lemma.

Lemma 10.6

Let α ∈ Φ. If x ∈ Lα and y ∈ L−α, then [x, y] = κ(x, y)tα. In particular,
hα = [eα, fα] ∈ Span{tα}.

Proof

For h ∈ H, we have

κ(h, [x, y]) = κ([h, x], y) = α(h)κ(x, y) = κ(tα, h)κ(x, y).

Now we view κ(x, y) as a scalar and rewrite the right-hand side to get

κ(h, [x, y]) = κ(h, κ(x, y)tα).

This shows that [x, y] − κ(x, y)tα is perpendicular to all h ∈ H, and hence it is
zero as κ restricted to H is non-degenerate.

We are now in a position to apply the results of Chapter 8 on the represen-
tation theory of sl(2,C). Let α be a root. We may regard L as an sl(α)-module
via restriction of the adjoint representation. Thus, if a ∈ sl(α) and y ∈ L, then
the action is given by

a · y = (ad a)y = [a, y].

Note that the sl(α)-submodules of L are precisely the vector subspaces M of
L such that [s, m] ∈ M for all s ∈ sl(α) and m ∈ M . Of course, it is enough
to check this when s is one of the standard basis elements hα, eα, fα. We shall
also need the following lemma.
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Lemma 10.7

If M is an sl(α)-submodule of L, then the eigenvalues of hα acting on M are
integers.

Proof

By Weyl’s Theorem, M may be decomposed into a direct sum of irreducible
sl(α)-modules; for irreducible sl(2,C)-modules, the result follows from the clas-
sification of Chapter 8.

Example 10.8

(1) If you did Exercise 8.3, then you will have seen how sl(3,C) decomposes
as an sl(α)-module where α = ε1 − ε2 is a root of the Cartan subalgebra of
sl(3,C) consisting of all diagonal matrices.

(2) Let U = H + sl(α). Let K = kerα ⊆ H. By the rank-nullity formula,
dimK = dimH − 1. (We know that dim imα = 1 as α(hα) �= 0.) As H is
abelian, [hα, x] = 0 for all x ∈ K. Moreover, if x ∈ K, then

[eα, x] = −[x, eα] = −α(x)eα = 0

and similarly [fα, x] = 0. Thus every element of sl(α) acts trivially on K.
It follows that U = K ⊕ sl(α) is a decomposition of U into sl(α)-modules.
By Exercise 8.2(iii), the adjoint representation of sl(α) is isomorphic to V2,
so U is isomorphic to the direct sum of dimH − 1 copies of the trivial
representation, V0, and one copy of the adjoint representation, V2.

(3) If β ∈ Φ or β = 0, let
M :=

⊕
c

Lβ+cα,

where the sum is over all c ∈ C such that β + cα ∈ Φ. It follows from
Lemma 10.1(i) that M is an sl(α)-submodule of L. This module is said to
be the α-root string through β. Analysing these modules will give the main
results of this section.

Proposition 10.9

Let α ∈ Φ. The root spaces L±α are 1-dimensional. Moreover, the only multiples
of α which lie in Φ are ±α.
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Proof

If cα is a root, then hα takes cα(hα) = 2c as an eigenvalue. As the eigenvalues
of hα are integral, either c ∈ Z or c ∈ Z + 1

2 . To rule out the unwanted values
for c, we consider the root string module

M := H ⊕
⊕
cα∈Φ

Lcα.

Let K = ker α ⊆ H. By Example 10.8(2) above, K ⊕ sl(α) is an sl(α)-
submodule of M . By Weyl’s Theorem, modules for sl(α) are completely re-
ducible, so we may write

M = K ⊕ sl(α) ⊕ W,

where W is a complementary submodule.
If either of the conclusions of the proposition are false, then W is non-zero.

Let V ∼= Vs be an irreducible submodule of W . If s is even, then it follows
from the classification of Chapter 8 that V contains an hα-eigenvector with
eigenvalue 0. Call this eigenvector v. The zero-eigenspace of hα on M is H,
which is contained in K ⊕ sl(α). Hence v ∈ (K ⊕ sl(α)) ∩ V = 0, which is a
contradiction.

Before considering the case where s is odd, we pursue another consequence of
this argument. Suppose that 2α ∈ Φ. Then hα has 2α(hα) = 4 as an eigenvalue.
As the eigenvalues of hα on K ⊕ sl(α) are 0 and ±2, the only way this could
happen is if W contains an irreducible submodule Vs with s even, which we
just saw is impossible.

Now suppose that s is odd. Then V must contain an hα-eigenvector with
eigenvalue 1. As α(hα) = 2, this implies that 1

2α is a root of L. But then
both 1

2α and α are roots of L, which contradicts the previous paragraph.

Proposition 10.10

Suppose that α, β ∈ Φ and β �= ±α.

(i) β(hα) ∈ Z.

(ii) There are integers r, q ≥ 0 such that if k ∈ Z, then β + kα ∈ Φ if and only
if −r ≤ k ≤ q. Moreover, r − q = β(hα).

(iii) If α + β ∈ Φ, then [eα, eβ ] is a non-zero scalar multiple of eα+β .

(iv) β − β(hα)α ∈ Φ.
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Proof

Let M :=
⊕

k Lβ+kα be the root string of α through β. To prove (i), we note
that β(hα) is the eigenvalue of hα acting on Lβ , and so it lies in Z.

We know from the previous proposition that dimLβ+kα = 1 whenever β+kα

is a root, so the eigenspaces of ad hα on M are all 1-dimensional and, since
(β + kα)hα = β(hα) + 2k, the eigenvalues of adhα on M are either all even or
all odd. It now follows from Chapter 8 that M is an irreducible sl(α)-module.
Suppose that M ∼= Vd. On Vd, the element hα acts diagonally with eigenvalues

{d, d − 2, . . . ,−d} ,

whereas on M , hα acts diagonally with eigenvalues

{β(hα) + 2k : β + kα ∈ Φ} .

Equating these sets shows that if we define r and q by d = β(hα) + 2q and
−d = β(hα) − 2r, then (ii) will hold.

Suppose v ∈ Lβ , so v belongs to the hα-eigenspace where hα acts as β(hα).
If (ad eα)eβ = 0, then eβ is a highest-weight vector in the irreducible represen-
tation M ∼= Vd, with highest weight β(hα). If α + β is a root, then hα acts on
the associated root space as (α + β)hα = β(hα) + 2. Therefore eβ is not in the
highest weight space of the irreducible representation M , and so (ad eα)eβ �= 0.
This proves (iii).

Finally, (iv) follows from part (ii) as

β − β(hα)α = β − (r − q)α

and −r ≤ −r + q ≤ q.

We now have a good idea about the structure constant of L (with respect
to a basis given by the root space decomposition). The action of H on the root
spaces of L is determined by the roots. Part (iii) of the previous proposition
shows that (up to scalar factors) the set of roots also determines the brackets
[eα, eβ ] for roots α �= ±β. Lastly, by construction, [eα, e−α] is in the span of
[eα, fα] = hα. The reader keen to see a complete answer should read about
Chevalley’s Theorem in §15.3.

10.6 Cartan Subalgebras as Inner-Product
Spaces

We conclude this chapter by showing that the roots of L all lie in a real vector
subspace of H� and that the Killing form induces an inner product on the
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space. This will enable us to bring some elementary geometric ideas to bear on
the classification problem.

The two propositions in the previous section show that the set Φ of roots
cannot be too big: For example, we saw that if α ∈ Φ then the only multiples
of α ∈ Φ are ±α. On the other hand, there must be roots, as otherwise the root
space decomposition would imply that L = H was abelian. What more can be
said?

Lemma 10.11

(i) If h ∈ H and h �= 0, then there exists a root α ∈ Φ such that α(h) �= 0.

(ii) The set Φ of roots spans H�.

Proof

Suppose that α(h) = 0 for all roots α. Then we have [h, x] = α(h)x = 0 for all
x ∈ Lα and for all roots α. Since H is abelian, it follows from the root space
decomposition that h ∈ Z(L), which is zero as L is semisimple.

In a sense, (ii) is just a reformulation of (i) in the language of linear algebra.
Let W ⊆ H� denote the span of Φ. Suppose that W is a proper subspace of
H�. Then the annihilator of W in H,

W ◦ = {h ∈ H : θ(h) = 0 for all θ ∈ W} ,

has dimension dimH −dimW �= 0. (See Appendix A.) Therefore there is some
non-zero h ∈ H such that θ(h) = 0 for all θ ∈ W , so in particular α(h) = 0 for
all α ∈ Φ, in contradiction to part (i).

In the previous section, we found that the elements tα and hα spanned the
same 1-dimensional subspace of L. More precisely, we have the following.

Lemma 10.12

For each α ∈ Φ, we have

(i) tα =
hα

κ(eα, fα)
and hα =

2tα
κ(tα, tα)

;

(ii) κ(tα, tα)κ(hα, hα) = 4.

Proof

The expression for tα follows from Lemma 10.6 applied with x = eα and y = fα.
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As α(hα) = 2, we have

2 = κ(tα, hα) = κ(tα, κ(eα, fα)tα),

which implies that κ(eα, fα)κ(tα, tα) = 2. Now substitute for κ(eα, fα) to get
the second expression. Finally,

κ(hα, hα) = κ

(
2tα

κ(tα, tα)
,

2tα
κ(tα, tα)

)
=

4
κ(tα, tα)

gives (ii).

Corollary 10.13

If α and β are roots, then κ(hα, hβ) ∈ Z and κ(tα, tβ) ∈ Q.

Proof

Using the root space decomposition to compute tr(ad hα ◦ adhβ), we get

κ(hα, hβ) =
∑
γ∈Φ

γ(hα)γ(hβ).

Since the eigenvalues of hα and hβ are integers, this shows that κ(hα, hβ) ∈ Z.
We now use the previous lemma to get

κ(tα, tβ) = κ

(
κ(tα, tα)hα

2
,
κ(tβ , tβ)hβ

2

)

=
κ(tα, tα)κ(tβ , tβ)

4
κ(hα, hβ) ∈ Q.

We can translate the Killing form on H to obtain a non-degenerate sym-
metric bilinear form on H∗, denoted (−,−). This form may be defined by

(θ, ϕ) = κ(tθ, tϕ),

where tθ and tϕ are the elements of H corresponding to θ and ϕ under the
isomorphism H ≡ H� induced by κ. In particular, if α and β are roots, then

(α, β) = κ(tα, tβ) ∈ Q.

Exercise 10.4

Show that β(hα) = 2(β,α)
(α,α) .

We saw in Lemma 10.11 that the roots of L span H�, so H� has a vector
space basis consisting of roots, say {α1, α2, . . . , α�}. We can now prove that
something stronger is true as follows.
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Lemma 10.14

If β is a root, then β is a linear combination of the αi with coefficients in Q.

Proof

Certainly we may write β =
∑�

i=1 ciαi with coefficients ci ∈ C. For each j with
1 ≤ j ≤ �, we have

(β, αj) =
�∑

i=1

(αi, αj)ci.

We can write these equations in matrix form as⎛
⎜⎝

(β, α1)
...

(β, α�)

⎞
⎟⎠ =

⎛
⎜⎝

(α1, α1) . . . (α�, α1)
...

. . .
...

(α1, α�) . . . (α�, α�)

⎞
⎟⎠
⎛
⎜⎝

c1
...
c�

⎞
⎟⎠ .

The matrix is the matrix of the non-degenerate bilinear form (−,−) with re-
spect to the chosen basis of roots, and so it is invertible (see Appendix A).
Moreover, we have seen that its entries are rational numbers, so it has an
inverse with entries in Q. Since also (β, αj) ∈ Q, the coefficients ci are ratio-
nal.

By this lemma, the real subspace of H� spanned by the roots α1, . . . , α�

contains all the roots of Φ and so does not depend on our particular choice of
basis. Let E denote this subspace.

Proposition 10.15

The form (−,−) is a real-valued inner product on E.

Proof

Since (−,−) is a symmetric bilinear form, we only need to check that the
restriction of (−,−) to E is positive definite. Let θ ∈ E correspond to tθ ∈ H.
Using the root space decomposition and the fact that (ad tθ)eβ = β(tθ)eβ , we
get

(θ, θ) = κ(tθ, tθ) =
∑
β∈Φ

β(tθ)2 =
∑
β∈Φ

κ(tβ , tθ)2 =
∑
β∈Φ

(β, θ)2.

As (β, θ) is real, the right-hand side is real and non-negative. Moreover, if
(θ, θ) = 0, then β(tθ) = 0 for all roots β, so by Lemma 10.11(i), θ = 0.
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EXERCISES

10.5. Suppose that L is a complex semisimple Lie algebra with Cartan
subalgebra H and root system Φ. Use the results of this chapter to
prove that

dimL = dimH + |Φ|.
Hence show that there are no semisimple Lie algebras of dimensions
4, 5, or 7.

10.6.† Let L = sl(3,C). With the same notation as in the introduction, let
α := ε1 − ε2 and β := ε2 − ε3. Show that the set of roots is

Φ = {±α,±β ± (α + β)}.

Show that the angle between the roots α and β is 2π/3 and verify
some of the results in §10.5 and §10.6 for sl(3,C).

10.7. Suppose L is semisimple of dimension 6. Let H be a Cartan subal-
gebra of L and let Φ be the associated set of roots.

(i) Show that dimH = 2 and that if α, β ∈ Φ span H�, then Φ =
{±α,±β}.

(ii) Hence show that

[Lα, L±β ] = 0 and [L±β , [Lα, L−α]] = 0

and deduce that the subalgebra Lα ⊕L−α ⊕ [Lα, L−α] is an ideal
of L. Show that L is isomorphic to the direct sum of two copies
of sl(2,C).

10.8. Show that the set of diagonal matrices in so(4,C) (as defined in
Chapter 4) forms a Cartan subalgebra of so(4,C) and determine the
corresponding root space decomposition. Hence show that so(4,C) ∼=
sl(2,C) ⊕ sl(2,C). (The reader will probably now be able to guess
the reason for choosing non-obvious bilinear forms in the definition
of the symplectic and orthogonal Lie algebras.)

10.9. Let L be a semisimple Lie algebra with Cartan subalgebra H. Use the
root space decomposition to show that NL(H) = H. (The notation
NL(H) is defined in Exercise 5.6.)

10.10. In Lemma 10.5, we defined for each α ∈ Φ a subalgebra of L iso-
morphic to sl(2,C). In the main step in the proof, we showed that
if x ∈ Lα and y ∈ L−α, and h = [x, y] �= 0, then α(h) �= 0. Here is
an alternative proof of this using root string modules.
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Suppose that α(h) = 0. Let β ∈ Φ be any root. Let M be the α root
string module through β,

M =
⊕

c

Lβ+cα.

By considering the trace of h on M , show that β(h) = 0 and hence
get a contradiction.

10.11. Let L be a complex semisimple Lie algebra with Cartan subalgebra
H and root space Φ. Let α ∈ Φ and let sl(α) = Span{eα, fα, hα} be
the corresponding subalgebra constructed in §10.4. Show that this
subalgebra is unique up to

(1) scaling basis elements as ceα, c−1fα, hα for non-zero c ∈ C; and

(2) swapping eα and fα and then replacing hα with −hα.

10.12.† Let L be a semisimple Lie algebra and let Φ be its set of roots. Let
α ∈ Φ and let

N := Span{fα} ⊕ Span{hα} ⊕ Lα ⊕ L2α ⊕ . . . .

Show that N is an sl(α)-submodule of L. By considering the trace
of hα : N → N , give an alternative proof of Proposition 10.9.




