
8. Universal Generating Function in Analysis
and Optimization of Fault-tolerant Software

8.1 Reliability and Performance of Fault-tolerant
Software

The NVP approach presumes the execution of n functionally equivalent software

versions that receive the same input and send their outputs to a voter, which is

aimed at determining the system’s output. The voter produces an output if at least k

out of n outputs agree. Otherwise, the system fails. As shown in Section 3.2.10, the

RBS approach can also be considered as NVP with k = 1 when the system

performance (task execution time) is considered.

In many cases, the information about the version’s reliability and the execution

time are available from separate testing and/or reliability prediction models [196].

This information can be incorporated into a fault-tolerant program model in order

to obtain an evaluation of its reliability and performance.

8.1.1 Fault-tolerant Software Performance Model

According to the generally accepted model [197], the software system consists of

C components. Each component performs a subtask and the sequential execution of

the components performs a major task.

It is assumed that nc functionally equivalent versions are available for each

component c. Each version i has an estimated reliability rci and constant execution

time ci. Failures of versions for each component are statistically independent, as

well as the total failures of the different components.

The software versions in each component c run on parallel hardware units. The

total number of units is hc. The units are independent and identical. The availability

of each unit is ac. The number Hc of units available at the moment determines the

amount of available computational resources and, therefore, the number of versions

that can be executed simultaneously Lc(Hc). No hardware unit can change its state

during the software execution.

The versions of each component c start their execution in accordance with a

predetermined ordered list. Lc first versions from the list start their execution

simultaneously (at time zero). If the number of terminated versions is less than kc,

410 The Universal Generating Function in Reliability Analysis and Optimization

after termination of each version a new version from the list starts its execution

immediately. If the number of terminated versions is not less than kc, after

termination of each version the voter compares the outputs. If kc outputs are

identical, the component terminates its execution (terminating all the versions that

are still executed), otherwise a new version from the list is executed immediately.

If after termination of nc versions the number of identical outputs is less than kc

the component and the entire system fail.

In the case of component success, the time of the entire component execution

Tc is equal to the termination time of the version that has produced the kcth correct

output (in most cases, the time needed by the voter to make the decision can be

neglected). It can be seen that the component execution time is a random variable

depending on the reliability and the execution time of the component versions and

on the availability of the hardware units. We assume that if the component fails,

then its execution time is equal to infinity.

The examples of time diagrams (corresponding to component 1 with n1 = 5,

k1 = 3 and component 2 with n2 = 3, k2 = 2) for a given sequence of versions

execution (the versions are numbered according to this sequence) and different

values of Lc are presented in Figure 8.1.

Figure 8.1. Time diagrams for software components with different numbers of versions

executed simultaneously

The sum of the random execution times of each component gives the random

task execution time for the entire system T. In order to estimate both the system's

reliability and its performance, different measures can be used, depending on the

application.

In applications where the execution time of each task is of critical importance,

the system’s acceptability function is defined (according to the performability

concept [198, 199]) as F(T, w) = 1(T<w), where w is a maximal allowed system

execution time. The system’s reliability R(w) = E(F(T, w)) in this case is the

probability that the correct output is produced in time less than w. The conditional

expected system execution time)(/))(1()(~ wRwTTEw is considered to be

a measure of the system's performance. This index, defined according to Equation

6 12 10 18 14
L1=1 L1=2

28 46 60 16 30

1 3 5

2 4
1 2 3 4 5

10 16 12
L2=1 L2=2

26 38 16 22

1 3

2
 1 2 3

L2=3

12 16

1

2

3

Component 1

Component 2

 8 UGF in Analysis and Optimization of Fault-Tolerant Software 411

(3.7), determines the system’s expected execution time given that the system does

not fail.

In applications where the system’s average productivity (the number of

executed tasks) over a fixed mission time is of interest [200], the system’s

acceptability function is defined as F(T) = 1(T<), the system’s reliability is

defined as the probability that it produces correct outputs regardless of the total

execution time (this index can be referred to as R()), and the conditional expected

system execution time)(~ is considered to be a measure of the system's

performance.

8.1.1.1 Number of Versions that Can Be Simultaneously Executed

The number of available hardware units in component c can vary from 0 to hc.

Given that all of the units are identical and have availability ac, one can easily

obtain probabilities Qc(x) = Pr{Hc = x} for 0 x hc:

 Qc(x) = Pr{Hc = x}=
xh

c
x

c
c caa
x

h
)1((8.1)

The number of available hardware units x determines the number of versions

that can be executed simultaneously: lc(x). Therefore:

 Pr{Lc = lc(x)} = Qc(x) (8.2)

The pairs Qc(x), lc(x) for 1 x hc determine the p.m.f. of the discrete random value

Lc.

8.1.1.2 Version Termination Times

In each component c, a sequence where each version starts its execution is defined

by the numbers of versions. This means that each version i starts its execution not

earlier than versions 1, …, i 1 and not later than versions i+1, …, nc. If the number

of versions that can run simultaneously is lc, then we can assume that the software

versions run on lc independent processors. Let m be the time when processor m

terminates the execution of a version and is ready to run the next version from the

list of not executed versions. Having the execution time of each version ci

(1 i nc), one can obtain the termination time tci(lc) for each version i using the

following simple algorithm:

1. Assign 1 = … =
cl

 = 0 (all of the processors are ready to run the software

versions at time 0).

2. For i = 1, …, nc repeat:

 2.1. Find any m (1 m lc): m = min{ 1,…, }
cl

 (m is the number of the

earliest processor that is ready to run a new version from the list).

 2.2. Obtain tci(lc) = m+ ci and assign m = tci(lc).

412 The Universal Generating Function in Reliability Analysis and Optimization

Times tci(lc), 1 i nc, correspond to intervals between the beginning of

component execution and the moment when the versions produce their outputs.

Observe that the versions that start execution earlier can terminate later: j<y does

not guarantee that tcj(lc) tcy(lc). In order to obtain the sequence, in which the

versions produce their outputs, the termination times should be sorted in increasing

order)(
1 ccm lt)(

2 ccm lt …),(c
cncm lt which gives the order of versions

m1, m2, …, ,
cnm corresponding to times of their termination.

The ordered list m1, m2, …,
cnm determines the sequence of version outputs in

which they arrive at the voter. Now one can consider the component c as a system

in which the nc versions are executed consecutively according to the order m1,

m2, …,
cnm and produce their outputs at times),(

1 ccm lt),(
2 ccm lt …,).(c

cncm lt

8.1.1.3 The Reliability and Performance of Components and the Entire System

Let
icmr be the reliability of the version that produces ith output in component c

(
icmr is equal to the probability that this output is correct). Consider the

probability that k out of n first versions of component c succeed. This probability

can be obtained as

]
)1(

...
)1()1(

)][1([
1

2

11

1

1 112 2

2

1 1

1
n

ii cm

cmkn

ii cm

cmn

i

kn

i cm

cm

cm

kk ki

ki

i

i

i

i

i r

r

r

r

r

r
r (8.3)

(according to Equation (2.16) for k-out-of-n systems). The component c produces

the correct output directly after the end of the execution of j versions (j kc) if the

mjth version succeeds and exactly kc 1 out of the first executed j 1 versions

succeed.

The probability of such event pcj(lc) is

]
)1(

...

)1()1(
)][1([)(

1

121 1

1

2

112 2

2
1

1

1

11 1

1

j

ckicki
cki

cm

cki
cm

ckj

ii icm

icmj

i

ckj

i icm

icm

icmjcmccj

r

r

r

r

r

r
rrlp

 (8.4)

Observe that pcj(lc) is the conditional probability that the component execution

time is)(ccm lt
j

 given lc versions can be executed simultaneously:

 pcj(lc) = Pr{Tc =)(ccm lt
j

| Lc = lc} (8.5)

Having the p.m.f. of Lc we can now obtain for 1 x hc

 8 UGF in Analysis and Optimization of Fault-Tolerant Software 413

 Pr{Tc =))}((xlt cjcm = Pr{Tc=))((xlt cck j
| Lc = lc(x)}Pr{Lc = lc(x)}

 = pcj(lc(x))Qc(x) (8.6)

The pairs)),((xlt cjcm pcj(lc(x))Qc(x), obtained for 1 x hc and kc j nc,

determine the p.m.f. of version execution time Tc.

Since the events of successful component execution termination for different j

and x are mutually exclusive, we can express the probability of component c

success as

 Rc()=Pr{Tc< }=
c

c

c n

kj
ccj

h

x
c xlpxQ))](()([

1

 (8.7)

Since failure of any component constitutes the failure of the entire system, the

system’s reliability can be expressed as

C

c
cRR

1

)()((8.8)

From the p.m.f. of execution times Tc for each component c one can obtain the

p.m.f. of the execution time of the entire system, which is equal to the sum of the

execution times of components:

 T =
C

c
cT

1

 (8.9)

8.1.1.4 Using Universal Generating Function for Evaluating the Execution Time

Distribution of Components

In order to obtain the execution time distribution for a component c for a given lc in

the form pcj(lc),)(ccm lt
j

 (kc j nc) one can determine the realizations)(ccm lt
j

of

the execution time Tc(lc) using the algorithm presented in Section 8.1.1.2 and the

corresponding probabilities pcj(lc) using Equation (8.4). However, the probabilities

pcj(lc) can be obtained in a much simpler way using a procedure based on the UGF

technique [201].

Let the random binary variable
icms be an indicator of the success of version mi

in component c such that
icms = 1 if the version produces the correct output and

icms = 0 if it produces the wrong output. The p.m.f. of
icms can be represented by

the u-function

01)1()(zrzrzu
iii cmcmcm (8.10)

414 The Universal Generating Function in Reliability Analysis and Optimization

It can be easily seen that using the operator we can obtain the u-function

))(),...,((),(
1

zuzulzU
jcmcmccj (8.11)

that represents the p.m.f. of the number of correct outputs in component c after the

execution of a group of first j versions (the order of elements m1, m2, …,
cnm and,

therefore, Ucj(z, lc) depend on lc). Indeed, the resulting polynomial relates the

probabilities of combinations of correct and wrong outputs (the product of

corresponding probabilities) with the number of correct outputs in these

combinations (the sum of success indicators). Observe that after collecting the like

terms (corresponding to obtaining the overall probability of a different

combination with the same number of correct outputs) Ucj(z, lc) takes the form

j

k

k
jkccj zlzU

0

),((8.12)

where jk is the probability that the group of first j versions produces k correct

outputs.

Note that Ucj(z, lc) can be obtained by using the recurrent expression

])1([),(),(01
1 zrzrlzUlzU

jcmjcmccjccj (8.13)

According to its definition, pcj(lc) is the probability that the group of first j

versions produces kc correct outputs and the group of first j 1 versions produces

kc 1 correct outputs given that lc versions can be executed simultaneously. The

coefficient
cjk in polynomial Ucj(z, lc) is equal to the conditional probability that

the group of first j versions produces kc correct outputs given that lc versions can be

executed simultaneously.

In order to let the coefficient
cjk in polynomial Ucj(z, lc) be equal to pcj(lc),

the term with the exponent equal to kc should be removed from Uc j-1(z, lc) before

applying Equation (8.13) (excluding the combination in which j 1 first versions

produce kc correct outputs while the mjth version fails).

If after the execution of j first versions the number of correct outputs produced

is k and k+nc j<kc, then the required number of correct outputs kc cannot be

obtained even if all the nc j subsequent versions produce correct outputs.

Therefore, the terms k
jk z with k<kc nc+j can be removed from Ucj(z, lc).

The above considerations lie at the base of the following algorithm for

determining all of the probabilities pcj(lc) (kc j nc):

1. For the given lc, determine the order of version termination m1, m2, …,
cnm

using the algorithm from Section 8.1.1.2.

 8 UGF in Analysis and Optimization of Fault-Tolerant Software 415

2. Determine the u-function of each version of component c according to

Equation (8.10).

3. Define Uc0(z, lc) = 1. For j = 1, 2, …, nc:

 3.1 Obtain Ucj(z, lc) using Equation (8.13) and, after collecting like terms,

represent it in the form (8.12).

 3.2. Remove from Ucj(z, lc) all the terms k
jk z for which k < kc nc + j.

 3.3. If j kc, assign: pcj(lc) =
cjk and remove term c

c

k
jk z from Ucj(z, lc).

8.1.1.5 Execution Time Distribution for the Entire System

Having the pairs pcj(lc(x)),))((xlt ccm j
 for each possible realization lc(x) of Lc

(1 x hc) and probabilities Pr{Lc = lc(x)} = Qc(x), one can obtain the p.m.f. of

random execution times Tc for each component by applying Equation (8.6). If the

conditional p.m.f. pcj(lc(x)),))((xlt ccm j
 are represented by the u-function

))((
))(())(,(~ xltn

kj
ccjcc

cjcmc

c

zxlpxlzu (8.14)

then the u-function representing the p.m.f. of the random value Tc takes the form:

ch

x
cccc xlzuxQzU

1

))(,(~)()(
~

 (8.15)

Since the random system execution time T is equal to the sum of the execution

times of all of the C components, one can obtain the u-function)(
~

zU representing

the p.m.f. of T as

C

c

h

x
cccC

c

xlzuxQzUzUzU
1 1

1))(,(~)(())(
~

),...,(
~

()(
~

 (8.16)

8.1.1.6 Different Components Executed on the Same Hardware
Now consider the case where all of the software components are consecutively
executed on the same hardware consisting of h parallel identical modules with the
availability a. The number of available parallel hardware modules H is random
with p.m.f. Q(x) = Pr{H = x}, 1 x h, defined in the same way as in Equation
(8.1).

When H = x, the number of versions that can be executed simultaneously in

each component c is lc(x). The u-functions representing the p.m.f. of the

corresponding component execution times Tc are))(,(~ xlzu cc defined by Equation

(8.14). The u-function),(ˆ xzU representing the conditional p.m.f. of the system

execution time T (given the number of available hardware modules is x) can be

obtained for any x (1 x h) as

416 The Universal Generating Function in Reliability Analysis and Optimization

))(,(~)))(,(~)),...,(,(~(),(ˆ

1
11

C

c
ccCC xlzuxlzuxlzuxzU (8.17)

Having the p.m.f. of the random value H we obtain the u-function

)(
~

zU representing the p.m.f. of T as:

),(ˆ)()(
~

1

xzUxQzU
H

x

 (8.18)

Example 8.1

Consider a system consisting of two components. The first component consists of

h1 = 2 hardware units with availability a1 = 0.9 on which n1 = 5 software versions

with k1 = 3 are executed. The second component consists of h2 = 3 hardware units

with availability a2 = 0.8 on which and n2 = 3 software versions with k2 = 2 are

executed. The parameters of versions rci and ci are presented in Table 8.1.

Table 8.1. Parameters of software versions

Componen c = 1 c = 2

Version 1 2 3 4 5 1 2 3

rci 0.7 0.6 0.8 0.6 0.9 0.8 0.8 0.7

ci 6 12 10 18 14 10 16 12

tci(1) 6 18 28 46 60 10 26 38

tci(2) 6 12 16 30 30 10 16 22

tci(3) - - - - - 10 16 12

One software version can be executed on each hardware unit: lc(hc) = hc.

The terminations times tci(lc) obtained for the different possible values of L1 and

L2 using the algorithm described in Section 8.1.1.2 are also presented in this table.

The version execution diagrams for different values of L1 and L2 are presented in

Figure 8.1.

For the given parameters, the u-functions of the software versions are

 u11(z) = 0.3z0+0.7z1; u12(z) = 0.4z0+0.6z1; u13(z) = 0.2z0+0.8z1

 u14(z) = 0.4z0+0.6z1; u15(z) = 0.1z0+0.9z1

for component 1 and

 u21(z) = 0.2z0+0.8z1; u22(z) = 0.2z0+0.8z1; u23(z) = 0.3z0+0.7z1

for component 2.

The order of version termination in the first component is 1, 2, 3, 4, 5 for both

L1 = 1 and L1 = 2 (see Table 8.1).

 8 UGF in Analysis and Optimization of Fault-Tolerant Software 417

According to the algorithm presented in Section 8.1.1.4, determine the

u-functions for the groups of versions and corresponding probabilities p1j(1) and

p1j(2).

 U10(z, 1) = U10(z, 2) = 1; U11(z, 1) = U11(z, 2) = u11(z) = 0.3z0+0.7z1

 U12(z, 1) = U12(z, 2) = u11(z) u12(z) = (0.3z0+0.7z1)(0.4z0+0.6z1)

 = 0.12z0+0.46z1+0.42z2

 U13(z, 1) = U13(z, 2) = U12(z, 1) u13(z) = (0.12z0+0.46z1+0.42z2)

(0.2z0+0.8z1) = 0.024z0+0.188z1+0.452z2+0.336z3

Remove the term 0.024z0 from U13(z, 1) according to step 3.2 of the algorithm.

Remove the term 0.336z3 from U13(z, 1) and U13(z, 2) and obtain p13(1) = p13(2)

= 0.336 according to step 3.3 of the algorithm:

 U14(z, 1) = U14(z, 2) = U13(z, 1) u14(z) = (0.188z1+0.452z2)

(0.4z0+0.6z1) = 0.0752z1+0.2936 z2+0.2712z3

Remove the term 0.0752z1 from U14(z, 1) according to step 3.2 of the algorithm.

Remove the term 0.2712z3 from U14(z, 1) and U14(z, 2) and obtain p14(1) = p14(2)

= 0.2712 according to step 3.3 of the algorithm:

 U15(z, 1) = U15(z, 2) = U14(z, 1) u15(z)

 = 0.2936z2 (0.1z0+0.9z1) = 0.02936z2+0.11z2+0.26424z3

Finally, obtain p15(1) = p15(2) = 0.26424.

Having the probabilities p1j(1), p1j(2) and the corresponding termination times

t1j(1), t1j(2), define the u-functions representing the component execution time

distributions

1
~u (z, 1) = 0.336z28+0.271z46+0.264z60

1
~u (z, 2) = 0.336z16+0.271z30+0.264z30 = 0.336z16+0.535z30

The p.m.f. of L1 is

 Q1(1) = Pr{L1 = 1} = Pr{h1 = 1} = 2a1(1 a1) = 0.18

 Q1(2) = Pr{L1 = 2} = Pr{h1 = 2} = a1
2 = 0.81

418 The Universal Generating Function in Reliability Analysis and Optimization

According to Equation (8.15), obtain

1
~

U (z) = 0.18 1
~u (z, 1)+0.81 1

~u (z, 2)

 = 0.06z28+0.049z46+0.048z60+0.272z16+0.434z30

The order of version termination in the second component is 1, 2, 3 for both

L2 = 1 and L2 = 2 and 1, 3, 2 for L2 = 3 (see Table 8.1).

According to the algorithm presented in Section 8.1.1.4, determine the u-

functions for the groups of versions and corresponding probabilities p2j(1), p2j(2)

and p2j(3). For L2 = 1 and L2 = 2:

 U20(z, 1) = U20(z, 2) = 1; U21(z, 1) = U21(z, 2) = u21(z) = 0.2z0+0.8z1

 U22(z, 1) = U22(z, 2) = u21(z) u22(z)

 = (0.2z0+0.8z1)2 = 0.04z0+0.32z1+0.64z2

Remove the term 0.04z0 from U22(z, 1) according to step 3.2 of the algorithm.

Remove the term 0.64z2 from U22(z, 1) and U22(z, 2) and obtain p22(1) = p22(2)

= 0.64 according to step 3.3 of the algorithm:

 U23(z, 1) = U23(z, 2) = U22(z, 1) u23(z) = 0.32z1 (0.3z0+0.7z1)

 = 0.096z1+0.224z2

Obtain p23(1) = p23(2) = 0.224.

Having the probabilities p2j(1), p2j(2) and the corresponding termination times

t2j(1), t2j(2), define the u-functions representing the component execution time

distributions

2
~u (z, 1) = 0.64z26+0.224z38, 2

~u (z, 2) = 0.64z16+0.224z22

For L2 = 3:

 U20(z, 3) = 1; U21(z, 3) = u21(z) = 0.2z0+0.8z1; U22(z, 3) = u21(z) u23(z)

 = (0.2z0+0.8z1)(0.3z0+0.7z1) = 0.06z0+0.38z1+0.56z2

Remove the term 0.06z0 from U22(z, 1) according to step 3.2 of the algorithm.

Remove the term 0.56z2 from U22(z) and obtain p22(3) = 0.56 according to step 3.3

of the algorithm:

 U23(z, 3) = U22(z, 3) u22(z) = 0.38z1(0.2z0+0.8z1)

 = 0.076z1+0.304z2

 8 UGF in Analysis and Optimization of Fault-Tolerant Software 419

From U23(z, 3) obtain p23(3) = 0.304.

The u-function representing the corresponding component execution time

distribution takes the form

2
~u (z, 3)=0.56z12+0.304z16

The p.m.f. of L2 is

 Q2(1) = Pr{L2 = 1} = Pr{h2 = 1} = 3a2(1 a2)
2 = 0.096

 Q2(2) = Pr{L2=2} = Pr{h2 = 2} = 3a2
2(1 a2) = 0.384

 Q2(3) = Pr{L2 = 3} = Pr{h2 = 3} = a2
3 = 0.512

According to Equation (8.15), obtain

2
~

U (z) = 0.096 2
~u (z, 1)+0.384 2

~u (z, 2)+0.512 2
~u (z, 3)

 = 0.287z12+0.401z16+0.086z22+0.0614z26+0.0215z38

The u-function representing the execution time distribution for the entire

system takes the form

U
~

(z) = 1
~

U (z) 2
~

U (z) = (0.272z16+0.434z30+0.06z28+0.049z46

 +0.048z60)(0.287z12+0.401z16+0.086z22+0.0614z26+0.0215z38)

 = 0.078z28+0.109z32+0.023z38+0.017z40+0.141z42+0.024z44+0.174z46

 +0.005z50+0.037z52+0.007z54+0.027z56+0.014z58+0.020z62+0.001z66

 +0.012z68+0.020z72+0.019z76+0.004z82+0.001z84+0.003z86+0.001z98

Having this u-function, one can obtain the system reliability and conditional

expected execution time for different time constraints w:

 R() = 0.739; ~ () =
7390

1

.
(32.94)=44.559

For w = 50:

 R(50) = 0.078+0.109+0.023+0.017+0.141+0.024+0.174 = 0.567

420 The Universal Generating Function in Reliability Analysis and Optimization

~ (50) =
567.0

1
(0.078 28+0.109 32+0.023 38+0.017 40

 + 0.141 42+0.024 44+0.174 46) = 22.24/0.567 = 39.24

Example 8.2

Consider a system consisting of five components. The number of parallel

hardware units, the availability of these units, and the parameters nc and kc of the

fault-tolerant programs for each component are presented in Table 8.2.

Components 1, 3 and 5 are of the NVP type and components 2 and 4 are of the

RBS type (k2 = k4 = 1). The reliability and execution times of the software versions

are presented in Table 8.3.

Table 8.2. Parameters of system components

Component 1 2 3 4 5

hc 3 4 2 3 2

ac 0.80 0.95 0.90 0.85 0.95

nc 5 2 3 3 5

kc 3 1 2 1 3

lc(1) 2 0 1 1 3

lc(2) 4 1 3 2 5

lc(3) 5 1 - 3 -

lc(4) - 2 - - -

Table 8.3. Parameters of software versions

 Version 1 2 3 4 5

r1i 0.86 0.77 0.98 0.93 0.91c = 1

1i 10 12 25 22 15

r2i 0.85 0.92 - - -c = 2

2i 30 45 - - -

r3i 0.87 0.94 0.98 - -c = 3

3i 6 6 10 - -

r4i 0.95 0.85 0.85 - -c = 4

4i 25 15 20 - -

r5i 0.68 0.79 0.90 0.90 0.94c = 5

5i 10 10 15 20 25

The entire system’s execution time varies in the range of 81 T 241. The

system’s reliability and conditional expected execution time obtained by the

algorithm described in Sections 8.1.1.1-8.1.1.5 are R() = 0.77 and ~ () = 96.64

respectively. The functions R(w) and ~ (w) are presented in Figure 8.2A.

Now consider the same fault-tolerant software system running on a single

hardware block consisting of three parallel units with availability a = 0.9. The

functions lc(x) for each software component are presented in Table 8.4. Note that

the system can operate only when H 2, since a single hardware unit has not

enough resources for execution of the second software component.

 8 UGF in Analysis and Optimization of Fault-Tolerant Software 421

Table 8.4. Number of versions executed simultaneously

Component 1 2 3 4 5

lc(1) 2 0 3 1 1

lc(2) 4 1 3 2 2

lc(3) 5 1 3 3 3

The entire system execution time varies in the range 81 T 195. The system

reliability and expected execution time (without respect to execution time

constraints) are respectively R() = 0.917 and ~ () = 103.18. The functions R(w)

and ~ (w) are presented in Figure 8.2B.

A B
Figure 8.2. R(w) and ~ (w) functions for a fault-tolerant system running on different

hardware components (A) and on a single hardware component (B)

8.2 Optimal Version Sequencing in Fault-tolerant
Programs

In programs consisting of versions with different parameters, the sequence of the

version execution affects the distribution of the system’s task execution time. The

influence of the sequence of the version’s execution on this distribution is

demonstrated in Figure 8.3.

80

85

90

95

100

80 100 120 140 160 180 200 220 240

w

0

0.2

0.4

0.6

0.8

R

(w)

R (w)

80

85

90

95

100

105

80 100 120 140 160 180 200

w

0

0.2

0.4

0.6

0.8

1

R

(w)

R (w)

422 The Universal Generating Function in Reliability Analysis and Optimization

Figure 8.3. Execution of the different sequences of versions in a component with

nc = 5, kc = 4, Lc = 2

While the sequence in which the versions in each component start their

execution does not affect the R() index, it can have a considerable influence on

both R(w) and ~ (w) when the task execution time is constrained. Therefore, two

different optimization problems can be formulated in which the sequences

maximizing the system’s reliability R(w) or minimizing its conditional expected

execution time ~ (w) are to be determined.

To apply the GA, one has to represent the sequences of versions in each

component in the form of strings. These sequences can be represented by C

substrings corresponding to different components. Each substring c should be of

length nc and contain a permutation of integer numbers ranging from 1 to nc.

The solution encoding scheme with different substrings is complicated and

requires the development of sophisticated procedures for string generation,

crossover, and mutation that preserve the feasibility of solutions. In order to

simplify the GA procedures, an encoding method was developed in which the

single permutation defines the sequences of the versions in each one of the C

components.

The solution encoding string consists of n = C
c cn1 different integer numbers

ranging from 1 to n. Each number j belonging to the interval

m

c
c

m

c
c njn

1

1

1

1 (8.19)

corresponds to version j
1

1

m

c
cn of component m. The relative order in which the

numbers corresponding to the versions of the same component appear in the string

determines the sequence of their execution.

1+ 3

1 3

2 4 51
2

3

4

5

3

21 5

43

1
2

5

4

3+ 4

2+ 4+ 5

1+ 2+ 5

 8 UGF in Analysis and Optimization of Fault-Tolerant Software 423

Example 8.3

Consider a system consisting of three components with n1 = 3, n2 = 5 and n3 = 4.

The solution encoding strings should consist of 3+5+4 = 12 integers. Numbers 1, 2,

3 correspond to component 1, numbers 4, 5, 6, 7, 8 correspond to component 2

(they are marked in bold), numbers 9, 10, 11, 12 correspond to component 3 (they

are marked in italic). In the solution string a = (4, 9, 7, 1, 12, 2, 3, 10, 6, 8, 5, 11)

the numbers corresponding to different components appear in the following

relative order:

 for component 1: 1, 2, 3

 for component 2: 4, 7, 6, 8, 5
 for component 3: 9, 12, 10, 11

This corresponds to the following sequences of versions execution:

 in component 1: 1, 2, 3

 in component 2: 1, 4, 3, 5, 2

 in component 3: 1, 4, 2, 3

The solution decoding procedure determines the sequence of versions in each

component according to string a. Then it calculates the version termination times

using the procedure presented in Section 8.1.1.2 and the probabilities pcj using the

algorithm presented in Section 8.1.1.3. After obtaining the components' execution

time distribution, the time distribution of the entire system is calculated as

described in Sections 8.1.1.5 and 8.1.1.6. Finally, the indices R(w) and ~ (w) are

obtained from the system’s execution time distribution. The solution fitness can be

defined as R(a,w) or M ~ (a,w), depending on the optimization problem

formulation.

Example 8.4

Consider a fault-tolerant software system consisting of five components and

running on a single reliable unit [202]. The parameters of the components are

presented in Table 8.5. This table contains the values of nc and kc for each

component c and the reliability and execution time for each version.

First consider the system in which L1 = 1, L2 = 2, L3 = 4, L4 = 1, L5 = 3. The

overall system reliability that does not depend on version sequencing is

R() = 0.92. The solutions with minimal conditional expected execution time
~ () and with maximal system reliability R(w) for w = 300 are presented in

Table 8.6. The table contains minimal and maximal possible system execution

times for each solution, values of indices ~ () and R(w), and the corresponding

version sequences.

It can be seen that the minimal possible system execution time Tmin (achieved

when in each component the first kc versions succeed) can be obtained when the

versions in each component are ordered according to the increased execution time.

Such a solution is also presented in Table 8.6. Observe that the solution that

424 The Universal Generating Function in Reliability Analysis and Optimization

provides the smallest minimal execution time is not optimal, neither in terms of
~ () nor in terms of R(w).

Table 8.5. Parameters of system components for the numerical example

VersionsNo. of

component

nc kc

1 2 3 4 5

1 4 1 17 20 32 75

 r 0.71 0.85 0.89 0.98 -

2 3 2 28 55 58 - -

 r 0.85 0.85 0.93 - -

3 5 3 17 20 38 41 63

 r 0.80 0.80 0.86 0.98 0.98

4 3 2 17 20 32 - -

 r 0.75 0.93 0.97 - -

5 3 1 30 54 70 - -

 r 0.70 0.80 0.89 - -

The poor solution corresponding to the greatest possible ~ () is presented in

Table 8.6 for comparison. The system’s reliabilities R(w) as functions of the

maximal allowable execution time w are presented in Figure 8.4A for all of the

solutions obtained (numbered according to Table 8.6).

Table 8.6. Parameters of solutions obtained for the fault-tolerant system with L1

= 1, L2 = 2, L3 = 4, L4 = 1, L5 = 3

No. Problem formulation Sequence of versions Tmin Tmax
~ () R(300)

1 ~ () min 2134|132|54321|213|132 183 429 211.91 0.914

2 R(300) max 2314|312|43521|321|123 198 429 220.22 0.915

3 Increasing 1234|123|12345|123|123 177 449 213.84 0.909

4 ~ () max 4312|213|52134|132|231 247 432 277.67 0.776

Now consider the same system with L1 = L2 = L3 = L4 = L5 = 1, which

corresponds to consecutive execution of versions one at a time. The maximal

possible time of system execution in this case does not depend on the versions

sequence and is equal to the sum of execution times of all of the versions. The

overall system reliability that does not depend on either version sequencing or on

Lc is still R() = 0.92. The same four types of solution that were obtained in the

previous example are presented in Table 8.7 (the maximal allowable execution

time in this case is w = 430).

Table 8.7. Parameters of solutions obtained for the fault-tolerant system with

L1 = L2 = L3 = L4 = L5 =1

No. Problem formulation Sequence of versions Tmin Tmax
~ () R(430)

1 ~ () min 2134|3122|12435|213|123 251 687 313.02 0.886

2 R(430) max 2314|132|41235|231|123 266 687 321.33 0.892

3 increasing 1234|123|12345|123|123 242 687 316.19 0.886

4 ~ () max 4312|321|53421|312|321 449 687 469.62 0

 8 UGF in Analysis and Optimization of Fault-Tolerant Software 425

Observe that the minimal possible system execution time for the solution with

the greatest possible ~ () is greater than w. Therefore, the corresponding

R(w) = 0. The system reliabilities R(w) as functions of maximal allowable

execution time w are presented in Figure 8.4B for all of the solutions obtained.

A B
Figure 8.4. R(w) functions for solutions obtained for the system with L1 = 1, L2 = 2, L3 =

4, L4 = 1, L5 = 3 (A) and for the system with L1 = L2 = L3 = L4 = L5 = 1 (B)

8.3 Optimal Structure of Fault-tolerant Software
Systems

When a fault-tolerant software system is designed, one has to choose software

versions for each component and find the sequence of their execution in order to

achieve the system’s greatest reliability subject to cost constraints. The versions

are chosen from a list of the available products. Each version is characterized by its

reliability, execution time, and cost. The total cost of the system’s software is

defined according to the cost of its versions. The cost for each version can be the

purchase cost if the versions are commercial and the off-the-shelf cost, or it can be

an estimate based upon the version’s size, complexity, and performance.

Assume that Bc functionally equivalent versions are available for each

component c and that the number kc of the versions that should agree in each

component is predetermined. The choice of the versions and the sequence of their

execution in each component determine the system’s entire reliability and

performance.

The permutation x*c of Bc different integer numbers ranging from 1 to Bc

determines the order of the version that can be used in component c. Let ycb = 1 if

the version b is chosen to be included in component c and ycb = 0 otherwise. The

binary vector },...,{ 1 ccBcc yyy determines the subset of versions chosen for

0

0.2

0.4

0.6

0.8

1

220 280 340 400 460 520 580 640
w

R

1 2 3 4

0

0.2

0.4

0.6

0.8

1

220 280 340 400 460 520 580 640
w

R

1 2 3 4

426 The Universal Generating Function in Reliability Analysis and Optimization

component c. Having the vectors x*c and yc one can determine the execution order

xc of the versions chosen by removing from x*c any number b for which ycb = 0.

The total number of versions in component c (equal to the length of vector yc after

removing the unchosen versions) is determined as

cB

b
cbc yn

1

 (8.20)

The system structure optimization problem can now be formulated as find

vectors xc for 1 c C that maximize R(w) subject to cost constraint

*
1

C

c b
cb

cx
 (8.21)

where cb is the cost of version b used in component c, is the entire system cost

and * is the maximal allowable system cost. Note that the length of vectors xc can

vary depending on the number of versions chosen.

In order to encode the variable-length vectors xc in the GA using the constant-

length integer strings one can use (Bc+1)-length strings containing permutations of

numbers 1,…, Bc, Bc+1. The numbers that appear before Bc+1 determine the vector

xc. For example, for Bc = 5 the permutations (2, 3, 6, 5, 1, 4) and (3, 1, 5, 4, 2, 6)

correspond to xc = (2, 3) and xc = (3, 1, 5, 4, 2) respectively. Any possible vector xc

can be represented by the corresponding integer substring containing the

permutation of Bc+1 numbers. By combining C substrings corresponding to

different components one obtains the integer string a, that encodes the entire

system structure.

As in the version sequencing problem (Section 8.2), the encoding method is

used in which the single permutation defines the sequences of the versions chosen

in each of the C components. The solution encoding string is a permutation of n

=
C

c
cB

1

)1(integer numbers ranging from 1 to n. Each number j belonging to the

interval)1(1)1(
1

1

1

m

c
c

m

c
c BjB corresponds to version j

1

1

)1(
m

c
cB of

component m. The relative order in which the numbers corresponding to the

versions of the same component appear in the string determines the structure of

this component.

Example 8.5

Consider, for example, a system consisting of three components with B1 = 3, B2 = 5

and B3 = 4. The solution encoding strings consist of (3+1)+(5+1)+(4+1) = 15

integers. Numbers from 1 to 4 correspond to component 1, numbers from 5 to 10

correspond to component 2, and numbers from 11 to 15 correspond to component

 8 UGF in Analysis and Optimization of Fault-Tolerant Software 427

3. In the solution string a = (5, 9, 7, 1, 12, 2, 15, 3, 10, 6, 14, 8, 4, 13, 5, 11), the

numbers corresponding to different components appear in the following relative

order:

 for component 1: 1, 2, 3, 4
for component 2: 5, 9, 7, 10, 8

 for component 3: 12, 15, 14, 13, 11

Only the numbers located before the largest number in each substring (marked

in bold) represent the component’s structure. This gives the following substrings:

 for component 1: 1, 2, 3; for component 2: 5, 9, 7; for component 3: 12

These substrings correspond to the following sequences of versions execution:

 in component 1: 1, 2, 3; in component 2: 1, 5, 3; in component 3: 2

The solution decoding procedure determines the sequence of versions in each

component. Then it determines the system reliability R(w) as described in Section

8.1 and calculates the system cost using Equation (8.21). The solution fitness is

evaluated as R(w) max(*, 0), where is a penalty coefficient.

Example 8.6

Consider a fault-tolerant software system consisting of four components running

on fully available hardware [203]. The parameters of the versions that can be used

in these components are presented in Table 8.8. This table contains the values of kc

and Lc for each component and the cost, reliability, and execution time for each

version.

 Table 8.8. Parameters of fault-tolerant system components and versions

No. of Versions

component kc Lc 1 2 3 4 5 6 7 8

17 10 20 32 30 75 - -

1 1 r 0.71 0.85 0.85 0.89 0.95 0.98 - - 1

c 5 15 7 8 12 6 - -

28 55 35 55 58 - - -

2 2 2 r 0.82 0.82 0.88 0.90 0.93 - - -

 c 11 8 18 10 16 - - -

17 20 38 38 48 50 41 63

3 3 4 r 0.80 0.80 0.86 0.90 0.90 0.94 0.98 0.98

 c 4 3 4 6 5 4 9 6

17 10 20 32 - - - -

4 2 1 r 0.75 0.85 0.93 0.97 - - - -

 c 12 16 17 17 - - - -

30 54 40 65 70 - - -

5 1 3 r 0.70 0.80 0.80 0.80 0.89 - - -

 c 5 9 11 7 12 - - -

Twosets of solutions were obtained for the maximal allowable system operation

times w = 250 and w = 300. For each value of w, four different solutions were

428 The Universal Generating Function in Reliability Analysis and Optimization

obtained for different cost constraints. These solutions are presented in Tables 8.9

and 8.10. The tables contain the system cost and reliability for each solution, the

expected conditional execution time, minimal and maximal possible system

execution times, and the corresponding sequences of the versions chosen.

The functions R(w) for the solutions obtained are presented in Figure 8.5.

Table 8.9. Parameters of solutions obtained for w = 250

* Sequence of versions Tmin Tmax
~ () R(250)

160 231|541|37162|324|214 159 166 307 188.34 0.913

140 34|241|64231|234|123 140 173 301 194.43 0.868

120 5|431|31562|43|21 119 205 249 217.07 0.752

100 3|241|4562|43|41 100 205 270 220.52 0.598

Table 8.10. Parameters of solutions obtained for w = 300

* Sequence of versions Tmin Tmax
~ () R(300)

160 341|4521|85632|324|41 160 188 369 210.82 0.951

140 53|541|28361|431|51 140 208 335 231.02 0.889

120 6|241|61372|241|31 120 240 307 252.87 0.813

100 4|142|2386|43|41 100 219 295 238.05 0.672

w = 250 w = 300

Figure 8.5. R(w) functions for the solutions obtained

Observe that the greater the reliability level achieved, the greater the cost of

further reliability improvement. The cost-reliability curves are presented in Figure

8.6. Each point on these curves corresponds to the best solution obtained by the

GA.

0

0.2

0.4

0.6

0.8

1

160 190 220 250 280 310
w

R

0

0.2

0.4

0.6

0.8

1

180 210 240 270 300 330 360
w

R

 8 UGF in Analysis and Optimization of Fault-Tolerant Software 429

80

120

160

200

240

0 0.2 0.4 0.6 0.8 1
R

w=300 w=250

Figure 8.6. Reliability-cost curves for the best obtained solutions

