
6. Universal Generating Function in Analysis 
and Optimization of Special Types of Multi-state 
System

6.1 Multi-state Systems with Bridge Structure 

The bridge structure (Figure 6.1) is an example of a complex system for which the 
u-function cannot be evaluated by decomposing it into series and parallel 
subsystems. Each of the five bridge components can in turn be a complex 
composition of the elements. After obtaining the equivalent u-functions of these 
components one should apply the general composition operator in the form (1.20) 
over all five u-functions of the components in order to obtain the u-function of the 
entire bridge. The choice of the structure function in this composition operator 
depends on the type of system. 

By having the u-function of the entire bridge system, one can use it either 
directly for evaluating the system performance measures (as shown in Section 3.3) 
or use it as a u-function of an equivalent element that replaces the bridge structure 
for evaluating the u-function of a higher level system when applying the block 
diagram method. 

Figure 6.1. Bridge structure 
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6.1.1 u-function of Bridge Systems 

6.1.1.1 Flow Transmission Multi-state Systems 
In order to evaluate the performance of the flow transmission MSS with the flow 
dispersion, consider the flows through the bridge structure presented in Figure 6.1. 
First, there are two parallel flows through components 1, 3 and 2, 4. To determine 
the capacities of each of the parallel substructures composed from components 
connected in series, the function ser (4.2) should be used. The function par (4.9) 
should be used afterwards to obtain the total capacity of the two parallel 
substructures. Therefore, the structure function of the bridge, which does not 
contain diagonal component, is 

(G1, G2, G3, G4) = par( ser(G1, G3), ser(G2, G4)) (6.1) 

and its total capacity for the flow transmission MSS with the flow dispersion is 
equal to min{G1, G3}+min{G2, G4}.

The surplus of the transferred product on one of end nodes of component 5 can 
be expressed as 

 s = max{(G1  G3),(G2  G4), 0}  (6.2) 

and the deficit of the transferred product on one of the end nodes of component 5 
can be expressed as

 d = max{(G3  G1), (G4  G2), 0}  (6.3) 

The necessary condition for the existence of the flow through component 5 is 
the simultaneous existence of a surplus on one end node and a deficit on the other 
end: s  0, d  0. This condition can be expressed as (G1  G3)(G2  G4)<0.

If the condition is met, the flow through the component 5 will transfer the 
amount of the product which cannot exceed the capacity of the component G5 and 
the amount of the surplus product s. The deficit d on the second end of component 
5 is the amount of the product that can be transferred by the component that 
follows the diagonal (component 3 or 4). Therefore, the flow through the diagonal 
component is also limited by d. Thus, the maximal flow through the diagonal 
component is min{s, d, G5}.

Now we can determine the total capacity of the bridge structure when the 
capacities of its five components are given: 

br(G1, G2, G3, G4, G5) = min{G1, G3}+min{G2, G4}
        + min{|G1  G3|, |G2  G4|, G5} 1((G1  G3)(G2  G4)<0)  (6.4) 

Now consider the performance of the flow transmission MSS without flow 
dispersion. In such a system a single path between points A and B providing the 
greatest flow should be chosen. There exist four possible pathsconsisting of groups
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of components (1, 3), (2, 4), (1, 5, 4) and (2, 5, 3) connected in a series. The 
transmission capacity of each path is equal to the minimum transmission capacity 
of the elements belonging to this path. Therefore, the structure function of the 
entire bridge takes the form 

br(G1, G2, G3, G4, G5) = max{min{G1,G3}
 min{G2,G4}, min{G1,G5,G4}, min{G2,G5,G3}}  (6.5) 

Note that the four parallel subsystems (paths) are not statistically independent, 
since some of them contain the same elements. Therefore, the bridge u-function
cannot be obtained by system decomposition as for the series-parallel systems. 
Instead, one has to evaluate the structure function (6.5) for each combination of 
states of the five independent components. 

6.1.1.2 Task Processing Multi-state Systems 
In these types of system a task is executed consecutively by components connected 
in series. No stage of work execution can start until the previous stage is entirely 
completed. Therefore, the total processing time of the group of elements connected 
in series is equal to the sum of the processing times of the individual elements. 

First, consider a system without work sharing in which the parallel components 
act in a competitive manner. There are four alternative sequences of task execution 
(paths) in a bridge structure. These paths consist of groups of components (1, 3), 
(2, 4), (1, 5, 4) and (2, 5, 3). The total task can be completed by the path with a 
minimal total processing time 

T = min{t1+t3, t2+t4, t1+t5+t4, t2+t5+t3} (6.6) 

where tj and Gj = 1/tj are respectively the processing time and the processing speed 
of element j.

The entire bridge performance defined in terms of its processing speed can be 
determined as

 G = 1/T = br(G1, G2, G3, G4, G5)
 = max{ ser(G1,G3), ser(G2,G4), ser(G1,G4,G5), ser(G2,G3,G5))} (6.7) 

where ser is defined in Equation (4.5). 
Now consider a system with work sharing for which the same three 

assumptions that were made for the parallel system with work sharing (Section 
4.1.2) are made. There are two stages of work performing in the bridge structure. 
The first stage is performed by components 1 and 2 and the second stage is 
performed by components 3 and 4. The fifth component is necessary to transfer 
work between nodes C and D. Following these assumptions, the decision about 
work sharing can be made in the nodes of bridge A, C or D only when the entire 
amount of work is available in this node. This means that components 3 or 4 
cannot start task processing before both the components 1 and 2 have completed 
their tasks and all of the work has been gathered at node C or D.
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There are two ways to complete the first stage of processing in the bridge 
structure, depending on the node in which the completed work is gathered. To 
complete it in node C, the amount of work (1 )x should be performed by 
component 1 with processing speed G1 and the amount of work x should be 
performed by component 2 with processing speed G2 and then transferred from 
node D to node C with speed G5 (  is the work sharing coefficient). The time the 
work performed by component 1 appears at node C is t1 = (1 )x/G1. The time the 
work performed by component 2 and transferred by component 5 appears at node 
C is t2+t5, where t2 = x/G2 and t5 = x/G5. The total time of the first stage of 
processing is T1C = max{t1, t2+t5}. It can be easily seen that TC is minimized when 
the  is chosen that provides equality t1 = t2+t5. The work sharing coefficient 
obtained from this equality is  = G2G5/(G1G2+G1G5+G2G5) and the minimal 
processing time is 

 T1C = x(G2+G5)/(G1G2+G1G5+G2G5) (6.8) 

To complete the first stage of processing in node D, the amount of work (1 )x
should be performed by component 2 with processing speed G2 and the amount of 
work x should be performed by component 1 with processing speed G1 and then 
transferred from node C to node D with speed G5. The minimal possible processing 
time can be obtained in the same manner as T1C. This time is 

T1D = x(G1+G5)/(G1G2+G1G5+G2G5)  (6.9) 

If the first stage of processing is completed in the node C, then the amount of 
work (1 )x should be performed by component 3 in the second stage of 
processing, which takes time t3 = (1 )x/G3. The rest of the work x should be first 
transferred to node D by component 5 and then performed by component 4. This 
will take time t5+t4 = x/G5+ x/G4. Using the optimal work sharing (when              
t3 = t4+t5) with  = G4G5/(G3G4+G3G5+G4G5) we obtain the minimal time of the 
second stage of processing: 

T2C = x(G4+G5)/(G3G4+G3G5+G4G5)  (6.10) 

Using the same technique we can obtain the minimal processing time when the 
second stage of processing starts from node D: 

T2D = x(G3+G5)/(G3G4+G3G5+G4G5)  (6.11) 

Assuming that the optimal way of work performing can be chosen in node A, 
we obtain the total bridge processing time T as

 T = min{T1C+T2C, T1D+T2D}  (6.12)  

where
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 T1C+T2C = x[(G2+G5)/ +(G4+G5)/ ]

 T1D+T2D = x[(G1+G5)/ +(G3+G5)/ ]

  = G1G2+G1G5+G2G5

 = G3G4+G3G5+G4G5

The condition T1C+T2C  T1D+T2D is satisfied when (G2 G1)  (G3 G4) .
The expressions obtained can be used to estimate the processing speed of the 

entire bridge: 

 G = 1/T = br(G1, G2, G3, G4, G5)= /[(f+G5) +(e+G5) ] (6.13) 

where      

 f = G4, e = G2  if  (G2 G1)  (G3 G4)

f = G3, e = G1  if  (G2 G1)  > (G3 G4)

6.1.1.3 Simplification Technique 
Note that in the special case when one of the bridge elements is in a state of total 
failure, the bridge structure degrades to a series-parallel one. All five possible 
configurations of this degraded bridge are presented in Figure 6.2.

Figure 6.2. Degraded bridge structures in the case of single-element total failure 

There is no need to use Equations (6.4), (6.5), (6.7) or (6.13) in order to 
evaluate the structure function of the bridge when one of the random values 
G1,…,G5 is equal to zero. A simpler way to evaluate it is by using the reliability 
block diagram technique. 

The following simplification rules can be used when more than one element is 
in a state of total failure: 
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2. If G1 = G4 = G5 = 0 or G2 = G3 = G5 = 0 the total bridge performance is equal 
to zero. 

3. If any two out of three random values composing groups {G1, G3, G5} or  
{G2, G4, G5} are equal to zero, the third value can also be zeroed. In this 
case, the bridge is reduced to two components connected in a series (2, 4 and 
1, 3 respectively). 

Example 6.1

Consider a bridge consisting of five elements with performance distributions 
presented in Table 6.1. The elements can have up to three states. 

Table 6.1. Performance distributions for bridge elements

Component performance distribution 
State 0 State 1 State 2 

No.
of

element g p g p g p 
1 0 0.10 6 0.60 8 0.30 
2 0 0.05 7 0.95 - - 
3 0 0.10 4 0.10 6 0.80 
4 0 0.05 6 0.20 9 0.75 
5 0 0.15 2 0.85 - - 

The reliability and the performance deficiency for this bridge structure as 
functions of system demand are presented in Figure 6.3 for the structure interpreted 
as a system of four different types (numbered according to Table 4.4). The values 
of the expected performances obtained for these four different systems are =
8.23,  = 6.33,  = 3.87 and  = 3.55. 

Figure 6.3. Reliability and performance deficiency for different types of bridge MSS 
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6.1.2 Structure Optimization of Bridge Systems 

By having the technique for determining the u-function of bridge subsystems, one 
can apply it for solving structure optimization problems for systems with complex 
topology consisting of series-parallel and bridge subsystems. The formulation of 
the generalized structure optimization problem is similar to that presented in 
Section 5.1.2.1:

An MSS consists of N components connected in series, in parallel, or 
composing a bridge (according to a given reliability block diagram). Each 
component is a subsystem that can consist of parallel elements with the same 
functionality. For each component i, different versions of elements may be chosen 
from the list of element versions available in the market. The optimal solution 
corresponds to the minimal cost system configuration that provides the desired 
level of the given system performance measure. 

When the system reliability is optimized and no constraints are imposed on the 
system configuration, the solutions for the structure optimization problem for the 
bridge system always produce a degraded series-parallel system. This happens 
because, from the reliability point of view, building a system with bridge topology 
is not justified. Indeed, when no allocation constraints are imposed on the system, 
the series-parallel solution is more reliable and less expensive than one based on 
the bridge architecture. One can see that for an arbitrary bridge structure (Figure 
6.1) the less expensive and more reliable solution can be obtained by uniting 
elements of components 1 and 2 in component 1 and elements of components 3 
and 4 in component 3 and by removing diagonal component 5. The existence of the 
bridge systems is justified only when some constraints are imposed on the 
allocation of the system elements or when the elements belonging to the same 
component are subject to CCFs. 

6.1.2.1 Constrained Structure Optimization Problems 
Connecting the system components in a bridge topology is widely used in design 
practice. There can be many different reasons for a system to take the bridge form. 
For example:

- the bridge configuration of the system is determined by factors not related to 
its reliability; 

- in order to provide the redundancy on the component level the system should 
have parallel functionally equivalent components; 

- the system contains parallel functionally equivalent but incompatible 
components;

- the number of elements that can be allocated within each component is 
limited.

In order to take into account such constraints, when the optimal system 
configuration is determined one has to modify the objective function in a way that 
penalizes the constraint violation. The methodology of solving the structure 
optimization problem for the systems containing series-parallel and bridge 
structures presumes using the optimization problem definition and GA 
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 implementation technique presented in Sections 5.1.2.1 and 5.1.2.2 and including 
the corresponding penalties to the solution fitness.

The solution decoding procedure, based on the UGF technique, performs the 
following steps: 

1. Determines number of chosen elements ibn for each system component and 

each element version from the string a.
2. Determines u-functions )(zuib  of each version of elements according to their 

PD gi(b), pi(b).
3. Determines u-functions of each component i (1 i N) by applying the 

composition operator
par

over u-functions of the elements belonging to this 

component.
4. Determines the u-function of the entire MSS U(z) by applying the 

corresponding composition operators using the reliability block diagram method 
and composition operators ,

par ser
and .

br

5. Having the u-function of the entire system and its components, determines 
their performance measures as described in Section 3.3. 

6. Determines the total system cost using Equation (5.2). 
7. Determines the solution’s fitness as a function of the MSS cost and 

performance measure as 

M C(a) 1(1+|O O*|)(1  f(O,O*)) 2                      (6.14) 

where 1 and 2 are penalty coefficients, M is a constant value and  is a measure 
of constraint violation. For example, if it is important to provide the expected 
performance j of each bridge component j (1 j 5) at a level not less than j*, then

 takes the form 

)0,max(
5

1

*
j

j
j                      (6.15) 

If no more than Ij elements can be allocated in each bridge component j, then 
takes the form 

)0,max(
5

1 1
j

j

B

b
jb In

j

                     (6.16) 

If a pair of parallel components j and i should provide an identical nominal 
performance (the components consist of two state elements with nominal 
performances gj1(b) and gi1(b), then  takes the form 

ij B

b
iib

B

b
jjb bgnbgn

1
1

1
1 )()(                      (6.17) 
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Example 6.2 

Consider a power station coal transportation system that receives the coal carried 
by sea [164]. There may be up to two separate piers where a ship with coal can be 
berthed. Each pier should be provided with a separate coal transportation line. The 
lines can be connected by an intermediate conveyor in order to balance their load.

 This flow transmission system (with flow dispersion) contains six basic 
components:

1, 2. Coal unloading terminals, including a number of travelling rail cranes for 
the ship discharge with adjoining primary conveyors. 

3, 4. Secondary conveyors that transport the coal to the stacker-reclaimer. 
5. An intermediate conveyor that can be used for load balancing between the 

lines.
6. The stacker-reclaimer that transfers the coal to the boiler feeders. 

Each element of the system is considered to be a two-state unit. Table 6.2 shows 
availability, nominal capacity, and unit cost for equipment available in the market. 
The system demand is w = 1. 

First consider an optimization problem in which the number of cranes at any 
pier cannot exceed three because of allocation constraints. The penalty (6.16) with 
I1 = I2 = 3 and I3 = I4 = I5 =  is incorporated into the solution fitness function. 

Table 6.2. Characteristics of available system elements 

Component  Description No. of version g p c 
1 0.80 0.930 0.750 
2 0.60 0.920 0.590 
3 0.60 0.917 0.535 
4 0.40 0.923 0.400 
5 0.40 0.860 0.330 

1,2
Crane with 

primary
conveyor

6 0.25 0.920 0.230 
1 0.70 0.991 0.325 
2 0.70 0.983 0.240 
3 0.30 0.995 0.190 

3,4 Secondary
conveyor

4 0.25 0.936 0.150 
1 0.70 0.971 0.1885 
2 0.60 0.993 0.1520 
3 0.40 0.981 0.1085 
4 0.20 0.993 0.1020 

5
Intermediate

conveyor

5 0.10 0.990 0.0653 
1 1.30 0.981 1.115 
2 0.60 0.970 0.540 6

Stacker-
reclaimer

3 0.30 0.990 0.320 

The results obtained for different values of required availability A* are 
presented in Figure 6.4 (each element is marked by its version number). One can 
see the modifications of the optimal structure of the system corresponding to 
different levels of the availability provided. The simple series-parallel system 
appears to be optimal when providing relatively little availability. In this case, the 
single-pier system satisfies the availability requirement (note that in this case there 
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 are no constraints on the interchangeability of the piers, on the number of piers, or 
on the number of ships to be discharged simultaneously). 

Figure 6.4. Optimal structures for a problem with allocation constraints 

The bridge system becomes the best solution as A* grows and, finally, for 
A* = 0.99 the system returns to the series-parallel configuration. In this case the 
necessary redundancy of the ship discharge facilities is provided by the second pier 
connected with the single coal transportation line by the intermediate conveyor. 

Now consider the problem in which the equality of the total installed capacities 
of components 1 and 2 is required to make the piers interchangeable (symmetry 
constraint). To meet this requirement, the additional penalty (6.17) with j = 1 and     
i = 2 is added to the solution fitness function. 

The results obtained for different desired values of the system availability A*
are presented in Figure 6.5. One can see that the load-balancing diagonal element 
(intermediate conveyor) appears only in the solutions with relatively high 
availability.

Figure 6.5. Optimal structures for a problem with symmetry constraints
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For the next example consider the existing obsolete coal transportation system 
consisting of elements with low availability. This system can supply the boiler with 
availability A = 0.532. The parameters of the components of the existing system 
are presented in Table 6.3. The problem is to achieve a desired availability level A*
by including additional elements from Table 6.2 into the system.

Table 6.3. Structure of the obsolete system

Component No. of parallel Parameters of 
elements

 elements g p 
1 2 0.30 0.918 
2 2 0.30 0.918 
3 1 0.60 0.907 
4 1 0.60 0.903 
5 0 - - 
6 1 1.00 0.911 

Figure 6.6. Optimal structures for the system extension problem 

The minimal cost solutions of the system extension problem in which the cost 
of additional elements alone is considered obtained for this type of problem are 
presented in Figure 6.6 (the elements belonging to the initial system are depicted 
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- decision-support subsystem containing components 9 and 10. 

Figure 6.7. Structure of the alarm data-processing system 

Table 6.4. Characteristics of available system elements

Component Description No. of version g p c

1,2

 1 
2
3
4
5
6

8.0
6.0
6.0
4.0
4.0
2.5

0.830
0.820
0.807
0.860
0.825
0.820

0.750
0.590
0.535
0.400
0.330
0.230

3,4
 1 

2
3
4

7.0
7.0
3.0
2.5

0.821
0.803
0.915
0.806

0.325
0.240
0.190
0.150

5
Data transmission

(conversion)
units

1
2
3
4
5

20.0
18.0
14.0
12.0
11.0

0.871
0.893
0.881
0.893
0.890

0.1885
0.1520
0.1085
0.1020
0.0653

6
Data

transmission
line

1
2
3

11.3
6.6
4.3

0.881
0.870
0.890

1.115
0.540
0.320

7,8
Output data 
processing

unit

1
2
3

3.2
2.8
2.8

0.801
0.827
0.801

0.750
0.590
0.535

9,10 Decision-support
unit

1
2
3
4

5.7
5.7
5.3

4.25

0.891
0.813
0.925
0.836

0.325
0.240
0.220
0.150

11
Data transmission 

(conversion)
units

1
2
3

70.0
60.0
40.0

0.971
0.993
0.981

0.031
0.025
0.020

Pairs of components {1, 3}, {2, 4}, {7, 9} and {8, 10} have compatible data 
exchange protocols, whereas data transmission between pairs of components {1, 
4}, {2, 3} and {7, 10}, {8, 9} requires its conversion, which can be performed by 
components 5 and 11 respectively. The set of available versions of two-state 
elements for each system component is presented in Table 6.4. The system 
performance (processing speed) should be no less than w = 1. The structure 
optimization problems were solved for two types of this task processing system: 
with and without work sharing [165]. 

First, the solutions of the unconstrained optimization problem were obtained 
for values of desired system reliability R* = 0.95 and R* = 0.99. The parameters of 
solutions obtained are presented in Table 6.5 and the optimal system structures are 
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 presented in Figures 6.8 and 6.9 (structures A and C). One can see that the simple 
series-parallel system appears to be optimal in all of the cases. 

Figure 6.8. Optimal structures of system without work sharing. 
A: R* = 0.95, no constraints; B: R* = 0.95, constraints;
C: R* = 0.99, no constraints; D: R* = 0.99, constraints

 To force the GA to obtain the solution based on bridge structures, allocation 
constraints were imposed that forbid allocation of more than two parallel elements 
in all of the components except 5, 6 and 11. The parameters of the solutions 
obtained are also presented in Table 6.5 and the optimal system structures are 
presented in Figures 6.8 and 6.9 (structures B and D). The modification of the 
structure of the system without work sharing for different levels of required 
reliability is apparent. The transmission/conversion units appear unnecessary when 
providing R>0.95, but one such unit is included in the system providing R>0.99.
For the system with work sharing, the use of a bridge diagonal element is more 
justified because its contribution to the total performance increases. 
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Figure 6.9. Optimal structures of system with work sharing. 
A: R* = 0.95, no constraints; B: R* = 0.95, constraints;
C: R* = 0.99, no constraints; D: R* = 0.99, constraints

 The work sharing allows the system to perform faster. Therefore, less 
expensive solutions were obtained for this type of system than for the system 
without work sharing. 

Table 6.5. Parameters of the obtained solutions

R* 0.99 0.95 
Constraints No Yes No Yes 

 System without work sharing 
C 7.750 8.195 5.715 6.140 
R 0.9911 0.9901 0.9505 0.9503 

0.997 1.032 0.960 0.960 
 System with work sharing 

C 4.960 5.1856 4.02500 4.2756 
R 0.9901 0.9901 0.9511 0.9518 

1.801 1.744 1.425 1.445 

The systems without work sharing have few different possible levels of 
performance because the operator max used in this case provides the same 

performance level for many different system states. In the solutions presented, only 
the system obtained for R* = 0.99 with allocation constraints (Figure 6.8D) has 
different performance levels. The remainder have the single possible nonzero 

5 5

3

4
3
3
33

3

6

6

6

6

2

2

2

32

3

3

5 5

3

3
3

3

6

5

3

3

3

43

4

3
B

36

6
6

6

6

3
3

4

3

3
3
3

2
2
2

4
3
3

3

3

3
3
3

4
4
3

A

6
6
6

3
3
3

D

C



  6   UGF in Analysis and Optimization of Special Types of Multi-state Systems 277 

performance level because their components contain elements with the same 
nominal performance rates. The system performance distributions for systems 
without work sharing are presented in Figure 6.10A.

In contrast, the systems with work sharing have many possible performance 
values depending on their states, because the failure of each element affects the 
ability of the corresponding component to participate in the work sharing. The 
performance distributions for systems with work sharing are presented in Figure 
6.10B.

A         B 
Figure 6.10. System reliability as a function of demand.

A: system without work sharing; B: system with work sharing

6.1.2.2 Structure Optimization in the Presence of Common Cause Failures
When the system components are subject to CCFs, the separation of elements 
among different parallel components can improve the overall system survivability 
(see Section 5.2.1). Such separation can justify the appearance of a bridge 
structure.

Consider, for example, an MSS containing two components A and B connected 
in series (Figure 6.11A). The components consist of M and L different elements 
respectively. All elements belonging to the same component are of the same 
functionality and are connected in parallel. The components A and B are subject to 
total CCF (they can be destroyed by hostile environments with the probabilities vA

and vB respectively). The component destruction means that all of its elements are 
damaged and cannot perform their task. The system survivability is defined as the 
probability that a given demand w is met. This probability is affected by both the 
failures of the elements and the vulnerability of the components.

To enhance the system’s survivability its components can be separated into two 
independent subcomponents. Let {1, …, M} and {1, …, L} be sets of numbers of 
elements belonging to components A and B respectively[ Theelements’ separation 
problem can be considered as a problem of partitioning these sets inttwo mutually 
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disjoint subsets. The partition can be represented by the binary vectors xA = {xAj:
1 j M} and xB = {xBj: 1 j L}, where xAj, xBj {0,1} and two elements i and j
belong to the same subset if and only if xAi = xAj or xBi = xBj for components A and 
B respectively. 

Actually, the separation leads to the appearance of two independent parallel 
subsystems containing components connected in series: 1, 3 and 2, 4 (see Figure 
6.11C). In these systems, components 1 and 2 have the same vulnerability as the 
basic component A, and components 3 and 4 have the same vulnerability as the 
basic component B. Usually, the separation disconnects component 1 from 
component 4 and component 2 from component 3 (for example, when components 
1 and 3 are spatially separated from components 2 and 4). To provide a connection 
between these components, a diagonal component 5 can be included that delivers 
an output of component 1 to the input of component 4 or an output of component 2 
to the input of component 3. The diagonal component can also consist of different 
multi-state elements. This component can also be characterized by its vulnerability 
v5.

The problem of bridge structure optimization is to find the optimal separation
xA, xB of elements from components A and B which provides the maximal system 
survivability for the given demand w when the structure of the diagonal component 
is given: 

S(xA, xB,vA,vB,v5,w)  max (6.18) 

The separation solution can be represented in the GA by the binary string a,
which is a concatenation of the binary vectors xA and xB. The following procedure 
determines the fitness value for an arbitrary solution defined by the string a.

1. According to a, determine lists of elements belonging to components 1, 2, 3 
and 4. 
2. For 1 i 5, determine the u-function of the entire component i using the 
composition operator 

par
over the u-functions of elements belonging to this 

component (the list of elements belonging to the diagonal component is given). 
3. In order to incorporate the component vulnerability into its u-function, apply 
the  operator (4.58) with v = vi over the u-function of the component. 
4. Determine the u-function of the entire bridge system using the composition 
operator

br
 over the u-functions of its components. 

5. Determine the system survivability index S for the given demand w and 
evaluate the solution fitness as S(a).

Example 6.4 

Consider a system initially consisting of two components connected in series (see 
Figure 6.11A). The first component consists of 12 two-state elements and the 
second consists of eight two-state elements. All of the elements within each 
component are connected in parallel. The sets of elements belonging to the 
components consist of pairs of identical elements (six pairs for the first component 
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and four pairs for the second one). This provides the possibility of symmetric 
separation. Parameters of elements of each pair are presented in Table 6.6.

Figure 6.11. Special cases of bridge structure 

It is assumed that the elements belonging to each component are subject to total 
CCFs (external impact) and the probability of the CCF (component vulnerability) 
is the same for each component. 

Table 6.6. Parameters of MSS elements

No. of 
component

No. of 
element

G p 

1 8.0 0.830 
2 6.0 0.820 
3 6.0 0.807 
4 4.0 0.860 
5 4.0 0.825 

1, 2 

6 2.0 0.820 
1 15.0 0.821 
2 10.0 0.803 
3 10.0 0.815 3, 4 

4 5.0 0.806 
1 6.0 0.871 

5 2 4.0 0.893 

To enhance the system’s survivability, each component can be divided into two 
subcomponents and a diagonal component consisting of two parallel elements can 
be included (Figure 6.11B). The parameters of the element belonging to diagonal 
component 5 are also presented in Table 6.6.

The system is interpreted first as a flow transmission one with flow dispersion 
and then as a task processing one without work sharing. The optimal solutions were 
obtained for both types of system for the same parameters of elements [166]. The 
system demands are w = 25 and w = 4 for the flow transmission system and the task 
processing system respectively. Solutions were obtained for three different values 
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of component vulnerability: v = 0 (pure reliability optimization problem), v = 0.05 
and v = 0.5.

The bridge structures providing the maximal survivability for the flow 
transmission system are presented in Table 6.7 and for the task processing system 
in Table 6.8. These solutions are compared with solutions having no component 
separation (Figure 6.11A) and with solutions having symmetric separation. The 
lists of elements belonging to each component, as well as the corresponding system 
survivability index S(w) and mean performance ,  are presented for each solution.

    Table 6.7. Solutions for flow transmission system (vulnerability variation)

System structure v = 0 v = 0.05 v = 0.5 Solution
description No. of 

component
Elements
included

S S S

1 114466 
2 223355 
3 112 

Optimal
for v = 0.05 

4 23344 

0.9968 48.268 0.9333 43.957 0.2837 12.713

1 123456 
2 123456 
3 1234 Symmetric

4 1234 

0.9968 48.266 0.9244 43.969 0.2565 12.722

1 112233445566
2 - 
3 11223344 

Optimal
for v = 0 

(no
separation)

4 - 

0.9974 48.518 0.9001 43.787 0.2493 12.129

1 23345566 
2 1124 
3 113 

Optimal
for v = 0.5 

4 22344 

0.9960 48.185 0.9319 43.870 0.2866 12.652

    Table 6.8. Solutions for task processing system (vulnerability variation)

System structure v = 0 v = 0.05 v = 0.5 Solution
description No. of 

component
Elements
included

S S S

1 223346 
2 114556 
3 1144 

Optimal
for v = 0.05 

and for 
v = 0.5 

4 2233 

0.9990 4.434 0.9841 4.381 0.4255 2.047

1 123456 
2 123456 
3 1234 Symmetric

4 1234 

0.9983 5.135 0.9820 5.058 0.4221 2.325

1 112233445566
2 - 
3 11223344 

Optimal
for v = 0 

(no
separation)

4 - 

0.9990 5.168 0.9016 4.664 0.2497 1.292
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One can see that, when the probability of CCFs in the components is neglected 
(v = 0), the best solution is one without elements separation. The optimal solutions 
for different values of component vulnerability can differ (as in case of the flow 
transmission system, where the optimal solution for v = 0.05 is not optimal for v = 
0.5 and vice versa). For both types of system the optimal solutions are not 
symmetric.

The solution that provides the maximal system survivability for a given 
demand w does not necessarily provide the greatest system mean performance. 
Indeed, the system resources are distributed in such a way that maximizes only the 
probability of demand w satisfaction, while the rest of the performance levels can 
be provided with probabilities lower than those obtained by an alternative solution. 
In Figure 6.12 one can see S(w) functions for three different solutions for both 
types of system when v = 0.05. While the probability Pr{G w} for the optimal 
solutions is maximal, the probabilities Pr{G w'} for w'>w is often greater for the 
symmetric solution and the solution without separation. Note that the greatest 
mean performance  is achieved for the symmetric solutions for both types of 
system.

It is interesting that the optimal solution for the task processing system when     
v = 0.05 cannot even provide a processing speed G>4.44, while the rest of the 
solutions provide a processing speed G = 5.22 with a probability close to 0.85. 
Indeed, the fastest elements in the optimal solution are located in components 1 
and 3. Therefore, the path including only these two elements with nominal 
processing speeds g11 = 8 and g31 = 15 does not exist in this solution, since the two 
elements are not directly connected, though they are through the diagonal element. 
In the remainder of the solutions such a path exists. Creating the fastest path by 
exchanging elements between components 3 and 4 in the optimal solution 
improves the system’s average processing speed (it grows from  = 4.381 to  = 
4.968); however, this drastically decreases the system’s survivability for the given 
demand w = 4 (from S(4) = 0.984 to  S(4) = 0.848). 

In order to estimate the effect of diagonal element parameters on the optimal 
separation, compare the optimal solution obtained above (Figure 6.11B) with two 
extreme cases. In the first case (Figure 6.11C) no diagonal component is available: 
Pr{G5 = 0} = 1. In the second case (Figure 6.11D), no capacity limitations are 
imposed on the fully reliable diagonal component: Pr{G5 = } = 1. The solutions 
obtained for both types of system are presented in Tables 6.9 and 6.10.

    Table 6.9. Solutions for flow transmission system (different diagonal elements) 

System structure Case B Case C Case D Solution
description No. of 

component
Elements
included

S S S

1 114466 
2 223355 
3 112 

Optimal
 for case B 

4 23344 

0.9333 43.957 0.9038 42.306 0.9432 44.505

1 1124 
2 23345566 
3 112 

Optimal
 for cases C 

and D 
4 23344 

0.9328 43.911 0.9053 42.202 0.9445 44.500
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One can see that the optimal separation solutions coincide in cases B and C for 
the flow transmission system and in cases C and D for the task processing system. 
Obviously, the highest system survivability is achieved for case D and the lowest 
for case C.

    Table 6.10. Solutions for task processing system (different diagonal elements)

System structure Case B Case C Case D Solution
description No. of 

component
Elements
included

S S S

1 223346 
2 114556 
3 1144 

Optimal
for cases B 

and C 
4 2233 

0.9841 4.381 0.9841 4.370 0.9862 5.026

1 1234455 
2 12366 
3 123 

Optimal
 for case D 

4 12344 

0.9820 5.057 0.9820 5.045 0.9914 5.113

     A         B 
Figure 6.12. System survivability as function of demand for different element 

separation solutions in flow transmission system (A) and in task processing system (B) 

6.2 Multi-state Systems with Two Failure Modes 

Systems with two failure modes consist of statistically independent devices 
(elements) that are all to operate in the same two modes (the operation commands 
in each mode arrive at all the elements simultaneously). Each element can fail in 
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either of two modes. A typical example of systems with two failure modes are 
switching systems that not only can fail to close when commanded to close but can 
also fail to open when commanded to open. Two different types of switching 
system can be distinguished:

- flow transmission systems, in which the main characteristic of each switching 
device is the flow controlled by this device (for example, fluid flow valve); 

- task processing systems, in which the main characteristic of each switching 
device is  the switching time of this device (for example, electronic diode).

The study of the systems with two failure modes started as early as in the 
1950th [167-169] and still attracts interest of researchers [170-173]. In 1984, 
Barlow and Heidtman [14] suggested using a generating function method for 
computing k-out-of-n reliability of systems with two failure modes. 

The aforementioned studies consider only reliability characteristics of elements 
composing the system. In many practical cases, some measures of element 
(system) performance must be taken into account. For example, fluid-transmitting 
capacity is the performance of fluid valves and of switching systems that consist of 
such valves, while operating time is the performance of electronic switches and of 
switching systems that consist of such switches. Each system element can be 
characterized in each mode by its nominal performance and the element fails if it is 
unable to provide its nominal performance. A system can have different levels of 
output performance depending on its structure and on the combination of elements 
available at any given moment. Therefore, the system is multi-state.

The system is considered to be in an operational state if its performance rate in 
open mode oG  satisfies condition 1),( ooo wGF  and its performance rate in 

closed mode cG  satisfies condition 1),( ccc wGF , where ow  and cw  are the 

required levels of system performance in the open and closed modes respectively 
and oF  and cF  are the acceptability functions in open and closed modes 

respectively.
 Since the failures in open and closed modes, which have probabilities    

}0),(Pr{ oooo wGFQ  and }0),(Pr{ cccc wGFQ respectively, are mutually 

exclusive events and the probabilities of both modes are equal to 0.5 (each 
command to close is followed by a command to open and vice versa), the entire 
system availability can be defined as 

 A = 1 0.5 )( o cQQ  (6.19) 

In order to characterize the expected performance of MSSs with two failure 
modes, one has to evaluate this index for both its modes: o and c.

Having u-functions Uo(z) and Uc(z) representing the system performance 
distributions in open and closed modes, one can obtain the probabilities Qo and Qc

and the expected performance rates o and c using the technique presented in 
Section 3.3 over Uo(z) and Uc(z) respectively. 

Usually, the switching systems consist of elements with total failures. Each 
element j has nominal performance rates ojg and ,cjg  performance rates in fault 
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 state o
~

jg and ,~
cjg  and probabilities of normal functioning pjo and pjc in open and 

closed modes respectively. The individual u-functions of the system element can 
be defined as 

cc

oo

~

ccc

~

ooo

)1()(

)1()(

jj

jj

g
j

g
jj

g
j

g
jj

zpzpzu

zpzpzu
  (6.20) 

In order to obtain the system u-functions Uo(z) and Uc(z), one has to determine 
the parameters of the u-functions of individual system elements (6.20) and define 
the structure functions used in the composition operators for both modes. Having 
these u-functions one can easily evaluate the system availability using Equation 
(6.19) and operators (3.8) and (3.12):

A(wo, wc)=1 0.5[1 ))(( o

o
o

wzzUE
F

+1 ))(( c

c
c

wzzUE
F

]

         = 0.5[ ))(( o

o
o

wzzUE
F

+ ))(( c

c
c

wzzUE
F

] (6.21) 

In the following sections we consider two typical switching systems. 

6.2.1 Flow Transmission Multi-state System

In this model the performance of the switching element (flow valve) is defined as 
its transmitting capacity. To determine the u-function of an individual element j in
the closed mode, note that in the operational state, which has the probability pjc, the 
element should transmit a nominal flow fj (gjc = fj) and in the failure state it fails to 
transmit any flow ( c

~
jg = 0). Therefore, according to (6.20), the u-function of the 

element takes the form 

0
ccc )1()( zpzpzu j

f
jj

j  (6.22) 

In the open mode the element has to prevent the flow transmission through the 
system. If it succeeds in doing this (with probability pjo), then the flow is zero (gjo

= 0), and if it fails to do so the flow is equal to its nominal value in the closed 
mode      ( o

~
jg = fj ). The u-function of the element in the open mode takes the form 

jf
jjj zpzpzu )1()( o

0
oo  (6.23) 

The structure functions for subsystems of elements connected in a series, in 
parallel or composing a bridge structure for the flow transmission MSS with flow 
dispersion are defined by Equations (4.2), (4.9) and (6.4) respectively. Using the 
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reliability block diagram method one can obtain the u-function of the arbitrary 
system by consecutively applying the corresponding composition operators.

Note that the u-function of a subsystem containing n identical parallel elements 
(pjc = pc, pjo = po, fj = f for any j) can be obtained by applying the operator 

))(),...,(( zuzu  over n functions u(z) of an individual element represented by 

(6.22) or (6.23). The u-function of this subsystem takes the form

Uc(z) =
n

k

kfknk zpp
knk

n

0
cc )1(

)!(!

!
  (6.24) 

for the closed mode and 

Uo(z) =
n

k

kfkkn zpp
knk

n

0
oo )1(

)!(!

!
 (6.25) 

for the open mode. The u-function of a subsystem containing n identical elements 
connected in a series can be obtained by applying operator min  over n functions 

u(z) of an individual element. The u-function of this subsystem takes the form

Uc(z) = 0
cc )1( zpzp nfn  (6.26) 

for the closed mode and

Uo(z) = fnn zpzp )1(])1(1[ o
0

o   (6.27) 

for the open mode. 
To determine the system’s reliability one has to define its acceptability 

function. For the flow transmission system, it is natural to require that in its closed 
mode the amount of flow should not be lower than the demand wc, while in the 
open mode it should not exceed a value of wo. Therefore, the conditions of the 
system’s success are 

Fc(Gc,wc) = 1(Gc wc) and Fo(Go,wo) = 1(Go wo) (6.28) 

6.2.2 Task Processing Multi-state Systems 

In this type of switching system the task of each element is to connect (or 
disconnect) a circuit. Since the task processing in each mode is associated with a 
single switching action, the performance of element j is defined not as its 
processing speed but as its operation time. 
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To determine the u-function of an individual element with total failures (for 
example, an electronic diode) in closed and open modes, note that the element j
operates in times gjc = tjc and gjo = tjo with the probabilities pjc and pjo respectively. 
If the element fails to operate, then its operation time is equal to infinity 

).~~( co jj gg  Therefore, according to (6.20), the u-functions of the element for 

the two modes take the form 

zpzpzu

zpzpzu

j
t

jj

j
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jj

j
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)1()(

)1()(

ccc

ooo
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o

 (6.29) 

If several elements are connected in parallel within a subsystem, then the 
subsystem disconnection is completed only when all the elements including the 
slowest one are opened. Therefore, the operation time of n elements in the open 
mode is equal to the greatest of the operation times of the elements. The structure 
function for the open mode takes the form 

 },...,max{),...,( 11par nn GGGG  (6.30) 

 For n elements connected in series, the first disconnected element disconnects 
the subsystem in the open mode. Therefore, the structure function takes the form 

},...,min{),...,( 11ser nn GGGG  (6.31) 

If n elements are connected in parallel within a subsystem, then the first 
connected element makes the subsystem connected. Therefore, the operation time 
of the group of elements in closed mode is equal to the least of the operation times 
of the elements. The structure function for the closed mode takes the form 

   },...,min{),...,( 11par nn GGGG  (6.32) 

 For n elements connected in series, all of the elements, including the slowest 
one, should be connected to make the subsystem connected in the closed mode. 
Therefore, the structure function takes the form: 

 },...,max{),...,( 11ser nn GGGG  (6.33)  

Combining the two operators one can obtain a u-function representing the 
performance distribution of an arbitrary series-parallel system in both modes. Note 
that the u-function of a subsystem containing n identical parallel elements is 

zpzpzU ntn )1(])1(1[)( ccc
c  (6.34) 
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for the closed mode and 

zpzpzU ntn )1()( ooo
o  (6.35) 

for the open mode. The u-function of a subsystem containing n identical elements 
connected in series takes the form

zpzpzU ntn )1()( ccc
c  (6.36) 

for the closed mode and

zpzpzU ntn )1(])1(1[)( ooo
o  (6.37) 

for the open mode.
In order to evaluate the operation time of a bridge structure, notice that there 

are four possible parallel ways to connect input and output of the bridge (see 
Figure 6.1): through groups of elements {1, 3} or {2, 4} or {1, 5, 4} or {2, 5, 3} 
connected in series.  Therefore, the entire bridge operation time can be obtained as 

br(G1, G2, G3, G4, G5)    

 = par( ser(G1, G3), ser(G2, G4), ser(G1, G5, G4), ser(G2, G5, G3)) (6.38) 

For the open mode this expression takes the form 

br(G1, G2, G3, G4, G5)

 = max(min(G1, G3),min(G2, G4),min(G1, G5, G4),min(G2, G5, G3))    (6.39) 

and for the closed mode it takes the form 

br (G1, G2, G3, G4, G5)

 =min(max(G1, G3),max(G2, G4),max(G1, G5, G4),max(G2, G5, G3)) (6.40) 

For a system in which operation time is the crucial factor, it is natural to require 
that in its closed and open modes the operation times should not exceed the values 
wc and wo respectively. The system’s acceptability functions are 

Fc(Gc,wc) = 1(Gc wc) and Fo(Go,wo) = (Go wo)    (6.41) 

Having these acceptability functions one can easily evaluate the system’s 
availability using Equation (6.21).
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Since, in the worst case, the operation time of the entire system is equal to 
infinity, determining the expected operation time makes no sense. A more natural 
way of evaluating expected performance is by using the conditional expected 
operation time (expected operation time given the system manages to operate). In 
this case, Equation (3.7) with the acceptability functions Fo(Go) = 1(Go< ) and 
Fc(Gc) = 1(Gc< )  should be used. 

Example 6.5 

Consider a switching series-parallel subsystem consisting of three elements 1-3 
connected as depicted in Figure 6.13. The elements are characterized by their 
availability and performance level (transmitting capacity f) in open and closed 
modes. The parameters of the system elements are presented in Table 6.11 (first 
three rows). The u-functions of the individual elements according to (6.22) and 
(6.23) are 

 u1o(z) = 0.87z0+0.13z1.5; u1c(z) = 0.89z1.5+0.11z0

 u2o(z) = 0.78z0+0.22z3.5; u2c(z) = 0.82z3.5+0.18z0

 u3o(z) = 0.82z0+0.18z2.5; u3c(z) = 0.91z2.5+0.09z0

Figure 6.13. Reliability block diagram of MSS with two failure modes 

In order to determine the system performance distribution in the open and 
closed modes we have to obtain the u-function of the entire system using 
composition operators over the u-functions of individual elements.

)()]()([)( o3o2o1o min
zuzuzuzU

 = [(0.87z0+0.13z1.5)
min

(0.78z0+0.22z3.5)] (0.82z0+0.18z2.5)

 =  (0.9714z0+0.0286z1.5) (0.82z0+0.18z2.5)

 = 0.7965z0+0.0234z1.5+0.1749z2.5+0.0051z4
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)()]()([)( c3c2c1c min
zuzuzuzU Uo(z)

 = [(0.89z1.5+0.11z0)
min

( 0.82z3.5+0.18z0)] ( 0.91z2.5+0.09z0)

 =  (0.7298z1.5+0.2702z0) ( 0.91z2.5+0.09z0)

 = 0.6641z4+0.0657z1.5+0.2459z2.5+0.0243z0

Having the system u-functions for the open and closed modes one can 
determine the expected flows through the system in these modes by applying the 
operator (3.11): 

o = 0.7965 0+0.0234 1.5+0.1749 2.5+0.0051 4 = 0.4927 

c = 0.6641 4+0.0657 1.5+0.2459 2.5+0.0243 0 = 3.3697 

Assume that in the closed mode the amount of flow should exceed wc = 2, 
while in the open mode it should not exceed wo = 0.5. Applying Equation (6.21) 
with acceptability functions (6.28) we obtain 

 )2)((
c

c F
zUE = 0.6641 1(4 2)+0.0657 1(1.5 2)+0.2459 1(2.5 2)

 +0.0243 1(0 2) = 0.6641+0.2459 = 0.91 

 )0.5)((
o

o F
zUE = 0.7965 1(0 0.5)+0.0234 1(1.5 0.5)

 +0.1749 1(2.5 0.5)+0.0051 1(4 0.5) = 0.7965 

 A(2, 0.5) = 0.5( )2)((
c

c F
zUE + )0.5)((

o
o F

zUE )

 = 0.5(0.91+0.7965) = 0.85325 

Example 6.6 

Consider a switching system with the configuration presented in Figure 6.13. Each 
one of the ten system elements is characterized by its availability and nominal 
performance rate in open and closed modes. In the case of a flow transmission 
system, the performance of an element is its transmitting capacity f. In the case of a 
system of electronic switches, the performance of an element is determined by its 
operation times in open mode to and in closed mode tc. The parameters of the 
system elements are presented in Table 6.11. 

In order to determine the system PD in the open and closed modes one has to 
obtain the u-function of the entire system using the composition operators over u-
functions of the individual elements uo1(z)-uo10(z) and uc1(z)-uc10(z) respectively.
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Table 6.11. Parameters of MSS elements 

Flow transmission model 
f pc po

Task processing model 
No. of

element
tc to pc po

1 3.0 1.5 0.89 0.87 
2 5.0 3.5 0.82 0.78 
3 3.5 2.5 0.91 0.82 
4 2.5 3.0 0.85 0.82 
5 3.0 2.5 0.80 0.76 
6 3.0 3.0 0.80 0.78 
7 4.0 3.0 0.91 0.85 
8 4.0 4.5 0.84 0.79 
9 5.3 2.5 0.93 0.91 

10 5.0 2.7 0.92 0.90 

First, consider the system to be a combination of flow valves (flow 
transmission system with flow dispersion). The flow through the system can vary 
in the range of   0.0-7.0. In the closed mode the expected flow is c = 5.306. The 
probability that the system provides the maximal flow in the closed mode is Pr{Gc

= 7} = 0.30. In the open mode the expected flow is o = 0.303 and the probability 
that the system totally prevents the flow is Pr{Gc = 0} = 0.892. The system failure 
is defined as its inability to provide at least the required constant level of flow wc in 
its closed mode and to prevent the flow exceeding wo in its open mode. The failure 
probabilities in both modes as functions of demand w are presented in Figure 
6.14A. Note that Qc(wc) is an increasing function (the greater the demand, the 
tougher the condition Gc wc), while Qo(wo) is a decreasing function (the greater the 
demand, the easier the condition Go wo). The entire system availability A(wo,wc) as 
a function of maximal allowable flow in the open mode wo and minimal required 
flow in the closed mode wc is presented in Figure 6.15A. 

Now consider the system to be a combination of electronic switches (task 
processing system). The probabilities that the system is able to operate in the open 
and closed modes (operation time is less than infinity) are Pr{Go< } = 0.892 and 
Pr{Gc< } = 0.990. When Go< , the time needed by the system to disconnect its 
input from output in the open mode cannot be less than 3 and greater than 4.5. The 
conditional expected operation time is o

~  = 3.02. When Gc< , the time needed by 

the system to connect its input with output in the closed mode cannot be less than 3 
and greater than 5.3. The conditional expected operation time is c

~ = 3.23. When 

the system failure is defined as its inability to switch within the required time (wo

and wc in open and closed modes respectively), the failure probabilities in both 
modes are functions of this time. The functions Qo(wo) and Qc(wc) are presented in 
Figure 6.14B. The entire system availability as a function of required switching 
times in the open and closed modes A(wo,wc) is presented in Figure 6.15B.
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A         B 

Figure 6.14. Failure probabilities as functions of demand. 
A: flow transmission system; B: task processing system 

A         B 

Figure 6.15. System availability as function of demands in open and closed modes. 
A: flow transmission system; B: task processing system 

The duality of roles of parallel and series connection of units in the two 
operation modes creates a situation in which any change in system configuration 
that increases system availability in an open mode can decrease it in a closed mode 
and vice versa [170, 171]. Therefore, the optimal system configuration should be 
found that provides the maximal overall system availability (6.21). 
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There exist two types of structure optimization problem when the systems with 
two failure modes are considered. The first one is an extension of the well-known 
redundancy optimization problem. In this problem, one has to determine the 
number of parallel elements (with identical functionality) for each system 
component when the system structure (topology of the reliability block diagram 
representing interaction of the components) is given. The algorithms for solving 
this problem were studied in [174, 175] for the binary-state systems without 
respect to the element performances. The second problem is to find the 
configuration (topology of the reliability block diagram) for a given set of elements 
that provides the greatest possible system availability. This problem was 
formulated and solved in [173] for the binary-state systems (also without respect to 
the element performances). In the following sections, algorithms for solving the 
two system optimization problems for MSSs with two failure nodes are presented. 

6.2.3 Structure Optimization of Systems with Two Failure Modes 

6.2.3.1 Problem Formulation 
A system consists of N components connected according to a block diagram. Each 
component of type i contains a number of different switching elements connected 
in parallel. Different versions and numbers of elements may be chosen for any 
given system component. Element operation in open and closed modes is 
characterized by its availability and nominal performance rate. 

For each component i there are Bi element versions available. A vector of 
parameters gio(b), gic(b), pio(b) and pic(b) can be specified for each version b of
element of type i. The structure of system component i is defined by the numbers 
of parallel elements of each version nib for 1 b Bi. The vectors ni={n(i,b)} (1 i N,
1 b Bi) define the entire system structure.

For a given set of vectors {n1, …, nN}, the entire system fault probabilities 
Qo(wo, n1, …, nN) and Qc(wc, n1, …, nN) can be obtained for both modes. The 
requirement of providing the desired system availability in open and closed modes 
can be formulated as follows:

Qo(wo, n1, …, nN) Q*o, Qc(wc, n1, …, nN) Q*c, (6.42) 

where Q*o and Q*c are maximal allowable levels of system unavailability in open 
and closed modes respectively. 

Having the given system structure, one can also determine the expected system 
performance in the both modes o(n1, …, nN) and c(n1, …, nN). While satisfying 
the availability requirements (6.42), one can desire to obtain expected system 
performance values as close to some specified values *o and *c as possible. The 
proximity between expected system performance and the desired level can be of 
different importance in open and closed modes. 

Now consider two possible formulations of the problem of system structure 
optimization.



  6   UGF in Analysis and Optimization of Special Types of Multi-state Systems 293 

Formulation 1. Find system configuration {n1,…, nN} that provides maximal 
system availability: 

A(wo,wc, n1, …, nN)

 = max)),,,(Q),,,(Q(5.01 1cc1oo NN ww nnnn      (6.43) 

Formulation 2: find system configuration {n1, …, nN} that provides the 
maximal proximity of expected system performance to the desired levels for both 
modes, while satisfying the availability requirements:

*
c1cc

*
oN1oo

*
c1c

*
o1o

),,,(Q,),,,(Qsubject to

min|),,(|)1(|),,(|

QwQw N

NN

nnnn

nnnn
 (6.44) 

where constant  reflects the relative importance of the open mode over the closed 
mode (0 1). Note that for the task processing systems the measures o and c

should be substituted by the corresponding conditional measures o
~ and .~

c

6.2.3.2 Implementing the Genetic Algorithm 
The solution encoding is the same as described in Section 5.1.2.2, where the 
element aj of the integer string a defines the number of parallel elements for each 
component i and version b (the relation between i, b and j is determined by 
Equation (5.10)). 

In order to let the GA look for the solution meeting requirements (6.43) or 
(6.44), the following universal expression of solution quality (fitness) is used: 

})*)(Qmax{0,}*)(Q,0(max{

|*-)(|)1(|*-)(|

ccoo

ccoo

QQ

M

aa

aa
     (6.45) 

where  and M are constants much greater than the maximal possible value of 
system output performance. 

The case when 0** co QQ corresponds to formulation (6.43). Indeed, 

since  is sufficiently large, the value to be minimized in order to maximize the 
fitness is (Qo+Qc). On the other hand, when 1** co QQ  all availability 

limitations are removed and expected performance becomes the only factor in 
determining the system structure. 

The solution decoding procedure determines nib for each system component i
and each element version b from the string a and determines the performance 
measures of the system separately for open and closed modes according to the 
algorithm described in Section 5.1.2.2. Then it determines the solution fitness 
using expression (6.45). 
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Example 6.7

Consider a system of electronic switches consisting of four components connected 
in series [176]. Each component can contain a number of switches connected in 
parallel. The elements in each component should belong to a certain type. (For 
example, each component can operate in a different medium, which causes specific 
requirements on the switches.) Each element version is characterized by element 
parameters: availability and performance rates (operation times in open mode to

and in closed mode tc). The problem is to find the optimal system configuration by 
choosing elements for each component from the lists of versions presented in Table 
6.12.

Table 6.12. Parameters of electronic switches 

No. of component Version of element to tc po pc

1 5.80 3.00 0.81 0.76 
2 4.60 3.30 0.85 0.79 
3 4.50 3.50 0.86 0.75 1

4 4.00 3.10 0.84 0.76 
1 1.80 1.20 0.84 0.78 
2 1.81 1.30 0.86 0.72 2
3 1.85 1.10 0.89 0.70 
1 2.00 1.90 0.82 0.80 
2 2.10 1.92 0.87 0.81 3
3 2.10 1.89 0.89 0.73 
1 3.60 3.30 0.85 0.78 

4 2 4.00 2.80 0.87 0.77 

Table 6.13 contains the results obtained for a system that is considered to be in 
normal condition if the switching time in both modes is not greater than wo = wc = 
5; the desired operation time is *o = *c = 0. The conditional expected value ~  is 
estimated for switching time distributed in the range of allowable values (0, 5). It is 
assumed that the operation speed is equally important in both modes:  = 0.5. 
Three solutions were obtained for different levels of desired availability in both 
modes 0,** co QQ  0.035** co QQ  and 0.05.** co QQ

Table 6.13. Solutions obtained for the system of electronic switches

Component Q*
o=Q*

c=0 Q*
o=Q*

c=0.035 Q*
o=Q*

c=0.05

1 3*2,1*3 4*1,1*3,1*4 7*1,6*3,1*4 

2 5*3 3*3 3*3 

3 3*2 3*2 3*3 

4 4*2 5*2 7*2 

Qo 0.030 0.035 0.050 

Qc 0.014 0.034 0.046 

A 0.978 0.965 0.952 

o
~ 2.213 2.076 1.997 

c
~ 3.301 3.001 3.000 
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Observe that the solution maximizing the system availability (first formulation 
corresponding to 0** co QQ ) has a relatively small number of elements. 

Further growth of the number of elements decreases the system availability. One 
can see that, with the growth of availability requirements, the system availability 
increases by the price of the increase of expected switching time. The failure 
probability distributions in closed and open modes for the solutions obtained are 
presented in Figure 6.16. Note that the requirement to improve the conditional 
expected values of system performance contradicts the requirement to maximize 
the system availability defined as its ability to reach a threshold level of the 
performance.

Figure 6.16. Failure probability distributions for the system of electronic switches 

6.2.4 Optimal Topology of Systems with Two Failure Modes 

6.2.4.1 Problem Formulation 
The problem of optimizing a series-parallel MSS configuration is the following: 
find the series-parallel configuration of a given number of statistically independent 
units that provides maximal system availability when the units can experience two 
failure modes and are characterized by different performance rates and availability 
indices.

6.2.4.2 Implementing the Genetic Algorithm 
According to its definition, any series-parallel system is either a single unit or it is 
two series-parallel subsystems connected in series or in parallel. Therefore, any 
such system can be represented by a binary tree. One of the possible representations 
was suggested in [173], where tree leaf nodes correspond to the primary units from 
which the configuration is built and the rest of the nodes are distinguished by the 
way the two children of the node are joined.  As was shown in [173], such a binary 
tree can be easily represented by a symbolic string (post-order traversal) in which 
symbols from the set {1,…,N} correspond to unit numbers and symbols from the 
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set {S, P} correspond to types of connection (S for series one and P for parallel 
one).

For example, the binary tree corresponding to the system presented in 
Figure6.17A can be represented by the following string: 12P3S45PP. The main 
disadvantage of this representation is that different strings can represent the same 
configuration, since the order of substrings representing the two child subtrees of 
any junction does not matter (observe that the system from Figure 6.17A can also 
be represented by the string 45P12P3SP). This causes situations in which the GA 
population is overwhelmed with different strings representing identical solutions. 
Such situations slow the algorithm convergence. 

Figure 6.17. Binary tree representation of series-parallel system 

In order to simplify the representation and to reduce the number of cases in 
which the same configuration is represented by different trees (strings), the 
following rule was introduced in [177] to determine the types of connection: for 
each node joining two child subtrees, determine the minimal number among the 
numbers of units belonging to the left child subtree xL and right child subtree xR. If 
xL<xR, then the subtrees are joined in parallel; if xL>xR, then they are joined in 
series.

Using this simplified representation one obtains a new configuration by 
swapping child subtrees of a given node (see Figure 6.17B) and does not need to 
distinguish nonleaf tree nodes (P or S), since they no longer determine the type of 
connection.

We use the following rule to represent the binary tree corresponding to a series-
parallel configuration by a string: all numbers corresponding to units should appear 
in the string in the order that they appear in the tree from left to right. Each time 
that all of the numbers corresponding to subtrees connected by some node appear 
on the left-hand side of the given position in the string, the sign * representing the 
node should be inserted in this position.
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Example 6.8 

Consider the tree presented in Figure 6.17A. The corresponding string 
representation is 312**45**, where the underlined substring represents subsystem 
I and the double underlined substring represents subsystem II. Since for the root 
node xL = 1 and    xR = 4, the subsystems I and II are connected in parallel. To 
make them connected in series, one just has to swap corresponding substrings and 
obtain string 45*312***, corresponding to the configuration presented in Figure 
6.17B.

Note that, in the representation given, the last position of the string is always 
occupied by *, representing the root node of the tree. Therefore, this string element 
provides no information and can be removed. Since the total number of nonleaf 
nodes in the binary tree with N leafs is N 1, the string representing series-parallel 
configuration of N units should contain 2(N 1) elements. 

Not every arbitrary string can represent a feasible solution. Indeed, consider 
string 3**1245*. Since each node sign * corresponds to two subtrees that the node 
connects, it should follow at least two unit numbers. In order to make an arbitrary 
solution feasible, in all cases where there are not enough numbers from the left-
hand side of the node sign *, one has to find the closest number following the node 
sign * on the right-hand side and insert it immediately before the sign. (For the 
string given, such a procedure first produces string 31**245* and, when repeated, 
produces a feasible string 31*2*45*). 

The simplest way to represent solution strings in the GA is by using 
permutations of integer numbers {1,…,2(N 1)} and by treating all the numbers 
greater than N as node signs * (for example, string  31827456 can be treated as 
31*2*45*).

The following is a procedure for system availability evaluation based on 
decoding the system configuration from an arbitrary permutation a of integer 
numbers ranging from 1 to 2(N 1). The procedure enables the obtaining of u-
functions Uo(z) and Uc(z) for the entire system, by applying composition operators 
over the corresponding u-functions of individual units in sequence determined by 
the system configuration encoded by a string a = (ai,…, a2N 2). To store the 
intermediate u-functions, a stack memory is used that allows binary subtrees (and 
corresponding u-functions) to be treated in order that is encoded by the string. 

With each u-function u(z) representing a subtree, we associate a number x(u(z))
equal to the smallest one from among the numbers of units belonging to the 
subtree.

The procedure performs the following steps: 
1. Assigns number of string element i = 1. 
2. If ai N (ai corresponds to the number of the unit), assign x( )(zu

ia ) = ai,

place unit u-function )(zu
ia  to the stack and go to step 5. 

If ai >N (ai corresponds to nonleaf node sign *) go to step 3. 
3. If there are no fewer than two u-functions in the stack, go to step 4, else find 

string element aj closest to ai (j>i), which corresponds to the number of the unit    
(aj N). Remove the element aj from the string, shift all the elements ai, …, aj 1 one 
position right and place element aj into position i. Return to step 2. 
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4. Remove the upper u-function )(zu  and second one from the top )(zu  from 

the stack. Obtain the new u-function )(zu either as )(zu = )()(
ser

zuzu

(series connection) if ))(())(( zuxzux or as )(zu = )()(
par

zuzu  (parallel 

connection) if )).(())(( zuxzux

Obtain index x( )(zu ) = ))}.(()),((min{ zuxzux  Place the new u-function

)(zu  and the index ))(( zux  into the stack. 

5. Increment i by one. If i 2(N 1), return to step 2, else obtain the entire system 
u-function U(z) as described in step 4. 

Repeating steps 1-5 with the unit u-functions and composition operators 
corresponding to open and closed modes, one finally obtains the system u-
functions Uo(z) and Uc(z) and determines the system’s availability using Equation 
(6.21). The solution fitness is equal to the system’s availability. 
 Since the solution of the optimization problem considered is represented by 
permutations of integer numbers (which corresponds to the sequencing problem), 
the corresponding fragment crossover operator and the mutation procedure that 
swaps two string elements (discussed in Section 1.3.2.6) are to be used. The 
following example illustrates the use of the fragment crossover operator, mutation 
procedure, and solution correction algorithm (used within the solution decoding 
procedure) for obtaining new feasible solutions from two parents. 

Example 6.9 

Consider two parent strings P1 and P2, representing configurations presented in 
Figure 6.18:

 P1: 1 2 3 4 5 6 7 8

 P2: 4 2 6 5 7 1 8 3 

The fragment crossover operator is applied twice with the roles of the parents 
reversed. After applying the crossover with a randomly determined fragment, we 
obtain two offspring solutions O1 and O2 (the elements belonging to the fragment 
are underlined): 

  O1:  4 2 1 5 6 7 8 3 
  O2: 1 2 4 6 5 3 7 8

After applying the mutation procedure to O1 and O2, we obtain strings S1 and S2: 

 S1: 4 2 3 5 6 7 8 1
 S2: 1 7 4 6 5 3 2 8

(the two randomly chosen positions are underlined). 
Note that string S2 is infeasible (according to the feasibility rule presented in 

Section 3.2, the node sign 7 should follow at least two unit numbers representing 
two subtrees connected by the node). During the solution decoding procedure it is 
transformed into the string 
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 S2: 1 4 7 5 6 3 2 8

The final solutions, as well as the intermediate ones, are also presented in Figure 
6.18.

Figure 6.18. Examples of series-parallel configurations obtained by GA procedures 

Example 6.10 

Consider a set of 10 fluid flow valves. Each valve is characterized by its 
availability in open and closed modes (po, pc), and by the nominal flow 
transmitting capacity f. These parameters are presented in Table 6.14. We want the 
flow to be not less than wc in the closed mode and not greater than wo in the open 
(disconnected) mode. 

Three different system configurations were found by the GA for the different 
desired system transmitting capacities in open and closed modes: configuration A 
for wc = 5, wo = 0.1, configuration B for wc = 7, wo = 0.1, and configuration C for 
wc = 10, wo = 3. These configurations are presented in Figure 6.19. The 
probabilistic distributions of flows through the system in closed and open modes 
for the configurations obtained are presented in Figure 6.20 in the form of 
cumulative probabilities Pr{Gc>wc} and Pr{Go<wo}. Table 6.15 contains system 
fault probabilities Qo and Qc and availability index A obtained for each 
configuration for all the three demand combinations (wc, wo).  Note that each 
configuration, though being the best for a certain combination (wc, wo), does not 
provide the greatest system availability for the two other combinations. 
Configuration A can not provide flow f = wc = 10 in the closed mode even when all 
the units are available

Note that while the configurations obtained seem to be not realistic for pure 
switching systems they are relevant when one considers the configuration of 
different types of flow transmission equipment (pumps, filters, etc.) having alarm 
valves aimed at preventing the flow in the case of contingency. 
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Table 6.14. Parameters of fluid flow valves

No. of unit f pc po

1 2.0 0.86 0.82 
2 2.0 0.92 0.88 
3 2.5 0.95 0.89 
4 2.5 0.95 0.89 
5 3.0 0.90 0.86 
6 3.0 0.90 0.86 
7 4.0 0.87 0.83 
8 4.0 0.84 0.80 
9 5.0 0.87 0.81 

10 5.0 0.82 0.80 

Table 6.15. Reliability characteristics of the obtained solutions

Solution  wc=5.0, wo=0.1 wc=7.0, wo=0.1 wc=10.0, wo=3.0
Qc 0.059 0.489 1.000 
Qo 0.032 0.032 0.008 A

A 0.955 0.739 0.000 
Qc 0.017 0.045 0.208 
Qo 0.119 0.119 0.089 B

A 0.932 0.918 0.852
Qc 0.002 0.004 0.042 
Qo 0.323 0.323 0.110 C

A 0.837 0.836 0.924

Figure 6.19. Optimal configurations obtained for the system of fluid flow valves 
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Figure 6.20. Cumulative probabilities Pr{Gc>wc} and Pr{Go<wo}for the fluid flow 
valves configurations obtained 

6.3 Weighted Voting Systems   

The weighted voting system (WVS) consists of n independent voting units that 
provide a binary decision or abstain from voting. Each unit has its own individual 
weight. The system accepts the proposition I if the cumulative weight of the units 
supporting this proposition is at least the prespecified fraction  of the cumulative 
weight of all non-abstaining units. The system abstains if all n units abstain. In all 
other cases, the system rejects proposition I. The system fails if it does not accept 
the proposition that should be accepted, does not reject the proposition that should 
be rejected, or abstains from voting.

This can be modelled by considering the system input I being either 1 
(proposition to be accepted) or 0 (proposition to be rejected) which is supplied to 
each unit. Each unit j produces its decision (unit output) dj(I) which can be 1, 0, or 
x (in the case of abstention). Inequality dj(I)  I means that the decision made by 
the unit is wrong. The above listed errors can be expressed as

1. dj(0) = 1 (unit fails stuck-at-1) 
2. dj(1) = 0 (unit fails stuck-at-0) 
3. dj(I) = x (unit fails stuck-at-x)

Accordingly, the reliability of each unit j can be characterized by the 
probabilities of these errors: q01

(j) for the first one, q10
(j) for the second one, q1x

(j)

and q0x
(j) for the third one, where qim

(j) is Pr{dj(I) = m | I = i} (note that stuck-at-x
probabilities can be different for inputs i = 0 and i = 1).

To make a decision about the proposition acceptance, the system incorporates 
all of the unit decisions into a unanimous system output D in the following manner: 
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where j is the nonnegative weight of an individual unit j which expresses its 

relative importance in the WVS and  is a threshold factor which determines what 

fraction of the overall weight of voted units should correspond to those that 

approve the proposition to make it accepted by the entire system. 

The entire system output distribution is characterized by WVS output 

probabilities Qim = Pr{D(I) = m | I = i}, where m {0, 1, x}. The system fails if  

D(I) I. The entire WVS reliability can be defined as R = Pr{D(I) = I}. One can 

see that the system reliability is a function of the reliabilities of its units. The 

reliability characteristics of the WVS units, as well as the probability distribution 

of the propositions, P0 = Pr{I = 0} and P1 = Pr{I = 1}, can be elicited from 

historical statistics. In technical systems, probabilities of different kinds of error 

can be obtained for each unit with a high precision by intensive testing. The entire 

WVS reliability also depends on the unit weights and the threshold. The proper 

choice of these parameters can improve the WVS reliability without improving the 

reliability of the voting units. 

6.3.1 Evaluating the Weighted Voting System Reliability 

Let us define the total weight of WVS units supporting proposition I as I
1:

    
xId

jjI
j

Id
)(

1 )(  (6.47) 

 and the total weight of units voting for the proposition rejection as I
0:
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Id  (6.48) 

The decision rule (6.46) can now be rewritten as follows: 
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Following this expression, the condition  D(I) = 0 can be rewritten as 

I
1 <  ( I

1+ I
0) (6.50) 

or

   (1 ) I
1

I
0 < 0 (6.51) 

This gives one a simple way of tallying the units' votes: each unit j adds a value 

of (1 ) j to the total WVS score if it votes for the proposition’s acceptance, a 

value of j if it votes for proposition’s rejection, and nothing if it abstains. The 

proposition is rejected if the total score is negative. 

6.3.1.1 Universal Generating Function Technique for Weighted Voting System 

Reliability Evaluation 

Using the UGF approach one can describe the distributions of the random output 

Gij of an individual three-state voting unit j for input i as 

2

0

)(
k

g
jkij

jkzpzu  (6.52) 

where for i = 1 
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and for i = 0 
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In each voting unit, state 0 corresponds to an incorrect decision, state 1 

corresponds to a correct decision, and state 2 corresponds to an abstention.

The total random WVS score Gi for input I = i is equal to the sum of the 

random outputs of n individual voting units:

ij

n

j
i GG

1

 (6.55) 
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Therefore, the u-function of the system score Ui(z) can be obtained using the 

following composition operator: 

Ui(z) = (ui1(z), …, uin(z)) (6.56) 

Since the function (6.55) possesses commutative and associative properties, the 

u-function of the entire WVS can be obtained recursively by the consecutive 

determination of u-functions of the arbitrary subsets of the elements. For example 

it can be obtained by the recursive procedure 

),()(
~

11 zuzU ii )()(
~

)(
~

1 zuzUzU im-imim for 1<m n

 )(
~

)( zUzU ini  (6.57) 

In this procedure, )(
~

zUim represents the score distribution of the WVS subsystem 

consisting of the first m voting units. 

Note that, while the total number of different possible WVS states is 3n, many 

of these states can result in the same values of score Gi. Therefore, the total number 

of terms Ui(z) can be less than 3n because of the like terms collection. 

Using the criterion of proposition rejection as an acceptability function

F(Gi) = 1(Gi <0) we obtain the proposition rejection probability Qi0:

 Qi0 = Pr{D(I) = 0 | I = i} = E(F(Gi)) (6.58) 

which is equal to the sum of the coefficients of the terms with the negative 

exponents in Ui(z).

Having Q10 one can easily obtain Q11 as

Q11=1 Q10 Q1x,    where 
n

j

j
xx qQ

1

)(
11  (6.59) 

Events I = 0 and I = 1 are mutually exclusive. Therefore, the entire WVS 

reliability Pr{D(I) = I} can be defined as

 Pr{D(I) = 0 | I = 0} Pr{I = 0}+Pr{D(I) = 1 | I = 1} Pr{I = 1} (6.60) 

and calculated as follows: 

R = P0Q00+P1Q11 = P0Q00+P1(1 Q10 Q1x) (6.61) 

Example 6.11 

Consider a WVS with

 n = 2, P0 = P1 = 0.5,  = 0.6 
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 q01
(1) = 0.02, q10

(1) = 0.02, q0x
(1) = q1x

(1) = 0.01, 1 = 5 

 q01
(2) = 0.02, q10

(2) = 0.05, q0x
(1) = q1x

(2) = 0.02, 2 = 3 

Then

 (1 ) 1 = 2, (1 ) 2 = 1.2, 1 = 3, 2 = 1.8

u01(z) = 10 2(2z2 +97z 3+z0), u11(z) = 10 2(2z 3+97z2+z0)    

 u02(z) = 10 2(2z1.2+96z 1.8+2z0), u12(z) =  10 2(5z 1.8+93z1.2+2z0)

u-functions for the entire WVS are 

),()(
~

0101 zuzU )(
~

02 zU  =  u01(z)  u02(z)

 = 10 4(4z2.2+4z2+192z0.2+2z1.2+2z0+96z 1.8+194z 0.2+194z 1.8+9312z 4.8)

),()(
~

1111 zuzU )(
~

12 zU  =  u11(z)  u12(z)

 =10 4(10z 4.8+4z 3+186z 1.8+5z 1.8+2z0+93z1.2+485z0.2+194z2+9021z3.2)

The terms with negative exponents are marked in bold. To obtain Q10 and Q00

one should calculate the sums of the coefficients of the marked terms: 

 Q00 = 10 4(96+194+194+9312) = 0.9796 

 Q10 = 10 4(10+4+186+5) = 0.0205 

In accordance with (6.59) Q1x = q1x
(1)q1x

(2) = 0.01 0.02 = 0.0002. In accordance 

with (6.61) the WVS reliability is 

 R=P0Q00+P1(1 Q10 Q1x)=0.5 0.9796+0.5 (1 0.0205 0.0002)=0.97945

It should be noted that, owing to the additive property of the structure function, 

when adding a unit to an already evaluated system the new system does not need to 

be evaluated from scratch. Instead, the operator + should be applied to the u-

functions of the evaluated system and to the new unit. Moreover, the associative 

property of the structure function allows the reliability of the WVS to be easily 

evaluated when it is combined from a number of subsystems for which 

corresponding u-functions are already obtained.
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6.3.1.2 Simplification Technique 

Consider the u-function )(
~

zUim  that represents the distribution of the score imG
~

of

the WVS subsystem m consisting of first m voting units. 

Let Vi be the sum of the weights of the units from i to n:

n

ij
jiV   (6.62) 

One can see that Vm+1 represents the sum of the weights of WVS units not 

belonging to m.

The maximal possible value of the WVS score after the remainder of the units 

add their votes is imG
~

+ (1 )Vm+1 (if all of the units from m+1 to n vote for the 

proposition acceptance) and the minimal possible value of the WVS score is 

imG
~

Vm+1 (if all of the units from m+1 to n vote for the proposition rejection). 

Therefore, if

imG
~

+(1 )Vm+1 < 0 (6.63) 

the proposition will be rejected independently of the states of the units m+1, …, n.

(We will refer to the u-function terms corresponding to the realizations of the score 

imG
~

 meeting condition (6.63) as 0-terms). Indeed, in each 0-term the realization of 

the score imG
~

 is low enough to prevent the total system score from being positive. 

Therefore, there is no need to continue the calculations by combining the states of 

the remainder of the units with the states corresponding to 0-terms. The sum of the 

probabilities of all of the possible combinations of the units m+1, …, n is equal to 

unity. Therefore, the total overall probability of the unit state combinations in 

which the score imG
~

guarantees the proposition rejection is equal to the sum of the 

coefficients of the 0-terms in the u-function ).(
~

zUim

If

imG
~

Vm+1  0 (6.64) 

then there is no chance that WVS will reject the proposition even if the units m+1,

…, n vote for its rejection. (We will refer to the u-function terms corresponding to 

the realizations of the score imG
~

 meeting condition (6.64) as 1-terms.) Combining 

any 1-term of )(
~

zUim  with any terms corresponding to the not-yet-considered 

units cannot produce a term with a negative score. Therefore, this term cannot 

participate in determining the Qi0. This means that all of the 1-terms can be 

removed from the u-function without affecting the resulting value of Qi0.

The technique described allows one to evaluate the entire WVS reliability using 

the following algorithm. 
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1. For each voting element j, define the two u-functions u0j(z) and u1j(z) in the 

form (6.52) using Equations (6.53) and (6.54). 

2. Assign Q10 = Q00 = 0, )()(
~

0101 zuzU , ).()(
~

1111 zuzU

3. For i = 0, 1 and m = 2, …,n (voting units can be ordered arbitrarily): 

- remove 1-terms and 0-terms from );(
~

1im zU -

- add the coefficients of the removed 0-terms to Qi0;

- obtain ).()(
~

)(
~

im1imim zuzUzU -

3. Add the coefficients of the negative terms in )(
~

)( zUzU ini to Qi0.

4. Calculate the fault probability of Q11 using Equation (6.59). 

5. Calculate the WVS reliability R using Equation (6.61). 

Example 6.12 

Consider the WVS from Example 6.11 and apply to it the suggested simplification 

technique. For the given WVS: 

 V2 = 2 =  3, V2 = 1.8,  (1 )V2 =  1.2 

First, assign 

 Q10 = Q00 = 0

 )()(
~

0101 zuzU =10 2(2z2 +97z 3+z0)

 )()(
~

1111 zuzU =10 2(2z 3+97z2+z0)

The 1-terms in the u-functions are underlined; the 0-terms are marked in bold. 

The coefficients of the 0-terms are added to Q00 and Q10:

 Q00 = 0.97, Q10 = 0.02 

After removal of the 0-terms and the 1-terms one obtains

)(
~

01 zU = 0.01z0

 )(
~

11 zU = 0.01z0

The u-functions for two voting units are 

 )(
~

02 zU = )(
~

01 zU )(02 zu  = 10 4z0(2z1.2+96z 1.8+2z0)

 = 10 4(2z1.2+96z 1.8+2z0)
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)(
~

12 zU = )(
~

11 zU )(12 zu  = 10 4z0(5z 1.8+93z1.2+2z0)

 = 10 4(5z 1.8+93z1.2+2z0)

After adding the coefficients of the negative terms (marked in bold) from 

)(
~

2 zUI to QI0 one obtains the same values of Q00 and Q10 as in Example 6.11: 

Q00 = 0.97+0.0096 = 0.9796, Q10 = 0.02+0.0005 = 0.0205 

6.3.2 Optimization of Weighted Voting System Reliability

While the reliabilities of the voting units usually cannot be changed when the WVS 

is built, the weights and the threshold can be chosen in such a way that maximizes 

the entire system reliability. The WVS optimization problem is, therefore, 

formulated as follows. 

Find the units' weights and the threshold value that maximize the reliability of 

the WVS consisting of units with the given fault probabilities: 

R( 1,…, n, ) max (6.65) 

For an existing WVS with given weights the "tuning" problem can arise in 

which just the threshold value maximizing the system reliability should be found 

subject to changing conditions. For example, having information about the 

probability distribution between propositions that should be accepted or rejected 

(P1 and P0), one can modify the threshold value to achieve the greatest reliability. 

Note that the reliability characteristics of WVS units, as well as the 

propositions’ probability distributions, can be elicited from the historical statistics 

without respect to changes in WVS weights and threshold variation. 

6.3.2.1 Implementing the Genetic Algorithm 

The natural representation of a WVS weight distribution is by an n-length integer 

string in which the value in the jth position corresponds to the weight of the jth unit 

of the WVS. One can see that multiplying all the unit weights by the same value 

does not affect the WVS output defined by rule (6.46). Therefore, the unit weights 

can be normalized in such a way that the total weight V1 is always equal to some 

constant c. The normalized weights from arbitrary integer string a = (a1,…,an) are 

obtained as follows: 

n

m
mjj aca

1

/  (6.66) 

The range in which the integer numbers are generated affects the precision of 

weights determination. 
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For each given weight distribution (determined by the string a), the solution 

decoding procedure obtains the optimal value of the WVS threshold (a, P0, P1) by 

solving the single-variable optimization problem

R(a, P0, P1, )  max (6.67) 

and uses the optimal value of the system reliability obtained as the solution fitness. 

Example 6.13 

Consider a target identification WVS consisting of five voting units making their 

decisions based on different properties of the target [75]. The voting unit weights 

for the system can be represented in the GA by an arbitrary integer vector of length 

5. In this example we used c = 10 and generated the elements of vector a in the 

range (0, 100). For such parameters, the vector (25 10 55 62 38) produces, 

according to (6.66), weights 1 = 1.316, 2 = 0.526, 3 = 2.895, 4 = 3.263, and 

5 = 2.0. 

The reliability indices of the voting units qi0
(j) qi1

(j) and qix
(j) are presented in 

Table 6.16.

Table 6.16. Parameters of WVS units

No. of unit 1 2 3 4 5

q01
(j) 0.02 0.06 0.07 0.08 0.18

q0x
(j) 0.08 0.00 0.05 0.16 0.12 

q10
(j) 0.15 0.18 0.07 0.12 0.16 

q1x
(j) 0.20 0.00 0.05 0.16 0.12 

j 2.4862 1.8784 2.4033 1.6851 1.5470

The optimal weights of units obtained by the GA-based optimization procedure for  

P0 = P1 = 0.5 are also presented in this table. 

The optimal value of threshold is  = 0.412, for which the system reliability is

R = 0.982.

To estimate the effect of the input probability distribution on WVS reliability, 

the optimal threshold values and corresponding system reliabilities were obtained 

for the WVS with the obtained weights, and for WVS with equal weights as a 

functions of P1 (P0 = 1 P1). These functions are presented in Figure 6.21, where 

(P1) and R(P1) correspond to a WVS with optimal weights obtained for P1 = 0.5, 

and *(P1) and R*(P1) correspond to a WVS with equal weights. Note that optimal 

weights obtained for P1 = 0.5 are not optimal for P1  0.5, but they provide greater 

WVS reliability than equal weights on the whole range 0 P1 1.
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Figure 6.21. Optimal threshold value and WVS reliability as functions of P1

6.3.3 Weighted Voting System Consisting of Voting Units with 
Limited Availability 

In the WVS model considered in Section 6.3.1, all the voting units were assumed 

to be fully available (unit unavailability and stuck-at-x failure were not 

distinguished). In practice, one can deal with separate data concerning unit 

availability and probabilities of unit failure (wrong decision or abstention) when 

the unit is in its operating condition.

Two types of WVS can be defined with respect to their treatment of unavailable 

voting units. In the system of type 1, the unit stuck-at-x failure state and unit 

inoperable state cannot be distinguished by the system or the system cannot react 

to information about unit unavailability by changing its weights and threshold. The 

absence of a unit's output is interpreted by the WVS of this type as abstention from 

voting. In the system of type 2, the unavailable state of a unit and its abstention 

from voting can be distinguished and the WVS parameters can be adjusted to 

optimize its performance for each combination of available voting units. 

In the system of type 1, the parameters (weights and threshold) can be chosen 

only once. The optimal WVS parameters obtained for the system with fully 

available units can be far away from optimality when the voting units have limited 

availability. In this section we demonstrate the incorporation of data about units 

availability into the procedure of parameters optimization for WVS of type 1. For 

the WVS of type 2 the parameter optimization procedure for fully available units 

presented in Section 6.3.2 should be applied each time the change of set of 

available units is detected. 

Consider the voting unit j that can be in one of two states: sj = 1 if the unit is 

available and sj = 0 if it is unavailable. Let the operational availability of unit j be 

Pr{sj = 1} = j. The unit can produce output dj(I) x only if it is available 

.
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Therefore, for the given I = i andfor each decision m {0, 1}of the individualunit 

j

 Pr{dj(I) = m | I = i} = Pr{ dj(I) = m | I = i, sj = 1} Pr{sj = 1} 

 = q
j

imj
)(

 (6.68) 

When the unit is not available (sj = 0), its output is interpreted by the WVS of 

type 1 as dj(I) = x. The same output can also be produced by the unit when it is 

available but indecisive. Therefore:

 Pr{dj(I) = x | I = i }= Pr{ sj = 0} 

 +Pr{dj(I) = x | I = i, sj = 1} Pr{sj = 1}=
)(

1
j

ixjj q  (6.69) 

Since the output distribution of the available unit is represented by the             

u-function (6.52)-(6.54), and since each unit j adds the value of zero to the total 

WVS score when dj(I) = x, one can obtain the u-function )(ˆ zuij representing the 

output distribution of the unit, which has the availability j, using the following 

operator :

0
j )1()())(()(ˆ zzuzuzu jijijij  (6.70) 

The u-function )(ˆ zuij  has the same form as the u-function uij(z) (6.52)-(6.54), 

except that its coefficients are

11

0j0

ˆ

ˆ

jjj

jj

pp

pp

jjjj pp 1ˆ 22  (6.71) 

Using the algorithm presented in Section 6.3.1.2 over u-functions ),(ˆ zuij one can 

obtain the reliability of WVS consisting of units with limited availability. 

Example 6.14 

Consider the WVS of type 1 consisting of four voting units with reliability indices 

presented in Table 6.17. The optimal weights of units j obtained for the WVS 

with fully available units for P0 = P1 = 0.5 are also presented in this table. The 

optimal value of the threshold is  = 0.58, for which the system reliability is R = 

0.891. Taking into account the limited availability of voting units (availability 

indices j for the units are also presented in Table 6.17), one obtains much lower 

reliability R  = 0.815 for a WVS with the same weights and threshold. The 
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reliability of a WVS consisting of units with limited availability can be improved if 

the unit availability values are included in the reliability estimation procedure 

while the optimization problem is solved. The optimal weights *j obtained for the 

system are presented in Table 6.17. The optimal value of the threshold is * = 0.4, 

for which the system reliability is R*  = 0.846. Including information about voting 

unit availability into the WVS parameters optimization problem enables the system 

reliability to be improved. 

Table 6.17. Parameters of WVS units with limited availability

Unit no. j q01
(j) q0x

(j) q10
(j) q1x

(j)
j *j IRbj

1 0.76 0.00 0.35 0.35 0.00 2.759 3.459 0.071 

2 0.80 0.34 0.10 0.23 0.10 0.172 1.541 0.044 

3 0.82 0.11 0.07 0.36 0.06 3.060 2.444 0.065 

4 0.78 0.30 0.12 0.07 0.00 4.009 2.556 0.056 

In order to find weaknesses in the WVS design and to suggest modifications for 

system upgrade or to determine the optimal voting unit maintenance policy one has 

to perform the unit availability importance analysis. According to the definition 

(4.71), the Birnbaum importance index for the WVS element j can be obtained as 

IRbj = Rj1 Rj0  (6.72) 

where Rj1 is theWVS reliability when the voting unit j is fully available and the 

remainder of the units have their availability j; Rj0 is the WVS reliability when the 

voting unit j is unavailable.

An improvement in availability of the unit with the highest importance IRbj

causes the greatest increase in WVS reliability.

To determine the voting unit importance in the WVS of type 1, one has to apply 

the algorithm presented in Section 6.3.1.2 twice: the first time substituting j = 1 in 

(6.71) to obtain Rj1, and the second time substituting j = 0 in (6.71) to obtain Rj0

and then to use Equation (6.72). 

Example 6.15 

The availability importance indices IRbj of voting units of the WVS from Example 

6.14 were obtained for optimal weights *j and threshold * [178]. These indices 

are presented in Table 6.17. The unit availability importance does not depend on 

the availability of this unit, but it depends strongly on the availability of the rest of 

units. This dependence is linear. Figure 6.22 presents dependencies of unit 

importance indices on the availability of voting unit 1. It should be noted that the 

relative importance of units can vary with variation of unit availability. For 

example, unit 4 is the most important one in the WVS for 1<0.6, but it becomes 

the least important one when 1>0.92.
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Figure 6.22. Voting unit availability importance as a function of availability 1

In an adjustable WVS (WVS of type 2), the optimal weights and threshold are 

found for each combination of voting units available at the moment. Each hth

combination is represented as the subset h of the set  of all of the WVS units. 

The total number of possible combinations (subsets of ) in the WVS consisting of 

n units is 2n. Let j( h) and  ( h) be the optimal parameters of the WVS consisting 

of fully available voting units belonging to h, and R ( h) is the reliability of this 

WVS with the optimal parameters. The entire reliability of the WVS of type 2 can 

be obtained as follows:    

])1()([
2

1

n

h he
e

he
ehRR   (6.73) 

In order to distinguish the availability of voting unit j, this expression can be 

rewritten as follows:

 ])1(}){([

12

1

n

h he
e

he
ehj jRR

 ])1()([)1(

12

1

n

h hi
e

he
ehj R  (6.74) 

where }.{\ jhh  Using (6.74), one can determine the availability importance 

of the voting unit j as 
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])1(}){([/
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1
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ehjjR jRRbI
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1

n
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e
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ehR  (6.75) 

which is the same as 

 ])1()([
2

1

n

h he
e

he
ehhjR RbI  (6.76) 

where

hj

hj

h
j

j

,/1

),1/(1

 (6.77) 

For a WVS in which voting units have high availability, the terms multiplied 

by )1( e can be neglected and, therefore, Equation (6.76) can be approximated as 

follows:

n

e
e

j
jR

jRR
bI

1

}){\()(~
 (6.78) 

In some WVSs of type 2, only the threshold value can be adjusted according to 

different combinations of available units, whereas unit weights remain the same. 

Let 1, …, n be the constant unit weights and ( h) be the optimal threshold 

obtained for the given weights for the WVS consisting of fully available voting 

units belonging to h. For the fixed weights and the optimal threshold ( h) one can 

obtain the reliability R ( h) of subsystem h. Substituting in Equations (6.76) and 

(6.78) R ( h) with R ( h), one obtains the availability importance index IRBj  for 

unit j . 

Example 6.16 

Consider the WVS from Example 6.14. The maximal reliability values obtained by 

the optimization procedure for each possible combination of WVS units are 

presented in Table 6.18. Note that R ( h) (obtained for fixed weights j from 

Table 6.17) is always not greater than R ( h). Indeed, optimizing both weights and 

threshold results in better reliability than that obtained by optimizing just the 

threshold.
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Table 6.18. WVS reliabilities for possible combinations of

available voting units 

h R ( h) R ( h) h R ( h) R ( h)

0 0 {2,3} 0.740 0.740 

{1} 0.650 0.650 {2,4} 0.795 0.789 

{2} 0.615 0.615 {3,4} 0.808 0.804 

{3} 0.700 0.700 {1,2,3} 0.867 0.866 

{4} 0.755 0.755 {1,2,4} 0.868 0.829 

{1,2} 0.772 0.755 {1,3,4} 0.889 0.889 

{1,3} 0.872 0.859 {2,3,4} 0.843 0.837 

{1,4} 0.838 0.817 {1,2,3,4} 0.891 0.891 

The voting unit availability importance indices IRbj and IRbj  are presented in 

Table 6.19. Observe that the relative importance of units differ for different types 

of WVS adjustment. For example, availability of unit 1 is most important for a 

WVS with adjustable weights and threshold, whereas in a WVS with adjustable 

threshold the most important is availability of unit 3. 

Table 6.19. Unit availability importance indices

for WVS with adjustable parameters 

Unit no. IRbj IRbj

1 0.080 0.078 

2 0.022 0.020 

3 0.059 0.082 

4 0.063 0.061 

One can use Equation (6.78) to estimate the unit’s availability importance only 

when the unit’s availability is very high. For example, consider the availability 

importance indices obtained for the given WVS when the availability of all of its 

units is 0.99. Table 6.20 contains unit availability importance indices obtained 

using the exact expression (6.76) and the approximate expression (6.78). The 

indices take similar values. Table 6.21 contains the same indices obtained for a 

WVS with the availability of all of its units equal to 0.95. In this case, the 

difference between the values obtained by the exact and approximate expressions 

is much greater. Observe that, in both cases, substituting the exact availability 

importance values with their approximations does not violate the order of units 

when they are arranged according to their relative importance. Therefore, Equation 

(6.78) can be used to identify the most important element in the WVS. 

Table 6.20. Exact and approximate values of unit

availability importance indices ( j = 0.99) 

Unit

no. jRbI jRbI
~

jRbI jRbI
~

1 0.0492 0.0464 0.0552 0.0527 

2 0.0029 0.0023 0.0028 0.0023 

3 0.0249 0.0230 0.0632 0.0609 

4 0.0253 0.0232 0.0264 0.0244 
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Table 6.21. Exact and approximate values of unit

availability importance indices ( j = 0.95) 

Unit

no. jRbI jRbI
~

jRbI jRbI
~

1 0.0547 0.0410 0.0588 0.0466 

2 0.0053 0.0021 0.0049 0.0021 

3 0.0301 0.0203 0.0652 0.0538 

4 0.0314 0.0205 0.0317 0.0215 

6.3.4 Optimization of Weighted Voting Systems in the Presence 
of Common Cause Failures

When the voting units of a WVS are subject to CCFs caused by external impacts, 

the system’s survivability can be enhanced by the proper separation of the units. In 

this section we consider the optimal unit separation problem that is analogous to 

the one considered in Section 5.2.1 for series-parallel systems. We assume that the 

units not separated from one another belong to the same CCG and can be destroyed 

by the same impact (total CCF).

Since the voting units have different decision probability distributions, the way 

in which they are partitioned into CCGs strongly affects the system’s survivability 

(defined as the probability of making correct decisions). The way the units are 

separated and the values of the adjustable parameters of the WVS (weights and 

threshold) are interdependent factors affecting WVS survivability. Therefore, the 

WVS survivability maximization problem is to find the optimal separation of units, 

their weights, and the system threshold value. 

6.3.4.1 Problem formulation 

A WVS consists of n voting units with the given decision probability distributions 

qi0
(j), qi1

(j) qix
(j). The units can be separated into B independent groups (see, for 

example, Figure 6.23), where B can vary from 1 (all of the units are gathered 

within a single group) to n (all of the units are separated from one another). It is 

assumed that all of the units belonging to the same group can be destroyed by the 

total CCF with probability v, which characterizes the WVS vulnerability. The 

destroyed units cannot produce positive or negative decisions and, therefore, are 

considered as abstaining ones.
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Figure 6.23. Example of WVS with separated voting units 

The units' separation problem can be considered as a problem of partitioning a 

set  of n items into a collection of B mutually disjoint subsets b (1 b B). Each 

set can contain from 0 to n elements. The partition of set  can be represented by 

the vector x = {xj: 1 j n}, where xj is the number of the subset to which element j

belongs. The weights of voting units in the WVS can be represented by the vector 

 ={ j: 1 j n}.

The WVS survivability optimization problem is formulated as follows. Find the 

vectors x (when no more than B different CCGs are allowed) and  and the 

threshold value  that maximizes the system’s survivability S = Pr{D(I) = I}.

6.3.4.2 Evaluating Survivability of Weighted Voting Systems with Separated 

Common Cause Groups

Consider a separated group of voting units b. Let the score distribution for this 

group be represented by the u-function ).(zU b
i  Note that, since all of the units 

belonging to b can be destroyed with the probability v, the probability of each 

state of the group (corresponding to a realization of its random score) should be 

multiplied by the probability of the group survival: 1 v. If the group is destroyed, 

then the entire WVS considers all of the units belonging to b as abstaining. This 

corresponds to the total score of group b = 0.

The score of zero can be obtained when all of the units of group b are 

indecisive or unavailable (because of internal causes) or when they are destroyed 

by the total CCF. Therefore, the overall probability that the score of separated 

group b = 0 for input I = i is 

bj

j
ixj

bj
qvviIxId

)(
)1(}|)(Pr{   (6.79) 

To incorporate the group vulnerability into its score distribution one has to 

apply the operator  (4.58) over the u-function )(zU b
i

1 2 3 4 5 6

I

D(I)

CCG1                   CCG2                                CCG 3

1               2              3              4               5               6

d1(I) d2(I)  d3(I) d4(I) d5(I) d6(I)
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0)()1())(( vzzUvzU b
i

b
i   (6.80) 

For the given distribution of voting units among CCGs one has to obtain the u-

functions )(zU b
i for each group b:

))(),...,(()( 1 zuzuzU ini
b

i  (6.81) 

where

ix

ixzu

zu

j

jij

ij
if,1

if),(

)(  (6.82) 

The u-functions Ui(z) for the entire WVS can then be obtained as 

)))(()),...,(()),((()( 21 zUzUzUzU B
iiii  (6.83)

After obtaining U0(z) and U1(z) one has to determine the system’s survivability 

following steps 3-5 of the algorithm presented in Section 6.3.1.2. 

6.3.4.3 Implementing the Genetic Algorithm 

Let the WVS have n units that can be distributed among B groups. The system 

parameters are represented by the n-length integer string a = (a1, …, an) with 

values of elements ranging in the interval (0,100B). In order to allow the value of aj

to represent both the weight of the jth unit and the number of the group to which it 

belongs, the following decoding procedure is used: 

xj = aj/100 +1, j' = mod100(aj) (6.84) 

The unit weights are further normalized in such a way that their total weight is 

always equal to some constant c:

N

k
kjj c

1

/  (6.85) 

In our GA we used c =10. 

Consider the example in which the parameters of a WVS consisting of n = 6 

units and up to B = 5 groups are determined by the following string: 

 a = (264, 57, 74, 408, 221, 23) 
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Using (6.84) we obtain: x1 = x5 = 3, x2 = x3 = x6 = 1, x4 = 5, vector of the unit 

weights before normalization ' = (64, 57, 74, 8, 21, 23) and .247'6
1j j

Now, using (6.85) with constant c = 10 we obtain the vector of the normalized 

unit weights: 

  = (2.59, 2.31, 3.00, 0.32, 0.85, 0.93) 

The WVS threshold is not determined by the string of system parameters. For 

each set of parameters determined by a solution string a, WVS survivability S

remains a function of the single argument . When WVS survivability is evaluated 

for a given set of parameters by the solution decoding procedure, this procedure 

determines the value of  maximizing S. The maximal S obtained is considered to 

be a solution fitness, which is used to compare different solutions.

Example 6.17 

Consider a WVS from [179] consisting of five voting units with the failure 

probabilities presented in Table 6.22. The solutions obtained for P0 = P1= 0.5 and 

for vulnerability v = 0.2 are presented in Table 6.23. The solutions were obtained 

for each possible number of separated groups 1 B 5. Table 6.23 contains voting 

unit weights and the WVS threshold for each solution obtained. It also contains for 

each unit the number of the group the unit belongs to.  The values of the system’s 

survivability are presented for each solution. 

Table 6.22. Parameters of voting units 

No. of unit q01
(j) q0x

(j) q10
(j) q1x

(j)

1 0.25 0.27 0.06 0.21 

2 0.06 0.40 0.15 0.23 

3 0.24 0.08 0.19 0.30 

4 0.26 0.31 0.24 0.20 

5 0.35 0.13 0.04 0.22 

Table 6.23. Parameters of obtained solutions 

B = 1 B = 2 B = 3 B = 4 B = 5 No. of 

voting

unit
No. of 

group

Unit

weight

No. of 

group

Unit

weight

No. of 

group

Unit

weight

No. of 

group

Unit

weight

No. of 

group

Unit

weight

1 1 2.381 1 1.969 1 2.263 1 2.413 1 2.302 

2 1 2.275 2 2.563 2 2.514 2 2.297 2 2.474 

3 1 1.905 2 1.875 2 1.844 3 1.919 3 1.856 

4 1 1.085 2 1.531 1 1.034 3 1.047 4 0.997 

5 1 2.354 1 2.063 3 2.346 4 2.326 5 2.371 

0.560 0.553 0.564 0.563 0.563 

S 0.710 0.824 0.843 0.850 0.852 

The WVS survivability as a function of group vulnerability v is presented in 

Figure 6.24 for each of the solutions obtained. It can be seen that, for B = 1, S is a 

linear function of v. For B>1 the dependencies are polynomial. It can also be seen 
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from Figure 6.24 that the separation into two groups has the greatest effect on the 

system’s survivability, whereas further separation leads to a smaller improvement 

of S. The growth of the group’s vulnerability makes the separation more beneficial 

from the survivability improvement standpoint.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 0.05 0.1 0.15 0.2 0.25 0.3v

S

B=5 B=3 B=4

B=2 B=1

Figure 6.24. WVS survivability as a function of group vulnerability 

6.3.5 Asymmetric Weighted Voting Systems 

 The reliability of a WVS consisting of a given set of voting units can be further 

improved by taking advantage of the knowledge about the statistical asymmetry of 

the units (asymmetric probabilities of making correct decisions with respect to the 

input I). In such a WVS, each voting unit j has two weights: 0
j, which is assigned 

to the unit when it votes for the proposition rejection, and 1
j, which is assigned to 

the unit when it votes for the proposition acceptance. As in the case of the regular 

(symmetric) voting systems, the proposition is rejected by the WVS if the total 

weight of the units voting for its acceptance is less than a prespecified fraction  of 

the total weight of the non-abstaining units. 

6.3.5.1 Evaluating the Reliability of Asymmetric Weighted Voting Systems 

The decision rule in the asymmetric WVS takes the form 

xIjd
jjxID

)(

10 0)(if,)(  (6.86) 

otherwise:
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xIjd
jjjj

xIjd
jj

xIjd
jjjj

xIjd
jj

IdIdId

IdIdId

ID

)(

01

)(

1

)(

01

)(

1

))](1()([)(if,0

))](1()([)(if,1

)(  (6.87) 

From this rule we can obtain the condition that D(I) = 0: 

xIjd
jj

xIjd
jj IdId

)(

0

)(

1 0))(1()()1(  (6.88) 

This provides a way for tallying the units' votes: each unit j adds the value of 

(1 )  1
j to the total WVS score if it votes for proposition acceptance, a value of  

 0
j if it votes for proposition rejection, and nothing if it abstains. The 

proposition is rejected if the total score is negative. 

One can define the terms of the u-functions (6.52) of the individual voting units 

as follows: 

g,qp

g,qqqp

g,qp

j
(j)
xj

jj
(j)
x

(j)(j)
j

jj
(j)

j

0

)1()1(

212

1
1110111

0
0100

 (6.89) 

for i = 1 and 

g,qp

g,qqqp

g,qp

j
(j)

xj

jj
(j)

x
(j)(j)

j

jj
(j)

j

0

)1(

)1(

202

0
1001001

1
0010

 (6.90) 

for i = 0 and obtain the system reliability applying steps 2-5 of the algorithm 

presented in Section 6.3.1.2. 

It can be easily seen that the conditions (6.63) and (6.64) in the simplification 

technique should be replaced in the case of the asymmetric WVS by the conditions 

imG
~

+(1 )V1
m+1 < 0 (6.91) 

and

imG
~

V0
m+1  0 (6.92) 

respectively, where 
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n

mj

i
mm

iV , for i = 0, 1  (6.93) 

Example 6.18 

Given

n  =  2, P0 = P1 = 0.5,  = 0.6 

and that the parameters of the first voting unit are 

 q01
(1) = 0.02, q10

(1) = 0.02, q0x
(1) = q1x

(1) = 0.01, 0
1 = 2,  1

1 = 4 

and the parameters of the second voting unit are 

 q01
(2) = 0.02, q10

(2) = 0.05, q0x
(2) = q1x

(2) = 0.02,  0
2 = 3,  1

2 = 1 

then:

 (1 )  1
1 = 1.6,  0

1 = 1.2, (1 )  1
2 = 0.4,  0

2 = 1.8

For the given weights of the second unit: 

V 0
2 =  0

2 = 3, V 1
2 =  1

2 = 1 

V 0
2 = 1.8, (1 )V 1

2 = 0.4 

The u-functions of the units are 

u01(z) = 10 2(2z1.6 +97z 1.2+z0),   u11(z) = 10 2(2z 1.2 +97z1.6+z0)

 u02(z) = 10 2(2z0.4+96z 1.8+2z0), u12(z) =  10 2(5z 1.8+93z0.4+2z0)

There are no 1-terms in u01(z) and u11(z). The 0-terms are marked in bold.

First, assign 

 Q00 = Q10 = 0 

)()(
~

0101 zuzU , )()(
~

1111 zuzU

After the 0-terms removal we obtain

 Q00 = 0.97, Q10 = 0.02 

 )(
~

01 zU = 0.02z1.6+0.01z0, )(
~

11 zU = 0.97z1.6+0.01z0
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The u-functions for two voting units are 

)(
~

02 zU = )(
~

01 zU )(02 zu  = 10 4(2z1.6+z0)(2z0.4+96z 1.8+2z0)

 = 10 4(4z2+192z 0.2+4z1.6+2z0.4+96z 1.8+2z0),

)(
~

12 zU = )(
~

11 zU )(12 zu  = 10 4(97z1.6+1z0)(5z 1.8+93z0.4+2z0)

 = 10-4(485z 0.2+9021z2+194z1.6+5z 1.8+93z0.4+2z0)

The terms with the negative exponents are marked in bold. Finally we obtain: 

 Q00 =  0.97+0.0192+0.0096 = 0.9988

 Q10 = 0.02+0.0485+0.0005 = 0.0690 

Q1x = q1x
(1)q1x

(2) = 0.01 0.02 = 0.0002

R = P0Q00+P1(1 Q10 Q1x)

 = 0.5 0.9988+0.5 (1 0.069 0.0002) = 0.9648 

6.3.5.2 Optimization of Asymmetric Weighted Voting Systems 

The parameter optimization problem for asymmetric WVSs can be formulated as 

follows:

 R(  0
1,

 1
1, …,  0

n,
 1

n, )  max (6.94) 

The natural representation of a WVS weight distribution is by a 2n-length

integer string a in which the values in a2j 1 and a2j correspond to the weights  0
j

and  1
j respectively. The unit weights can be normalized in such a way that the 

total weight is always equal to some constant c. The normalized weights from 

arbitrary integer string a = (a1, …, a2n) are obtained as follows: 

n

i
ijj

n

i
ijj acaaca

2

1
2

1
2

1
12

0 /,/  (6.95)

where c is a constant.

The solution decoding procedure determines the value of  maximizing R for 

given unit weights. The obtained maximal R(a) is considered as a solution fitness, 

which is used to compare different solutions.
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Example 6.19 

Consider a WVS consisting of five voting units with reliability indices presented in 

Table 6.24 [180]. The optimal weights of units obtained for a symmetric WVS                 

( j =  0
j =  1

j) and for an asymmetric WVS when P0 = P1 = 0.5 are also presented 

in this table. The optimal values of the threshold, the decision probabilities, and the 

reliability of symmetric and asymmetric WVS obtained are presented in Table 

6.25.

Table 6.24. Parameters of voting units

No. of unit 1 2 3 4 5 

q01 0.224 0.243 0.208 0.000 0.204 

q0x 0.209 0.077 0.073 0.249 0.168 

q10 0.287 0.219 0.103 0.197 0.133 

q1x 0.025 0.106 0.197 0.014 0.067 

(symmetric WVS) 

1.155 1.763 1.915 3.040 2.128

 1 0.402 1.796 2.848 0.526 0.557 
 0 0.372 0.124 0.031 2.693 0.650 

Table 6.25. Parameters of optimal WVSs

 Symmetric WVS Asymmetric WVS 

0.48 0.30 

Q00 0.927 0.958 

Q01 0.073 0.042 

Q0x 4.9E-05 4.9E-05 

Q10 0.054 0.051 

Q11 0.946 0.949 

Q1x 4.9E-07 4.9E-07 

R 0.936 0.954 

Observe that the asymmetric WVS is more reliable than the symmetric one. 

The system reliability as a function of the threshold value is presented in Figure 

6.25A for the both WVSs with weights from Table 6.24 (note that for  = 0 

)1(
1

)(
11

n

j

j
xqPR  and for  = 1, ))1(

1

)(
111

1

)(
0

1

)(
010

n

j

j
n

j

j
x

n

j

j
qPqqPR

For an existing WVS with given weights, the "turning" problem can arise in 

which just the threshold value maximizing the system reliability should be found 

subject to changing conditions. For example, based on information about the 

probability distribution Pi between propositions that should be accepted or rejected, 

one can modify the threshold value to achieve the greatest reliability. To estimate 

the effect of the input probability distribution on WVS reliability, the optimal 

threshold values, and the corresponding system reliabilities were obtained for the 

two WVSs as functions of P1. These functions are presented in Figure 6.25B, 

where (P1) and R(P1) correspond to the asymmetric WVS and *(P1) and R*(P1)

correspond to the symmetric WVS (weights of the both WVSs are optimal for P1 = 

0.5).
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   A                B 

Figure 6.25. WVS reliability as a function of threshold and input reliability 

distribution

6.3.6 Weighted Voting System Decision-making Time

This section addresses the aspect of the WVS decision-making time. In many 

technical systems the time when the output (decision) of each voting unit is 

available is predetermined. For example, the decision time of a chemical analyzer 

is determined by the time of a chemical reaction. The decision time of a target 

detection radar system is determined by the time of the radio signal return and by 

the time of the signal processing by the electronic subsystem. In both these cases 

the variation of the decision times for a single voting unit is usually negligibly 

small.

On the contrary, the decision time of the entire WVS composed of voting units 

with different constant decision times can vary because in some cases the decisions 

of the slow voting units do not affect the decision of the entire system since this 

decision becomes evident after the faster units have voted. This happens when the 

total weight of the units voting for the proposition acceptance or rejection is 

enough to guarantee the system’s decision independently of the decisions of the 

units that have not yet voted. In such situations, the voting process can be 

terminated without waiting for the slow units' decisions and the WVS decision can 

be made in a shorter time. 

6.3.6.1 Determination of Weighted Voting System Decision Time Distribution 

Assume that each voting unit j needs a fixed time tj to produce its decision and all 

the WVS units are arranged in order of the decision time increase: tj<tj+1. In this 

case, u-functions )(
~

zUim represent the distribution of score imG
~

obtained by the 

voting of m fastest units. As was shown in Section 6.3.1.2, the 1-terms and 0-terms 

in the u-function )(
~

zUim correspond to combinations of decisions of the first m

0
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units that guarantee the entire WVS decision (proposition acceptance and rejection 

respectively) independent of the decisions of the rest of the units. The sum of the 

coefficients of these terms in )(
~

zUim is equal to im, the conditional probability that 

the WVS decision can be made at time tm given the system input is i.  By 

determining im as the sum of the coefficients of the removed 0-terms and 1-terms 

for each u-function )(
~

zUim in step 3 of the algorithm presented in Section 6.3.1.2, 

we obtain the probabilities that the WVS decision time is equal to tm.

Having the WVS decision time distribution represented by values of im and tm

for m = 1, …, n we obtain the expected WVS decision-making time as 

m

n

m
mm

n

m
m tPtP

1
11

1
00   (6.96) 

Example 6.20 

Consider a WVS with parameters 

 n = 3, P0 = P1 = 0.5,  = 0.6 

The parameters of the three voting units are: 

 q01
(1) = 0.02, q10

(1) = 0.02, q0x
(1) = q1x

(1) = 0.01,  0
1 = 3,  1

1 = 5, t1=1

 q01
(2) = 0.02, q10

(2) = 0.05, q0x
(2) = q1x

(2) = 0.02,  0
2 = 4,  1

2 = 3, t2=2

 q01
(3) = 0.01, q10

(3) = 0.03, q0x
(3) = q1x

(3) = 0.0,  0
3 = 3,  1

3 = 2, t3=4

For the given parameters we have 

 (1 )  1
1 = 2, (1 )  1

2 = 1.2, (1 )  1
3  = 0.8 

 0
1 = 1.8,  0

2 = 2.4,  0
3  = 1.8

and

V0
2 =  (  0

2+
 0

3) = 0.6 7 = 4.2, V0
3 =  0

3 = 0.6 3=1.8, V0
4 = 0

  ( 1)V1
2 = ( 1)(  1

2+
 1

3) = 0.4 8 = 3.2

 ( 1)V1
3  = ( 1)  1

3 = 0.4 2 = 0.8, ( 1)V1
3  = 0 

The u-functions for the individual voting units are 

 u01(z) = 10 2(2z2+z0+97z 1.8),  u11(z) = 10 2(2z 1.8+z0+97z2)   
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 u02(z) = 10 2(2z1.2+2z0+96z 2.4),  u12(z) = 10 2(5z 2.4+2z0+93z1.2)

 u03(z) = 10 2(1z0.8+99z 1.8),  u13(z) = 10 2(3z 1.8+97z0.8)

First, we assign 

 Q00 = Q11= 0 

)()(
~

0101 zuzU , )()(
~

1111 zuzU

The u-functions u01(z) and u11(z) contain neither 1-terms nor 0-terms. This means 

that the WVS cannot make any decision based on voting of the first unit and

01 = 11 = 0 

We also can add nothing to Q00 and Q11. The u-functions for the subsystem 

consisting of two units are 

 )(
~

02 zU = )(
~

01 zU )(02 zu  = 10 4(2z2+z0+97z 1.8)(2z1.2+2z0+96z 2.4)

 = 10 4(4z3.2+4z2+192z 0.4+2z1.2+2z0+96z 2.4+194z 0.6+194z 1.8+9312z 4.2)

 )(
~

12 zU = )(
~

11 zU )(12 zu  = 10-4(2z 1.8+z0+97z2)(5z 2.4+2z0+93z1.2)

 =10-4(10z 4.2+4z 1.8+186z 0.6+5z 2.4+2z0+93z1.2+485z 0.4+194z2+9021z3.2)

In these u-functions, the 1-terms are underlined and the 0-terms are marked in 

bold.

The sums of the coefficients of all of the marked terms are 

02 = 10 4(4+4+96+194+9312) = 0. 961 

12 = 10 4(10+4+5+194+9021) = 0.9234

The sums of coefficients of 0-terms are 

 Q00 =10 4(96+194+9312) = 0.9602 

 Q10=10 4(10+4+5) = 0.0019 

After removing the marked terms, the u-functions take the form 

 )(
~

02 zU = 10 4(192z 0.4+2z1.2+2z0+194z 0.6)
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)(
~

12 zU  = 10 4(186z 0.6+2z0+93z1.2+485z 0.4)

The UGF for a subsystem consisting of three units is 

 )(
~

03 zU = )(
~

02 zU u03(z)

 = 10 6(192z 0.4+2z1.2+2z0+194z 0.6)(1z0.8+99z 1.8) = 10 6(192z0.4

 +2z2.0+2z0.8+194z0.2+19008z 2.2+198z 0.6+198z 1.8+19206z 2.4)

 )(
~

13 zU  = )(
~

12 zU u13(z)

 = 10 6(186z 0.6+2z0+93z1.2+485z 0.4)(3z 1.8+97z0.8) = 10 6(558z 2.4

 +6z 1.8+279z 0.6+1455z 2.2+18042z0.2+194z0.8+9021z3.0+47045z0.4)

In the final u-function, all of the terms are either 1-terms or 0-terms. Summing the 

coefficients of the terms we obtain 

03 = 10 6(192+2+2+194+19008+198+198+19206) = 0.039 

13 = 10 6(558+6+279+1455+18042+194+9021+47045) = 0.0766 

and adding the coefficients of 0-terms to QI0 we obtain 

 Q00 = 0.9602+10 6(19008+198+198+19206) = 0.99881 

 Q10 =  0.0019+10 6(558+6+279+1455) = 0.004198 

Since Q1x = q1x
(1) q1x

(2) q1x
(3) = 0

Q11 = 1  Q10 = 0.995802

The WVS reliability is 

 R = P0Q00 + P1Q11 = 0.5 0.99881+0.5 0.995802 = 0.997306 

The expected decision time is 

 = 0.5(0. 961 2 + 0.039 4) + 0.5(0.9234 2 + 0.0766 4) = 2.1156 
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6.3.6.2 Weighted Voting System Reliability Optimization Subject to Decision-time 

Constraint

The number of combinations of unit decisions that allow the entire system’s 

decision to be obtained before the outputs of all of the units become available 

depends on the unit weights distribution and on the threshold value. By increasing 

the weights of the fastest units one makes the WVS more decisive in the initial 

stage of voting and, therefore, reduces the mean system decision time by the price 

of making it less reliable.

In applications where the WVS should make many decisions in a limited time, 

the expected system decision time is considered to be a measure of its 

performance. Since the units' weights and threshold affect both the WVS's 

reliability and its expected decision time, the problem of the optimal system 

turning can be formulated as follows: find the voting units' weights and the 

threshold that maximize the system reliability R while providing the expected 

decision time  not greater than a prespecified value *:

R(  0
1,

 1
1, …,  0

n,
 1

n, )  max

 subject to (  0
1,

 1
1, …,  0

n,
 1

n, ) * (6.97) 

The solution encoding for solving this problem by the GA is the same as in 

Section 6.3.5.2. The only difference is in the solution fitness formulation. In the 

constrained problem, the fitness of a solution defined by the integer string a is 

determined as R(a)  max( *,0), where is a penalty coefficient.

Example 6.21 

A WVS consists of six voting units with the voting times and fault probabilities 

presented in Table 6.26. The optimal voting unit weights and thresholds and the 

parameters of the optimal WVS obtained for * = 35 (when P0=0.7, P0=0.5,

P0=0.3) are presented in Tables 6.27 and 6.28. 

Table 6.26. Parameters of voting units 

No. of unit j tj q01
(j) q0x

(j) q10
(j) q1x

(j)

1 10 0.22 0.31 0.29 0.12 

2 12 0.35 0.07 0.103 0.30 

3 38 0.24 0.08 0.22 0.15 

4 48 0.10 0.05 0.2 0.01 

5 55 0.08 0.10 0.15 0.07 

6 70 0.08 0.01 0.10 0.05 

The system abstention probabilities do not depend on its weights and threshold. 

For any solution, Q0x = 0.868 10 7 and  Q1x = 1.89 10 7.

It can be seen that for P0  0.5 the WVS takes advantage of the knowledge 

about statistical asymmetry of the input and provides greater reliability than in the 

case where P0 = 0.5. Observe that when P0>0.5 the WVS provides Q00 greater than 

Q11, and vice versa when P0<0.5 Q00<Q11.
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The R vs.  trade-off curves for the WVS are presented in Figure 6.26. These 

curves are obtained by solving the optimization problem (6.97) for different values 

of time constraint *.

Table 6.27. Optimal unit weights for * = 35 

 No. of unit 

j 1 2 3 4 

5

6
 1

j 0.018 0.240 0.564 0.300 0.388 0.476 
p0=0.7  0

j 1.958 0.018 0.370 2.487 1.005 0.176 
 1

j 0.017 2.367 0.497 0.017 0.635 1.475 
p0=0.5  0

j 2.281 0.360 0.189 1.561 0.566 0.034 
 1

j 0.019 2.597 1.243 0.019 0.019 0.742 
p0=0.3  0

j 1.688 0.334 0.204 1.967 0.909 0.260 

Table 6.28. Parameters of WVS optimal for * = 35

P0 = 0.7 P0 = 0.5 P0 = 0.3

0.76 0.50 0.45 

Q00 0.9798 0.9005 0.8477

Q01 0.0202 0.0995 0.1523

Q10 0.1611 0.0719 0.0283 

Q11 0.8389 0.9281 0.97166 

R 0.9375 0.9143 0.9345 

34.994 34.987 34.994 

0.77

0.82

0.87

0.92

0.97

15 20 25 30 35 40 45 50 55 60

R

Po=0.7 Po=0.5 Po=0.3

Figure 6.26. Reliability vs. expected decision time for P0 = 0.7, P0 = 0.5, P0 = 0.3 

6.3.7 Weighted Voting Classifiers

The weighted voting classifier (WVC) should classify objects belonging to a set of 

H classes. When an object belonging to some class I (1 I H) is presented to the 

system, its classification decision D(I) is based on the classification decisions made 

by a set of n independent voting units. Each unit j while identifying objects from 
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class I generates its individual classification decision dj(I) {1, …, H}. This 

decision can be correct dj(I) = I or incorrect dj(I)  I. The unit can also abstain from 

voting dj(I) = 0 (note that the abstention is always considered to be the wrong 

decision because I  0). Each unit j has its individual weight j depending on the 

importance of its decision to the entire system. 

Given the outputs of the individual units, the WVC can calculate for each 

classification decision h (0 h H) the sum of the weights of the units supporting 

this decision: 

hId
j

h
I

j )(

 (6.98) 

The decision h' that obtained the greatest sum of the weights is determined as

Hhh
I

h
I 1for'  (6.99) 

(if there are several such decisions any of them can be chosen at random). The 

second best decision h'' can be determined as 

''' anyfor hhh
I

h
I  (6.100) 

There exist two different ways of making the entire WVC decision. The first one is 

based on a plurality voting rule. Using this rule, the entire WVC output is 

calculated as follows: 

'''

''''

,0

,
)(

h
I

h
I

h
I

h
Ih

ID  (6.101) 

which means that the WVC is able to classify the input if there exists an ultimate 

majority of weighted votes corresponding to some output h'. One can see that the 

system abstains from making a decision in two cases: 

- all the units abstain from making a decision;

- more than one decision has the same support while the remaining  decisions 

are supported less. 

The second manner of decision making is based on a threshold voting rule. 

Using this rule, the WVC output is calculated as follows: 

otherwise,0

,
)(

1
'' Vh

ID

h
I

 (6.102) 
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where, according to (6.62), V1 is the sum of the weights of all of the voting units. If  

 0.5, then no more than one decision can satisfy the condition i
h > V1. The 

greater , the less decisive the WVC. Indeed, the system is inclined to abstain when 

 grows, since a lower number of combinations of voters outputs produces the 

winning decisions. 

The entire WVC reliability can be defined as the probability that it makes the 

correct decisions: R = Pr{D(I) = I}.

Each system unit has the probabilities of incorrect classification and abstention. 

It is natural that the probability of  incorrect output depends on the class of the 

input object for each unit (for example, in target detecting systems some targets 

can be unrecognizable by speed detectors while highly recognizable by heat 

radiation detectors and vice versa). The same is true for the unit abstention 

probability Pr{dj(I) = 0}. Therefore, to define the probabilistic behavior of units 

one has to determine their fault probabilities qih
(j) for 1 i H, 0 h H (h  i), 1 j n,

where }.|)(Pr{
)(

iIhIdq j
j

ih

Conditional unit success (correct classification) probability, given the system 

input is I = i, can be determined, therefore, as 

ihHh

j
ihj

j
ii qiIiIdq

,0

)()(
1}|)(Pr{  (6.103) 

The probability of correct classification of an object belonging to class i by the 

entire WVC ri = Pr{D(I) = I | I = i} depends on the probabilities qih
(j). Since the 

correct identifications of the objects belonging to different classes are mutually 

exclusive events, one can obtain the entire system reliability as 

H

i
iirPR

1

 (6.104) 

where the probabilities Pi = Pr{I = i} for 1 i H define the input probability 

distribution. (In the most common special case of evenly distributed input 
H

i
ir

H
R

1

1
).

The different states of WVC can be distinguished by the unit output distribution 

(UOD). WVC consisting of n voting units can have (H+1)n different states 

corresponding to different combinations of unit outputs (each unit can produce 

H+1 different outputs). Each WVC state can be characterized by a distribution of 

the weights of the units supporting different classification decisions named voting 

weight distribution (VWD).

Note that some different UODs can result in the same VWD. (For example, in a 

WVC with n = 3, 1 = 2 = 1 and 3 = 2, UOD d1(I) = 1, d2(I) = 1 and d3(I) = 0 

results in the same VWD I
0 = I

1 = 2 as that of UOD d1(I) = 0, d2(I) = 0, 

d3(I) = 1). From the entire WVC output point of view, these different UODs are 

indistinguishable and, therefore, can be treated as the same state.
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To define the VWD of a classifier in state k one can use vector 

kg = )},({ hgk 1 h H, in which )(hgk is equal to h
I in state k. Using the UGF 

approach one can describe distributions of random VWD Gj of an individual unit j

as

H

k

j
ikij

jkzqzu
0

)(
)(

g
 (6.105) 

In this u-function each state k has the probability 
)( j

ik
q and corresponds to the 

unit output dj(I) = k (when I = i) and, therefore, to VWD jkg in which

ki

ki
ig

j
jk

,0

,
)(  (6.106) 

(for k = 0, corresponding to element abstention, the vector contains only zeros). 

Since the total weight of votes supporting any classification decision in the 

WVC is equal to the sum of weights of individual units supporting this decision, 

the resulting system VWD G can be obtained by summing the random VWDs Gj

(1 j n) of individual voters. Therefore, the distribution G can be represented by 

the u-function

Ui(z) = (ui1(z), …, uin(z)) = 
k

ik
kzp

g
 (6.107) 

(note that in this operator the exponents are obtained as sums of vectors, not scalar 

variables). Since the procedure of vector summation possesses commutative and 

associative properties, the u-function of the entire WVC can be obtained 

recursively by the consecutive determination of u-functions of arbitrary subsets of 

elements. For example, it can be obtained by the recursive procedure (6.57).

By following the decision rule (6.101) one can obtain the entire WVC output in 

each state k (for each term of )(zUi ) as 

otherwise,0

)(max)(,

)( ,1
hgxgx

ID
k

xhHh
k

k  (6.108) 

By following the decision rule (6.102) one can obtain the entire WVC output in 

each state k (for each term of )(zUi ) as 
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otherwise,0

)(,
)(

1Vxgx
ID

k

k  (6.109) 

The correct classification corresponds to states in which iIDk )( when I = i

and, therefore, to those u-function terms (further referred to as cc-terms) for which 

)(max)(
,1

hgig k
ihHh

k for plurality voting or 1)( Vigk for threshold voting. 

 Using the acceptability function 

iID

iID
Fi

)(,0

)(,1
)(G  (6.110) 

over )(zUi representing all the possible WVC classification results, one can obtain 

the probability of successfully identifying the object of class i for plurality voting 

as follows: 

 ))(max)((1))((
,1

hgigpFEr k
ihHh

k
k

ikii G   (6.111) 

and for threshold voting as follows: 

 ))((1))(( 1VigpFEr k
k

ikii G                                  (6.112) 

Example 6.22 

Consider a WVC consisting of two units (n = 2) that classifies objects belonging to 

three different classes (H = 3). The probabilities of wrong classification for each 

type of input object are presented in Table 2.29, as well as the probabilities of 

correct classification calculated in accordance with (6.103).

Table 6.29. Parameters of WVC units

 Unit 1 Unit 2 

i = 1 i = 2 i = 3 i = 1 i = 2 i = 3 

h=1 0.94 0.01 0.06 0.68 0.3 0.01 

h=2 0.02 0.95 0.05 0.3 0.63 0.01 

h=3 0.04 0.02 0.85 0.01 0.05 0.97 

qih

h=0 0.0 0.02 0.04 0.01 0.02 0.01 

Note that unit 2 can scarcely distinguish objects of class 1 and 2 whereas 

specializing in the identification of objects of class 3. On the contrary, unit 1 

specializes in recognizing objects of classes 1 and 2. Weights of units are 1 = 2 

and 2 = 1. Input probability distribution is P1 = P2 = P3 = 1/3. The threshold value 

is   = 0.5 ( V1 = 1.5). 
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The u-functions of individual units are as follows: 

 u11 (z) = 10 2(94z(200)+2z(020)+4z(002))

 u12 (z) = 10 2(68z(100)+30z(010)+z(001)+z(000))

for objects of class 1; 

 u21(z) = 10 2(z(200)+95z(020)+2z(002)+2z(000))

 u22(z) = 10 2(30z(100)+63z(010)+5z(001)+2z(000))

for objects of class 2; 

 u31(z) = 10 2(6z(200)+5z(020)+85z(002)+4z(000))

 u32(z) = 10 2(z(100)+z(010)+97z(001)+z(000))

for objects of class 3. 

The u-functions for the entire WVC are as follows: 

 U1(z)= u11(z)  u12(z) = 10 4(6392z(300)+136z(120)+272z(102)+2820z(210)

 +60z(030)+120z(012)+94z(201)+2z(021)+4z(003)+94z(200)+2z(020)+4z(002))

for objects of class 1; 

 U2(z) = u21(z)  u22(z) = 10 4(30z(300)+2850z(120)+60z(102)+60z(100)

 +63z(210)+5985z(030)+126z(012)+126z(010)+5z(201)+475z(021)+10z(003)

 +10z(001)+2z(200)+190z(020)+4z(002)+4z(000))

for objects of class 2; 

 U3(z) = u31(z)  u32(z) = 10 4(6z(300)+ 5z(120)+85z(102)+4z(100) +6z(210)

 +5z(030)+85z(012)+4z(010)+582z(201)+485z(021)+8245z(003)+388z(001)

 +6z(200)+5z(020)+85z(002)+4z(000))

for objects of class 3. 

The cc-terms in these u-functions are marked in bold for the plurality voting 

rule and are underlined for the threshold voting rule. The terms corresponding to 
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WVC abstention are marked in italics for the plurality voting and are double 

underlined for the threshold voting. The probability of correct classification for 

each class can now be obtained as the sum of the coefficients of cc-terms for the 

corresponding u-function:

 r1 = 10 4(6392+2820+94+94) = 0.94 

 r2 = 10 4(2850+5985+126+475+190) = 0.9626 

 r3 = 10 4(85+85+8245+388+85) = 0.8888 

for plurality voting and 

 r1 = 10 4(6392+2820+94+94) = 0.94

 r2 = 10 4(2850+5985+475+190) = 0.95

 r3 = 10 4(85+85+8245+85) = 0.85 

for threshold voting. 

The entire WVC reliability is 

 R = (0.94+0.9626+0.8888)/3 = 0.9305 

for plurality voting and 

 R = (0.94+0.95+0.85)/3 = 0.9133 

for threshold voting. Note that the probability of recognizing objects of class 3 is 

much lower than the same for classes 1 and 2. 

The probabilities of WVS abstaining are

 Pr{D(I) = 0 | I = 1} = 0.0

 Pr{D(I) = 0 | I = 2} = Pr{D(I) = 0 | I = 3} = 0.0004 

for plurality voting and

 Pr{D(I) = 0 | I = 2} = 10 4(60+126+10+4) = 0.02

 Pr{D(I) = 0 | I = 3} = 10 4(4+4+388+4) = 0.04 

for threshold voting. One can obtain the probability of wrong classifications for 

both types of system as 
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 Pr{D(I)  I} = })|0)(Pr{1(
3

1

iIIDrP i
i

i

For the plurality voting WVC this index is equal to 0.069 and for the threshold 

voting it is equal to 0.067. One can see that the plurality voting WVC is more 

"decisive". It provides both correct and incorrect decisions with greater probability 

than the threshold voting classifier (even with the minimal possible threshold 

factor) and has a smaller abstention probability.

The description of the simplification technique used in the WVC reliability 

evaluation algorithm, as well as algorithms for solving the WVC optimization 

problem, can be found in [59, 181, 182].

6.4 Sliding Window Systems

The linear multi-state sliding window system (SWS) consists of n linearly ordered, 

statistically independent, multi-state elements (MEs). Each ME j has the random 

performance Gj and can be in one of kj different states. Each state i {0, 1, …, 

kj 1} of ME j is characterized by its fixed performance rate gji and probability 

pjk = Pr{Gj =  gji } (where 1
1

0

jk

i
jip ). The SWS fails if the performance rates of 

any r consecutive MEs do not satisfy some condition. In terms of acceptability 

function, the failure criteria can be expressed as 

0),...,(),...,(
1

1
11

rn

h
rhhn GGfGGF  (6.113) 

where F is the acceptability function for the entire SWS and f is the acceptability 

function for any group of r consecutive MEs. For example, if the sum of the 

performance rates of any r consecutive MEs should be not lower than the demand 

w, then Equation (6.113) takes the form 

 0)(1),...,(
1

1

1

1

rn

h

rh

hm
mn wGGGF  (6.114) 

The special case of SWS where all of the n MEs are identical and have two states 

with performance rates of 0 and 1, w = r k+1 and the acceptability function takes 

the form (6.114) is a k-out-of-r-from-n:F system.
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6.4.1. Evaluating the Reliability of the Sliding Window Systems 

The algorithm for evaluating the reliability of the sliding window system is very 
similar to that described in Section 2.4 for a k-out-of-r-from-n:F system. 

6.4.1.1 Implementing the Universal Generating Function 
The u-function representing p.m.f. of the random performance rate of ME j Gj

takes the form: 

1

0

,)(
j

ij
k

i

g
jij zpzu  (6.115) 

The performance of a group consisting of r MEs numbered from h to h+r 1 is 
represented by the random vector ),...,( 1rhhh GGG consisting of random 

performance values corresponding to all of the MEs belonging to the group.
Having the p.m.f. of independent random variables Gh, …, Gh+r 1 one can 

obtain the p.m.f. of the random vector Gh by evaluating the probabilities of each 
combination of realizations of these values.  Doing so by a recursive procedure, 
one can first obtain the p.m.f. of the r-length vector (0, …, 0, Gh) (corresponding to 
a single ME), then obtain the p.m.f. of r-length vector (0, …, 0, Gh, Gh+1)
(corresponding to a pair of MEs), and so on until obtaining the p.m.f. of the vector  
(Gh, …, Gh+r 1).

Let the u-function U r+h(z) represent the p.m.f. of a vector consisting of r h +1  
zeros and random values from G1 to Gh 1. This u-function represents the PDs of 
MEs from 1 to h  1. In order to obtain the PD of a group of MEs from 1 to h, one 
has to evaluate all possible combinations of the realizations of a random vector 
(0,…,0, G1, …, Gh 1) and a random variable Gh. Therefore, the u-function U1(z),
representing the p.m.f. of the random vector ),...,( 11 rGGG , can be obtained by 

assigning

 U1 r(z) = 0gz  (6.116) 

where the vector g0 consists of r zeros and the consecutive application of the shift 
operator (2.63):

U r+h+1 (z) = U r+h(z) uh(z) for h = 1, …, r (6.117) 

where the procedure x y over arbitrary r-length vector x and value y shifts all of 
the vector elements one position to the left, x(s 1) = x(s) for s = 2, …, r in 
sequence, and adds the value y to the right position, x(r) = y. (The first element of 
vector x disappears after applying the operator). 
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Having the PD of the first r MEs, one can obtain the PD of the next group of 
MEs (from 2 to r+1) by estimating all of the possible combinations of random 
vector values represented by U1(z), and random variable Gr+1 represented by 
ur+1(z). Note that the performance G1 does not influence the PD of this group. 
Therefore, in order to obtain the vector G2 one has to remove G1 from vector G1

and replace it with Gr+1. By replacing the first element of the random vector with 
the new element corresponding to the following ME, one obtains vectors 
corresponding to the next groups of MEs. 

By applying the shift operator  further for h = r+1, …, n one obtains the u-

functions for all of the possible groups of r consecutive MEs: U2(z), …, Un r+1(z).
The SWS contains exactly n r+1 groups of r consecutive MEs, with each ME 
belonging to no more than r groups.

Let u-function Uh(z)
1

0

h
hi

E

i
hi zq g  for 1 h n r+1 represent the p.m.f. of vector

Gh. By summing the probabilities of all of the realizations ghi of vector Gh

producing zero values of the acceptability function f(Gh) = ),,...,( 1rhh GGf  one 

can obtain the probability of failure Qh of the hth group of r consecutive MEs: 

))(1( hh GfEQ
1

0
))(1())((

hE

i
hihihf fqzU g  (6.118) 

Consider the u-function Uh(z). For each combination of values of 

11,..., rhh GG , it contains exactly kh different terms corresponding to different 

values of Gh, which takes all of the possible values of the performance rate of ME 
h. After applying the operator , Gh disappears from the vector Gh+1 and is 

replaced with Gh+1. This produces kh terms in Uh+1(z), corresponding to the same 
value of vector Gh+1. Collecting these like terms, one obtains a single term for each 
vector Gh+1. Therefore, the number of different terms in each u-function Uh(z) is 

equal to .
1rh

hi
ih kE

By applying the operator f  (6.118) over Uh(z) one can obtain the probability 
Qh that the group consisting of MEs h, …, h+r 1 fails. If for some combination of 
MEs' states the group fails, the entire SWS fails independently of the states of the 
MEs that do not belong to this group. Therefore, the terms corresponding to the 
group failure can be removed from Uh(z), since they should not participate in 
determining further state combinations that cause system failures. This 
consideration lies at the base of the following algorithm for SWS availability 
evaluation:

1. Assign: x = 0; U r+1 (z)= .0g
z  Determine the u-functions of the individual 

MEs using (6.115). 
2. Main loop. Repeat the following for h = 1, …, n:
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2.1. Obtain U r+h+1 (z) = U r+h (z) uh(z).

2.2. If h r add value ))(( 1 zU rhf to x and remove all of the terms with 

the exponents producing the zero acceptability function from Uh+1 r(z).
3. Obtain the SWS availability as R = 1 x.

Example 6.23 

Consider an SWS with five MEs (n = 5) in which the sum of the performance rates 
of any three (r = 3) adjacent MEs should not be less than four. Each ME has two 
states: total failure (corresponding to a performance rate of zero) and functioning 
with a nominal performance rate. The nominal performance rates of the MEs from 
1 to 5 are 1, 2, 3, 1 and 1 respectively. 

The u-functions of the individual MEs are: 

u1(z) = p10z
0+p11z

1, u2(z) = p20z
0+p21z

2, u3(z)=p30z
0+p31z

3

u4(z) = p40z
0+p41z

1, u5(z) = p50z
0+p51z

1

First, we assign 

x = 0, U 2(z) = z(0,0,0)

Following step 2 of the algorithm, we obtain

U 1(z) = U 2(z) u1(z))= z(0,0,0) (p10z
0+p11z

1) = p10z
(0,0,0)+p11z

(0,0,1)

U0(z) = U 1(z) u2(z) = (p10z
(0,0,0)+p11z

(0,0,1)) (p20z
0+p21z

2)

 = p10p20z
(0,0,0)+p11p20z

(0,1,0)+p10p21z
(0,0,2)+p11p21z

(0,1,2)

U1(z) = U0(z) u3(z)

 = (p10p20z
(0,0,0)+p11p20z

(0,1,0)+p10p21z
(0,0,2)+p11p21z

(0,1,2)) (p30z
0+p31z

3)

 = p10p20p30z
(0,0,0)+p11p20p30z

(1,0,0)+p10p21p30z
(0,2,0)+p11p21p30z

(1,2,0)

 +p10p20p31z
(0,0,3)+p11p20p31z

(1,0,3)+p10p21p31z
(0,2,3)+p11p21p31z

(1,2,3)

The terms of U1(z) with exponents in which sums of elements are less than 4 
are marked in bold. Following step 2.2 of the algorithm, we obtain 

 x = p10p20p30+p11p20p30+p10p21p30+p11p21p30+p10p20p31
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After removing the marked terms, U1(z) takes the form 

U1(z) = p11p20p31z
(1,0,3)+p10p21p31z

(0,2,3)+p11p21p31z
(1,2,3)

Applying further the operator, we obtain 

 U2(z)= U1(z) u4(z)

 = (p11 p20 p31 z(1,0,3)+p10 p21 p31 z(0,2,3)+p11 p21 p31 z(1,2,3)) (p40z
0+p41z

1)

 = p11 p20 p31 p40z
(0,3,0)+p10p21p31p40z

(2,3,0)+p11p21p31p40 z(2,3,0)

 +p11 p20 p31 p41 z(0,3,1)+p10p21 p31 p41 z(2,3,1)+p11 p21 p31 p41z
(2,3,1)

Following step 2.2 of the algorithm, we modify x as follows: 

x = p10p20p30+p11p20p30+p10p21p30+p11p21p30+p10p20p31+p11 p20p31 p40

After removing the marked term and collecting like terms, U2(z) takes the form:

U2(z) = p21p31p40z
(2,3,0)+p11p20p31p41z

(0,3,1)+p21p31p41z
(2,3,1)

Following steps 2.1 and 2.2 of the algorithm we obtain 

U3(z) = U2(z) u5(z)

= (p21p31p40z
(2,3,0)+p11p20p31p41z

(0,3,1)+p21p31p41z
(2,3,1)) (p50z

0+p51z
1)

= p21p31p40p50z
(3,0,0)+p11p20p31p41p50z

(3,1,0)+p21p31p41p50z
(3,1,0)

+p21p31p40p51z
(3,0,1)+p11p20p31p41p51z

(3,1,1)+p21p31p41p51z
(3,1,1)

After adding the coefficient of the marked term to x we have

 x = p10p20p30+p11p20p30+p10p21p30+p11p21p30+p10p20p31+p11 p20p31 p40

 +p21p31 p40 p50

Finally:

R=1 x=1 p30 p31[p10p20+(p11p20+p21p50)p40]
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6.4.1.2 Simplification Technique
Note that the first elements of vectors ghi in the u-function Uh(z) do not participate 
in determining Uh+1(z) (according to the definition of the procedure x y), which 
leads to producing kh like terms in Uh+1(z). In order to avoid excessive term 
multiplication procedures in operator ,  one can perform a like term collection 

in Uh(z). To do this, one can, after step 2.2 of the algorithm, replace the first 
elements in all vectors of Uh(z) with zeros and collect like terms. 

The algorithm can be further simplified if the SWS acceptability function takes 

the form (6.114). Consider the sth term shzqhs
g of a u-function Uh(z) after 

replacing the first element ghs(1) of vector hsg  with zero. If rhg~  is the greatest 

possible value of the performance rate of the (h+r)th ME and

    rh

r

i
hs gwig ~)(

2
 (6.119) 

any combination of the term shzqhs
g with terms of uh+r(z) produces terms 

corresponding to SWS failure. This means that, in the u-function Uh+1(z), all of the 
terms with coefficients qhsph+r,i should be removed and the sum of the 

corresponding coefficients should be added to x. Since ,11
0 ,

rhk
i irhp  the sum 

of these coefficients is equal to qhs. In order to avoid kh+r redundant term 

multiplication procedures, one can remove the term shzqhs
g meeting condition 

(6.119) from Uh(z) and add its coefficient to x.
In order to reduce the algorithm computation complexity considerably using 

the considerations described above, one has to apply to any newly obtained u-
function Um(z) (in step 2 of the algorithm) for m = 0, …, n r  the following 
operator , which: 

- replaces all of the first elements of vectors hsg with zeros; 

- collects like terms in the u-function;
- removes the terms meeting (6.119) and adds the coefficients of the replaced 

terms to x.

Example 6.24 

Consider the Example 6.23 and apply to it the simplification technique. First, we 
obtain

 w 3
~g  = 4 3 = 1, w 4

~g = w 5
~g  = 4 1 = 3

The operator  applied to

U0(z) = p10p20z
(0,0,0)+p11p20z

(0,1,0)+p10p21z
(0,0,2)+p11p21z

(0,1,2)

removes the term p10p20z
(0,0,0), since 0+0+0<w 3

~g  = 1, and adds p10p20 to x. After 

applying the operator, U0(z) takes the form 
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(U0(z)) = p11p20z
(0,1,0)+p10p21z

(0,0,2)+p11p21z
(0,1,2)

Following steps 2.1 and 2.2 of the algorithm, we obtain 

U1(z) = ( (U0(z)) u3(z))

 = (p11p20z
(0,1,0)+p10p21z

(0,0,2)+p11p21z
(0,1,2) (p30z

0+p31z
3)

  = p11p20p30z
(1,0,0)+p10p21p30z

(0,2,0) +p11p21 p30z
(1,2,0)+p11p20p31z

(1,0,3)

+p10p21p31z
(0,2,3)+p11p21p31z

(1,2,3)

Applying the operator  that removes the terms meeting condition (6.119) 
(marked in bold) one obtains 

x = p10p20+p11p20p30+p10p21p30+p11p21 p30,

(U1(z)) = p11p20p31z
(0,0,3)+p21p31z

(0,2,3)

Further:

U2(z) = ( (U1(z)) u4(z)) = p11p20p31z
(0,0,3)+p21p31z

(0,2,3)) (p40z
0+p41z

1)

 = p11p20p31p40z
(0,3,0)+p21p31p40z

(2,3,0)+p11p20p31p41z
(0,3,1)+p21p31p41z

(2,3,1)

Applying the operator  over U2(z) one obtains 

x = p10p20+p11p20p30+p10p21p30+p11p21 p30+p11p20p31p40

(U2(z)) = p21p31p40z
(0,3,0)+(p11p20+p21)p31p41z

(0,3,1)

For the last group of MEs: 

U3(z) = ( (U2(z)) u5(z))

= (p21p31p40z
(0,3,0)+(p11p20+p21)p31p41z

(0,3,1)) (p50z
0+p51z

1)

= p21p31p40p50z
(3,0,0)+(p11p20+p21)p31p41p50z

(3,1,0)

 +p21p31p40p50z
(3,0,1)+(p11p20+p21)p31p41p50z

(3,1,1)

x = p10p20+p11p20p30+p10p21p30+p11p21p30+p11p20p31p40+p21p31p40p50

Finally:
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R = 1 x

 = 1 p10p20 p11p20p30 p10p21p30 p11p21p30 p11p20p31p40 p21p31p40p50

Taking into account that p10p20 = p10p20p30+p10p20p31, one obtains the same 
result:

R = 1 p30 p31[p10p20+(p11 p20+p21 p50)p40]

Using the SWS reliability evaluation procedure described, one can analyze the 
effect of demand variation on the overall system reliability. 

Example 6.25 

Consider the two following SWSs [183]. The first one consists of 10 identical 
three-state MEs. The probabilities of the MEs' states are pj0 = 0.1, pj1 = 0.3, pj2 = 
0.6. The corresponding performance rates are gj0 = 0, gj1 = 1, gj2 = 3.

The SWS reliability, as a function of constant demand w, is presented in Figure 
6.27A for different r (2 r 10). Note that, because the cumulative performance of 
groups of MEs takes a finite number of discrete values, the R(w) is a step function. 
One can see that the greater the r, the greater the SWS reliability for the same w.
This is natural, because the growth of r provides growing redundancy in each 
group.

A          B 

Figure 6.27. Reliability of SWS as a function of w and r
(A: SWS with 10 identical MEs. B: SWS with eight different MEs)

The second SWS consists of eight different MEs. The number of states of these 
MEs varies from two to five.  The performance distributions of the MEs are 
presented in Table 6.30. The SWS reliability as a function of constant demand w is 

0

0.2

0.4

0.6

0.8

1

0 3 6 9 12 15 18 21 24 27 30
w

R

r=2 r=3 r=4 r=5 r=6

r=7 r=8 r=9 r=10

0

0.2

0.4

0.6

0.8

1

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42
w

R

r=2 r=3 r=4 r=5 r=6

r=7 r=8



  6   UGF in Analysis and Optimization of Special Types of Multi-state Systems 345 

presented in Figure 6.27B for different r (2 r 8). Observe that the functions R(w)
for the second SWS have more steps than the functions R(w) for the first one. 
Indeed, different MEs produce a greater variety of levels of cumulative group 
performance rates than the identical ones. 

     Table 6.30. Parameters of SWS elements

No. of ME 1 2 3 4 5 6 7 8 
No. of 
state

p G p g p g p g p g p g p g p g 

0 0.03 0 0.10 0 0.17 0 0.05 0 0.08 0 0.01 0 0.20 0 0.05 0 
1 0.22 2 0.10 1 0.83 6 0.25 3 0.20 1 0.22 4 0.10 3 0.25 4 
2 0.75 5 0.40 2 - - 0.40 5 0.15 2 0.77 5 0.10 4 0.70 6 
3 - - 0.40 4 - - 0.30 6 0.45 4 - - 0.60 5 - - 
4 - - - - - - - - 0.12 5 - - - - - - 

6.4.2 Multiple Sliding Window Systems 

The existence of multiple failure criteria is a common situation for complex 
systems, especially for consecutive-type systems. In this section we consider an 
extension of the linear SWS model to a multi-criteria case. In this multiple sliding 
window system (MSWS) a vector r = (ri: 1 i Y) is defined such that ri<ri+1, and
1  ri n for any i. The system fails if for any i (1 i Y) at least one of the functions fi

over the performance rates of any ri consecutive MEs is equal to zero. The entire 
MSWS acceptability function takes the form 

0),...,(),...,(
1

1
1

1
1

i

i

rn

h
rhhi

Y

i
n GGfGGF  (6.120) 

The introduction of the linear MSWS model is motivated by the following 
examples.

Example 6.26 

Consider a sequence of service stations in which each station should process the 
same sequence of n different tasks. Each station i can process ri incoming tasks 
simultaneously according to the first-in-first-out rule using a limited resource wi.
Each incoming task can have different states and the amount of the resource 
needed to process the task is different for each state of each task. The total resource 
needed to process ri consecutive tasks should not exceed the available amount of 
the resource wi. The system fails if in at least one of the stations there is no 
available resource to process ri tasks simultaneously. 

The simplest example of such a model is a transportation system in which n
randomly ordered containers are carried by consecutive conveyors characterized by 
a different length and allowable load. The number of containers ri that are loaded 
onto each conveyor i is defined by its length. The transportation system fails if the 
total load of any one of the conveyors is greater than its maximal allowed load wi.
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An example of the transportation system is presented in Figure 6.28. The 
system consists of Y = 3 conveyors and transports n = 14 randomly ordered 
containers of four types (each type m is characterized by its weight gm). The first 
conveyor can simultaneously carry r1 = 2 containers, the second and third 
conveyors can  carry    r2 = 6 and r3 = 3  containers respectively. The maximal 
allowable loads of conveyors 1, 2 and 3 are w1, w2 and w3 respectively. The system 
fails if the total weight of any two adjacent containers is greater than w1, or if the 
total weight of any six adjacent containers is greater than w2, or if the total weight 
of any three adjacent containers is greater than w3. The weight of the jth container 
in the line can be represented by a random value Gj: }.,,,{ 4321 ggggG j  The 

acceptability function for each conveyor i can be determined as 

31),(1),...,(
1

1 iwGGGf i

rh

hj
jrhhi

i

i

for any group of ri adjacent containers starting with hth one (r1 = 2, r2 = 6, r3 = 3).
The system reliability (defined as its expected acceptability) takes the form 

 R = E(
3

1

15

1

1
)(1

i

r

h
i

rh

hj
j

i i
wG ), where r1=2, r2=6, r3=3

Figure 6.28. Example of transportation MSWS

Example 6.27 

Consider a heating system that should provide a certain temperature along several 
lines with moving parts placed at different distances from the heaters. The 
temperature at each point of the line i is determined by a cumulative effect of ri

closest heaters. Each heater consists of several electrical heating elements. The
heating effect of each heater depends on the availabilityof its heating elements and, 

r1=2,
w1

r2=6,
w2

r3=3,
w3

        g1 g2 g3 g4
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therefore, can vary discretely (if the heaters are different, then the number of 
different levels of heat radiation and the intensity of the radiation at each level are 
specific to each heater). In order to provide the temperature, which is not less than 
some specified value at each point of line i, any ri adjacent heaters should be in 
states where the sum of their radiation intensity is greater than the minimum 
allowed level wi. The system fails if any group of ri adjacent heaters provides the 
cumulative radiation intensity lower than wi.

Figure 6.29. Example of manufacturing MSWS

In the example presented in Figure 6.29 there are 12 heaters providing random 
radiation intensity Gj (1 j 12). The parts located at any point of the close conveyor 
are heated by three adjacent heaters. The cumulative heating intensity along this 
conveyor should not be lower than w1. The parts located at any point of the remote 
conveyor are heated by five adjacent heaters. The cumulative heating intensity 
along this conveyor should not be lower than w2. The system fails if any three 
adjacent heaters fail to provide the desired heating intensity w1 or if any five 
adjacent heaters fail to provide the desired heating intensity w2. The acceptability 
function for each conveyor i can be defined as 

21),(1),...,(
1

1 iwGGGf i

rh

hj
jrhhi

i

i

which corresponds to any group of ri adjacent heaters starting with the hth one  (r1

= 3, r2 = 5). 
The system reliability takes the form 

 R = ))(1(
12

1

13

1
i

rh

hj
j

i

r

h
wGE

ii
, where r1 = 3, r2 = 5 

A variety of other systems also fit the model: quality control systems that detect 
deviations from given values of parameters in product samples, combat systems 
that should provide certain fire density along a defence line, etc.

r1=3
r2=5

  w1

  w2

G1 … …Gn
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6.4.2.1 Evaluating the Multiple Sliding Window System Reliability 
Let the u-function )(1 zU

Yr
 take the form (6.116) where the vector g0 consists of 

rY zeros. According to the algorithm presented in Section 6.4.1.1, by applying the 
operator (6.117) for h = 1, …, n one obtains distributions for all of the possible 
random vectors of performance rates of rY consecutive MEs.

Note that the vectors of length rY considered also contain all of the possible 
vectors of the smaller length. For any ri<rY the last ri elements of vectors in the 
exponents of u-functions ),(1 zU

irYr
 )(2 zU

iY rr …, )(1 zU nrY
 represent 

all of the possible vectors of performance rates of ri consecutive MEs. Therefore, 
in each u-function )(1 zU hrY

 obtained by the recursive operator (6.117) for 

r1 h n, one can obtain the failure probability of groups of ri consecutive MEs for 
any r1 h rY satisfying the condition ri h by applying operators ))(( 1 zU hrf Yi

in which acceptability functions fi take as arguments ri the last elements of vectors 
from the exponents of the u-function. These considerations lead to the following 
algorithm for MSWS reliability evaluation: 

1. Assign: x = 0; )(1 zU
Yr

= .0g
z  Determine the u-functions of the individual 

MEs using (6.115). 
2. Main loop. Repeat the following for h = 1, …, n:

2.1. Obtain )(1 zU hrY
= )(zU hrY

uh(z).

2.2. For i = 1, …, Y: if h ri add value ))(( 1 zU hrf Yi
to x and remove 

from )(1 zU hrY
 terms with the exponents in which the last ri elements 

produce zero acceptability function fi.
3. Obtain the SWS availability as R = 1 x.

Alternatively, the system reliability can be obtained as the sum of the coefficients 
of the last u-function  ).(1 zU nYr

Example 6.28 

Consider an MSWS with n = 5, Y = 2, r1 = 3, r2 = 4,  f1(x1, x2, x3) = 1( 5
3

1j
jx ),

f2(x1, x2, x3, x4) = 1( 6
4

1j
jx ). Each ME has two states: total failure 

(corresponding to a performance rate of zero) and functioning with a nominal 
performance rate. The nominal performance rates of the MEs are 2, 2, 3, 1, and 2.

In the initial step of the algorithm, a value of zero is assigned to x. The u-
functions of the individual MEs are 

u1(z) = p10z
0+p11z

2, u2(z) = p20z
0+p21z

2, u3(z) = p30z
0+p31z

3

u4(z) = p40z
0+p41z

1, u5(z) = p50z
0+p51z

2
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Since, in the MSWS considered, rY = r2 = 4, the initial u-function takes the form 

 U 3(z) = z(0,0,0,0)

Following step 2 of the algorithm we obtain:
for h = 1 

 U 2(z) = U 3(z) u1(z) = z(0,0,0,0) (p10z
0+p11z

2) = p10z
(0,0,0,0)+p11z

(0,0,0,2)

for h = 2 

 U 1(z) = U 2(z) u2(z)) = (p10z
(0,0,0,0)+p11z

(0,0,0,2)) (p20z
0+p21z

2)

 = p10p20z
(0,0,0,0)+p11p20z

(0,0,2,0)+p10p21z
(0,0,0,2)+p11p21z

(0,0,2,2)

for h = 3 

 U0(z) = U 1(z) u3(z)

  = (p10p20z
(0,0,0,0)+p11p20z

(0,0,2,0)+p10p21z
(0,0,0,2)+p11p21z

(0,0,2,2)) (p30z
0+p31z

3)

 = p10p20p30z
(0,0,0,0)+p11p20p30z

(0,2,0,0)+p10p21p30z
(0,0,2,0)+p11p21p30z

(0,2,2,0)

 +p10p20p31z
(0,0,0,3)+p11p20p31z

(0,2,0,3)+p10p21p31z
0,0,2,3)+p11p21p31z

(0,2,2,3)

In this step, operator 
1f

should be applied to U0(z). The terms of U0(z) with    

f1 = 0 are marked in bold. The value of 
1f

(U0 (z)) is added to x:

x = p10p20p30+p11p20p30+p10p21p30+p11p21p30+p10p20p31

After removing the marked terms, U0(z) takes the form 

 U0(z) = p11p20p31z
(0,2,0,3)+p10p21p31z

0,0,2,3)+p11p21p31z
(0,2,2,3)

Proceeding for h = 4 we obtain 

 U1(z) = U1 (z) u4(z) = (p11p20p31z
(0,2,0,3)+p10p21p31z

(0,0,2,3)

 +p11p21p31z
(0,2,2,3))  (p40z

0+p41z
1) = p11p20p31p40z

(2,0,3,0)

 +p10p21p31p40z
(0,2,3,0)+p11p21p31p40z

(2,2,3,0)+p11p20p31p41z
(2,0,3,1)
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 +p10p21p31p41z
(0,2,3,1)+p11p21p31p41z

(2,2,3,1)

Both operators 
1f

 and 
2f  should be applied to U1(z). The terms of U1(z)

with f1 = 0 are marked in bold; the terms with f2 = 0 are underlined. One can see 
that in the first term both f1 = 0 and f2 = 0, in the second term only f2 = 0, and in the 
fourth term only f1 = 0.  First, the value of

1f
(U1(z)) = p11p20p31p40+p11p20p31p41

is added to x and the terms with  f1 = 0 are removed. Then, in the remaining u-
function U1(z), the value of 

2f (U1(z)) = p10p21p31p40

is added to x and the terms with f2 = 0 are removed.
After removing all of the marked terms, U1(z) takes the form

 U1(z) = p11p21p31p40z
(2,2,3,0)+p10p21p31p41z

(0,2,3,1)+p11p21p31p41z
(2,2,3,1)

Finally, for h = 5

 U2(z) = U1(z) u5(z)) = (p11p21p31p40z
(2,2,3,0)+p10p21p31p41z

(0,2,3,1)

 +p11p21p31p41z
(2,2,3,1)) ( p50z

0+p51z
2) = p11p21p31p40p50z

(2,3,0,0)

 +(p10+p11)p21p31p41p50z
(2,3,1,0)+p11p21p31p40p51z

(2,3,0,2)

 +(p10+p11)p21p31p41p51z
(2,3,1,2)

The terms of U2(z) with f1 = 0 are marked in bold and the terms with f2 = 0 are 
underlined. After adding the value of

1f
(U2(z)) = p11p21p31p40p50+(p10+p11)p21p31p41p50

to x and removing the corresponding terms from U2(z), this u-function does not 
contain terms with f2 = 0. Now x is equal to the system unreliability and R = 1 x.

The final u-function U2(z) takes the form 

 U2(z) = p11p21p31p40p51z
(2,3,0,2)+(p10+p11)p21p31p41p51z

(2,3,1,2)

 = p11p21p31p40p51z
(2,3,0,2)+p21p31p41p51z

(2,3,1,2)
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The system reliability can also be obtained as the sum of the coefficients of the 
resulting u-function:

 R = p11p21p31p40p51+p21p31p41p51 = p21p31p51(1 p10p40)

Example 6.29 

An MSWS with n = 10, Y = 3, r1 = 3, r2 = 5, r3 = 7 consists of identical two-state 
elements. Total failure of the elements corresponds to a performance rate of 0, and 
a normal state corresponds to performance rate of 1. The reliability of each element 
j is pj1 = 0.8. The system fails if the total performance of any ri adjacent elements is 
less then wi. The graphs of the MSWS reliability as a function of the demands w1,
w2 and w3 are presented in Figure 6.30. 

 When wi = ri the system becomes a series one and its reliability is equal to   
0.810 = 0.1074. Observe that the variation of demands wi do not necessarily 
influence the system’s reliability because of failure criteria superposition. For 
example, satisfying one of the system success conditions 
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for r1 = 3, w1 = 2 guarantees satisfying this condition for r2 = 5, w2 = 3. Therefore, 
the reliability of the MSWS with w1 = 2 does not depend on w2 if w2 3.

Figure 6.30. Reliability of MSWS as a function of demands 

Satisfying the system success condition for r2 = 5, w2 = 4 guarantees satisfying 
this condition for r1 = 3, w1 = 2. Therefore, the reliability of the MSWS with w2 = 4 
does not depend on w1 if w1 2.

Satisfying the system success condition for r3 = 7, w3 = 6 guarantees satisfying 
this condition for both r1 = 3, w1 = 2 and r2 = 5, w2 = 4. Therefore, the reliability of 
the MSWS with w3 = 6 does not depend on w1 if w1 2 and does not depend on w2 if 
w2 4 .
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6.4.3 Element Reliability Importance in Sliding Window System 

The elements' importance measures and the methods of their evaluation for SWSs 
are the same as for the series-parallel systems. In order to evaluate the importance 
measures one has to apply the technique described Section 4.5 using the algorithm 
for SWS reliability evaluation instead of the series-parallel block diagram method. 

For SWSs consisting of identical elements it may be important to know how the 
improvement of all of the elements’ reliability influences the entire system’s 
reliability. In order to obtain this importance measure one has to calculate the 
values of the system reliability for the different values of element reliability, 
simultaneously changing parameters of the u-functions of all of the elements. 

Example 6.30 

Consider an MSWS with n = 10, Y = 2, r1 = 3, r2 = 5.  The MSWS consists of 
identical two-state elements. Total failure of the elements corresponds to a 
performance rate of 0, and anormal state corresponds to a performance rate of 1. 
The system fails if the total performance of any ri adjacent elements is less than wi.

A          B 

Figure 6.31. SWS reliability (A) and elements' reliability importance (B)
as functions of the elements' reliability 

In Figure 6.31A one can see the reliability of the MSWS considered as a 
function of p for different combinations of w1 and w2. For the same p, the system 
reliability decreases with the growth of w1 and w2. The elements' Birnbaum 
reliability importance indices IAb = dR/dp as functions of p are presented in Figure 
6.31B. One can see that, until a certain level of p corresponding to a maximal IAb,
the more reliable the elements the greater the entire system benefits from further 
improvement of the elements’ reliability. After achieving the maximal value of IAb,
the influence of the element’s reliability improvement on the system’s reliability is 
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drastically reduced (this means that further improvement of the elements’ 
reliability is less justified). 

With the growth of w1 and w2, the element’s reliability corresponding to the 
maximal reliability importance moves toward the greater values.

In SWSs consisting of nonidentical elements, different elements play different 
roles in providing for the system’s reliability. Evaluating the relative influence of 
the element’s reliability on the reliability of the entire system provides useful 
information for tracing system bottlenecks.

Example 6.31 

Consider an SWS with n = 10 and r = 3 [184]. The parameters of the two-state 
system elements are presented in Table 6.31. Total failure of any element j
corresponds to a performance rate of 0, and a normal state corresponds to a 
performance rate of gj1. The element’s reliability is pj1. The system fails if the 
cumulative performance of any three adjacent elements is less than the demand w.
The system’s reliability as a function of demand w is presented in Figure 6.32A.

Table 6.31. Parameters of SWS elements

No. of element j 1 2 3 4 5 6 7 8 9 10 

pj1 0.87 0.90 0.83 0.95 0.92 0.89 0.80 0.85 0.82 0.95 

gj1 200 200 400 300 100 400 100 200 300 200 

A          B 

Figure 6.32. SWS reliability (A) and the elements' reliability importance (B)
as functions of demand 

The reliability importance indices for several elements as functions of the 
system’s demand are presented in Figure 6.32B. Observe that the relative 
importance of the elements changes with the demand variation. For example, when 
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100<w<200, element 8 is the most important one, whereas when 200<w<300 this 
element becomes less important than element 9. This means that in making a 
decision about the system’s reliability enhancement one has to take into account 
the range of the possible demand levels. 

One can see that for some w the importance of the elements can be equal to 
zero. This means that these elements have no influence on the entire SWS 
availability and can be removed. Indeed, consider element 5 when 200<w<300.
This element belongs to three triplets with the following nominal performance 
rates {g31 = 400, g41 = 300, g51 = 100}, {g41 = 300, g51 = 100, g61 = 400}, {g51 = 
100, g61 = 400,     g71 = 100}. The cumulative performance rate of the first triplet is 
greater than w if at least one of elements 3 and 4 works and is less than w if both of 
these elements fail. The cumulative performance rate of the second triplet is greater 
than w if at least one of elements 4 and 6 works and is less than w if both of these 
elements fail. The cumulative performance rate of the third triplet is greater than w
if element 6 works and is less than w if this element fails. The state of element 5 
does not affect the value of the acceptability function for any one of the three 
triplets.

6.4.4 Optimal Element Sequencing in Sliding Window Systems 

Having a given set of MEs, one can achieve considerable reliability improvement 
of the linear SWS by choosing the elements' proper arrangement along a line. 
Indeed, it can be easily seen that the order of the tasks’ arrivals to the service 
system (Example 6.26) or allocation of heaters along a line (Example 6.27) can 
strongly affect the system’s entire reliability. For the set of MEs with a given 
performance rate distribution, the only factor affecting the entire SWS reliability 
(for fixed r and w) is the sequence of MEs. Papastavridis and Sfakianakis [185] 
first considered the optimal element arrangement problem for SWSs with binary 
elements having a different reliability. In this section, the optimal element 
arrangement problem is considered for the general SWS model. This problem is 
formulated as follows: find the sequence of MEs in the SWS that maximizes the 
system reliability. 

6.4.4.1 Implementing the Genetic Algorithm 
In order to represent the sequence of n MEs in the SWS in the GA one can 
consider a line with n consequent positions and use a string a = (a1, …, an) in 
which aj is equal to the number of the position occupied by ME j (see Section 
1.3.2.4). One can see that the total number of different arrangement solutions 
(number of different possible vectors a) is equal to n! (number of possible 
permutations in a string of n different numbers). 

The solution decoding procedure should apply the algorithm for SWS 
reliability determination for the given sequence of MEs represented by string a.
The solution’s fitness is equal to the value of system reliability R(a, r, w) obtained. 
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Example 6.32 

Consider an SWS with n = 10 [186]. The parameters of the system MEs are 
presented in Table 6.32.  Three element sequencing solutions were obtained by the 
GA for the SWS with r = 3 (for w = 6, w = 8 and w = 10) and three solutions were 
obtained for the same SWS with r = 5 (for w = 10, w = 15, w = 20). These solutions 
are presented in Table 6.33. The system’s reliability as a function of demand w is 
presented in Figure 6.33 for the ME sequences obtained. One can see that the 
greater r, the greater the SWS reliability for the same w. This is natural, because 
the growth of r provides a growing redundancy in each group. 

  Table 6.32. Performance distributions of SWS elements 

No. of ME 1 2 3 4 5 6 7 8 9 10 
State p g p g p g p g p g p g p g p g p g p g 

0 0.03 0 0.10 0 0.17 0 0.05 0 0.08 0 0.01 0 0.20 0 0.05 0 0.20 0 0.05 0 
1 0.22 2 0.10 1 0.83 6 0.25 3 0.20 1 0.22 4 0.10 3 0.25 4 0.10 3 0.25 2 
2 0.75 5 0.40 2 - - 0.40 5 0.15 2 0.77 5 0.10 4 0.70 6 0.15 4 0.70 6 
3 - - 0.40 4 - - 0.30 6 0.45 4 - - 0.60 5 - - 0.55 5 - - 
4 - - - - - - - - 0.12 5 - - - - - - - - - - 

A          B 

Figure 6.33. Reliability of SWS with the optimal element arrangements
as function of demand. A: for r = 3; B: for r = 5 

Table 6.33. Parameters of the solutions obtained

r w R Sequence of SWS elements

6 0.931 2 1 6 5 4 8 7 10 3 9 

8 0.788 5 1 8 9 6 4 7 3 10 2 3

10 0.536 5 9 3 1 4 7 10 8 6 2 

10 0.990 2 5 1 4 6 8 10 3 7 9 

15 0.866 9 7 3 10 1 6 8 4 5 2 5

20 0.420 2 5 4 8 3 6 10 7 1 9 
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Note that, for solutions which provide the greatest SWS reliability for a certain 
w, the reliability for the rest of the values of w is less than for the solutions optimal 
for those values of w. Indeed, the optimal allocation provides the greatest system 
probability of meeting just the specified demand by the price of reducing the 
probability of meeting greater demands. 

6.4.5 Optimal Uneven Element Allocation in Sliding Window 
Systems

While the problem of the optimal ordering of tasks’ arrivals to the service system 
(Example 6.26) presumes the arrival of one task at a time (only one task can be in 
each position in the service line), in the problem of the optimal arrangement of 
heaters (Example 6.27) we can assume that n positions are distributed along a line 
and the heaters may be allocated unevenly at these positions (several heaters can be 
gathered at the same position while some positions remain empty).

In many cases such uneven allocation of the MEs in an SWS results in greater 
system reliability than the even allocation. 

Example 6.33 

Consider a simple case in which four MEs should be allocated within an SWS 
with four positions. Each ME j has two states: a failure state with a performance of 
0 and a normal state with a performance of 1. The probability of a normal state is 
pj, the probability of a failure is qj = 1 pj. For r = 3 and w = 2, the system succeeds 
if each three consecutive positions contain at least two elements in a normal state. 
Consider two possible allocations of the MEs within the SWS (Figure 6.34):

A. MEs are evenly distributed among the positions.
B. Two MEs are allocated at second position and two MEs are allocated at third 

position.

Figure 6.34. Two possible allocations of MEs in an SWS

In case A, the SWS succeeds either if no more than one ME fails or if MEs in 
the first and fourth positions fail and MEs in the second and third positions are in a 
normal state. Therefore, the system reliability is 

A

B
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RA = p1p2p3p4+q1p2p3p4+p1q2p3p4+p1p2q3p4+p1p2p3q4+q1p2p3q4

For identical MEs with pj = p

RA = p4+4qp3+q2p2

In case B, the SWS succeeds if at least two MEs are in a normal state. The 
system reliability in this case is 

RB = p1p2p3p4+q1p2p3p4+p1q2p3p4+p1p2q3p4+p1p2p3q4

 +q1q2p3p4+q1p2q3p4+q1p2p3q4+p1q2q3p4+p1q2p3q4+p1p2q3q4

For identical MEs

RB = p4+4qp3+6q2p2

One can see that the uneven allocation B is more reliable: 

RB  RA=5q2p2=5(1 p)2p2

Consider now the same system when w=3. In case A the system succeeds only 
if it does not contain any failed ME:

RA = p1p2p3p4

In case B it succeeds if it contains no more than one failed element: 

RB = p1p2p3p4+q1p2p3p4+p1q2p3p4+p1p2q3p4+p1p2p3q4

For identical MEs: 

RA = p4, RB = p4+4qp3 and RB RA = p4+4qp3 p4 = 4(1 p)p3

Observe that, even for w = 4, when in case A the system is unable to meet the 
demand (RA = 0) because w>r, in case B it still succeeds with probability              
RB = p1p2p3p4.

In this section we consider a general optimal allocation problem in which the 
number of MEs m is not necessarily equal to the number of positions n (m n) and 
an arbitrary number of elements can be allocated at each position (some positions 
may be empty):

The SWS consists of n consecutively ordered positions. At each position any 
group of MEs can be allocated. The allocation problem can be considered as a 
problem of partitioning a set of m items into a collection of n mutually disjoint 
subsets. This partition can be represented by the integer string a = (aj: 1 j m),
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1 aj n, where aj is the number of the position at which ME j locates. It is assumed 
that the SWS has the acceptability function (6.114). The total performance of the 
group of the MEs located at the same position is equal to the sum of the 
performances of these MEs. The empty position can be represented by an element 
with the constant performance of zero.

For any given integer string a, the GA determines the solution fitness (equal to 
the SWS reliability) using the following procedure: 

1. Assign iu~ (z) = z0 for each i = 1, …, n, corresponding to SWS positions. 

Determine u-functions uj(z) for each individual ME j (1 j m) in the form 
(6.115) in accordance with their performance distributions. 

2. According to the given string a for each j = 1, …, m modify )(~ zu
ja as

follows:
)(~ zu

ja )()(~ zuzu ja j
(6.121)

3. Apply the algorithm for SWS reliability evaluation described in Section 6.4.1 
over n u-functions iu~ (z).

Example 6.34 

Consider an SWS with n = 10 positions in which m = 10 identical binary MEs are 
to be allocated [187]. The performance distribution of each ME j is pj1 = Pr{Gj = 1} 
= 0.9, pj0 = Pr{Gj = 0} = 0.1. 

Table 6.34 presents allocation solutions obtained for different r and w (number 
of identical elements in each position). The reliability of the SWS corresponding to 
the allocations obtained is compared with its reliability corresponding to the case 
when the MEs are evenly distributed among the positions. One can see that the 
reliability improvement achieved by the free allocation increases with the increase 
of r and w. On the contrary, the number of occupied positions in the best solutions 
obtained decreases when r and w grow. Figure 6.35 presents the SWS reliability as 
a function of demand w for r = 2, r = 3 and r = 4 for even ME allocation and for 
unconstrained allocation obtained by the GA. 

Table 6.34. Solutions of ME allocation problem (SWS with identical MEs)

Position r =2, w=1 r=3, w=2 r=4, w=3
1    
2 2 1  
3  3  
4 2  5 
5  3  
6 2   
7   5 
8 2 3  
9    

10 2   
Reliability

Free allocation 0.951 0.941 0.983  
Even allocation 0.920 0.866 0.828 
Improvement 3.4% 8.7% 18.7% 
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Figure 6.35. Reliability of SWS with identical MEs for different r and ME allocations 

Example 6.35 

Consider the SWS allocation problem from Example 6.32, in which n = m = 10,     
r = 3 and w = 10. The best ME allocation solutions obtained by the GA are 
presented in Table 6.35 (list of elements located at each position). 

Table 6.35. Solutions of ME allocation problem (SWS with different MEs)

m = 10 m = 9 m = 8 m = 7 
Position Even allocation Uneven allocation    

1 5     
2 9    1 
3 3 6, 7, 10 2, 5, 8, 9 3, 6 7 
4 1     
5 4 2, 5 7  3 
6 7 1, 4 1, 4 5, 7, 8 6 
7 10     
8 8 3, 8, 9 3 4 4, 5 
9 6  6 1, 2 2 

10 2     
Reliability 0.536 0.765 0.653 0.509 0.213 

The best even allocation solution obtained in Example 6.32 improves 
considerably when the even allocation constraint is removed. One can see that the 
best unconstrained allocation solution obtained by the GA in which only 4 out of 
10 positions are occupied by the MEs provides a 42% reliability increase over even 
allocation. The system reliability as a function of demand for the even and 
unconstrained allocations obtained is presented in Figure 6.36. 

Table 6.35 also presents the best allocations of the first m MEs from Table 6.32 
(for m = 9, m = 8 and m = 7). Observe that uneven allocation of nine MEs in the 
SWS still provides greater reliability than does even allocation of 10 MEs.
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Figure 6.36. Reliability of SWS with different MEs

6.4.6 Sliding Window System Reliability Optimization in the 
Presence of Common Cause Failures 

In many cases, when SWS elements are subject to CCFs, the system can be 
considered as consisting of mutually disjoint CCGs with total CCFs. The origin of 
CCFs can be outside the system’s elements they affect (external impact), or they 
can originate from the elements themselves, causing other elements to fail. 
Usually, the CCFs occur when a group of elements share the same resource 
(energy source, space, etc.)

Example 6.36 

Consider the manufacturing heating system from Example 6.27 and assume that 
the power to the heaters is supplied by B independent power sources (Figure 6.37). 
Each heater is connected to one of these sources. The heaters supplied from the 
same source compose the CCG. Each source has a certain failure probability. 
When the source fails, all of the heaters connected to this source (belonging to the 
corresponding CCG) are in a state of total failure. Therefore, the failure of any 
power source causes the CCF in the heating system. 

Figure 6.37. Example of SWS with several CCGs
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6.4.6.1 Evaluating Sliding Window System Reliability in the Presence of Common 
Cause Failures 
The u-function uj(z) representing the p.m.f. of the random performance rate of ME 
j Gj takes the form (6.115) only when the element is not the subject of CCF. 

We assume that the performance rate of element j when it is a subject of CCF is 

equal to zero. The u-function corresponding to this case takes the form .)( 00 zzu j

The u-functions uj(z) and u0
j(z) represent, therefore, conditional performance 

distributions of the performance rate of element j.
Let the entire SWS consists of a set  of n ordered MEs and has B independent 

CCGs. Each CCG can be in two states (normal state and failure). The failure 
probability of CCG i is fi. It can be seen that the total number of the combinations 
of CCG states is 2B. Each CCG i can be defined by a subset i  such that 

B

i
i

1
, ei for i  e  (6.122) 

Let binary variable si define the state of CCG i such that si = 1 corresponds to 
the normal state of the group and si = 0 corresponds to failure of the group. When       
si = 1 the performance of each ME j belonging to i is a random value having the 
distribution determined by its u-function uj(z). When si = 0 the performance of each 
ME belonging to i is equal to zero, which corresponds to the u-function u0

j(z).
One can connect the state si of each individual CCG with a number of state 
combination h in the following way: 

 si(h)=mod2
12/ ih  (6.123) 

When h varies from 0 to 2B 1 one obtains all the possible combinations of 
states of CCGs using Equation (6.123) for 1 i B.

The probability of each CCG state combination h is

B

i

hs
i

hs
ih

ii ffq
1

)()(1 )1()(   (6.124)

If one defines the u-function of each ME 1 j n as 

otherwise),(

0,if),(
)(~

0

zu

sjzu
zu

j

iij
j   (6.125)

and applies the algorithm for SWS reliability evaluation (described in Section 
6.4.1) over u-functions )(~ zu j , then one obtains the conditional probability of the 

SWS success rh when the CCG state combination is h. Since all of the 2B
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combinations of CCG states are mutually exclusive, in order to calculate the 
unconditional probability of the SWS success (SWS reliability) one can apply the 
following equation: 

12

0

B

h
hhrqR  (6.126) 

Now we can evaluate the SWS reliability using the following algorithm: 
1. Assign R = 0. For each j (1 j n) determine two u-functions uj(z) (in 

accordance with Equation (6.115) and  u0
j(z) = z0.

2.   Repeat the following for h = 0, …, 2B 1:
2.1. For i = 1, …, B determine si(h) using Equation (6.123). 
2.2. Determine qh (the probability of CCG state combination h) using 

Equation (6.124). 
2.3. For each i = 1, …, B determine the numbers of elements belonging to the 

CCG i and define the u-functions of these elements )(~ zu j  in accordance with 

Equation (6.125). 
2.4. Determine rk (the conditional SWS reliability for CCG state combination 

h) applying the procedure described in Section 6.4.1 over u-functions )(~ zu j

(1 j n) for a given demand w.
2.5. Add the product qhrh to R.

6.4.6.2 Optimal Distribution of Multi-state Elements among Common Cause 
Groups
The way the MEs are distributed among CCGs strongly affects the SWS reliability. 
Consider a simple example in which SWS with r = 2 consists of four MEs 
composing two CCGs. Each ME has two states with performance rates of 0 and 1. 
The system demand is 1. When 1 = {1, 2} and 2 = {3, 4} each CCF causes the 
system's failure. When 1 = {1, 3} and 2 = {2, 4} the SWS can succeed in the case 
of a single CCF if both MEs not belonging to the failed CCG are in the operational 
state.

The elements' distribution problem can be considered as a problem of 
partitioning a set  of n MEs into a collection of B mutually disjoint subsets i

(1 i B). Each set can contain from 0 to n elements. The partition of set  can be 
represented in the GA by the integer string a = {aj: 1 j n}, 0 aj B, where aj is the 
number of the subset to which ME j belongs: .

jaj

Example 6.36 

Consider the SWS with n = 10 from Example 6.32 [188]. The parameters of the 
system’s MEs are presented in Table 6.32. It is assumed that the failure probability
fi of each CCG i is equal to 0.2. 

First, distribution solutions were obtained by the GA for a SWS with fixed B.
The solutions that provide the greatest SWS reliability for a certain demand w
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reliability of the optimal solutions for those values of w. Indeed, the optimal 
allocation provides the greatest system probability of meeting just the specified 
demand by the price of reducing the probability of meeting other demands. 
Therefore, the optimal distribution solution depends on system demand. The 
solutions obtained for different demands for SWS with r = 3 and r = 5 when B = 2 
are presented in Table 6.36.

When r = 3, solution A is optimal for demand 0<w<3 and solution B is optimal 
for demand 3 w 5. When r = 5, solution D is optimal for demand 7 w 11 and 
solution E is optimal for demand 12 w 16. The system reliabilities, as functions of 
demand for the solutions obtained, are presented in Figure 6.38. The solutions C 
(for r = 3) and F (for r = 5), in which adjacent elements belong to different CCGs, 
are presented for comparison. These solutions provide lower SWS reliability than 
the optimal ones. 

Table 6.36. Solutions of ME grouping problem obtained for B = 2 

r            Distribution of MEs 
A {1, 4, 6, 7, 9, 10} {2, 3, 5, 8} 
B {1, 2, 4, 5, 7, 8, 10} {3, 6, 9} 3

C {1, 3, 5, 7, 9} {2, 4, 6, 8, 10} 
D {1, 2, 5, 6, 7, 10} {3, 4, 8, 9} 
E {1, 2, 3, 6, 7, 8} {4, 5, 9, 10} 5

F {1, 3, 5, 7, 9} {2, 4, 6, 8, 10} 

Figure 6.38. SWS reliability for the best ME distribution solutions obtained for B = 2

Observe that with the growth of w the difference of system reliability provided 
by the different distribution solutions becomes negligible.  This is because, when w
is great, the system becomes intolerant to any common supply failure without 
regard to the structure of the failed CCG.
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The problem of choosing the optimal number of CCGs is also of interest. The 
increase in the number of CCGs reduces the damage caused by a single CCG to the 
system, but, on the other hand, it increases the probability that at least one CCG has 
failed. Therefore, when the system does not tolerate the loss of even a small portion 
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 of  its elements (which happens when w is great), the increase of B decreases the 
system's overall reliability. The smaller the system demand w, the greater the 
benefit from the elements’ distribution among different CCGs. Table 6.37 presents 
the solutions obtained for the given SWS for different B. For each B>1 the solution 
that provides the system's reliability greater than the reliability of a system with a 
single CCG for the greatest w is chosen (this means that for the given B, the 
solution presented is better than the solution with B = 1 for a given demand w*,
but, when the demand is greater than w*, no distribution solution with B CCGs 
exists that outperforms the single CCG solution). 

Table 6.37. Solutions of ME grouping problem obtained for different B

r B Distribution of MEs 
1 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}  
2 {1, 2, 3, 6, 7, 8} {4, 5, 9, 10} 3

3 {1, 4, 7, 10} {2, 5, 8} {3, 6, 9} 
1 {1, 4, 6, 7, 9, 10} {2, 3, 5, 8} 
2 {1, 4, 5, 6, 9, 10} {3, 4, 7, 8} 
3 {1, 5, 6, 10} {2, 4, 7, 9} {3, 8}  
4 {1, 5, 6, 10}  {2, 7} {3, 8} {4, 9} 

5

5 {1, 6} {2, 7} {3, 8} {4, 9} {5, 10} 

The SWS reliabilities as functions of demand for the solutions obtained are 
presented in Figure 6.39. The single CCG solution is the worst for the small 
demands and the best for the great demands. On the contrary, the solutions with B
= r, in which any r adjacent elements belong to different CCGs, provide the 
greatest system reliability for small demands and provide the lowest system 
reliability for great demands. The solutions with 1<B<r provide intermediate 
values of system reliability. Therefore, when the number of CCGs is not fixed, the 
greatest reliability solution is either with B = r for low demands or with B = 1 for 
great demands. 

Figure 6.39. SWS reliability for the best ME distribution solutions obtained for 
different B
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