
4. Universal Generating Function in Analysis of 
Series-Parallel Multi-state Systems

4.1 Reliability Block Diagram Method

Having a generic model of an MSS in the form of Equations (3.3) and (3.4) we can 
obtain the measures of MSS reliability by applying the following steps: 

1.  Represent the p.m.f. of the random performance of each system element j,
Equations (3.1) and (3.2), in the form of the u-function
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2. Obtain the u-function of the entire system (representing the p.m.f. of the 
random variable G) applying the composition operator that uses the system 
structure function. 

3. Obtain the u-functions representing the random functions F , G
~

 and D
using operators (3.8)-(3.10). 

4. Obtain the system reliability measures by calculating the values of the 
derivatives of the corresponding u-functions at z = 1 and applying 
Equations (3.11)-(3.14). 

While steps 1, 3 and 4 are rather trivial, step 2 may involve complicated 
computations. Indeed, the derivation of a system structure function for various 
types of system is usually a difficult task.

As shown in Chapter 1, representing the functions in the recursive form is 
beneficial from both the derivation clarity and computation simplicity viewpoints. 
In many cases, the structure function of the entire MSS can be represented as the 
composition of the structure functions corresponding to some subsets of the system 
elements (MSS subsystems). The u-functions of the subsystems can be obtained 
separately and the subsystems can be further treated as single equivalent elements 
with the performance p.m.f. represented by these u-functions.

The method for distinguishing recurrent subsystems and replacing them with 
single equivalent elements is based on a graphical representation of the system 
structure and is referred to as the reliability block diagram method. This approach 
is usually applied to systems with a complex series-parallel configuration. 
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4.1.1 Series Systems 

In the flow transmission MSS, where performance is defined as capacity or 
productivity, the total capacity of a subsystem containing n independent elements 
connected in series is equal to the capacity of a bottleneck element (the element 
with least performance). Therefore, the structure function for such a subsystem 
takes the form

},...,min{),...,( 11ser nn GGGG  (4.2) 

 In the task processing MSS, where the performance is defined as the 
processing speed (or operation time), each system element has its own operation 
time and the system’s total task completion time is restricted. The entire system 
typically has a time resource that is larger than the time needed to perform the 
system’s total task. But unavailability or deteriorated performance of the system 
elements may cause time delays, which in turn would cause the system’s total task 
performance time to be unsatisfactory. The definition of the structure function for 
task processing systems depends on the discipline of the elements' interaction in 
the system.

When the system operation is associated with consecutive discrete actions 
performed by the ordered line of elements, each element starts its operation after 
the previous one has completed its operation. Assume that the random 
performances Gj of each element j is characterized by its processing speed. The 
random processing time Tj of any system element j is defined as ./1 jj GT  The 

total time of task completion for the entire system is
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The entire system processing speed is therefore 

n

j
jGTG

1
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Note that if for any j  Gj = 0 the equation cannot be used, but it is obvious that in 
this case G = 0. Therefore, one can define the structure function for the series task 
processing system as

While the structure function of a binary series-parallel system is unambiguously 

determined by its configuration (represented by the reliability block diagram), the 

structure function of a series-parallel MSS also depends on the physical meaning of 

the system and of the elements' performance and on the nature of the interaction 

among the elements.
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One can see that the structure functions presented above are associative and 
commutative (i.e. meet conditions (1.26) and (1.28)).  Therefore, the u-functions
for any series system of described types can be obtained recursively by 
consecutively determining the u-functions of arbitrary subsets of the elements. For 
example the u-function of a system consisting of four elements connected in a 
series can be determined in the following ways: 
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and by any permutation of the elements' u-functions in this expression.

Example 4.1 

Consider a system consisting of n elements with the total failures connected in 
series. Each element j has only two states: operational with a nominal performance 
of gj1 and failure with a performance of zero. The probability of the operational 
state is pj1. The u-function of such an element is presented by the following 
expression:
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In order to find the u-function for the entire MSS, the corresponding 

ser
operators should be applied. For the MSS with the structure function (4.2) 

the system u-function takes the form 
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For the MSS with the structure function (4.5) the system u-function takes the form 
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Since the failure of each single element causes the failure of the entire system, 
the MSS can have only two states: one with the performance level of zero (failure 

4
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of at least one element) and one with the performance level },...,min{ˆ 111 nggg

for the flow transmission MSS and n
j jgg 1

1
1/1ˆ  for the task processing MSS. 

The measures of the system performance A(w) = Pr{G w}, (w) = 
E(max(w G,0)) and   = E(G) are presented in the Table 4.1. 

 Table 4.1. Measures of MSS performance 
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The u-function of a subsystem containing n identical elements (pj1=p, gj1=g for 
any j) takes the form 

gnn zpzp 0)1(    (4.7) 

for the system with the structure function (4.2) and takes the form

ngnn zpzp /0)1(   (4.8) 

for the system with the structure function (4.5). 

4.1.2 Parallel Systems 

In the flow transmission MSS, in which the flow can be dispersed and transferred 
by parallel channels simultaneously (which provides the work sharing), the total 
capacity of a subsystem containing n independent elements connected in parallel is 
equal to the sum of the capacities of the individual elements. Therefore, the 
structure function for such a subsystem takes the form
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In some cases only one channel out of n can be chosen for theflow transmission 
(no flow dispersion is allowed). This happens when the transmission is associated 
with the consumption of certain limited resources that does not allow simultaneous 
use of more than one channel. The most effective way for such a system to function 
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is by choosing the channel with the greatest transmission capacity from the set of 
available channels. In this case, the structure function takes the form 

}.,...,max{),...,( 11par nn GGGG  (4.10) 

In the task processing MSS, the definition of the structure function depends on 
the nature of the elements’ interaction within the system.

First consider a system without work sharing in which the parallel elements act 
in a competitive manner. If the system contains n parallel elements, then all the 
elements begin to execute the same task simultaneously. The task is assumed to be 
completed by the system when it is completed by at least one of its elements. The 
entire system processing time is defined by the minimum element processing time 
and the entire system processing speed is defined by the maximum element 
processing speed. Therefore, the system structure function coincides with (4.10). 

Now consider a system of n parallel elements with work sharing for which the 
following assumptions are made: 

1. The work x to be performed can be divided among the system elements in 
any proportion. 

2. The time required to make a decision about the optimal work sharing is 
negligible, the decision is made before the task execution and is based on 
the information about the elements state during the instant the demand for 
the task executing arrives.

3. The probability of the elements failure during any task execution is 
negligible.

The elements start performing the work simultaneously, sharing its total 
amount x in such a manner that element j has to perform xj portion of the work and 

.1
n
j jxx  The time of the work processing by element j is xj/Gj. The system 

processing time is defined as the time during which the last portion of work is 
completed: }./{max1 jjnj GxT  The minimal time of the entire work 

completion can be achieved if the elements share the work in proportion to their 

processing speed Gj: ./ 1
n
k kjj GxGx  The system processing time T in this 

case is equal to n
k kGx 1/  and its total processing speed G is equal to the sum of 

the processing speeds of its elements. Therefore, the structure function of such a 
system coincides with the structure function (4.9). 

One can see that the structure functions presented also meet the conditions 
(1.26) and (1.28). Therefore, the u-functions for any parallel system of described 
types can be obtained recursively by the consecutive determination of u-functions
of arbitrary subsets of the elements.

Example 4.2 

Consider a system consisting of two elements with total failures connected in 
parallel. The elements have nominal performance g11 and g21 (g11<g21) and the 
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probability of operational state p11 and p21 respectively. The performances in the 
failed states are g10 = g20 =0. The u-function for the entire MSS is 
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which for structure function (4.9) takes the form 
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and for structure function (4.10) takes the form 
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The measures of the system output performance for MSSs of both types are 
presented in Tables 4.2 and 4.3. 

   Table 4.2. Measures of MSS performance for system with structure function (4.9) 

 w A(w) (w)
w>g11+g21 0 w-p11g11 p21g21

g21<w g11+g21 p11p21 g11p11(p21 1)+g21p21(p11 1)+w(1 p11p21)

g11<w  g21 p21 (1 p21)(w g11p11) p11g11+p21g21

0<w g11 p11+p21 p11p21 (1 p11)(1 p21)w

     Table 4.3. Measures of MSS performance for system with  structure function (4.10) 

 w A(w)  –(w)
w>g21 0 w p11g11 p21g21+p11p21g11

g11<w  g21 p21 (1 p21)(w g11p11) p11(1 p21)g11+p21g21

0<w g11 p11+p21  p11p21 (1 p11)(1 p21)w

The u-function of a subsystem containing n identical parallel elements (pj1 = p,
gj1 = g for any j) can be obtained by applying the operator ))(),....,((

par
zuzu

over n identical u-functions u(z) of an individual element. The u-function of this 
subsystem takes the form
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for the structure function (4.9) and 

gnn zpzp ))1(1()1( 0  (4.12) 

for the structure function (4.10). 

4.1.3 Series-Parallel Systems 

The structure functions of complex series-parallel systems can always be 
represented as compositions of the structure functions of statistically independent 
subsystems containing only elements connected in a series or in parallel. 
Therefore, in order to obtain the u-function of a series-parallel system one has to 
apply the composition operators recursively in order to obtain u-functions of the 
intermediate pure series or pure parallel structures.

The following algorithm realizes this approach: 
1. Find the pure parallel and pure series subsystems in the MSS. 
2. Obtain u-functions of these subsystems using the corresponding 

ser
and

par
operators.

3. Replace the subsystems with single elements having the u-function
obtained for the given subsystem. 

4. If the MSS contains more then one element return to step 1. 
The resulting u-function represents the performance distribution of the entire 

system.
The choice of the structure functions used for series and parallel subsystems 

depends on the type of system. Table 4.4 presents the possible combinations of 
structure functions corresponding to the different types of MSS.

Table 4.4. Structure functions for a purely series and for purely parallel subsystems 

No of MSS 
type

Description
of MSS 

Structure function for 
series elements ( ser)

Structure function for 
parallel elements ( par)

1
Flow transmission MSS 

with flow dispersion (4.2) (4.9)

2
Flow transmission MSS 
without flow dispersion (4.2) (4.10)

3
Task processing MSS 

with work sharing (4.5) (4.9)

4
Task processing MSS 
without work sharing (4.5) (4.10)

 Universal Generating Function in Analysis of Series-Parallel Multi-state Systems 4



106 The Universal Generating Function in Reliability Analysis and Optimization 

Example 4.3

In order to illustrate the recursive approach (the reliability block diagram method) 
consider the series-parallel system presented in Figure 4.1A.

First, one can find only one pure series subsystem consisting of elements with 
the u-functions u2(z), u3(z) and u4(z). By calculating the u-function
U1(z)= )()()( 432

serser
zuzuzu  and replacing the three elements with a single 

element with the u-function U1(z) one obtains a system with the structure presented 
in Figure 4.1B. This system contains a purely parallel subsystem consisting of 
elements with the u-functions U1(z) and u5(z), which in their turn can be replaced 
by a single element with the u-function )()()( 512

par
zuzUzU (Figure 4.1C). 

The structure obtained has three elements connected in a series that can be replaced 
with a single element having the u-function )()()()( 6213

serser
zuzUzuzU

(Figure 4.1D). The resulting structure contains two elements connected in parallel. 
The u-function of this structure representing the p.m.f. of the entire MSS 
performance is obtained as ).()()( 73

par
zuzUzU

Figure 4.1. Example of recursive determination of the MSS u-function

Assume that in the series-parallel system presented in Figure 4.1A all of the 
system elements can have two states (elements with total failure) and have the 
parameters presented in Table 4.5. Each element j has a nominal performance rate 
gj1 in working state and performance rate of zero when it fails. The system is 
repairable and the steady-state probability that element j is in working state 
(element availability) is pj1.

     Table 4.5. Parameters of elements of series-parallel system 

j 1 2 3 4 5 6 7 
gj1 5 3 5 4 2 6 3 
pj1 0.9 0.8 0.9 0.7 0.6 0.8 0.8 

 u6(z)
 u4(z) u3(z) u2(z)

 u5(z)
 u1(z)

 u7(z)

u6(z)
U1(z)

 u5(z)
 u1(z)

 u7(z)

 u6(z)U2(z) u1(z)

 u7(z)

U3(z)

 u7(z)

A B

C D
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The process of calculating U(z) for the flow transmission system with flow 
dispersion (for which ser and par functions are defined by Equations (4.2) and 
(4.9) respectively) is as follows: 

 u2(z)
min

u3(z) =(0.8z3+0.2z0)
min

(0.9z5+0.1z0)=0.72z3+0.28z0

 U1(z)=(u2(z)
min

u3(z))
min

u4(z)

 = (0.72z3+0.28z0)
min

 (0.7z4+0.3z0)=0.504z3+0.496z0

 U2(z)=U1(z) u5(z)=(0.504z3+0.496z0)  (0.6z3+0.4z0)

 = 0.3024z6+0.4992z3+0.1984z0

 u1(z)
min

U2(z)=(0.9z5+0.1z0)
min

 (0.3024z6+0.4992z3+0.1984z0)

 = 0.27216z5+0.44928z3+0.27856z0;

 U3(z)=(u1(z)
min

U2(z))
min

u6(z)=(0.27216z5+0.44928z3

 +0.27856z0)
min

 (0.8z6+0.2z0)= 0.217728z5+0.359424z3+0.422848z0

 U(z)=U3(z) u7(z)

 = (0.217728z5+0.359424z3+0.422848z0)  (0.8z3+0.2z0)

 = 0.1741824z8+0.2875392z6+0.0435456z5+0.4101632z3+0.0845696z0

Having the system u-function that represents its performance distribution one 
can easily obtain the system mean performance  = U'(1) = 4.567. The system 
availability for different demand levels can be obtained by applying the operator 

w  (3.15) over the u-function U(z):

 A(w) = 0.91543 for 0<w 3

 A(w) = 0.50527 for 3<w 5

 A(w) = 0.461722 for 5<w 6

 A(w) = 0.174182 for 6<w 8

  A(w) = 0 for w>8

Universal Generating Function in Analysis of Series-Parallel Multi-state Systems 4
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The process of calculating U(z) for the task processing system without work 
sharing (for which ser and par functions are defined by Equations (4.5) and (4.10) 
respectively) is as follows: 

 u2(z) u3(z) = (0.8z3+0.2z0)  (0.9z5+0.1z0) = 0.72z1.875+0.28z0;

 U1(z) = (u2(z) u3(z)) u4(z)

 = (0.72z1.875+0.28z0)  (0.7z4+0.3z0) = 0.504z1.277+0.496z0

 U2(z) = U1(z)
max

u5(z)) = (0.504z1.277+0.496z0)
max

 (0.6z2+0.4z0)

 = 0.6z2+0.2016z1.277+0.1984z0

 u1(z) U2(z) = (0.9z5+0.1z0)  (0.6z2+0.2016z1.277+0.1984z0)

 = 0.54z1.429+0.18144z1.017+0.27856z0

 U3(z) = (u1(z) U2(z)) u6(z) = (0.54z1.429+0.18144z1.017

 +0.27856z0)  (0.8z6+0.2z0) = 0.432z1.154+0.145152z0.87+0.422848z0

 U(z) = U3(z)
max

u7(z) = (0.432z1.154+0.145152z0.87+0.422848z0)

max
(0.8z3+0.2z0) = 0.8z3+0.0864z1.154+0.0290304z0.87

+0.08445696z0

The main performance measures of this system are: 

=U'(1)= 2.549 

  A(w) = 0.91543 for 0<w 0.87, A(w) = 0.8864 for 0.87<w 1.429

 A(w) = 0.8 for 1.429<w 3, A(w) = 0 for w>3

The procedure described above obtains recursively the same MSS u-function
that can be obtained directly by operator ))(),(),(),(),(( 54321 zuzuzuzuzu using

the following structure function:

(G1, G2, G3, G4, G5, G6, G7)

 = par( ser(G1, par( ser(G2, G3, G4), G5), G6), G7)
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The recursive procedure for obtaining the MSS u-function is not only more 
convenient than the direct one, but, and much more important, it allows one to 
reduce the computational burden of the algorithm considerably. Indeed, using the 
direct procedure corresponding to Equation (1.20) one has to evaluate the system 
structure function for each combination of values of random variables G1, …, G7

( 7
1j jk times, where kj is the number of states of element j). Using the recursive 

algorithm one can take advantage of the fact that some subsystems have the same 
performance rates in different states, which makes these states indistinguishable 
and reduces the total number of terms in the corresponding u-functions.

In Example 4.3 the number of evaluations of the system structure function 
using the direct Equation (1.20) for the system with two-state elements is 27 = 128. 
Each evaluation requires calculating a function of seven arguments. Using the 
reliability block diagram method one obtains the system u-function just by 30 
procedures of structure function evaluation (each procedure requires calculating 
simple functions of just two arguments). This is possible because of the reduction 
in the lengths of intermediate u-functions by like terms collection. For example, it 
can be easily seen that in the subsystem of elements 2, 3 and 4 all eight possible 
combinations of the elements' states produce just two different values of the 
subsystem performance: 0 and min(g21, g31, g41) in the case of the flow 
transmission system, or 0 and g21g31g41/(g21g31+g21g41+g31g41) in the case of the 
task processing system. After obtaining the u-function U1(z) for this subsystem and 
collecting like terms one gets a two-term equivalent u-function that is used further 
in the recursive algorithm. Such simplification is impossible when the entire 
expression (1.20) is used. 

Example 4.4

Assume that in the series-parallel system presented in Figure 4.1A all of the system 
elements can have two states (elements with total failure). The system is 
unrepairable and the reliability of each element is defined by the Weibull hazard 
function

h(t) = t 1   

The accumulated hazard function takes the form 

H(t) = ( t)

The elements’ nominal performance rates gj1, the hazard function scale 
parameters j and the shape parameters j are presented in Table 4.6. One can see 
that some elements have increasing failure rates ( >1) that correspond to their 
aging and some elements have constant failure rates (  = 1). 

Since the MSS reliability varies with the time, in order to obtain the 
performance measures of the system the reliability of its elements Pr{Gj = gj1} = 
exp( Hj(t)) should be calculated for each time instant. Then the entire system 
characteristics can be evaluated for the given demand w. Figures 4.2, 4.3 and 4.4 

Universal Generating Function in Analysis of Series-Parallel Multi-state Systems 4
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present , R(w) and -(w) as functions of time for different types of system 
(numbered according to Table 4.4). 

Table 4.6. Parameters of system elements

Hazard function
parameters

No
of

element

Nominal
performance rate 

g

1 5 0.018 1.0 
2 3 0.010 1.2 
3 5 0.015 1.0 
4 4 0.022 1.0 
5 2 0.034 1.0 
6 6 0.012 2.2 
7 3 0.025 1.8 

Figure 4.2. System reliability function for different types of MSS
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Figure 4.3. System mean performance for different types of MSS 

Figure 4.4. System performance deficiency for different types of MSS
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4.1.4 Series-Parallel Multi-state Systems Reducible to Binary 
Systems

In some special cases the reliability (availability) of the entire system can be 
obtained without derivation of its u-function. In the final stage of reliability 
evaluation, such systems can be treated as binary systems.

Consider, for example, a flow transmission system consisting of n independent 
multi-state components connected in a series (each component in its turn can be a 
series-parallel subsystem). Let Gj be the random performance of component j. The 
structure function of the series flow transmission system is 

},...,min{),...,( 11 nn GGGGG .

n

j
jn wGwGGwGF

1
1 )(1)},...,(min{1),(  (4.13) 

The system’s reliability is defined as the probability that G is no less than w and 
takes the form 

 }1)(1Pr{}1),(Pr{)(
1

n

j
j wGwGFwR

 }1),(Pr{}1)(1Pr{
11

n

j
j

n

j
j wGFwG   (4.14) 

This means that the system’s reliability is equal to the product of the reliabilities of 
its components.

Each component j can be considered to be a binary element with the state 
variable ),( wGFX jj  and the entire system becomes the binary series system 

with the state variable X and the binary structure function :

n

j
jn XXXXwGF

1
1 ),...,(),(  (4.15) 

The algorithm for evaluating the system reliability can now be simplified. It 
consists of the following steps: 

1. Obtain the u-functions Uj(z) of all of the series components. 
2. Obtain the reliability of each component j as )).(()( zUwR jwj

Assume that the system should meet a constant demand w. Therefore, the 

system acceptability function takes the form ).(1),( wGwGF It can be seen that 

in this special case 
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3. Calculate the entire system reliability as 
n

j
jw

n

j
j zUwRR

11
))(()( .

It can easily be seen that for the discrete random demand with p.m.f.                    
w = {w1, …, wM}, q = {q1,…, qM} the system reliability takes the form 

n

j
jw

M

m
m

n

j
mj

M

m
mm

M

m
m zUqwRqwRqR

m
11111

))(()()(  (4.16) 

Another example is a flow transmission system without flow dispersion 
consisting of n independent multi-state components connected in parallel. The 
structure function of such a system is }.,...,max{),...,( 11 nn GGGGG  If the 

system should meet a constant demand w, its acceptability function also takes the 
form ).(1),( wGwGF  The probability of the system’s failure is 

))}(1Pr{1()}(1Pr{)}(1Pr{

}},...,Pr{max{}Pr{}0),(Pr{

111

1

n

j
j

n

j
j

n

j
j

n

wGwGwG

wGGwGwGF

 )}1),(Pr{1(
1

n

j
j wGF  (4.17) 

The entire system reliability can now be determined as

)}1),(Pr{1(1

}0),(Pr{1}1),(Pr{

1

n

j
j wGF

wGFwGF

 (4.18) 

This means that each component j can be considered to be a binary element 
with the state variable ),( wGFX jj  and the entire system becomes the binary 

parallel system with the state variable X and the binary structure function 

)1(1),...,(),(
1

1

n

j
jn XXXXwGF  (4.19) 

After obtaining the u-functions Uj(z) of all of the parallel components one can 
calculate the system reliability as 

)))((1(1))(1(1)(
11

n

j
jw

n

j
j zUwRwR  (4.20) 
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for the constant demand and as 

]}))((1[1{]})(1[1{
1111

n

j
jw

M

m
m

n

j
mj

M

m
m zUqwRqR

m
 (4.21) 

for the discrete random demand. 

Example 4.5

Consider the flow transmission series-parallel system presented in Figure 4.5. The 
system consists of three components connected in a series. The first component 
consists of two different elements and constitutes a subsystem without flow 
dispersion. The second and third components are subsystems with a flow 
dispersion consisting of two and three identical elements respectively. Each 
element j can have only two states: total failure (corresponding to a performance of 
zero) and operating with the nominal performance gj1. The availability of element j
is pj1.

Figure 4.5. Example of a series-parallel system reducible to a binary system 

The u-functions of the individual elements are: 

060
1 1.09.0)( zzzu , 040

2 2.08.0)( zzzu

020
43 2.08.0)()( zzzuzu

020
765 15.085.0)()()( zzzuzuzu

The u-functions of the components are obtained using the corresponding 

par
operators:

02040020020
2

04060040060
1

04.032.064.0)2.08.0()2.08.0()(

02.008.09.0)2.08.0()1.09.0()(
max

zzzzzzzzU

zzzzzzzzU

02040603020

020020020
3

00340057403251061410)15.085.0(

)15.085.0()15.085.0()15.085.0()(

z.z.z.z.zz

zzzzzzzU

        g11=60, p11=0.9

        g21=40, p21=0.8

        g31=20, p31=0.8

        g41=20, p41=0.8

       g51=20, p51=0.85

        g71=20, p71=0.85

        g61=20, p61=0.85
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For demand w = 20 we obtain 

98.0)02.008.09.0())(( 04060
20120 zzzzU

 96.0)04.032.064.0())(( 02040
20220 zzzzU

9966.0)00340

057403251061410())((
0

204060
20320

z.

z.z.z.zU

The entire system availability is 

9376.09966.096.098.0

))(())(())(()20( 320220120 zUzUzUA

For demand w = 40 we obtain 

 9.0)02.008.09.0())(( 02060
40140 zzzzU

 64.0)04.032.064.0())(( 02040
40240 zzzzU

9392.0)00340

057403251061410())((
0

204060
40340

z.

z.z.z.zU

The entire system availability is 

541.09392.064.09.0

))(())(())(()40( 340240140 zUzUzUA

If the demand is the random variable W with p.m.f. w = {20, 40}, q = {0.7, 
0.3}, the system availability is 

 8186.0541.03.09376.07.0)40(3.0)20(7.0 AAA

It should be noted that only the reliability (availability) of series-parallel 
systems can be evaluated using the MSS reduction to the binary system. The 
evaluation of the mean performance and the performance deviation measures still 
require the derivation of the u-function of the entire system. 

4.2 Controllable Series-Parallel Multi-state Systems

Some series-parallel systems can change their configuration following certain rules 
aimed at achieving maximal system efficiency. Such systems belong to the class of 
controllable systems. If the rules that determine the system configuration depend 
on external factors,then thesystemreliabilitymeasuresshould be determined for each 
possible configuration. If the rules are based on the states of the system elements,

then they can be incorporated into algorithms evaluating the system reliability 
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measures. The application of simple operators 
ser

and
par

over u-functions of 

the system elements is usually not enough in order to obtain the u-function of the 
entire system since its structure function is affected by the configuration control 
rules.

Examples of systems with controllable configuration are systems that contain 
elements with fixed resource consumption [105]. Many technical devices 
(processes) can work only if the available amount of some of the resources that 
they consume is not lower than the specified limits. If this requirement is not met, 
then the device (process) fails to work. An example of such a situation is a control 
system that stops the controlled process if a decrease in its computational resources 
does not allow the necessary information to be processed within the required cycle 
time. Another example is a metalworking machine that cannot perform its task if 
the flow of coolant supplied is less than required.

For a resource-consuming system that consists of several units, the amount of 
resource necessary to provide the normal operation of a given composition of the 
main producing units (controlled processes or machines) is fixed. Any deficit of 
the resource makes it impossible for all of the units from the composition to 
operate together (in parallel), because no unit can reduce the amount of resource it 
consumes. Therefore, any resource deficit leads to turning off some of the 
producing units. 

 Consider a system consisting of H resource-generating subsystems (RGSs) 
that supply different (not interchangeable) resources to the main producing system 
(MPS). RGSs can have an arbitrary series-parallel configuration, while the MPS 
consists of n elements connected in parallel (Figure 4.6). Each element of the MPS 
is an element with total failure and can perform in its working state only by 
consuming a fixed amount of resources. The MPS is the flow transmission system 
with flow dispersion. If, following failures, in any RGS there are not enough 
resources to allow all of the available producing elements to work, some of these 
elements should be turned off. We assume that the choice of the working MPS 
elements is made by a control system in such a way as to maximize the total 
performance rate of the MPS under the given resource constraints. 

Figure 4.6. Structure of controllable system with fixed resource consumption 

          g11, p11,w11,w12,…,w1H

          g21, p21,w21,w22,…,w2H

          gn1, pn1,wn1,wn2,…,wnH

…

MPS

G

RGS 1 
U1(z)

   RGS 2 
    U2(z)

…
  RGS H
   UH(z)

B1

B2

BH
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Assume that the RGS h produces a random amount Bh of the resource. The 

p.m.f. of Bh is represented by the u-function 1
0)( h hik

i hih zqzU , where hi is 

the performance rate of RGS h in state i and qhi = Pr{Bh = hi}. Each element j of 
the MPS has a nominal performance gj1 and availability pj1 and requires the amount 
wjh of each resource h ( Hh1 ) for normal functioning (if different MPS 
elements consume different subsets of the set of H resources, this can be 
represented by assigning zero to wjh for any resource h that is not required by 
element j). The p.m.f. of the random performance Gj of element j is represented by 

the u-function .)1()( 0
11

1 zpzpzu j
g

jj
j  The distribution of the available 

performance of the entire MPS MPSG  can be obtained as 

)).(),...,(()( 1MPS zuzuzU n Observe that the performance MPSG  represents the 

potential performance ability of the MPS. It does not always coincide with the 
output performance of the entire system G. )(MPS zU  represents the conditional 

distribution of G corresponding to a situation when the resources are supplied 
without limitations. In order to take into account the possible deficiency of the 
resources supplied we have to incorporate the MPS control rule (the rule of turning 
the MPS elements off and on) into the derivation of the system u-function )(zU

representing the p.m.f. of G.

4.2.1 Systems with Identical Elements in the Main Producing 
System

If an MPS contains only identical elements with gj1 = g, pj1 = p and wjh = wh>0 for 
any j and h, the number of elements that can work in parallel when the available 
amount of resource h is hi is hi/wh , which corresponds to the total system 
performance hi = g hi/wh  (the remainder of the MPS elements must be turned 
off). It must be noted that hi represents the total theoretical performance, which 
can be achieved by using the available resource h by an unlimited number of 
producing elements. In terms of the entire system output performance, the u-
function of the RGS h can be obtained in the following form: 

hhi
h

hi
h wg

k

i
hi

k

i
hih zqzqzU /

1

0

1

0
)( (4.22)

 The RGS, which can provide the work of a minimal number of producing 
units, becomes the system’s bottleneck. This RGS limits the total system 
performance. Therefore, the u-function for a system containing H different RGS in 
terms of system output performance can be obtained as 

 ))(),...,(()( 1minRGS zUzUzU H  (4.23) 
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Function )(RGS zU represents the entire system performance distribution in the 

case of an unlimited number of available elements in the MPS.
 The entire system performance is equal to the minimum of the total theoretical 

performance, which can be achieved using available resources and the total 
performance of the available MPS elements. To obtain the u-function U(z) of the 
entire system representing the p.m.f. of its performance G, the same operator 

min
should be applied over the u-functions )(RGS zU and )(MPS zU :

 ))(),(),...,(()()()( MPSminMPSminRGS 1 zUzUzUzUzUzU H

 )))(),...,((),(),...,(( 11min
zuzuzUzU nH  (4.24)

4.2.2 System with Different Elements in the Main Producing 
System

If the MPS consists of n different elements, then it can be in one of 2n possible 
states corresponding to the different combinations of the available elements. Let S
be a random set of numbers of available MPS elements and Sk be a realization of S

in state k ).21( nk  The probability of state k can be evaluated as follows: 

)(1
1

1

)(1
1 )1(

~
kk Si

j

n

j

Sj
jk ppP  (4.25) 

The maximal possible performance of the MPS and the corresponding maximal 
resources consumption in state k are

)(1
1

1

max )( kSj
j

n

j
k gg  (4.26) 

and
n

j

Sj
jhhk

kww
1

)(1max )( ( Hh1 ) (4.27)

respectively.
 Let us define a u-function representing the distribution of the random set of 
available elements. For a single element j this u-function takes the form 

zpzpzu j
j

jj )1()( 1
}{

1  (4.28) 
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Using the union procedure  in the composition operator  we can obtain the 

distribution of the random set of available elements in the system consisting of 
several elements. For example, if the MPS consists of two elements 

zpzpzu )1()( 11
}1{

111 , zpzpzu )1()( 21
}2{

212  (4.29) 

and the distribution of the set of available elements takes the form 

}1{
2111

}2,1{
21112111

}2{
2111

}1{
2111

}2{}1{
2111

21
}2{

2111
}1{

11

21

)1()1)(1(

)1()1(

])1([])1([

)()()(MPS

zppzppzpp

zppzppzpp

zpzpzpzp

zuzuzU

zppzpp )1)(1()1( 2111
}2{

2111  (4.30) 

For an MPS consisting of n elements the u-function representing the 
distribution of a random set of available elements takes the form 

k

n
S

k
knMPS zPzuzuzU

2

1
1

~
))(),...,(()(  (4.31) 

 When each RGS h is in state ih the amount 
hhi of the resource generated by 

this RGS can be not enough to provide the maximal performance of the MPS at 
state k. In order to provide the maximum possible performance G of the MPS 
under the resource constraints one has to solve the following linear programming 
problem for any combination of states i1,…,iH of H RDSs and state k of the MPS: 

k
H

Sj
jjkHiii xgS 121 max),,...,,(opt

21

 subject to  

}1,0{

1for,

j

Sj
hijjh

x

Hhxw
k

h

  (4.32) 

where xj = 1 if the available element j is turned on (works providing performance 
rate gj1 and consuming wjh of each resource )1 Hh  and xj = 0 if the element is 

turned off. 
 The performance distribution of the entire system can be obtained by 

considering all of the possible combinations of the available resourcesgenerated by 
the RGS and the states of the MPS. For each combination, a solution of the above 
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formulated optimization problem defines the system’s performance. The u-function
representing the p.m.f. of the entire system performance G can be defined as 
follows:

))(),(),...,(()( MPSopt 1 zUzUzUzU H

1

0

),,...,,(opt2

11

1

0

1

0

2211
2

2

1

1

~
)(...

H

H

kHHiii

n

h

k

i

S

k
k

H

h
hi

k

i

k

i
zPq  (4.33) 

To obtain the system u-function, its optimal performance should be determined 
for each unique combination of available resources and for each unique state of the 
MPS. In general, the total number of linear programs to be solved in order to 

obtain U(z) is .2 1
H
h h

n k  In practice, the number of programs to be solved can be 

reduced drastically using the following rules: 
1. If for the given vector 

HHii ,...,
11  and for each element j from the given 

set of MPS elements Sk there exists h for which jhhi w
h

, then the system 

performance is equal to zero. In this case the system performance is equal to zero 
also for all combinations ),,...,(

11 mHjj S
H

 such 

that
HH HiHjij ,...,

11 11 and .km SS

2. If element j Sk exists for which jhhi w
h

 for some h, this means that in 

the program (4.32) xj must be zeroed. In this case, the integer program dimension 
can be reduced by removing all such elements from Sk.

3. If for the given vector
HHiii ...,,

21 21  and for the given set Sk the solution 

of the integer program (4.32) determines subset kŜ  of turned-on MPS elements 

( kSj ˆ if xj=1), then the same solution must be optimal for the MPS states 

characterized by any set Sm:  .ˆ
kmk SSS  This allows one to avoid solving 

many integer programs by assigning the value of ),...,,(opt
21 21 kHiii S

H
 to all 

the ),...,,(opt
21 21 mHiii S

H
.

Example 4.6

Three different metalworking units (Figure 4.7) have the respective productivities 
and availabilities g11=10, p11=0.8, g21=15, p21=0.9 and g31=20, p31=0.85. The 
system productivity should be no less than a constant demand w. Each unit 
consumes two resources: electrical power and coolant.

The constant power consumption of the units is w11 = 5, w21 = 2, w31 = 3. The 
power is supplied by the system consisting of two transformers that work without 
load sharing (only one of the two transformers can work at any moment). The 
power of the transformers is 10 and 6. The availability of the transformers is 0.9 
and 0.8 respectively. The constant coolant flow consumed by the units is w12 = 4, 
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w22 = 5 w32 = 7. Two identical pumps working in parallel supply the coolant (both 
pumps can work simultaneously). The nominal coolant flow provided by each 
pump is 9. The availability of each pump is 0.8. 

Figure 4.7. Example of controllable series-parallel system

The u-function representing the distribution of available power takes the form 

061006010
1 02.008.09.0)2.08.0()1.09.0()(

max
zzzzzzzzU

and the u-function representing the distribution of the available coolant takes the 
form

09180909
2 04.032.064.0)2.08.0()2.08.0()( zzzzzzzzU

The u-function representing the distribution of the set of available 
metalworking units takes the form 

}3,2,1{}3,2{}3,1{}2,1{

}3{}2{}1{

}3{}2{}1{

6120153006801080

0170027001200030)15.0

85.0()1.09.0()02.08.0()(MPS

z.z.z.z.

z.z.z.z.z

zzzzzzU

The values of the opt function obtained for all of the possible combinations of 
available metalworking units (realizations Sk of the random set S) and available 
resources (realizations of B1 and B2) are presented in Table 4.7.  The table contains 

the maximal possible productivity of the MPS max
kg and the corresponding 

maximal required resources max
hkw  for any set Sk that is not empty. It also contains 

the optimal system productivity G (values of the opt function) and the 

corresponding sets of turned-on elements .ˆ
kS

1

2

3
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Table 4.7. Solutions of a linear program for a system with different elements in 
an MPS 

    B1=6, B2=9 B1=6, B2=18 B1=10, B2=9 B1=10, B2=18

Sk
max
kg max

1kw max
2kw kŜ G kŜ G kŜ G kŜ G

{1} 10 5 4 {1} 10 {1} 10 {1} 10 {1} 10 

{2} 15 2 5 {2} 15 {2} 15 {2} 15 {2} 15 

{3} 20 3 7 {3} 20 {3} 20 {3} 20 {3} 20 

{1,2} 25 7 9 {2} 15 {2} 15 {1,2} 25 {1,2} 25 

{1,3} 30 8 11 {3} 20 {3} 20 {3} 20 {1,3} 30 

{2,3} 35 5 12 {3} 20 {2,3} 35 {3} 20 {2,3} 35 

{1,2,3} 45 10 16 {3} 20 {2,3} 35 {1,2} 25 {1,2,3} 45 

It is obvious that if kS  then the entire system performance is equal to 

zero. If      B1 = 0 or B2 = 0 then the entire system performance is also equal to zero 
according to rule 1 (these solutions are not included in the table). Note that the 
solutions marked in bold are obtained without solving the linear program (they 
were obtained using rule 3 from the solutions marked in italic). 

The u-function of the entire system obtained in accordance with Table 4.7 after 
collecting the like terms takes the following form: 

4535302520

15100}3,2,1{}3,2{

}3,1{}2,1{}3{}2{}1{

09180610

35301270039027001040

03370011300620)]61201530

068010800170027001200030(

),04.032.064.0(),02.008.09.0[()(
opt

z.z.z.z.z.

z.z.z.z.z.

z.z.z.z.z.z.

zzzzzzzU

Having the system u-function we can easily obtain its mean performance 

94.30453530351270300390

25270020104015033701001130)1('

...

....U

and availability. For example, for system demand w = 20: 

893.035301270039027001040

)35301270039027001040

03370011300620())(()20(
4535302520

15100
2020

.....

z.z.z.z.z.

z.z.z.zUA

The system availability as a function of demand is presented in Figure 4.8. 
Now consider the same system in which the MPS consists of three identical 

units with parameters gj1 = 20, pj1 = 0.85, wj1 = 3 and wj2 = 7. The reliability 
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measures of such a system can be obtained in an easier manner by using the 
algorithm presented in Section 4.2.1. 

From the u-functions of the RGSs U1(z) and U2(z) by applying Equation (4.22) 
we obtain for the first RGS: 

04060

5/0203/6203/1020
1

02.008.09.0

02.008.09.0)(

zzz

zzzzU

and for the second RGS: 

02040

7/0207/9207/1820
2

04.032.064.0

04.032.064.0)(

zzz

zzzzU

The u-function of the MPS is 

0204060

30200200

20020

00340057403251061410

)15.085.0()15.085.0()15.0

85.0()15.085.0()(MPS

z.z.z.z.

zzzzz

zzzzU

The u-function of the entire system after collecting the like terms takes the form: 

02040

0204060

0204004060

21

0624.03486.0589.0

)00340057403251061410(

)04.032.064.0()02.008.09.0(

)()()()(

min

min

MPSminmin

zzz

z.z.z.z.

zzzzzz

zUzUzUzU

From the system u-function we can obtain its mean performance 

532.30203486.040589.0)1('U

and its availability. For example, for w = 20: 

9375.03486.0589.0

)0624.03486.0589.0())(()20( 02040
2020 zzzzUA

The system availability as a function of demand is presented in Figure 4.8. 

4 Universal Generating Function in Analysis of Multi-state Series-parallel Systems 
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Figure 4.8. Availability of controllable series-parallel system as a function of demand

Since the system consists of three subsystems connected in a series and can be 

be obtained without derivation of the entire system u-function U(z) using the 

w = 20 is calculated using this simplified technique in Example 4.5. 

 The RGS-MPS model considered can easily be expanded to systems with a 
multilevel hierarchy. When analyzing multilevel systems, the entire RGS-MPS 
system (with its performance distribution represented by its u-function) may be 
considered in its turn as one of the RGSs for a higher level MPS (Figure 4.9). 

Figure 4.9. RGS-MPS system with hierarchical structure

0

0.

0.

0.

0.

1

0 1 2 3 4 5
w

    MPS 

 RGS   …     RGS 

RGS

   MPS 

 RGS   …     RGS 

RGS

  … 

    MPS 

    G
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considered as a flow transmission system, its availability for any given demand can 

simplified technique described in Section 4.1.4. The availability of the system for 

Identical MPS elements
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4.3 Multi-state Systems with Dependent Elements 

One of the main assumptions made in the previous sections is statistical 

independency of system elements. This assumption is not true for many technical 

systems. Fortunately, the UGF approach can be extended to cases when the 

performance distributions of some system elements are influenced by the states of 

other elements or subsystems [106].

4.3.1 u-functions of Dependent Elements 

Consider a subsystem consisting of a pair of multi-state elements i and j in which 

the performance distribution of element j (p.m.f. of random performance Gj)

depends on the state of element i. Since the states of the elements are distinguished 

by their corresponding performance rates, we can assume that the performance 

distribution of element j is determined by the performance rate of element i. Let 

gi ={gih: 1 h ki} be the set of possible performance rates of element i. In general, 

this set can be separated into M mutually disjoint subsets gi
m (1 m M):

lml
i

m
ii

M

m

m
i if,,

1

gggg  (4.34) 

such that when element i has the performance rate gih gi
m the PD of element j is 

defined by the ordered sets gj|m = {gjc|m, 1 c Cj|m} and qj|m = {qjc|m, 1 c Cj|m},

where

 qjc|m = Pr{Gj = gjc|m | Gi = gih gi
m} (4.35) 

If each performance rate of element i corresponds to a different PD of element j,

then we have M = ki and gi
m = {gim}.

We can define the set of all of the possible values of the performance rate of 

element j as 
M

m
mjj

1
|gg and redefine the conditional PD of element j when 

element i has the performance rate gih gi
m using two ordered sets gj ={gjc, 1 c Cj}

and pj|m = {pjc|m, 1 c Cj }, where: 

mjjcmjc

mjjc

mjc
gq

g
p

||

|

|
,

,0

g

g
 (4.36) 

According to this definition 



126 The Universal Generating Function in Reliability Analysis and Optimization 

 pjc|m = Pr{Gj = gjc | Gi = gih gi
m} (4.37) 

for any possible realization of Gj and any possible realization of Gi gi
m.

Since the sets gi
m (1 m M) are mutually disjoint, the unconditional probability 

that Gj=gjc can be obtained as 

}Pr{}|Pr{
1

m
ii

M

m

m
iijcjjc GGgGp gg

)(1
11

|
m
iih

k

h
ih

M

m
mjc ppp

i

g  (4.38) 

In the case when gi
m = {gim}

ik

m
mjcimjc ppp

1
|  (4.39) 

The unconditional probability of the combination Gi = gih, Gj = gjc is equal to 

pihpjc| (h), where (h) is the number of the set to which gih belongs: gih gi
(h).

Example 4.7 

Assume that element 1 has the PD g1 = {0, 1, 2, 3},  p1 = {0.1, 0.2, 0.4, 0.3} and 

the PD of element 2 depends on the performance rate of element 1 such that when 

G1 2 (G1 g1
1 = {0,1,2}) element 2 has the PD g2|1 = {0, 10}, q2|1 = {0.3, 0.7} while 

when G1>2 (G1 g1
2={3}) element 2 has the PD g2|2 = {0, 5}, q2|2 = {0.1, 0.9}. The 

conditional PDs of element 2 can be represented by the sets g2 = {0,5,10} and p2|1

= {0.3, 0, 0.7},  p2|2 = {0.1, 0.9, 0}. 

The unconditional probabilities p2c are: 

 p21 = Pr{G2 = 0} = Pr{G2 = 0 | G1 g1
1}Pr{G1 g1

1}

 +Pr{G2 = 0 | G1 g1
2}Pr{G1 g1

2} = p21|1(p11+p12+p13)+ p21|2(p14)

  =  0.3(0.1+0.2+0.4)+0.1(0.3) = 0.24 

 p22 = Pr{G2 = 5} = Pr{G2 = 5 | G1 g1
1}Pr{G1 g1

1}

 +Pr{G2 = 5 | G1 g1
2}Pr{G1 g1

2} = p22|1(p11+p12+p13)+ p22|2(p14)

  =  0(0.1+0.2+0.4)+0.9(0.3) = 0.27 

 p23 = Pr{G2 = 10} = Pr{G2 = 10 | G1 g1
1}Pr{G1 g1

1}

 +Pr{G2 = 10 | G1 g1
2}Pr{G1 g1

2} = p23|1(p11+p12+p13)+ p23|2(p14)

 = 0.7(0.1+0.2+0.4)+0(0.3)=0.49 

The probability of the combination G1 = 2, G2 = 10 is 
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p13p23| (3) = p13p23|1 = 0.4 0.7 = 0.28. 

The probability of the combination G1 = 3, G2 = 10 is 

 p14p23| (4) = p14p23|2 = 0.3 0 = 0. 

The sets gj and pj|m 1 m M define the conditional PDs of element j. They can 

be represented in the form of the u-function with vector coefficients: 

j
jc

C

c

g
jcj zzu

1

)( p  (4.40) 

where

),...,,( |2|1| Mjcjcjcjc pppp  (4.41) 

Since each combination of the performance rates of the two elements Gi = gih,

Gj = gjc corresponds to the subsystem performance rate (gih, gjc) and the 

probability of the combination is pihpjc| (h), we can obtain the u-function of the 

subsystem as follows: 
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The function (gih, gjc) should be substituted by par(gih, gjc) or ser(gih, gjc) in 

accordance with the  type of connection between the elements. If the elements are 

not connected in the reliability block diagram sense (the performance of element i

does not directly affect the performance of the subsystem, but affects the PD of 

element j) the last equation takes the form 

j i j
jcjc

i
ih

C

c
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h

C

c

g
hjcih

g
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g
ihji zppzzpzuzu

1 1 1
)(|

1

)()( p  (4.43) 

Example 4.8 

Consider two dependent elements from Example 4.7 and assume that these 

elements are connected in parallel in a flow transmission system (with flow 

dispersion).  Having the sets g1={0, 1, 2, 3},  p1={0.1, 0.2, 0.4, 0.3}  and 

g2={0,5,10}, p2|1={0.3, 0, 0.7},  p2|2={0.1, 0.9, 0} we define the u-functions of the 

elements as 
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The u-function representing the cumulative performance of the two elements is 

obtained according to (4.42): 
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Now assume that the system performance is determined only by the output 

performance of the second element. The PD of the second element depends on the 

state of the first element (as in the previous example). According to (4.43) we 

obtain the u-function representing the performance of the second element: 
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4.3.2 u-functions of a Group of Dependent Elements 

Consider a pair of elements e and j. Assume that both of these elements depend on 

the same element i and are mutually independent given the element i is in a certain 

state h. This means that the elements e and j are conditionally independent given 

the state of element i. For any state h of the element i (gih gi
(h)) the PDs of the 

elements e and j are defined by the pairs of vectors ge, pe| (h) and gj, pj| (h), where 

pe| (h)= }.1|{ )(| ehec Ccp  Having these distributions, one can obtain the u-

function corresponding to the conditional PD of the subsystem consisting of 

elements e and j by applying the operators 



4 Universal Generating Function in Analysis of Multi-state Series-parallel Systems 129 
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where the function (gec, gjs) is substituted by par(gec, gjs) or ser(gec, gjs) in 

accordance with the  type of connection between the elements. Applying the 

Equation (4.44) for any subset gi
m (1 m M) we can obtain the u-function

representing all of the subsystem’s conditional PDs consisting of elements e and j

using the following operator over the u-functions )(zue  and :)(zu j
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where

)...,,,( ||2|2|1|1| MjsMecjsecjsecjsec pppppppp  (4.46) 

Example 4.9 

A flow transmission system (with flow dispersion) consists of three elements 

connected in parallel. Assume that element 1 has the PD g1 = {0, 1, 3}, 

p1 = {0.2, 0.5, 0.3}.

The PD of element 2 depends on the performance rate of element 1 such that 

when G1 1 (G1 {0, 1}) element 2 has the PD g2 = {0,3}, q2 = {0.3, 0.7} while 

when G1>1 (G1 {3}) element 2 has the PD g2 = {0, 5}, q2 = {0.1, 0.9}.

The PD of element 3 depends on the performance rate of element 1 such that 

when G1 = 0 (G1 {0}) element 3 has the PD g3 = {0, 2}, q3 = {0.8, 0.2} while 

when G1>0 (G1 {1, 3}) element 3 has the PD g3 = {0, 3}, q3 = {0.2, 0.8}.

The set g1 should be divided into three subsets corresponding to different PDs 

of dependent elements such that 

for G1 g1
1 = {0} g2|1 = {0, 3}, q2|1 = {0.3, 0.7} and g3|1 = {0, 2}, q3|1 = {0.8, 0.2} 

for G1 g1
2 = {1} g2|2 = {0, 3}, q2|2 = {0.3, 0.7} and g3|2 = {0, 3}, q3|2 = {0.2, 0.8} 

for G1 g1
3 = {3} g2|3 = {0, 5}, q2|3 = {0.1, 0.9} and g3|3 = {0, 3}, q3|3 = {0.2, 0.8} 

The conditional PDs of elements 2 and 3 can be represented in the following 

form:

 g2 = {0,3,5}, p2|1 =  p2|2 = {0.3, 0.7, 0},  p2|3 = {0.1, 0, 0.9} 
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 g3 = {0,2,3}, p3|1 = {0.8, 0.2, 0}, p3|2 =  p3|3 = {0.2, 0, 0.8} 

The u-functions )(1 zu  and )(2 zu take the form 

530
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320
3 )8.0,8.0,0()0,0,2.0()2.0,2.0,8.0()( zzzzu

The u-function of the subsystem consisting of elements 2 and 3 according to 

(4.45) is 
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Now we can replace elements 2 and 3 by a single equivalent element with the 

u-function )(4 zU  and consider the system as consisting of two elements with u-

functions u1(z) and ).(4 zU  The u-function of the entire system according to (4.42) 

is:
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Note that the conditional independence of two elements e and j does not imply 

their unconditional independence.  The two elements are conditionally independent 

if for any states c, s and h

 Pr{Ge = gec, Gj = gjs Gi = gih}

 = Pr{Ge = gec Gi = gih}Pr{Gj = gjs Gi = gih}
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The condition of independence of elements e and j

 Pr{Ge = gec, Gj = gjs} =  Pr{Ge = gec}Pr{Gj = gjs}

does not follow from the previous equation. In our example we have 

 Pr{G2 = 3} = p22|1 p11+ p22|2 p12+ p22|3 p13

 = 0.7 0.2 + 0.7 0.5 + 0 0.3 = 0.49 

 Pr{G3 = 3} = p33|1 p11+ p33|2 p12+ p33|3 p13

 = 0 0.2 + 0.8 0.5 + 0.8 0.3 = 0.64 

Hence

 Pr{G2 = 3}Pr{G3 = 3} = 0.49 0.64 = 0.3136 

while

 Pr{G2 = 3, G3 = 3} = p22|1 p33|1 p11+p22|2 p33|2 p12+p22|3 p33|3 p13

 = 0.7 0 0.2 + 0.7 0.8 0.5 + 0 0.8 0.3 = 0.28 

4.3.3 u-functions of Multi-state Systems with Dependent 
Elements

Consecutively applying the operators ,  and  and replacing pairs of 

elements by auxiliary equivalent elements, one can obtain the u-function

representing the performance distribution of the entire system. The following 

recursive algorithm obtains the system u-function:

1. Define the u-functions for all of the independent elements. 

2. Define the u-functions for all of the dependent elements in the form (4.40) 

and (4.41). 

3. If the system contains a pair of mutually independent elements connected in 

parallel or in a series, replace this pair with an equivalent element with the u-

function obtained by 
par

 or 
ser

operator respectively (if both elements 

depend on the same external element, i.e. they are conditionally independent, 

operators
par

or
ser

 (4.45) should be applied instead of 
par

or

ser
respectively).

4. If the system contains a pair of dependent elements, replace this pair with an 

equivalent element with the u-function obtained by
par

,
ser

or operator.

5. If the system contains more than one element, return to step 3. 
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The performance distribution of the entire system is represented by the u-function

of the remaining single equivalent element. 

Example 4.10 

Consider an information processing system consisting of three independent 

computing blocks (Figure 4.10). Each block consists of a high-priority processing 

unit and a low-priority processing unit that share access to a database. When the 

high-priority unit operates with the database, the low-priority unit waits for access. 

Therefore, the processing speed of the low-priority unit depends on the load 

(processing speed) of the high-priority unit. The processing speed distributions of 

the high-priority units (elements 1, 3 and 5) are presented in Table 4.8.

Table 4.8. Unconditional PDs of system elements 1, 3 and 5

g1 50 40 30 20 10 0 

p1 0.2 0.5 0.1 0.1 0.05 0.05 

g3 60 20 0    

p3 0.2 0.7 0.1    

g5 100 80 0    

p5 0.7 0.2 0.1    

The conditional distributions of the processing speed of the low-priority units 

(elements 2, 4 and 6) are presented in Table 4.9. The high- and low-priority units 

share their work in proportion to their processing speed. 

Figure 4.10. Information processing system

(A: structure of computing block; B: system logic diagram) 
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Table 4.9. Conditional PDs of system elements 2, 4 and 6

Condition for element 2 g2: 30 15 0 

0 G1<15 0.8 0.15 0.05 

15  G1<35 0.4 0.55 0.05 

35 G1<70

p2|m:

0 0.9 0.1 

Condition for element 4  g4: 30 15 0 

0 G3<15 0.8 0.15 0.05 

15 G3<35 0.6 0.35 0.05 

35 G3<70

p4|m:

0 0.95 0.05 

Condition for element 6 g6: 50 30 0 

0 G5<30 0.8 0.15 0.05 

30 G5<90 0.5 0.4 0.1 

90 G5<150

p6|m:

0.3 0.6 0.1 

The first two computing blocks also share the computational load in proportion 

to their processing speed. The third block obtains the output of the first two blocks 

and starts processing when these blocks complete their work. The system fails if its 

processing speed is lower than the demand w.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80

w

A (w )

A B C

Figure 4.11. System availability as a function of demand w

The system belongs to the task processing type. In order to obtain the UGF 

representing the system PD, we first define the u-functions u1(z), u3(z), u5(z) from 

the unconditional PDs of the corresponding elements and the u-functions

)(2 zu , )(4 zu , )(6 zu  in accordance with (4.40) and (4.41): 
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 u1(z) = 0.2z50+0.5z40+0.1z30+0.1z20+0.05z10+0.05z0

u3(z) = 0.2z60+0.7z20+0.1z0, u5(z) = 0.7z100+0.2z80+0.1z0

)(2 zu  = (0.8, 0.4, 0)z30+(0.15, 0.55, 0.9)z15+(0.05, 0.05, 0.1)z0

)(4 zu  = (0.8, 0.6, 0)z30+(0.15, 0.35, 0.95)z15+(0.05, 0.05, 0.05)z0

)(6 zu  = (0.8, 0.5, 0.3)z50+(0.15, 0.4, 0.6)z30+(0.05, 0.1, 0.1)z0

Then we apply the following operators producing the u-functions of the 

auxiliary equivalent elements: 

)()()( 217 zuzuzU , )()()( 438 zuzuzU

)()()( 659 zuzuzU

The obtained u-functions represent the PD of the three computing blocks. The 

PD of the subsystem consisting of two parallel blocks (equivalent element 10) is 

represented by

)()()( 8710 zUzUzU

The entire system can be represented as two elements with u-functions u10(z)

and u9(z) connected in series. Since the system belongs to the task processing type, 

its u-function is obtained by the operator (4.5) 

)()()( 910 zUzUzU

The system availability can now be obtained by applying the operator w over 

U(z): A(w)= w(U(z)). The system availability, as a function of demand w, is 

presented in Figure 4.11 (curve A). 

Example 4.11 

A continuous production system (Figure 4.12) consists of two consecutive 

production blocks. Each block consists of a main production unit and an auxiliary 

production unit that share some preventive maintenance resources (cleaning, 

lubrication, etc.). When the main production unit is intensively loaded, the lack of 

resources prevents the auxiliary unit from being intensively loaded with high 

availability.
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Figure 4.12. Continuous production system

(A: structure of production block; B: system logic diagram) 

The productivity distributions of the main production units (elements 1 and 3) 

are presented in Table 4.8. The conditional distributions of the auxiliary units’ 

productivities (elements 2 and 4) are presented in Table 4.9. The system fails if it 

does not meet the demand w.

The system belongs to the flow transmission type. In order to obtain the UGF 

representing the system PD, first we define the u-functions u1(z) and u3(z) from the 

unconditional PDs of the corresponding elements and the u-functions )(2 zu and

)(4 zu  in accordance with (4.40) and (4.41) (as in the previous example). 

Then we apply the following operators producing the u-functions of auxiliary 

equivalent elements corresponding to the production blocks: 

)()()( 215 zuzuzU , )()()( 436 zuzuzU

The entire system can be represented as two elements with u-functions U5(z)

and U6(z) connected in a series. Since the system belongs to the flow transmission 

type, its u-function takes the form: 

)()()( 65
min

zUzUzU

 The system availability is obtained as A(w) = w(U(z)). The system availability 

as a function of demand w is presented in Figure 4.11 (curve B). 

Example 4.12 

Consider a system with indirect influence of part of the elements on its 

performance.  A chemical reactor  contains six  heating elements and two  identical
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mixers (Figure 4.13). Two heating elements have nominal heating power 8 and 

availability 0.9, four heating elements have heating power 5 and availability 0.85. 

The heating elements are powered by two independent power sources with nominal 

power 25 and availability 0.95 for each one. The heating power of the elements 

cannot exceed the total power of the available sources. 

Figure 4.13. Chemical reactor (A: structure of reactor; B: system logic diagram)

The productivity distribution of each mixer depends on the cumulative power 

of the heaters. The greater the heating effect, the greater the productivity and 

availability of the mixers. The mixers are conditionally independent given the state 

of the heating subsystem. The conditional distributions of the mixers’ 

productivities (element 4) are presented in Table 4.10. The total productivity of the 

reactor is equal to the cumulated productivity of the two mixers. The system fails if 

it does not meet the demand w.

Table 4.10. Conditional performance distributions of the mixers

Condition g4: 40 30 15 0 

0  Gh<10 0 0 0.2 0.8 

10 Gh<20 0 0 0.8 0.2 

20  Gh<25 0 0.2 0.6 0.2 

25 Gh<30 0.3 0.4 0.2 0.1 

30  Gh<40

p4|m:

0.7 0.1 0.1 0.1 

The heating subsystem is the series-parallel system of flow transmission type. 

In order to obtain the UGF representing the subsystem PD, first we define the u-

functions u1(z), u2(z), u3(z) as 

 u1(z) = 0.95z25+0.05z0, u2(z) = 0.9z8+0.1z0, u3(z)=0.85z5+0.15z0
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and then obtain the u-function representing the PD of the subsystem by 

consecutively applying the composition operators. The u-function of the power 

supply system is 

)()()( 115 zuzuzU

The u-function of the heaters is obtained as follows: 

 )()()( 226 zuzuzU , )()()( 367 zuzUzU , )()()( 378 zuzUzU

 )()()( 389 zuzUzU , )()()( 3910 zuzUzU

Observe that this u-function can be obtained in a simpler manner by defining an 

auxiliary element with the u-function U7(z) equivalent to the u-function of two 

parallel elements 3: 

 )()()( 226 zuzuzU , )()()( 337 zuzuzU

 )()()( 778 zUzUzU , )()()( 8610 zUzUzU

The u-function of the entire heating system (power sources and heaters) is 

 )()()( 105
min

zUzUzUh

The mechanical system consists of two parallel mixers and belongs to the flow 

transmission type. Having the u-function )(4 zu  of a single mixer defined in 

accordance with (4.40) and (4.41) as 

)(4 zu = (0, 0, 0, 0.3, 0.7)z40+(0, 0, 0.2, 0.4, 0.1)z30

 +(0.2, 0.8, 0.6, 0.2, 0.1)z15+(0.8, 0.2, 0.2, 0.1, 0.1)z0

we obtain the u-function representing the conditional PDs of the system: 

)()()( 4411 zuzuzU

Since the heating system affects the reactor’s productivity only by influencing the 

PD of the mixers, we apply the operator:

)()()( 11 zUzUzU h

The system availability can now be obtained as A(w)= w(U(z)). The system 

availability as a function of demand w is presented in Figure 4.11 (curve C). 
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4.4 Common Cause Failures in Multi-state Systems 

Common cause (CC) failures (CCFs) are the failures of multiple elements due to a 

common cause (single occurrence or condition). The origin of CC events can be 

outside the system elements they affect (lightning or seismic events, sudden 

changes in the environment, a wide range of human interventions from 

maintenance errors, to intended enemy attacks), or they can originate from the 

elements themselves, causing other elements to fail (examples of such events are 

voltage surges caused by inappropriate switching in power systems leading to 

failure propagation, and pipe-whip events in high-pressure systems). The condition 

of a CCF occurring exists when some coupling factors affect a group of elements. 

These include the elements being:

- involved in the same process or procedure

- sharing a common resource 

- having similar design or interface 

- having the same manufacturer

- having the same or close location, etc.

CCFs increase joint-failure probabilities, thereby reducing the reliability of the 

technical systems. 

It is assumed that all of the elements that can fail due to a certain CC belong to 

a corresponding CC group (CCG). There can be several CCGs in a system, since 

several factors can affect the functioning of its elements. Within each CCG, several 

failure processes can exist that cause the simultaneous failure of different 

subgroups of this CCG. In order to estimate the system’s reliability, the 

characteristics of these failure processes should be included in the system model. 

The description of the methods for estimating the effect of CCFs on the reliability 

of the binary systems can be found in [107, 108].

4.4.1 Incorporating Common Cause Failures into Multi-state 
Systems Reliability Analysis

An algorithm presented in this section for incorporating the CCFs into the MSS 

reliability analysis is based on an implicit method suggested by Vaurio [109].  This 

implicit method uses formulas (derived by Chae and Clark [110]) for probabilities 

that specific elements subject to the same CCF remain in a working condition 

during a given time. 

Consider an MSS consisting of two-state elements (elements with total 

failures). The elements are mutually independent (except for the elements 

belonging to the same CCG). 

The system contains J CCGs such that each CCG j is defined by the set Cj of 

numbers of MSS elements belonging to this group.

Each element can belong to a single CCG (the CCGs are disjoint): Ci Cj=  if 

i j. Each CCG j consists of Lj elements. 

All of the elements subject to the same CC (belonging to the same CCG) have 

the same statistical characteristics (are statistically identical). 



4 Universal Generating Function in Analysis of Multi-state Series-parallel Systems 139 

All elements belonging to the same CCG are subject to CCF by a number of 

different failure events. Each failure event jk is independent and constitutes the 

simultaneous failures of a specific subset of k elements of CCG j. The probability 

of each failure event depends on the number of elements that fail, but it does not 

depend on the particular elements involved. Each particular element cannot 

individually affect the probability of the failure event it is involved in.

The implicit method for incorporating CCFs into the system reliability analysis 

suggested in [109] consists of the following three steps: 

1. Assign the unique reliability pj to all the basic system elements j.

2. Determine the expression for the system reliability in terms of the reliabilities 

of the basic elements without considering any CCF. This expression is in the 

form of an algebraic sum of the products (terms) of the basic element 

reliabilities.

3. In any term containing a product of k element reliabilities (i.e. p1p2...pk)

belonging to the same CCG j )1( jLk , replace that product with the 

probability
)(

,
k
Lj j

R that these specific k elements (which are subject to failure 

events ),...,1 jjLj  all remain in a working state.

This probability can be obtained recursively as follows [110]: 

n

kni
ij

k
nj RR

1

)1(
,

)(
,  (4.47) 

1
1

1

)1(
, ]

~
[

k
n

n

k
jknj PR (4.48)

where
)(

,
k
njR is the probability that specific k elements belonging to CCG j, which 

contains a total of the n elements, all remain in working condition 1(
)0(

,njR for any 

j and n by definition) and jkP
~

 is the probability of the non-occurrence of the failed 

state caused by the event .jk

The implicit method can be easily applied to an MSS if the final expression for 

its reliability is obtained in an explicit analytical form. Obtaining the analytical 

expressions for complex MSSs using the UGF method is an extremely time-

consuming task. In contrast, the method provides simple numerical algorithms for 

computing the system’s reliability for arbitrary time and demand without obtaining 

analytical expressions. To adapt the implicit method to the numerical algorithms, 

the modified u-function technique has been suggested [111]. 

In the u-function of the MSS subsystem e
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e
ei

k

i

g
eie zzU

1

)(   (4.49) 

the coefficients ei  are products of the reliabilities of the individual elements. In 

order to keep track of the occurrence of different reliability functions in these 

coefficients, the u-function is modified as follows:

e
eiei

k

i

g
eie zzU

1

,*)(
~ s

 (4.50)  

To obtain the system u-function in the form (4.50) from u-function (4.49), one 

has to perform the following steps for each term :eig
ei z

1. Assign 0 to the vector sei that consists of J integer numbers. 

2. Obtain coefficient *
ei  by replacing in the product kei ppp ...21 all of the 

reliabilities of the individual elements belonging to any CCG with 1.

3. When replacing reliability ph of element h belonging to CCG j, increment by 

1 the corresponding element sei(j) of the vector-indicator sei.  Finally each 

element sei(j) of the vector-indicator sei contains a number of replaced 

reliabilities of elements belonging to CCG j.

Based on these steps one can obtain the u-function )(~ zui of a single two-state 

MSS element i not belonging to any CCG as 

00000 ,
1
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1

,
1

,
1

11 )1()(~ f
i

fg
i

f
i

g
ii zpzzpzpzpzu ii  (4.51) 

where gi1 and pi1 are the nominal performance and reliability of the element 

respectively, f is a performance rate in the failed state. 

The u-function )(~ zul of the MSS element belonging to CCG j takes the form 

lll ffg
l zzzzu

s0s ,,,1)(~   (4.52) 

where .1for)(1)( Jkjkksl

The composition operators over u-functions (4.50) are the same as regular 

composition operators  except for the rule that defines the treatment of vector-

indicators:
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 (4.53) 
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The vector-indicators are always summed independently on function  chosen 

for a specific operator.

Consequently, applying the composition operators (4.53) in accordance with 

the reliability block diagram method (described in Section 4.1.3), one can obtain 

the u-function of the entire MSS in the form (4.50). In each term i of this sum, *
ei

is a product of the reliabilities of the basic elements not belonging to any CCG, and 

gei is the total MSS output performance in state i of the system. Each element sei(j)

of vector-indicator sei contains a number of elements belonging to CCG j that 

should also be taken into account when calculating the probability of the 

corresponding MSS state. Multiplying the *
ei  coefficients by the probabilities that 

specific sei(j) elements of each CCG j do not fail, one can obtain the probability of 

state i which should be the coefficient of the ith term of the u-function of the MSS 

calculated with respect to the CCF.

Thus, the u-function of an MSS can be obtained by applying the following 

operator over the u-function of the MSS: 

][))(
~
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  (4.54) 

The numerical algorithm for the evaluation of the entire MSS u-function with 

respect to CCF is as follows: 

1. Determine the reliabilities of the individual system elements pi and 

)0(
)(

, j
k
Lj

LkR
j

 values for each CCG j )1( Jj  using (4.47) and 

(4.48).

2. Determine the u-functions of the individual MSS elements using definitions 

(4.51) and (4.52). 

3. For a given MSS topology, obtain the entire system u-function )(
~

zU by

applying the composition operators (4.53) over the u-functions of the individual 

system elements (the  functions should be chosen in accordance with the 

system type and connection between the elements). 

4. Obtain the u-function of the MSS using the  operator (4.54) over ).(
~

zU

Example 4.13

Consider a series-parallel task processing MSS (with work sharing) containing two 

subsystems (components) connected in a series (Figure 4.14A).
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Figure 4.14. Examples of series-parallel MSS with CCF

The first component has three parallel elements with the same nominal 

performance rate: g11 = g21 = g31 = 5. The reliability of the first element is p1. Two 

other elements of the first component compose a CCG, which is characterized by 

the probabilities 11
~
P and 12

~
P . For this CCG, 

)1(
2,1R = 1211

~~
PP  and 

)2(
2,1R = 12

2
11

~~
PP . The 

second component has a single element with a nominal performance rate of g41=10

and the reliability p4. All of the elements have the performance f=0 when they fail. 

Following (4.51) and (4.52), we obtain the u-function for the first element as 

 u1(z) = p1z
5,(0)+z0,(0)  p1z

0,(0)

for elements belonging to the CCG as 

 u2(z) = u3(z) = z5,(1)+z0,(0) z0,(1)

and for element of the second component as

 u4(z) = p4z
10,(0)+(1 p4)z

0,(0)

The u-function of the first component is obtained using the  operator:

 U1(z) = (u1(z), u2(z), u3(z))

 = (p1z
5,(0)+z0,(0)  p1z

0,(0)) (z5,(1)+z0,(0) z0,(1)) (z5,(1)+z0,(0) z0,(1))

= p1z
15,(2)+(1 3p1)z

10,(2)+2p1z
10,(1)+(3p1 2)z5,(2)

 +2(1 2p1)z
5,(1)+ p1z

5,(0)+(1 p1)z
 0,(2)+2(p1 1)z0,(1)+(1 p1)z

0,(0)

The u-function of the second component is equal to the u-function of its single 

element U2(z)=u4(z).

To obtain the u-function )(
~

zU  corresponding to the entire system we use the 

operator:

 )(
~

zU  =  (U1(z),U2(z))=p1p4z
6,(2)+p4(1 3p1)z

5,(2)+2p1p4z
5,(1)

BA

CCG

g4=10, p4(t)g21=5

g31=5

4

1

2

3

5

7

9

10

6 8

CCG1

CCG2

g11=5, p1(t)
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+p4(3p1 2)z3.3,(2)+2p4(1 2p1)z
3.3,(1)+p1p4z

3.3,(0)+p4(1 p1)z
0,(2)

+p4(p1 1)z0,(1)+(1 p1p4)z
0,(0)

Now, using operator ,  we obtain the u-function for the entire system with respect 

to CCF:

 U(z) = ( )(
~

zU )=q1z
6+q2z

5+q3z
3.3+q4z

0

where    

 q1 =
)2(

2,1R p1p4= 12
2

11
~~
PP p1p4

 q2 =
)2(

2,1R p4(1 3p1)+2
)1(
2,1R p1p4= 12

2
11

~~
PP p4(1 3p1)+2 1211

~~
PP p1p4

 q3 =
)2(

2,1R p4(3p1 2)+2
)1(
2,1R p4(1 2p1)+p1p4

 = 12
2

11
~~
PP p4(3p1 2)+2 1211

~~
PP p4(1 2p1)+p1p4

 q4 =
)2(

2,1R p4(1 p1)+2
)1(
2,1R p4(p1 1)+(1 p1p4)

  = 12
2

11
~~
PP p4(1 p1)+2 1211

~~
PP p4(p1 1)+(1 p1p4)

The system performance distribution is determined by the vectors

 g = {6, 5, 3.3, 0}, q = {q1, q2, q3, q4}

Using the operators w we can obtain the system reliability for any demand w:

R(w) = w(U(z)) =

0,1

3.30,

53.3,

65,

6,0

4321

321

21

1

wqqqq

wqqq

wqq

wq

w



144 The Universal Generating Function in Reliability Analysis and Optimization 

Example 4.14 

The non-repairable series-parallel MSS (Figure 4.14B) consists of four components 

connected in a series. All of the MSS elements have Weibull cumulative hazard 

functions H(t) = ( t) . Parameters of the elements are presented in Table 4.11. The 

performance of any element in a failed state is f=0.

  Table 4.11. Parameters of MSS elements

Parameters of individual element cumulative 

hazard function H(t)=( t)

No of 

element

 i 

No of 

component

Nominal

performance

gi1

No of 

CCG

1 1 0.20 - - 1 

2 1 0.20 - - 1 

3 1 0.20 0.004 1.0 - 

4 1 0.50 0.001 0.5 - 

5 2 0.60 - - 1 

6 2 0.30 0.008 1.0 - 

7 2 0.20 - - 2 

8 3 1.30 - - 1 

9 4 0.85 0.0012 1.0 - 

10 4 0.25 - - 2 

There are two CCGs in the given MSS: C1={1, 2, 5, 8}, C2={7, 10}. The failure 

processes jk in these CCGs that govern simultaneous failures of a specific set of k

elements are characterized by the cumulative hazard functions ).(tH jk  The 

probability of the non-occurrence of the failure event governed by the process 

jk in time interval [0, t] is ))(exp()(
~

tHtP jkjk .

For CCG 1: 

 H11(t)=(0.001t)0.8, H12(t)=0.08H11(t)

 H13(t)=0.02H11(t),   H14(t)=0.007H11(t)

For CCG 2:

 H21(t)=0.003t,   H22(t)=0.2H21(t)

The structure presented is interpreted as flow transmission MSS with flow 

dispersion and task processing MSS with work sharing. The reliability functions 

R(t,w) for both MSSs obtained using the numerical algorithm described above are 

presented in Figure 4.15. One can see that the task processing MSS has more 

different levels of PD than the flow transmission MSS. This is due to the nature of 
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the operator ,min which, as distinct from the operator , reduces the diversity 

of the possible performance levels.

  A         B

Figure 4.15. Reliability functions R (t, w) for MSSs with CCF 

(A: flow transmission system; B: task processing system) 

To estimate the influence of CCF on MSS reliability we compare two systems 

of each type: an MSS without CCF in which elements belonging to the CCG j have 

their individual reliability functions equal to )(
~

1 tPj , and the same MSS with CCF. 

Since it is difficult visually to distinguish the differences between the three-

dimensional representations of reliability functions for the MSSs with and without 

CCF, we present them for fixed values of t (Figure 4.16) as R(w) and for fixed 

values of w (Figure 4.17) as R(t). One can see the effect of CCF in decreasing MSS 

reliability. In addition, the expected MSS performances )(t are presented for 

MSSs with and without CCF (Figure 4.17). 
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  A         B
Figure 4.16. Reliability functions R (25, w) and R (50, w) for MSSs with and without CCF 

(A: flow transmission system; B: task processing system) 

  A         B
Figure 4.17. Functions R (t, 0.3), R (t, 0.9) and )(t  for MSSs with and without CCF 

(A: flow transmission system; B: task processing system) 
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4.4.2 Multi-state Systems with Total Common Cause Failures

In some cases CCFs lead to the total outage of all of the elements belonging to the 

corresponding CCG. Usually, such total failures occur when a group of elements 

share the same resource (energy source, space, protection, etc.) that has limited 

availability. Examples of such situations include an electrical supply failure that 

causes an outage of all production units supplied from the same source or the 

failure of a waterproof casing that causes water penetration into the hermetic 

compartment and destruction of all the equipment located there. The algorithm for 

incorporating the total CCF in reliability analysis of MSSs is simpler than the 

general algorithm considered in the previous section. This algorithm can be easily 

extended to MSS with multi-state elements [112]. 

Consider a subsystem consisting of several elements that compose a series-

parallel structure. Assume that the elements are subject to a total CCF occurring 

with probability v. The total CCF leads to outage of all of the subsystem elements. 

The entire subsystem can have different performance rates, depending on the 

internal states of its elements. However, when the CCF occurs, the performance 

rate of the subsystem is f, which corresponds to its total failure.

The total or partial failures of subsystem elements and the entire subsystem 

failure due to common cause are independent events. Probabilities of all the states 

of the subsystem itself now should be treated as conditional probabilities, given the 

CCF does not occur. The only possible subsystem state, when the CCF occurs, is 

the state with the performance equal to f. If the u-function of a combination of 

elements composing the subsystem is Uj(z), then the u-function of the subsystem 

which takes into account the CCF can be determined using the following operator 

:

f
j vzzUv )()1())z(U( j  (4.55) 

One can model the subsystem with CCF as a series connection of the subsystem 

itself and an element representing the CCF, which has PD 

 Pr(G = x1) = 1 v,  Pr(G = x2) = v (4.56) 

where x1 corresponds to the state when CCF does not occur and x2 corresponds to 

the state when CCF occurs. Such a model should reflect the fact that the subsystem 

performance rate will be changed to f with probability  and will not be changed 

with probability 1 v. In order to provide this property, one has to define the values 

of x1 and x2 such that for any G

 .),(and),( 2ser1ser fxGGxG  (4.57) 

For any type of series-parallel systems described in Section 4.1, where f

corresponds to the performance rate 0, x1=  and x2=0 meet the requirement (4.57). 
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Using the 
ser

operator over Uj(z) and the u-function representing the PD (4.56) one 

obtains

00
j )()1()z)(1,)z(U())((

ser

vzzUvvzvzU jj  (4.58) 

Replacing any CCG with the u-function Uj(z) by an equivalent element with the 

u-function ))(( zU j  one can use the reliability block diagram method for 

obtaining the reliability of series-parallel systems with total CCF. 

Example 4.15 

Consider the series-parallel flow transmission MSS with flow dispersion presented 

in Figure 4.18.

Figure 4.18. Series-parallel MSS with total CCF

The system consists of two components connected in a series. The first 

component contains three parallel elements. The first and second elements are 

subject to CCF, which has probability v1 = 0.1. The second component contains 

two parallel elements that are subject to CCF with probability v2 = 0.2. Each 

element j can have two states: total failure with performance rate zero and normal 

functioning with nominal performance gj1. The availability pj1 and nominal 

performance of the elements are presented in Table 4.12. The system should meet 

the constant demand w = 2. 

First, we determine the u-functions for the individual elements as follows: 

 u1(z) = 0.9z1+0.1z0, u2(z) = 0.8z2+0.2z0, u3(z) = 0.8z2+0.2z0

 u4(z) = 0.9z2+0.1z0, u5(z) = 0.8z3+0.2z0

Using the operator , we determine the u-functions for the subsystem consisting 

of two parallel elements, 1 and 2: 

 u1(z)  u2(z) = (0.9z1+0.1z0)(0.8z2+0.2z0)=0.72z3+0.08z2+0.18z1+0.02z0

and for the subsystem consisting of two parallel elements 4 and 5: 

  1

  3

  2

  4

  5

CCFCCF

Component 1 Component 2
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u4(z) u5(z) =(0.9z2+0.1z0)(0.8z3+0.2z0)=0.72z5+0.08z3+0.18z2+0.02z0

Table 4.12. Parameters of MSS elements

No of element 

j

Availability

pj1

Nominal performance rate 

gj1

1 0.90 1.0 

2 0.80 2.0 

3 0.72 2.0 

4 0.90 2.0 

5 0.80 3.0 

To incorporate the total CCF into u-functions of the subsystems, we use the 

operator  (4.58): 

(u1(z) u2(z)) = (1 v1)(u1(z) u2(z))+v1z
0 = 0.9(0.72z3+0.08z2

 + 0.18z1+0.02z0)+0.1z0 = 0.648z3+0.072z2+0.162z1+0.118z0

(u4(z) u5(z)) = (1 v2)(u4(z) u5(z))+v2z
0 = 0.8(0.72z5+0.08z3

 + 0.18z2+0.02z0)+0.2z0 = 0.567z5+0.064z3+0.144z2+0.216z0

To obtain u-functions U1(z) for the entire first component, we consider it as a 

parallel connection of subsystem that has u-function (u1(z) u2(z)) and the 

element 3 with u-function u3(z):

 U1(z) = (u1(z) u2(z)) u3(z)

  =  (0.648z3+0.072z2+0.162z1+0.118z0)(0.72z2+0.28z0)

  =  0.4666z5+0.0518z4+0.298z3+0.1051z2+0.0454z1+0.033z0

The u-function of the second component, consisting of elements 4 and 5, is  

U2(z) = (u4(z) u5(z)). In order to obtain the u-function for the entire system 

consisting of two components connected in a series, we use the operator 
min

 over 

u-functions U1(z) and U2(z):

 U(z) = U1(z)
min

U2(z)  = (0.4666z5+0.0518z4+0.298z3+0.1051z2

 +0.0454z1+0.033z0)
min

(0.567z5+0.064z3+0.144z2+0.216z0)
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  =  0.269z5+0.03z4+0.224z3+0.2z2+0.035z1+0.242z0

This u-function represents the performance distribution of the entire MSS. Using 

the 2(U(z)) operator we obtain the system availability as

 A(2) = 0.269+0.03+0.224+0.2 = 0.723 

4.4.3 Multi-state Systems with Nested Common Cause Groups 

In the previous sections we assumed that the CCFs affecting different CCGs are 

independent. In many cases this model is not relevant because statistical 

dependence between the different CCFs exists. The typical examples of such a 

situation are systems with a multilevel protection. Such systems are used in many 

applications (nuclear, military, underwater, airspace systems, etc.) and are designed 

according to the so-called defence-in-depth methodology [113]. 

The multilevel protection means that a subsystem and its inner level protection 

are in turn protected by the protection of the outer level. This double-protected 

subsystem has its outer protection, and so forth. In such systems, the protected 

subsystems can be destroyed only if all of the levels of their protection are 

destroyed. Each level of protection can be destroyed only if all of the outer levels 

of protection are destroyed. This creates statistical dependence among the 

destruction events of  the different protection levels (different CCFs). The systems 

with multilevel protection can be considered as systems with nested CCGs in 

which the CCF in any group can occur only if the CCFs in all CCGs containing 

this group have occurred.

In this section we consider series-parallel MSSs with nested CCGs and total 

CCFs and make the following assumptions: 

 - The elements belonging to any CCG compose a series-parallel structure 

(Figure 4.19A). 

- Any CCG can belong to another CCG. For any pair of CCGs A and B 

A B  means that A B or B A, i.e. part of any CCG cannot belong to another 

CCG (Figure 4.19B). 

- CCF in any group m cannot occur if this group belongs to another group and 

the CCF in the outer group has not occurred. If the CCFs in all of the outer CCGs 

that include the CCG m have occurred, the CCF in CCG m can occur with the 

probability vm.

- Any element fails with probability 1 if CCFs in all of the CCGs that this 

element belongs to have occurred. 

- The performance of any failed element is equal to f.

- The element failure caused by the CCFs and the transitions of this element in 

the space of states caused by its individual failures and repairs are independent 

events.
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Figure 4.19. Impossible CCGs. (A: elements of CCG do not compose a series-parallel 

structure; B: two CCGs have common elements) 

The probability of each state of an element (or subsystem) belonging to some 

CCG depends on the CC event. Therefore, each subsystem belonging to a CCG is 

characterized by two conditional performance distributions: the first corresponds to 

the case when the CCF in this group occurs and the second corresponds to the case 

when the CCF in the group does not occur. In order to represent the performance 

distributions of a subsystem m belonging to some CCG, we introduce the following 

double u-function (d-function) dm(z)=<Um(z), )(
~

zUm >, where Um(z) and )(
~

zUm

represent performance distributions for the first and second cases respectively.

If CCF in a group consisting of a single basic element occurs, then this element 

fails with probability 1 and has the performance rate f. Therefore, for a basic single 

element j that has a performance distribution represented by the u-function uj(z)

dj(z)=<zf, uj(z)> (4.59) 

It can easily be seen that any pair of elements with d-functions dj(z) and di(z)

belonging to the same CCG can be replaced by the equivalent element (Figure 

4.20) with the d-function

)(
~

),()(
~

),()()( zUzUzUzUzdzd iijjij

)(
~

)(
~

),()( zUzUzUzU ijij  (4.60) 

where should be substituted by ser or par in accordance with the type of 

connection between the elements. 

Assume that the d-function of a series-parallel subsystem that constitutes CCG 

m obtained without respect to CCF in this group is dm(z)=<Um(z), )(
~

zUm >. Assume 

also that the group m belongs to an outer CCG h. If the CCF in group h occurs, 

then the CCF in group m can occur with probability vm. If this CCF occurs, then the 

subsystem has its performance distribution represented by the u-function Um(z); if 

the CCF does not occur (with probability 1 vm), then the subsystem has its 

 A  B 
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performance distribution represented by the u-function ).(
~

zU m Therefore, the 

conditional performance distribution of the group m given CCF in group h has 

occurred can be represented by the u-function

 vm )(zUm + (1 vm) )(
~

zUm  (4.61) 

In the case when the CCF in CCG h have not occurred, CCF in the group m

also cannot occur and its conditional performance distribution is represented by the 

u-function ).(
~

zU m

Figure 4.20. Basic equivalent transformations of system elements

These considerations allow one to incorporate the CCF that occurs in the CCG 

m with probability vm into the d-function of this group by replacing the group with 

an equivalent element (Figure 4.20) with the d-function obtained by applying the 

following operator 
mv over dm(z):

)(
~

),(
~

)1()(

)(
~

),())((

zUzUvzUv

zUzUzd

mmmmm

mmvmv mm  (4.62) 

   It can be seen that when vm = 1 the operator 
mv does not change the d-function.

Indeed, the totally vulnerable protection (which is equivalent to absence of any 

protection) cannot affect the performance distribution of the subsystem it protects. 

Consecutively applying the operators (4.60) and (4.62) and replacing the 

subsystems and the CCGs with equivalent elements, one can obtain the d-function

representing the performance distribution of the entire system. The algorithm for 

obtaining the d-function is based on the assumption that any system element 

dj(z) di(z)

dj(z)

di(z)

  dm(z)

 vm

))(( zdmvm

)()( zdzd ij
ser

)()( zdzd ij
par

   CCG m    CCG h 
CCG h
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belongs to at least one CCG. In order to make this algorithm universal we can 

always assume that the entire system belongs to an outer CCG (is protected by an 

outer protection). If such protection does not exist, then the outer protection with 

vulnerability v = 1 can be added without changing the system performance 

distribution. The following recursive algorithm obtains the system d-function:

1. Obtain the d-functions of all of the system elements using Equation 

(4.59).

2. If the system contains a pair of elements connected in parallel or in a 

series and belonging to the same CCG, replace this pair with an equivalent 

element with the d-function obtained by the 
par

 or 
ser

operator.

3. If the system contains a CCG consisting of a single element, replace this 

CCG with a single equivalent element with the d-function obtained using 

the
mv operator.

4. If the system contains more than one element or a CCG not replaced by a 

single element, return to step 2. 

5. Determine the d-function of the entire series-parallel system as the d-

function of the remaining single equivalent element d(z)=<U(z), )(
~

zU >.

According to the definition of the d-function, the u-function )(
~

zU corresponds

to the case when the CCFs in the system do not occur while the u-function U(z)

represents the entire system performance distribution in which all probabilities of 

the CCFs that can occur in the system are incorporated. The system reliability (or 

any other performance measure) can now be obtained by applying the 

corresponding operators over the u-function U(z).

Example 4.16 

Consider the system with multiple protection presented in Figure 4.21A. In this 

system, each CCG corresponds to a subsystem that has its own protection. Each 

CCG can contain other CCGs (protected subsystems). The CCF in any CCG 

corresponds to the destruction of the corresponding protection. If the protection of 

the CCG is destroyed, all unprotected elements in this CCG fail (the performance 

of a failed element is zero). The protection cannot be destroyed if an outer 

protection is not destroyed. 

Assume that the performance distribution of each individual element j is 

represented by the u-function uj(z). The destruction probability vm of each 

protection m is assumed to be known. The d-functions of the individual elements 

are

 d1(z) = <z0, u1(z)>, d2(z) = <z0, u2(z)>, d3(z) = <z0, u3(z)>

 d4(z) = <z0, u4(z)>, d5(z) = <z0, u5(z)>

According to the recursive algorithm, in order to obtain the system’s 

availability one has to perform the following steps: 
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Figure 4.21. Example of recursive algorithm

Replace elements 1 and 2 connected in series by a single equivalent element 7 

with the d-function

 d7(z) = d1(z)
ser

d2(z) = <z0, u1(z)>
ser

<z0, u2(z)> = <z0, u1(z)
ser

 u2(z)>

(see Figure 4.21B). 

Replace element 7 with its protection by an equivalent element 8 with the d-

function

 d8(z) =
1v (d7(z))=

1v <z0, u1(z)
ser

u2(z)>

 = <v1z
0 + (1 v1)u1(z)

ser

u2(z), u1(z)
ser

u2(z)>
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 (see Figure 4.21C). 

Replace elements 8 and 3 connected in parallel by a single equivalent element 9 

with the d-function (taking into account that u(z)
par

z0 =  u(z) for any u(z))

 d9(z) = d8(z)
par

d3(z)

 = <v1z
0 + (1 v1)u1(z)

ser

u2(z), u1(z)
ser

u2(z)>
par

<z0, u3(z)>

  = <v1z
0 + (1 v1)u1(z)

ser

u2(z),   (u1(z)
ser

u2(z))
par

u3(z)>

 (see Figure 4.21D). 

Replace element 4 with its inner protection by an equivalent element 10 with 

the d-function

 d10(z) =
2v (d4(z)) =

2v <z0, u4(z)> = <v2z
0 + (1 v2)u4(z), u4(z)>

see (Figure 4.21E). 

Replace element 10 with its protection by an equivalent element 11 with the d-

function

 d11(z) =
3v (d10(z))=

3v <v2z
0 + (1 v2)u4(z), u4(z)>

 = <v3v2z
0 + v3(1 v2)u4(z)+(1 v3)u4(z),  u4(z)>

 =<v2v3z
0 + (1 v3v2)u4(z), u4(z)>

(see Figure 4.21F). 

Replace elements 9 and 11 connected in parallel by a single equivalent element 

12 with the d-function

 d12(z) = d9(z)
par

d11(z)=<v1z
0 + (1 v1)u1(z)

ser

u2(z), (u1(z)
ser

u2(z))
par

u3(z)>
par

<v2v3z
0 + (1 v2v3)u4(z), u4(z)>

 = <v1v2v3z
0 + (1 v1)v2v3u1(z)

ser

u2(z) + v1(1 v2v3)u4(z)

 +(1 v1)(1 v2v3)(u1(z)
ser

u2(z))
par

u4(z), (u1(z)
ser

u2(z))
par

u3(z)
par

u4(z)>

 (see Figure 4.21G). 

Replace element 5 with its protection by an equivalent element 13 with the d-

function

 d13 (z) =
4v (d5(z)) = 

4v <z0, u5(z)> = <v4z
0 + (1 v4)u5(z), u5(z)>

(see Figure 4.21H). 
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Replace elements 12 and 13 connected in series by a single equivalent element 

14 with the d-function

 d14(z) = d12(z)
ser

d13(z) = <v1v2v3z
0 + (1 v1)v2v3u1(z)

ser

u2(z)

 + v1(1 v2v3)u4(z) + (1 v1)(1 v2v3)(u1(z)
ser

u2(z))
par

u4(z), (u1(z)
ser

u2(z))

par

u3(z)
par

u4(z)>
ser

<v4z
0 + (1 v4)u5(z), u5(z)>

 = <v4z
0+v1v2v3(1 v4)z

0 + (1 v1)v2v3(1 v4)u1(z)
ser

u2(z)
ser

u5(z)

 + v1(1 v2v3)(1 v4)u4(z)
ser

u5(z)

 + (1 v1)(1 v2v3)(1 v4)((u1(z)
ser

u2(z))
par

u4(z))

ser

u5(z), ((u1(z)
ser

u2(z))
par

u3(z)
par

u4(z))
ser

u5(z)>

 (see Figure 4.21I).

Finally, replace element 14 with its protection by an equivalent element 15 with 

the d-function

 d15(z) =
5v (d14(z)) =

5v <v4z
0 + v1v2v3(1-v4)z

0

 + (1 v1)v2v3(1 v4)u1(z)
ser

u2(z)
ser

u5(z) + v1(1 v2v3)(1 v4)u4(z)
ser

u5(z)

 + (1 v1)(1 v2v3)(1 v4)((u1(z)
ser

u2(z))
par

u4(z))
ser

u5(z), ((u1(z)
ser

u2(z))

par

u3(z)
par

u4(z))
ser

u5(z))>

 = < v4v5z
0 + v1v2v3(1 v4)v5z

0 + (1 v1)v2v3(1 v4)v5u1(z)
ser

u2(z)
ser

u5(z)

+ v1(1 v2v3)(1 v4)v5u4(z)
ser

u5(z)

 + (1 v1)(1 v2v3)(1 v4)v5((u1(z)
ser

u2(z))
par

u4(z))
par

u5(z)

 + (1 v5)((u1(z)
ser

u2(z))
par

u3(z)
par

u4(z))
par

u5(z), ((u1(z)
ser

u2(z))

par

u3(z)
par

u4(z))
ser

u5(z) > 

(see Figure 4.21J). 
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The entire system performance distribution is represented by the first u-

function of d15(z)

 U(z) = v4v5z
0 + v1v2v3(1 v4)v5z

0 + (1 v1)v2v3(1 v4)v5u1(z)
ser

u2(z)
ser

u5(z)

+ v1(1 v2v3)(1 v4)v5u4(z)
ser

u5(z)

 + (1 v1)(1 v2v3)(1 v4)v5((u1(z)
ser

u2(z))
par

u4(z))
par

u5(z)

 + (1 v5)((u1(z)
ser

u2(z))
par

u3(z)
par

u4(z)) u5(z)

Example 4.17 

Consider a series-parallel MSS (power substation) that consists of three basic 

subsystems (Figure 4.22A): 

1. blocks of commutation equipment (elements 1-5); 

2. power transformers (elements 6-8); 

3. output medium voltage line sections (elements 9-12). 

All of the elements of this flow transmission system (with flow dispersion) are 

two-state units with nominal performance rates (the power that the elements can 

transform/transmit) gj1 and the availabilities pj1 presented in Table 4.13.  The failed 

elements have performance zero. 

Table 4.13. Parameters of elements of power substation 

j 1 2 3 4 5 6 7 8 9 10 11 12 

gj1
2 6 6 3 5 5 4 5 4 3 4 5 

pj1
0.92 0.90 0.95 0.88 0.95 0.97 0.97 0.97 0.93 0.96 0.90 0.94 

The d-function of two-state element j takes the form 

 dj(z) = <z0, pj1
1j

g
z + (1 pj1)z

0>

In order to increase the system survivability (the probability that the system 

meets demand w) in the case of an external attack, the system can be divided into 

four spatially separated groups represented by the following sets of elements: 

{1,2,3}, {4}, {6,7,9,10,11} and {5,8,12}. The probability of impact in the case of 

attack is v1 = 0.3. Since the groups are separated, no more than one group can be 

affected by a single impact. Four subsystems belonging to the separated groups can 

be protected (located indoors within concrete constructions). These subsystems 

include elements 2 and 3, element 6, elements 9 and 10, elements 5, 8 and 12. The 

probability of protection destruction in the case of impact is v2 = 0.6, while the 

probability of destruction of the unprotected elements in the case of impact is 1 

(unprotected elements do not survive the impact). 
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Figure 4.22. Series-parallel power substation (system with multilevel protection)

In order to evaluate the influence of each type of protection, four different 

configurations are compared: 

A.  Both separation and indoor allocation are applied (Figure 4.22A). 

B. All of the elements are gathered in the same place (no separation). Indoor 

allocation is applied (Figure 4.22B). 

C. The groups of elements are separated, but all of the elements are located 

outdoors (Figure 4.22C). 

D. All of the elements are gathered in the same place and located outdoors 

(Figure 4.22D). 

In Figure 4.23, one can see the system survivability (obtained using the method 

presented in this section) as a function of the demand for cases A, B, C, and D.

Observe that the protection of parts of the system is not effective when the 

system tolerates only a very small decrease of its performance below its maximal 

possible performance. In our case the indoor allocation of some system elements 

can increase the system survivability only when w 9 (compare curves B and D). 
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Indeed, in the case of impact, even if all of the elements located indoors survive, 

they cannot provide the system's performance greater than 9. 

The separation is also effective only when the demand is considerably smaller 

than the maximal possible system performance. Moreover, the separation can 

decrease the system’s survivability when the demand is close to its maximal 

performance. Indeed, by separating the system elements one creates additional 

vulnerable CCGs, which contribute to an additional overall system exposure to the 

impact. When the demand is relatively small, the separation increases the system’s 

survivability because the smaller parts can be destroyed by a single impact. In our 

case, the separation is effective for w 5. When w>5 the separation decreases the 

system’s survivability (compare curves C and D). 

The total survivability improvement achieved by separation and protection of 

its elements for w 5 is greater than 23%. 
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Figure 4.23. Survivability of power substation as a function of demand
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4.5 Importance Analysis in Multi-state Systems 

Information about the importance of the elements that constitute a system with 
respect to its safety, reliability, availability, and performance, is of great practical 
aid to system designers and managers. Indeed, the identification of which elements 
most influence the overall system performance allows one to trace technical 
bottlenecks and provides guidelines for effective actions of system improvement. 
In this sense, importance measures (IMs) are used to quantify the contribution of 
individual elements to the system’s performance measures (e.g. reliability, 
availability, mean performance, expected performance deficiency). 

IMs were first introduced by Birnbaum [114]. The Birnbaum importance 
measure gives the contributions to the system’s reliability due to the reliability of 
the various system elements. Elements for which a variation in reliability results in 
the largest variation of the entire system’s reliability have the highest importance. 
Fussell and Vesely later proposed a measure based on the cut-sets importance 
[115]. According to the Fussell-Vesely measure, the importance of an element 
depends on the number and the order of the cut-sets in which it appears. Other 
concepts of importance measures have been proposed and used based on different 
views of the elements’ influence on the system’s performance. Structural IMs 
account for the topographic importance of the logic position of the element in the 
system [116, 117]. Criticality IMs consider the conditional probability of the 
failure of an element, given that the system has failed [118, 119]. Joint IMs 
account for the introduction of the elements’ interactions in their contribution to 
the system’s reliability [120, 121]. 

IMs are being widely used in risk-informed applications of the nuclear industry 
to characterize the importance of basic events, i.e. element failures, human errors, 
common cause failures, etc., with respect to the risk associated to the system [122-
125]. In this framework, the risk importance measures are based on two other IMs: 
the performance reduction worth and the performance achievement worth [122]. 
The former is a measure of the ‘worth’ of the basic failure event in achieving the 
present level of system performance and, when applied to elements, it highlights 
the importance of maintaining the current level of element reliability (with respect 
to the basic failure event). The latter, the performance achievement worth, is 
associated to the variation of the system’s performance consequent to an 
improvement of the element reliability. 

In a general context, the IMs reflect the changes in distribution of the 
performance of the entire system caused by constraints imposed n the performance 
of one of its elements. Once the system PD is determined, one can focus on 
specific system performance measures, e.g. system availability, for the definition 
of the relevant measures of element importance.
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4.5.1 Reliability Importance of Two-state Elements in Multi-state 
Systems

Consider a system consisting of two-state elements. Each element j has 
performance gj1 in the state of perfect functioning and performance gi0 in the state 

of total failure, which corresponds to its u-function uj(z) = 01 )1( 11
jj g

j
g

j zpzp .

Let O be a system output performance measure ( AO  for availability or 

reliability; O  for mean system performance, O  for expected 
performance deficiency). The system performance measure (PM) O can be 
expressed for the given demand distribution as a function of parameters of system 
elements

O(p11, g11, g10, …,  pj11, gj1, gj0, …, pn1, gn1, gn0)  (4.63) 

In order to obtain this index, one has to determine the u-functions of individual 
elements uj(z) for 1 i n, to obtain the u-function of the PMs of interest (see 
Section 3.3) using the corresponding operators and to calculate the derivatives of 
these u-functions at z = 1.

Let Oj0 and Oj1 be the system PM when element j is fixed in its faulty and 
functioning state respectively, while the remainder of the elements are free to 
randomly change their states. The PMs Oj0 and Oj1 according to their definition are 

Oj0 = O(p11, g11, g10, …,0, gj1, gj0, …, pn1, gn1, gn0)  (4.64) 

Oj1 = O(p11, g11, g10, …, 1, gj1, gj0, …, pn1, gn1, gn0)  (4.65) 

Oj0 corresponds to the system PM when the element j is in the state of total 
failure with probability pj0 = 1 (which can be represented by the u-function

0)( jg
j zzu ). Oj1 corresponds to the system PM when the element j is in the state 

of perfect functioning with probability pj1 = 1 (which can be represented by the u-

function ).)( 1jg
j zzu   Therefore, Oj0 and Oj1 can be obtained by substituting 

uj(z) by )(zu j  and )(zu j  respectively before using the procedure of system PM 

determination.
The system output performance measure O can be expressed as

 O = Oj0pj0 + Oj1pj1 =  Oj0(1 pj1)+Oj1pj (4.66)

Definitions of four of the most frequently used IMs with reference to PM O and 
element j are as follows 

The performance reduction worth is the ratio of the actual system PM to the 
valueofthePMwhenelementjisconsideredas always failed:

IOrj = O/Oj0                                                                                                (4.67) 
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This index measures the potential damage to the system’s performance caused by 
the total unavailability of element j.

The performance achievement worth is the ratio of the system PM obtained 
when element j is always in the operable state to the actual value of the system’s 
PM (when all of the elements including element j are left free to change their states 
randomly in accordance with their PD): 

IOaj = O j1/O  (4.68) 

This index measures the contribution of element j to enhancing the system’s 
performance by considering the maximum improvement on the system’s PM 
achievable by making the element fully available. 

The Fussell-Vesely measure represents the relative PM reduction due to the 
total failure of element j:

IOfj = (O Oj0)/O = 1 1/IOrj  (4.69) 

Similarly, one can define the relative PM achievement when element j is 
always in the operable state: 

 IOvj = (O j1 O)/O = IOaj 1  (4.70) 

The Birnbaum importance measure represents the variation of the system PM 
when element j switches from the condition of perfect functioning to the condition 
of total failure. It is a differential measure of the importance of element j, since it is 
equal to the rate at which the system PM changes with respect to changes in the 
reliability of element j:

/))1((/ 01101111 jjjjjjjjjO OOpOpOppObI  (4.71) 

Note that for the Fussel-Vesely and Birnbaum IMs, depending on the system’s 
PM, an improvement in the system’s performance can correspond either to an 
increase of the considered PM (e.g. the availability or mean performance) or to a 
decrease (e.g. the expected performance deficiency). In the latter case, the absolute 
values of Ivj, Ifj and Ibj are taken as the importance values. 

The IMs for each MSS element depend strongly on that element's place in the 
system, its nominal performance level, and the system’s demand. The notion of 
element relevancy is closely connected to the element’s importance. The element is 
relevant if some changes in its state that take place without changes in the states of 
the reminder of the elements cause changes in the PM of the entire system. 
According to this definition, if the element j is irrelevant then Oj0 = Oj1 = O.
Therefore, for the irrelevant element 

 IOrj = IOaj = 1 (4.72) 
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while

 IOfj = IOvj = IObj = 0  (4.73) 

Example 4.18 

Consider a system consisting of n elements with total failures connected in a series 
described in Example 4.1. For any element j gj0 = 0. The reliability measures of 
this system are presented in Table 4.1. The corresponding analytically obtained 

IMs are presented in Tables 4.14. - 4.18.  In these tables .11
n
i ip

The element with the minimal availability has the greatest impact on MSS 
availability (“a chain fails at its weakest link”). The importance indices associated
with the system’s availability do not depend on the elements' performance rates or 
on demand. IMs associated with the system’s mean performance and performance 
deficiency also do not depend on the performance rate of the individual element j;
however, the performance rate gj1 can influence these indices if it affects the entire 
system performance .ĝ

Table 4.14. Performance reduction worth IMs for series MSS

w jArI jrI jrI

gw ˆ not defined wg /ˆ1

gw ˆ0 not defined 1

not defined 

Table 4.15. Performance achievement worth IMs for series MSS

w jAaI jaI jaI

gw ˆ not defined 
)ˆ(1

ˆ1

gwjp

gjwp

gw ˆ0 1/1 jp
)1(1

1

jp

jp 1/1 jp

Table 4.16. Relative performance reduction IMs for series MSS

w jA fI jfI jfI

gw ˆ not defined 
gw

g

ˆ

ˆ

gw ˆ0 1
1

1
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Table 4.17. Relative performance achievement IMs for series MSS

w jAvI jvI jvI

gw ˆ not defined 
)ˆ(1

ˆ)11(

gwjp

gjp

gw ˆ0 11/1 jp
)1(1

)11(

jp

jp
11/1 jp

Table 4.18. Birnbaum importance IMs for series MSS

w
jAbI jbI jbI

gw ˆ 0
1/ˆ jpg

gw ˆ0 1/ jp 1/ jpw

1/ˆ jpg

Example 4.19 

Consider a task processing system without work sharing presented in Example 4.2. 
The system consists of two elements with total failures (g10 = g20 = 0) connected in 
parallel. The analytically obtained system reliability measures are presented in 
Table 4.3. The importance measures can also be obtained analytically. The 
measures IOrj, IOaj and IObj are presented in Tables 4.19-4.21. 

Table 4.19. Performance reduction worth IMs for parallel MSS

w 1rI A 1rI 1rI

w>g21 not defined 
2121

11211121211111

gpw

gppgpgpw

g11<w g21 1 w

gpw 1111 2121

112111 )1(
1

gp

gpp

0<w g11 1  p11+ p11/ p21 1  p11

2rI A 2rI 2rI

w>g21 not defined 

1111

11211121211111

gpw

gppgpgpw

g11<w g21 not defined 1  p21 1111

1121
211

gp

gp
p

0<w g11 1  p21+ p21/ p11 1  p21
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Table 4.20. Performance achievement worth IMs for parallel MSS

w 1aI A 1aI 1aI

w>g21 not defined 
11211121211111

11212111 )(

gppgpgpw

ggpgw

g11<w g21 1
1111

11

gpw

gw

2121111121

21211121

)1(

)1(

gpgpp

gpgp

0<w g11 1/( p11+ p21  p11p21) 0

2aI A 2aI 2aI

w>g21 not defined 
11211121211111

21

gppgpgpw

gw

g11<w g21 1/ p21 0
2121111121

21

)1( gpgpp

g

0<w g11 1/( p11+ p21  p11p21) 0

Table 4.21. Birnbaum IMs for parallel MSS

w 1bI A 1bI 1bI

w>g21 0 (1 p21)g11

g11<w g21 0 (1 p21)g11 g11(1 p21)
0<w g11 1 p21 (1 p21)w

2bI A 2bI 2bI

w>g21 0 g21 p11g11

g11<w g21 1 w p11g11 g21 p11g11

0<w g11 1 p11 (1 p11)w

Example 4.20 

Consider the series-parallel system from Example 4.3 (Figure 4.1A). The IMs IAbj

of elements 1, 5, and 7 as functions of system demand w are presented in Figure 
4.24A and B for the system interpreted as a flow transmission MSS with flow 
dispersion and task processing MSS without work sharing. Observe that IAbj(w) are 
step nonmonotonic functions. 

One can see that the values of w exist for which the importance of some 
elements is equal to zero. This means that these elements are irrelevant (have no 
influence on the system’s entire availability). For example, in the case of the task 
processing system, the subsystem consisting of elements from 1 to 6 cannot have a 
performance that is greater then 1.154. Therefore, when 1.154<w 3, the system 
satisfies the demand only when element 7 is available. In this case, the entire 
system availability is equal to the availability of element 7, which is reflected by 
the element’s importance index: IAb7(w) = 1. The remainder of the elements are 
irrelevant for demands greater than 1.154: IAbj(w) = 0 for 1 j 6. Note that, 
although for the task processing system element 7 has the greatest importance, the 
importance of this element for the flow transmission system can be lower than the 
importance of some other elements at certain intervals of demand variance. For 
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example, for 3<w<5 the importance of element 1 is greater than the importance of 
element 7. 

A         B 
Figure 4.24. IM IAbj(w) of system elements 

in flow transmission MSS (A) and task processing MSS (B) 

Unlike the IM associated with the system availability IAbj, the IM associated 
with the system mean performance jbI  for element 7 is the greatest for both 

types of system. The values of jbI for j = 1, …, 7 are presented in Table 4.22. 

   Table 4.22. The IMs jbI  for elements of series-parallel system

No of element 1 2 3 4 5 6 7 

Flow transmission MSS 2.170 1.361 1.210 1.555 1.440 2.441 3.000 

Task processing MSS 0.139 0.032 0.028 0.036 0.103 0.156 2.375 

The IMs jbI  as functions of system demand w are presented in Figure 4.25 

for j = 1, 5 and 7. Observe that jbI (w) are piecewise linear functions. The 

demand intervals when the function jbI (w) is constant always correspond to the 

irrelevancy of system element j.
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A         B 
Figure 4.25. IM jbI (w) of system elements 

in flow transmission MSS (A) and task processing MSS (B) 

4.5.2 Importance of Common Cause Group Reliability 

In systems that contain CCGs with total CCF, the reliabilities of the groups (the 
probabilities that the groups do not fail) affect the reliability of the entire system. If 
a system consists of nonidentical elements and has a complex structure with nested 
CCGs, reliabilities of different groups play different roles in providing for the 
system's reliability. The evaluation of the relative influence of the group’s 
reliability on the reliability of the entire system provides useful information about 
the importance of these groups.

For example, in systems with complex multilevel protection, the protection 
survivability (the ability to tolerate destructive external impacts) can depend on the 
type and location of the protection. The importance of each protection depends not 
only on its survivability but also on characteristics of the subsystem it protects. 

 Importance evaluation is an essential point in tracing bottlenecks in protected 
systems and in identifying the most important protections. The protection 
survivability importance analysis can also help the analyst to find the irrelevant 
protections, i.e. protections that have no impact on the entire system’s reliability. 
Elimination of irrelevant protections simplifies the system and reduces its cost. In 
the complex multi-state systems with multilevel protection, finding the irrelevant 
protections is not a trivial task. 

In order to evaluate the CCG reliability importance we use the MSS model with 
nested CCGs. The algorithm presented in Section 4.4.3 allows one to evaluate the 
system’s performance measures O as a function of the probabilities of total CCFs 
in its CCGs.
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Assume that the system has M CCGs. For the given system structure and the 
fixed performance distributions of the system elements, the system PM O is a 
function of the CCF probabilities in these CCGs: O(v1,…,vm,…,vM). Since the 
reliability of CCG m sm is defined as the probability of non-occurrence of CCF in 
this group (sm = 1 vm) we can express the system PM as a function of CCG 
reliabilities O(s1,…,sm,…,sM) and define in accordance with (4.64) and (4.65): 

 Om0 = O(s1, …, 0, …, sM) and Om1 = O(s1, …, 1, …, sM)  (4.74) 

where Om0 corresponds to the system PM when the failure  in CCG m has occurred 
(in accordance with Equation (4.62), this can be represented by the d-function

)(
~

),( zUzU mm  of this CCG) and  Om1 corresponds to the system PM when the 

failure  in CCG m has not occurred (which can be represented by the d-function

).)(
~

),(
~

zUzU mm   Therefore, Om0 and Om1 can be obtained by substituting dm(z)

by )(
~

),( zUzU mm  and )(
~

),(
~

zUzU mm  respectively in the procedure of 

determining the system’s PM. The corresponding IMs can be obtained using 
Equation (4.67)-(4.71). 

Example 4.21 

Consider the simplest binary systems with multiple protections. In order to 
evaluate the protections’ survivability importance we use the Birnbaum IM IAbm.

The system consists of identical binary elements with availability a. The d-

function of each element can be represented as:

 dm(z)=< z0, az1+(1 a)z0 > 

where performance 1 corresponds to its normal state and performance 0 
corresponds to failure. The entire system succeeds (survives) if its performance is 
G = 1. Consider the following cases. 

Case 1: n-level (concentric) protection of a single element (Figure 4.26A). The 
system’s availability and the survivability importance of mth protection are 
respectively:

n

i
isaA

1
)]1(1[ and

m

n

i
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mA
s

s

abI
1

)1(
1

This means that the protection with the greatest survivability has the greatest 
importance. The increase of protection survivability lowers the importance of the 
rest of the protections. 

Case 2: n identical protected elements connected in a series (Figure 4.26B). 
The system’s availability and the importance of mth protection are respectively 
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Case 3: n identical protected elements connected in parallel (Figure 4.26C). 
The system’s availability and the importance of the mth protection are respectively 

n

i
iasA

1
)1(1 and 

m

n
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as

abI
1

)1(
1

As in the case of a single element with multiple protections, the protection with 
the greatest survivability has the greatest importance and the increase of protection 
survivability lowers the importance of the remainder of the protections. 

While in complex systems composed of different multi-state elements, the 
relations between the elements' survivability and importance are more complicated, 
the general dependencies are the same as in the cases considered. 

Figure 4.26. Simplest binary systems with multiple protections 

s1
s2

s3
...

sn

s2

s1

sn

s3

    ... 

s1   s2 s3

   ... 
sn

A

B C

This means that the protection with the lowest survivability has the greatest 

importance. The increase of protection survivability increases the importance of the 

remainder of the protections. It can be easily seen that the absence of protection in 

at least one of the elements makes all of the protections irrelevant (if for any i si = 0 

then   A = 0 and IAbj = 0 for all of j i). This means that the protection of the 

elements connected in a series has no sense if at least one element remains 

unprotected (see protection 1 in Figure 4.27). 



170 The Universal Generating Function in Reliability Analysis and Optimization 

Example 4.22 

Consider the multi-state flow transmission series-parallel system (with flow 
dispersion) presented in Figure 4.27. The system consists of seven elements (with 
performance distributions as presented in Table 4.23) and six protection groups. 
The survivability of any protection is 0.8. The survivability importance of the 
protections as functions of demand w are presented in Figure 4.28. 

Figure 4.27. Structure of series-parallel MSS with multiple protections 

 Table 4.23. Performance distributions of multi-state elements

 No of element (j)

State (h) 1 2 3 4 5 6 7 

pjh gjh pjh gjh pjh gjh gjh gjh pjh gjh pjh gjh pjh gjh

0 0.05 0 0.10 0 0.10 0 0.10 0 0.10 0 0.05 0 0.25 0 

1 0.05 3 0.05 2 0.10 1 0.30 3 0.20 2 0.95 5 0.75 6 

2 0.15 5 0.85 8 0.80 4 0.60 4 0.70 4 - - - - 

3 0.75 7 - - - - - - - - - - - - 

First observe that protection 1 is irrelevant for any w (IAb1(w) = 0). Indeed, 
when protection 2 is not destroyed, protection 1 does not affect the system’s 
survivability. When protection 2 is destroyed then element 2 is always destroyed 
and the subsystem consisting of elements 2, 3 and 4 has a performance rate of 0 
independent of the state of protection 1. 

Some protections can be irrelevant only for certain intervals of w. For example, 
protection 2 affects the system’s survivability only when protection 3 is destroyed. 
In this case, element 1 is always destroyed, which prevents the system from having 
a performance rate greater than 8. Therefore IAb2(w) = 0 for w>8.

Protection 4 affects the system’s survivability only when protection 6 is 
destroyed. In this case, element 5 is always destroyed. If element 7 is in a normal 
state, then the performance rate of the subsystem remaining after the destruction of 
protection 6 (elements 6 and 7) is not less than 6. If element 7 does not perform its  
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task, then the performance of the subsystem is no greater than 5 (maximal 
performance of element 6). This does not depend on the state of protection 4. 
Therefore, IAb4(w) = 0 for 5<w 6.

Figure 4.28. Survivability importance of protections as functions of demand 

For w>11 IAb3(w) = IAb6(w). Indeed, the system can provide a performance 
greater than 11 only if both protections 3 and 6 survive. It is the same for 
protections 4 and 5: when protection 6 is destroyed, the system can provide a 
performance greater than 6 only if both protections 4 and 5 survive. Therefore, for 
w>6  IAb4(w) = IAb5(w).

Note also that the greater the availability of the two-state element, the greater 
the importance of its individual protection. For example, when w 5 both elements 
6 and 7 can meet the demand, but IAb4(w)>IAb5(w).

In general, the outer-level protections are more important than the inner-level 
ones, since they protect more elements. In our case, protections 3 and 6 have the 
greatest importance for any w.

In order to estimate the effect of survivability of protections on their 
importance, consider Figure 4.29 representing the functions IAbj(sm) for different j
and m when the system should meet the demand w = 5. Observe that although the 
relations among the different protections in complex MSSs are much more 
complicated than in the simple binary systems considered above, the general 
tendencies are the same. Observe, for example, that the mutual influence of the 
protections in pairs 2 and 3, 4 and 6, 5 and 7 resembles the mutual influence of 
protections in Case 1 of Example 4.21, since these pairs of protections are partly 
concentric (both protect the same subsystems). The greater the survivability of one 
of the protections in the pair the lower the importance of the other one. When the 
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outer protection becomes invulnerable, the inner protection becomes irrelevant 
(IAb2 = 0 when s3 = 1 and   IAb4 = IAb5 = 0 when s6 = 1).

Figure 4.29. Survivability importance of protections as functions of protection 
survivability

The mutual influence of protections in pairs 2 and 4, 3 and 4, 2 and 6, and 3 and 
6 resembles the mutual influence of the protections in Case 2 of Example 4.21, 
since these pairs of protections protect subsystems connected in the series. In this 
case the greater the survivability of one of the protections in the pair, the greater 
the importance of another one. 

The mutual influence of protections 4 and 5 resembles the mutual influence of 
protections in Case 3 of Example 4.21, since this pair of protections protects 
parallel elements. In this case, the greater the survivability of one of the protection 
in the pair the lower the importance of another one. 

4.5.3 Reliability Importance of Multi-state Elements in Multi-
state Systems 

Early progress towards the extension of IMs to the case of MSSs can be found in 
[126, 127], where the measures related to the occupancy of a given state by an 
element have been proposed. These measures characterize the importance of a 
given element being in a certain state or moving to the neighbouring state with  
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respect to the system’s performance. The IM of a given element is, therefore, 
represented by a vector of values, one for each state of the element. Such 
representation may be difficult for the practical reliability analyst to interpret. In 
the following sections we consider integrated IMs based on element performance 
restriction.

4.5.3.1 Extension of Importance Measures to Multi-state Elements 

Assume that the states of each element j are ordered in such a manner 
that ..... 110 jjkjj ggg  One can introduce a performance threshold and

divide this set into two ordered subsets corresponding respectively to the element 
performance above and below the level . Let element j be constrained to a 
performance rate not greater than , while the remainder of the elements of the 

MSS are not constrained: we denote by M|
jO  the system PM obtained in this 

situation. Similarly, we denote by M|
jO  the system PM resulting from the dual 

situation in which element j is constrained to performances above . The MSS 
performance measures so introduced rely on a restriction of the achievable 
performance of the MSS elements. Different modelling assumptions in the 
enforcement of this restriction will lead to different performance values. The letter 

M in the definitions of M|
jO  and M|

jO  is used to code the modelling approach 

to the restriction of element behaviour. Substituting the measures M|
jO  and 

M|
jO  to the binary equivalents Oj0 and Oj1, we can define importance measures 

for multi-state elements: 
performance reduction worth

M|M| / jjO OOrI  (4.75) 

performance achievement worth 

OOaI jjO /M|M|  (4.76) 

relative performance reduction (Fussell-Vesely) 

OOOfI jjO /)( M|M|   (4.77) 

relative performance achievement 

OOOvI jjO /)( M|M|  (4.78) 

 Birnbaum importance 
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M|M|M|
jjjO OObI  (4.79) 

This latter IM extends the concept of the IM introduced in [126]. Combining the 
different definitions of importance measures with different types of the system PM 
and different model assumptions M relative to the types of element restriction, one 
can obtain many different importance measures for MSS, each one bearing specific 
physical information. The choice of the proper IM to use depends on the system’s 
mission and the type of improvement actions that one is aiming at in the system 
design or operation. 

In the following section we consider two models of element performance 
restriction and discuss their application with respect to the importance measures 

M|
jO fI  and .M|

jObI

4.5.3.2 State-space Reachability Restriction Approach

Let Ojh be the PM of the MSS when element j is in a fixed state h while the rest of 
the elements evolve stochastically among their corresponding states with 
performance distributions {gih, pih}, ni1 , ji , .0 ikh  Using pivotal 

decomposition, we obtain the overall expected system performance 

1

0

jk

h
jhjhOpO  (4.80) 

We denote by hj  the state in the ordered set of states of element j whose 
performance

jjh
g is equal to or immediately below , i.e.

1jj jhjh
gg .

The conditional probability jhp that element j is in a state h characterized by a 

performance gjh not greater than a prespecified level threshold )( jhh can be 

obtained as 

 }Pr{/}|Pr{ jjhjjhjjh GpGgGp

jjh

h

m
jmjh pppp

j

//
0

 (4.81) 

Similarly, the conditional probability jhp̂ of element j being in a state h when it 

is known that jhh  is

 }Pr{/}|Pr{ˆ jjhjjhjjh GpGgGp

jjh

k

hm
jmjh pppp

j

j

//
1

1
 (4.82) 
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In Equation (4.81) and (4.82), jp  and jp are probabilities that element j is in 

states with performance not greater than  and greater than respectively.
The state-space reachability restriction model (coded with the letter s: )M s is

based on the restrictive condition on the states reachable by element j.  In this 

model we define as s
jO

|  the system PM obtained when element j is forced to 

visit only states with performance not greater than :

j

h

m
jmjm

h

m
jmjm

s
j pOpOpO

jj

/
00

|  (4.83) 

Similarly, we define as s
jO

|  the system performance measure obtained under 

the condition that the element j stays in states with performance greater than :

j

k

hm
jmjm

k

hm
jmjm

s
j pOpOpO

j

j

j

j

/ˆ
1

1

1

1

|  (4.84)

According to these definitions 

j
s

jj
s

j pOpOO
||  (4.85)

Using the definition of the performance measures O, s
jO

| and s
jO

|  we can 

specify the IMs. For example, the Birnbaum importance takes the form 

    
s

j
s

j
s

jO OObI
|||  (4.86)

From (4.86) and since 1jj pp

j
s

jO
s

jj
s

jO
s

j pbIOpbIOO
||||  (4.87) 

And thus 

j
s

jj
s

j
s

jO pOOpOObI /)(/)( |||  (4.88)

From Equation (4.66) and (4.71) we can see that for two-state elements: 

 O = Oj0 + 1jjO pbI  =  Oj1 0jjO pbI  (4.89) 
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 Comparing (4.87) and (4.89) we see that the s
jObI

|  measure for MSSs is 

really an extension of the definition of the Birnbaum importance for two-state 
elements, for which kj = 2 and  = 0. As such, it measures the rate of improvement 

of the system PM deriving from improvements on the probability jp of element j

occupying states characterized by performance higher than .
The Fussel-Vesely importance measure (relative performance reduction) takes 

the form 

OOfI
s

j
s

jO /1 ||  (4.90) 

It can be easily seen that 

j
s

jO
s

jO pOfIbI /||  (4.91)

The element IMs based on the state-space reachability restriction approach 
quantify the effect on the system performance of element j remaining confined in 
the dual subspaces of states corresponding to performances greater or not greater 
than .

4.5.3.3 Performance Level Limitation Approach 

We consider again a threshold  on the performance of element j. However, we 
assume that the space of reachable states of element j is not restricted, i.e. element j
can visit any of its states independently on whether the associated performance is 
below or above  and it can do so with the original state probability distribution. 
Limitations, however, are imposed on the performance rate of element j: we 
consider a deteriorated version of the element that is not capable of providing a 
performance greater than , in spite of the possibility of reaching any state, and an 
enhanced version of element j that provides performances always not less than ,

even when residing in states below .jh  The limitation on the performance is such 

that, when in states ,jhh  the deteriorated element j is not capable of providing 

the design performance corresponding to its state; in these cases it is assumed that 
it provides the performance .  On the other hand, when the enhanced element is 

working in states ,jhh  it is assumed that it provides the performance . We 

code this modelling approach by the letter w: wM .  

The output performance measures w
jO

|  and w
jO

| in this model take the 

form
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and
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where jO is the system PM when element j remains fixed operating with 

performance  while the remainder of the system elements visit their states in 
accordance with their performance distributions. It can be seen that

j
w

j
w

j OOOO
||  (4.94) 

In this case, the Birnbaum importance takes the form 
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 (4.95) 

 Hence, in the performance level limitation model the Birnbaum IM is equal to 
the expected value of the absolute deviation of the system PM from its value when 
element j has performance .

The Fussel-Vesely IM (relative performance reduction) takes the form

    OOOOOfI j
w

j
w

j
w

jO /)(/1 |||  (4.96)
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Birnbaum and Fussel-Vesely IMs are related as follows: 

)( ||| w
jj

w
jO

w
jO OOOfIbI  (4.97)

The element IMs based on a limitation of the achievable performance level give 
information on which level  of element performance is the most beneficial from 
the point of view of the entire system PM. 

Observe that according to the definitions (4.83), (4.84) and (4.92), (4.93) 

jjj
s

j
w

j pOpOO
||  (4.98)

and

jjj
s

j
w

j pOpOO
||  (4.99)

From these equations one can obtain relations between Birnbaum and Fussel-
Vesely IMs as defined according to the two approaches

)12)(( |||
j

s
jjj

s
jO

w
jO pOOpbIbI  (4.100) 

and

 OpOOfIfI j
s

jj
s

jO
w

jO /)( |||  (4.101) 

4.5.3.4 Evaluating System Performance Measures 

In order to evaluate the system PM O when all of its elements are not restricted, 
one has to apply the reliability block diagram technique over u-functions of the 
individual elements representing their performance distributions in the form: 

jh
j g

jh

k

h
j zpzu

1

0
)(  (4.102) 

In order to obtain the IMs in accordance with the state-space reachability 
restriction approach, one has to modify the u-function of element j as follows: 

jh
j g

jjh

h

h
j zppzu )/()(

0
 (4.103) 

when evaluating s
jO

| and
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when evaluating s
jO

|  and then apply the reliability block diagram technique. 

 In order to obtain the PMs in accordance with the performance level limitation 
approach one has to modify the u-function of element j as follows: 
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when evaluating w
jO

| and
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1
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g
jhjj zpzpzu  (4.106) 

when evaluating w
jO

|  and then apply the reliability block diagram technique. 

Note that the PM jO can also be easily obtained by using the u-function of 

element j in the form uj(z) = z .

Example 4.23 

Consider the series-parallel flow transmission system (with flow dispersion) 
presented in Figure 4.30 with elements having performance distributions given in 
Table 4.24.

Figure 4.30. Structure of series-parallel MSS with multi-state elements 

Elements 2, 3, 5, and 6 are identical. However, the pairs of elements 2, 3 and 5, 
6 have different influences on the system’s entire performance, since they are 
connected in a series with different elements (1 and 4 respectively). Therefore, 
while we expect elements 2 and 3 have the same importance (as well as elements 5 
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and 6), the importance of element 2 (or 3) differs from the importance of element 5 
(or 6). The demand w is assumed to be constant in time, but different values of the 
constant will be considered. 

 Table 4.24. Performance distributions of multi-state elements

 No of element (j)

State (h) 1 2 3 4 5 6 7 

pjh gjh pjh gjh pjh gjh gjh gjh pjh gjh pjh gjh pjh gjh

0 0.10 0 0.10 0 0.10 0 0.20 0 0.10 0 0.10 0 0.15 0 

1 0.05 1 0.05 2 0.05 2 0.10 2 0.05 2 0.05 2 0.15 6 

2 0.15 3 0.85 4 0.85 4 0.45 6 0.85 4 0.85 4 0.05 10 

3 0.35 5 - - - - 0.25 8 - - - - 0.45 14 

4 0.35 7 - - - - - - - - - - 0.20 18 

In this example we perform the importance analysis based on the Fussel-Vesely 

IM (relative performance reduction). In Figure 4.31 the )(|2
wfI

s
jA  and 

)(|2
wfI

w
jA  measures are presented for elements 1, 2 (identical to 3) and 4 and 5 

(identical to 6) for different time-constant system demands w. The first measure 
shows how critical it is for the MSS availability that the element visits only states 
with performance below or equal to .2  The second measure shows how 
critical for the MSS availability it is to limit the performance of the element below 
the threshold value .2

A          B 

Figure 4.31. Behaviour of the elements' IMs. A: ;)(|2
wfI

s
jA  B: )(|2

wfI
w

jA
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The functions )(|2
wfI

s
jA  and )(|2

wfI
w

jA  differ significantly. While 

)(|2
wfI

w
jA = 0 for w 2, since OO

w
j

|  for these demands, )(|2
wfI

s
jA >0, since 

the reduction of the state-space for obtaining s
jO

|  changes the probabilities of 

being in the states with gjh 2, and, therefore, s
jO

| O.

Recall also that from the definitions, s
jA fI

|2 = 1 or w
jA fI

|2 = 1 means that, 

when the element j has a performance restricted below , the entire system fails. 

The importance measure s
jA fI

|2 for elements j = 1 and j = 4 becomes 1 when w = 

9. Indeed, the greatest performance of the subsystem of unrestricted elements 4, 5, 
and 6 is 8 while the greatest performance of the subsystem of elements 1, 2, and 3 
is 1 when element 1 is allowed to visit only states with a performance not greater 
than  = 2 (i.e. g10 = 0 or g11 = 1). Therefore, the MSS cannot have a performance 
greater than 8+1 = 9. Similarly, the greatest performance of the subsystem of 
unrestricted elements 1, 2, and 3 is 7, while the greatest performance of the 
subsystem of elements 4, 5, and 6 is 2 when element 4 is allowed to visit only 
states with a performance not greater than  = 2 (g40 = 0 or g41 = 2). Therefore, in 
this case the MSS cannot have a performance greater than 7+2 = 9.

On the contrary, the importance w
jA fI

|2  for elements j = 1 and j = 4 becomes 

1 for different values of w. When the performance of element 1 is restricted by =
2, the MSS cannot have a performance greater than 8+2 = 10; when the 
performance of element 4 is restricted by 2 , the MSS cannot have a 

performance greater than 7+2 = 9. Therefore, w
A fI

|2
1 = 1 for w>10 while 

w
A fI

|2
4 = 1 for w>9.

Figure 4.31 also shows that an element which is the most important with 
respect to a value of the demand w can be less important for a different value. This 
is a typical situation in MSSs. For example, when 5<w<6 element 4 is the most 
important one among elements 1-6 when their ability to perform above 2  is 
considered, while for w 5 it becomes less important than element 1. 

The )(|2
wfI

s
j  and )(|2

wfI
w

j  functions are presented in Figure 4.32. 

Analogously to )(|2
wfI

w
jA , the function )(|2

wfI
w

j  is equal to zero when w 2,

since in this case .|2 w
j  For increasing demand values, the difference between 

w
j

|  and  (system performance deficiency when element j is not constrained) 

increases from zero to a constant level. Therefore, the ratio 

)(|2
wfI

w
j = /)( |2 w

j  first increases and then begins to decrease.
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A         B 

Figure 4.32. Behaviour of the elements' IMs. A: ;)(|2
wfI

s
j  B: )(|2

wfI
w

j

A         B 

Figure 4.33. Behaviour of the elements’ IMs. A: ;)(|s
jfI  B: )(|w

jfI
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A          B 

Figure 4.34. Behaviour of the elements’ IMs. A: ;)(|
7 wfI

s
A  B: )(|

7 wfI
w

A

A         B 

Figure 4.35. Behaviour of the elements’ IMs. A: ;)(|
7 wfI

s  B: )(|
7 wfI
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A similar behaviour is shown by )(|2
wfI

s
j . It can be seen that values of 

demand w exist for which the increase of the element performance above the 
threshold  causes the greatest relative reduction of the system performance 

deficiency (maxima of the curves )(|2
wfI

w
j  and )(|2

wfI
s

j  in Figure 4.32). It is 

also confirmed that the relative importance of different elements depends on the 
value of the demand (for example, element 2 is more important than element 5 for 
w<8 and less important for w>8).

The mean system performance  does not depend on the demand. Figure 4.33 

reports the indices s
jfI

| and w
jfI

|  as functions of . Note that while 

)(|w
jfI  are continuous functions, )(|s

jfI  are stepwise functions since 

)()( 2
|

1
| s

j
s

j fIfI  for any 1 and 2 such that .
121

jj jhjh
gg

Both functions are decreasing, which means that the higher levels of performance 
threshold  cause a less relative increase of the system’s performance.

Note that both s
jfI

| and w
jfI

|  take a value of zero (i.e.

OOO
s

j
w

j
|| ) when the  level is above or equal to the maximum 

performance achievable by element j, .
jjkg

Improvement of the performance of a certain element above a given threshold

may be achieved, either by increasing the probability of residing in states with 

performances larger than  (as indicated by the 
s

jO fI
|

 measures) or by increasing 

the performances of some states (as indicated by 
w

jO fI
|

 measures). Consider, for 

example, element 7, whose IMs for different threshold values  as functions of the 

demand w are given in Figures 4.34 and 4.35. Observe that 0)(
|

7 wfI
w

A  when 

w  and 1)(
|

7 wfI
w

A  when w> , since the logic of the system is such that its 

performance is not affected by limitations on the performance of element 7 if its 

threshold  is set to a value greater than the demand w, whereas the system fails 

completely if element 7 has a performance below the system’s demand. Also, the 

)(
|

7 wfI
s

A  function does not depend on , when  varies within the performance 

intervals 1-6, 6-10, 10-14, 14-18. The jumps in the step-functions )(
|

7 wfI
s

A

occur at values hgw 7  and correspond to the restrictions to state h with .7hgw

Functions )(
|

7 wfI
s

 and )(
|

7 wfI
w

 are continuous. When  increases, the 

relative reduction of the system’s performance deficiency becomes smaller 

(because a smaller number of states are subject to restriction). Note that the demand 

w for which the greatest relative reduction of system performance deficiency is 

achieved (maximum of the function ))(
|

7 wfI
w

 increases with the increase of .
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4.6 Universal Generating Function in Analysis of 
Continuum-state Systems 

Some systems and elements exhibit continuous performance variation (for 
example, when their performance degrades due to gradual failures). In these cases, 
one can discern a continuum of different states. The structure functions 

),...,( 1 nGG representing such continuous-state systems are mappings 

],[],[...],[],[ maxminmaxminmax2min2max1min1 gggggggg nn ,

where ],[ maxmin jj gg is the closed interval of performance variation of element j

and ],[ maxmin gg  is the closed interval of performance variation of the entire 

system. Such functions were introduced in [128-130] and are called the continuum 
structure functions. 

 The stochastic behaviour of continuous-state systems and elements may be 
specified through the complemented distribution functions [131]: 

 }),...,(Pr{)(},Pr{)( 1 xGGxCxGxC njj  (4.107) 

An example of such a function (cumulated curve) is presented in Figure 4.36. 

Figure 4.36. Complemented distribution functions for continuous and discrete variables 

The method for estimating the boundary points for performance measures of 
continuum-state systems suggested by Lisnianski [132] uses the approximation of 
continuous performance distributions by discrete performance distributions. This 
method is based on the assumptions that the continuum structure functions are 
monotonic, i.e.

 ),...,(),...,( 11 nn GGGG  if jj GG for nj1  (4.108) 

C(xmin+(i+1)

x

1

0
x xmin+ xmin+i… xmin+(i+1) … xmin+h

C(xmin+i

Cj(x)

jG

jG

jG
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or

),...,(),...,( 11 nn GGGG  if jj GG for nj1  (4.109) 

and that the functions )(xC j  for all of the elements are continuous (with possible 

jumps at the end points). These assumptions are relevant for many types of 
practical system. 

In order to obtain the discrete approximation of the continuous performance 
distribution of element j, we divide the interval ],[ maxmin jj gg into h equal 

subintervals. The length of each subinterval is 

h

gg jj
j

minmax  (4.110) 

In order to obtain the lower and upper bound approximations of distribution of 

performance Gj, we introduce discrete random variables jG and jG such that 

}Pr{}Pr{ minmin jjjjjj igGigG

hiigG jjj 0},Pr{ min  (4.111) 

and

 })1(Pr{}Pr{ minmin jjjjjj igGxigG

jjjj xhixigG 0,0},Pr{ min  (4.112) 

 }Pr{}Pr{ minmin jjjjjj igGxigG

jjjj xhixigG 0,0},Pr{ min  (4.113) 

The complemented distribution functions of jG and jG  are presented in Figure 

4.36. Since for any variable X with a complemented distribution function C(x)

,)()(}Pr{ 2121 xCxCxXx  we can obtain that for jG

)())1((

}Pr{}Pr{

1),())1((

}Pr{

0}Pr{

maxmin

maxmin

minmin

min

min

jjjjjj

jjjjj

jjjjjj

jjj

jj

gChgC

gGhgG

hiigCigC

igG

gG

jjjj xhixigG 0,0,0}Pr{ min  (4.114) 

and for jG
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)(}Pr{}Pr{

0),)1(()(

}Pr{

maxmaxmin

minmin

min

jjjjjjj

jjjjjj

jjj

gCgGhgG

hiigCigC

igG

jjjj xhixigG 0,0,0}Pr{ min  (4.115) 

These expressions define the p.m.f. of the discrete variables jG and .jG

Observe that the inequalities (4.112) and (4.113) guarantee that for any j

)()( jj GEGE and )()( jj GEGE . Therefore, for any increasing monotonic 

function f:

)),...,(()),...,(()),...,(( 111 nnn GGfEGGfEGGfE   (4.116) 

and for any decreasing monotonic function v:

 )),...,(()),...,(()),...,(( 111 nnn GGvEGGvEGGvE  (4.117) 

Since the system performance measures are defined as expected values of 
functions of performances of individual elements (see Section 3.3), the upper and 
lower bounds for these measures can be obtained by replacing the continuous-state 
elements with multi-state elements having discrete performances distributed as 
defined by Equations (4.114) and (4.115).

Having the complemented distribution functions Cj(x) of system elements, one 
can determine the u-functions of the corresponding multi-state elements with 
discrete performance as 

jj igh

i
jjjjjjj zigCigCzu min

1

1
minmin )}(])1([{)(

max)( max
jg

jj zgC  (4.118) 

jj igh

i
jjjjjjj zigCigCzu min}])1([)({)(

1

0
minmin

max)( max
jg

jj zgC  (4.119) 

Applying the reliability block diagram technique over u-functions )(zu j one

obtains the u-function )(zU  representing the p.m.f. of the entire system consisting 

of elements with discrete performance distributions with p.m.f. (4.114). Applying  
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this technique over u-functions )(zu j one obtains the u-function )(zU

representing the p.m.f. of the entire system consisting of elements with discrete 

performance distributions with p.m.f. (4.115). Having the u-functions )(zU and

)(zU one can obtain the boundary points for the system performance measures as 

described in Section 3.3. 

Example 4.24 

Consider the series-parallel continuum-state system presented in Figure 4.37. Each 
element of the system can be either available or totally unavailable due to a 
catastrophic failure. If the element is available, then its performance rate varies 
continuously depending on the state of the element's operating environment. The 
performance rate of the unavailable element is zero.

Figure 4.37. Structure of continuum-state system 

Observe that if the element's availability is aj and its complemented distribution 

function given that the element is available is ),(* xC j  then the performance 

distribution of this element is defined by the complemented distribution function 

)(xC j that takes the form 

min
*

2

min2

),(

0,

0,1

)(

gxxCa

gxa

x

xC

j

j

The first element has the availability a1 = 0.8 and exponentially distributed 
performance with mean 401  and g1min = 0 (the probability that                      

G1 > g1max = 1000 is neglected). The second element has availability a2 = 0.7 and 
uniformly distributed performance with g2min = 30 and g2max = 60. The third 
element has availability a3 = 0.95 and normally distributed performance with mean 

703 and standard deviation 103 (the probabilities that G3 < g3min = 0 and

that G3 > g3max = 1000 are neglected). In the state of failure, all the elements have 
performance zero. The system fails if its performance is less that the constant 
demand w = 20. 

       1 

       2 

       3 
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The complemented distribution functions of the element performances taking 
into account the element availabilities are 

0,e

0,1
)(

1/
1

1
xa

x

xC
x

max

maxminminmaxmax2

min2
2

,0

),/()(

0,

0,1

)(

gx

gxgggxga

gxa

x

xC

0),de
2

1
1(

0,1

)(
)2/()(

3
3

3 2
3

2
3 xta

x

xC
t

x

 Considering the complemented distribution functions in the interval [0, 1000] 
and assigning ,1  Lisnianski [132] has obtained for the system interpreted as a 

flow transmission MSS with flow dispersion 21.47)1('U and

07.3 when the element performance distributions are represented by u-

functions ),(zu j and  23.46)1('U and 19.3  when the element 

performance distributions are represented by u-functions ).(zu j  Using these 

boundary points, one can estimate the performance measures with maximal relative 
errors

 100 (47.21 46.23)/46.23=2.1%

for mean performance and

 100 (3.19 3.07)/3.07=3.9%

for expected performance deficiency. 
For the system interpreted as a task processing MSS without work sharing, 

23.24)1('U  and 32.3 when the element performance distributions are 

represented by u-functions ),(zu j  and  83.23)1('U  and 45.3  when the 
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element performance distributions are represented by u-functions ).(zu j  This 

gives the estimations of the performance measures with maximal relative errors

 100 (24.23 23.83)/46.23=1.7%

for mean performance and

 100 (3.45 3.32)/3.32=3.9%

for expected performance deficiency. 
The upper and lower boundary points for mean performance and expected 

unsupplied demand are presented in Figure 4.38 as functions of step  for both 
types of systems. The decrease of step  provides improvement in the accuracy of 
boundary points estimation. However, it considerably increases the computational 
burden, since the number of terms in the u-functions )(zu j and )(zu j is

proportional to ./1

Figure 4.38. Boundary points for expected performance deficiency and mean performance
(A: flow transmission system; B: task processing system) 
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