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Introduction

We begin by defining Lie algebras and giving a collection of typical examples
to which we shall refer throughout this book. The remaining sections in this
chapter introduce the basic vocabulary of Lie algebras. The reader is reminded
that the prerequisite linear and bilinear algebra is summarised in Appendix A.

1.1 Definition of Lie Algebras

Let F be a field. A Lie algebra over F is an F -vector space L, together with a
bilinear map, the Lie bracket

L × L → L, (x, y) �→ [x, y],

satisfying the following properties:

[x, x] = 0 for all x ∈ L, (L1)

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ L. (L2)

The Lie bracket [x, y] is often referred to as the commutator of x and y.
Condition (L2) is known as the Jacobi identity. As the Lie bracket [−,−] is
bilinear, we have

0 = [x + y, x + y] = [x, x] + [x, y] + [y, x] + [y, y] = [x, y] + [y, x].

Hence condition (L1) implies

[x, y] = −[y, x] for all x, y ∈ L. (L1′)
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2 1. Introduction

If the field F does not have characteristic 2, then putting x = y in (L1′) shows
that (L1′) implies (L1).

Unless specifically stated otherwise, all Lie algebras in this book should be
taken to be finite-dimensional. (In Chapter 15, we give a brief introduction to
the more subtle theory of infinite-dimensional Lie algebras.)

Exercise 1.1

(i) Show that [v, 0] = 0 = [0, v] for all v ∈ L.

(ii) Suppose that x, y ∈ L satisfy [x, y] �= 0. Show that x and y are
linearly independent over F .

1.2 Some Examples

(1) Let F = R. The vector product (x, y) �→ x ∧ y defines the structure of
a Lie algebra on R3. We denote this Lie algebra by R3

∧. Explicitly, if
x = (x1, x2, x3) and y = (y1, y2, y3), then

x ∧ y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1).

Exercise 1.2

Convince yourself that ∧ is bilinear. Then check that the Jacobi identity
holds. Hint : If x · y denotes the dot product of the vectors x, y ∈ R3,
then

x ∧ (y ∧ z) = (x · z)y − (x · y)z for all x, y, z ∈ R3.

(2) Any vector space V has a Lie bracket defined by [x, y] = 0 for all x, y ∈ V .
This is the abelian Lie algebra structure on V . In particular, the field F

may be regarded as a 1-dimensional abelian Lie algebra.

(3) Suppose that V is a finite-dimensional vector space over F . Write gl(V ) for
the set of all linear maps from V to V . This is again a vector space over F ,
and it becomes a Lie algebra, known as the general linear algebra, if we
define the Lie bracket [−,−] by

[x, y] := x ◦ y − y ◦ x for x, y ∈ gl(V ),

where ◦ denotes the composition of maps.

Exercise 1.3

Check that the Jacobi identity holds. (This exercise is famous as one
that every mathematician should do at least once in her life.)
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(3′) Here is a matrix version. Write gl(n, F ) for the vector space of all n × n

matrices over F with the Lie bracket defined by

[x, y] := xy − yx,

where xy is the usual product of the matrices x and y.

As a vector space, gl(n, F ) has a basis consisting of the matrix units eij

for 1 ≤ i, j ≤ n. Here eij is the n × n matrix which has a 1 in the ij-th
position and all other entries are 0. We leave it as an exercise to check that

[eij , ekl] = δjkeil − δilekj ,

where δ is the Kronecker delta, defined by δij = 1 if i = j and δij = 0
otherwise. This formula can often be useful when calculating in gl(n, F ).

(4) Recall that the trace of a square matrix is the sum of its diagonal entries.
Let sl(n, F ) be the subspace of gl(n, F ) consisting of all matrices of trace 0.
For arbitrary square matrices x and y, the matrix xy − yx has trace 0,
so [x, y] = xy − yx defines a Lie algebra structure on sl(n, F ): properties
(L1) and (L2) are inherited from gl(n, F ). This Lie algebra is known as the
special linear algebra. As a vector space, sl(n, F ) has a basis consisting of
the eij for i �= j together with eii − ei+1,i+1 for 1 ≤ i < n.

(5) Let b(n, F ) be the upper triangular matrices in gl(n, F ). (A matrix x is
said to be upper triangular if xij = 0 whenever i > j.) This is a Lie algebra
with the same Lie bracket as gl(n, F ).

Similarly, let n(n, F ) be the strictly upper triangular matrices in gl(n, F ).
(A matrix x is said to be strictly upper triangular if xij = 0 whenever
i ≥ j.) Again this is a Lie algebra with the same Lie bracket as gl(n, F ).

Exercise 1.4

Check the assertions in (5).

1.3 Subalgebras and Ideals

The last two examples suggest that, given a Lie algebra L, we might define a
Lie subalgebra of L to be a vector subspace K ⊆ L such that

[x, y] ∈ K for all x, y ∈ K.

Lie subalgebras are easily seen to be Lie algebras in their own right. In Examples
(4) and (5) above we saw three Lie subalgebras of gl(n, F ).
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We also define an ideal of a Lie algebra L to be a subspace I of L such that

[x, y] ∈ I for all x ∈ L, y ∈ I.

By (L1′), [x, y] = −[y, x], so we do not need to distinguish between left and
right ideals. For example, sl(n, F ) is an ideal of gl(n, F ), and n(n, F ) is an ideal
of b(n, F ).

An ideal is always a subalgebra. On the other hand, a subalgebra need not be
an ideal. For example, b(n, F ) is a subalgebra of gl(n, F ), but provided n ≥ 2, it
is not an ideal. To see this, note that e11 ∈ b(n, F ) and e21 ∈ gl(n, F ). However,
[e21, e11] = e21 �∈ b(n, F ).

The Lie algebra L is itself an ideal of L. At the other extreme, {0} is an
ideal of L. We call these the trivial ideals of L. An important example of an
ideal which frequently is non-trivial is the centre of L, defined by

Z(L) := {x ∈ L : [x, y] = 0 for all y ∈ L} .

We know precisely when L = Z(L) as this is the case if and only if L is
abelian. On the other hand, it might take some work to decide whether or not
Z(L) = {0}.

Exercise 1.5

Find Z(L) when L = sl(2, F ). You should find that the answer depends
on the characteristic of F .

1.4 Homomorphisms

If L1 and L2 are Lie algebras over a field F , then we say that a map ϕ : L1 → L2

is a homomorphism if ϕ is a linear map and

ϕ([x, y]) = [ϕ(x), ϕ(y)] for all x, y ∈ L1.

Notice that in this equation the first Lie bracket is taken in L1 and the second
Lie bracket is taken in L2. We say that ϕ is an isomorphism if ϕ is also bijective.

An extremely important homomorphism is the adjoint homomorphism . If L

is a Lie algebra, we define
ad : L → gl(L)

by (adx)(y) := [x, y] for x, y ∈ L. It follows from the bilinearity of the Lie
bracket that the map adx is linear for each x ∈ L. For the same reason, the
map x �→ adx is itself linear. So to show that ad is a homomorphism, all we
need to check is that

ad([x, y]) = adx ◦ ad y − ad y ◦ adx for all x, y ∈ L;
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this turns out to be equivalent to the Jacobi identity. The kernel of ad is the
centre of L.

Exercise 1.6

Show that if ϕ : L1 → L2 is a homomorphism, then the kernel of ϕ,
ker ϕ, is an ideal of L1, and the image of ϕ, imϕ, is a Lie subalgebra
of L2.

Remark 1.1

Whenever one has a mathematical object, such as a vector space, group, or Lie
algebra, one has attendant homomorphisms. Such maps are of interest precisely
because they are structure preserving — homo, same; morphos, shape. For
example, working with vector spaces, if we add two vectors, and then apply a
homomorphism of vector spaces (also known as a linear map), the result should
be the same as if we had first applied the homomorphism, and then added the
image vectors.

Given a class of mathematical objects one can (with some thought) work out
what the relevant homomorphisms should be. Studying these homomorphisms
gives one important information about the structures of the objects concerned.
A common aim is to classify all objects of a given type; from this point of view,
we regard isomorphic objects as essentially the same. For example, two vector
spaces over the same field are isomorphic if and only if they have the same
dimension.

1.5 Algebras

An algebra over a field F is a vector space A over F together with a bilinear
map,

A × A → A, (x, y) �→ xy.

We say that xy is the product of x and y. Usually one studies algebras where
the product satisfies some further properties. In particular, Lie algebras are
the algebras satisfying identities (L1) and (L2). (And in this case we write the
product xy as [x, y].)

The algebra A is said to be associative if

(xy)z = x(yz) for all x, y, z ∈ A

and unital if there is an element 1A in A such that 1Ax = x = x1A for all
non-zero elements of A.
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For example, gl(V ), the vector space of linear transformations of the vector
space V , has the structure of a unital associative algebra where the product is
given by the composition of maps. The identity transformation is the identity
element in this algebra. Likewise gl(n, F ), the set of n × n matrices over F , is
a unital associative algebra with respect to matrix multiplication.

Apart from Lie algebras, most algebras one meets tend to be both associa-
tive and unital. It is important not to get confused between these two types of
algebras. One way to emphasise the distinction, which we have adopted, is to
always write the product in a Lie algebra with square brackets.

Exercise 1.7

Let L be a Lie algebra. Show that the Lie bracket is associative, that is,
[x, [y, z]] = [[x, y], z] for all x, y, z ∈ L, if and only if for all a, b ∈ L the
commutator [a, b] lies in Z(L).

If A is an associative algebra over F , then we define a new bilinear opera-
tion [−,−] on A by

[a, b] := ab − ba for all a, b ∈ A.

Then A together with [−,−] is a Lie algebra; this is not hard to prove. The
Lie algebras gl(V ) and gl(n, F ) are special cases of this construction. In fact, if
you did Exercise 1.3, then you will already have proved that the product [−,−]
satisfies the Jacobi identity.

1.6 Derivations

Let A be an algebra over a field F . A derivation of A is an F -linear map
D : A → A such that

D(ab) = aD(b) + D(a)b for all a, b ∈ A.

Let Der A be the set of derivations of A. This set is closed under addition
and scalar multiplication and contains the zero map. Hence DerA is a vector
subspace of gl(A). Moreover, Der A is a Lie subalgebra of gl(A), for by part (i)
of the following exercise, if D and E are derivations then so is [D, E].

Exercise 1.8

Let D and E be derivations of an algebra A.

(i) Show that [D, E] = D ◦ E − E ◦ D is also a derivation.

(ii) Show that D ◦ E need not be a derivation. (The following example
may be helpful.)
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Example 1.2

(1) Let A = C∞R be the vector space of all infinitely differentiable functions
R → R. For f, g ∈ A, we define the product fg by pointwise multiplication:
(fg)(x) = f(x)g(x). With this definition, A is an associative algebra. The
usual derivative, Df = f ′, is a derivation of A since by the product rule

D(fg) = (fg)′ = f ′g + fg′ = (Df)g + f(Dg).

(2) Let L be a Lie algebra and let x ∈ L. The map ad x : L → L is a derivation
of L since by the Jacobi identity

(adx)[y, z] = [x, [y, z]] = [[x, y], z] + [y, [x, z]] = [(adx)y, z] + [y, (adx)z]

for all y, z ∈ L.

1.7 Structure Constants

If L is a Lie algebra over a field F with basis (x1, . . . , xn), then [−,−] is com-
pletely determined by the products [xi, xj ]. We define scalars ak

ij ∈ F such
that

[xi, xj ] =
n∑

k=1

ak
ijxk.

The ak
ij are the structure constants of L with respect to this basis. We emphasise

that the ak
ij depend on the choice of basis of L: Different bases will in general

give different structure constants.
By (L1) and its corollary (L1′), [xi, xi] = 0 for all i and [xi, xj ] = −[xj , xi]

for all i and j. So it is sufficient to know the structure constants ak
ij for 1 ≤

i < j ≤ n.

Exercise 1.9

Let L1 and L2 be Lie algebras. Show that L1 is isomorphic to L2 if and
only if there is a basis B1 of L1 and a basis B2 of L2 such that the
structure constants of L1 with respect to B1 are equal to the structure
constants of L2 with respect to B2.

Exercise 1.10

Let L be a Lie algebra with basis (x1, . . . , xn). What condition does the
Jacobi identity impose on the structure constants ak

ij?
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EXERCISES

1.11.† Let L1 and L2 be two abelian Lie algebras. Show that L1 and L2

are isomorphic if and only if they have the same dimension.

1.12.† Find the structure constants of sl(2, F ) with respect to the basis
given by the matrices

e =
(

0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

1.13. Prove that sl(2,C) has no non-trivial ideals.

1.14.† Let L be the 3-dimensional complex Lie algebra with basis (x, y, z)
and Lie bracket defined by

[x, y] = z, [y, z] = x, [z, x] = y.

(Here L is the “complexification” of the 3-dimensional real Lie alge-
bra R3

∧.)

(i) Show that L is isomorphic to the Lie subalgebra of gl(3,C) con-
sisting of all 3 × 3 antisymmetric matrices with entries in C.

(ii) Find an explicit isomorphism sl(2,C) ∼= L.

1.15. Let S be an n × n matrix with entries in a field F . Define

glS(n, F ) = {x ∈ gl(n, F ) : xtS = −Sx}.

(i) Show that glS(n, F ) is a Lie subalgebra of gl(n, F ).

(ii) Find glS(2,R) if S =
(

0 1
0 0

)
.

(iii) Does there exist a matrix S such that glS(2,R) is equal to the
set of all diagonal matrices in gl(2,R)?

(iv) Find a matrix S such that glS(3,R) is isomorphic to the Lie
algebra R3

∧ defined in §1.2, Example 1.

Hint : Part (i) of Exercise 1.14 is relevant.

1.16.† Show, by giving an example, that if F is a field of characteristic 2,
there are algebras over F which satisfy (L1′) and (L2) but are not
Lie algebras.

1.17. Let V be an n-dimensional complex vector space and let L = gl(V ).
Suppose that x ∈ L is diagonalisable, with eigenvalues λ1, . . . , λn.
Show that adx ∈ gl(L) is also diagonalisable and that its eigenvalues
are λi − λj for 1 ≤ i, j ≤ n.
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1.18. Let L be a Lie algebra. We saw in §1.6, Example 1.2(2) that the maps
adx : L → L for x ∈ L are derivations of L; these are known as inner
derivations. Show that if IDerL is the set of inner derivations of L,
then IDer L is an ideal of DerL.

1.19. Let A be an algebra and let δ : A → A be a derivation. Prove that δ

satisfies the Leibniz rule

δn(xy) =
n∑

r=0

(
n

r

)
δr(x)δn−r(y) for all x, y ∈ A.




