4. Universal Generating Function in Analysis of
Series-Parallel Multi-state Systems

4.1 Reliability Block Diagram Method

Having a generic model of an MSS in the form of Equations (3.3) and (3.4) we can
obtain the measures of MSS reliability by applying the following steps:
1. Represent the p.m.f. of the random performance of each system element j,
Equations (3.1) and (3.2), in the form of the u-function

k-1
J .
. . ‘
uj(x)= % pyz-’, 1<js<n 4.1)
i=0

2. Obtain the u-function of the entire system (representing the p.m.f. of the
random variable G) applying the composition operator that uses the system
structure function.

3. Obtain the u-functions representing the random functions F, G and D
using operators (3.8)-(3.10).

4. Obtain the system reliability measures by calculating the values of the
derivatives of the corresponding u-functions at z = 1 and applying
Equations (3.11)-(3.14).

While steps 1, 3 and 4 are rather trivial, step 2 may involve complicated
computations. Indeed, the derivation of a system structure function for various
types of system is usually a difficult task.

As shown in Chapter 1, representing the functions in the recursive form is
beneficial from both the derivation clarity and computation simplicity viewpoints.
In many cases, the structure function of the entire MSS can be represented as the
composition of the structure functions corresponding to some subsets of the system
elements (MSS subsystems). The u-functions of the subsystems can be obtained
separately and the subsystems can be further treated as single equivalent elements
with the performance p.m.f. represented by these u-functions.

The method for distinguishing recurrent subsystems and replacing them with
single equivalent elements is based on a graphical representation of the system
structure and is referred to as the reliability block diagram method. This approach
is usually applied to systems with a complex series-parallel configuration.
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While the structure function of a binary series-parallel system is unambiguously
determined by its configuration (represented by the reliability block diagram), the
structure function of a series-parallel MSS also depends on the physical meaning of
the system and of the elements' performance and on the nature of the interaction
among the elements.

4.1.1 Series Systems

In the flow transmission MSS, where performance is defined as capacity or
productivity, the total capacity of a subsystem containing n independent elements
connected in series is equal to the capacity of a bottleneck element (the element
with least performance). Therefore, the structure function for such a subsystem
takes the form

beer (Gy,...,G,) = min{Gy,...,G,, } 4.2)

In the task processing MSS, where the performance is defined as the
processing speed (or operation time), each system element has its own operation
time and the system’s total task completion time is restricted. The entire system
typically has a time resource that is larger than the time needed to perform the
system’s total task. But unavailability or deteriorated performance of the system
elements may cause time delays, which in turn would cause the system’s total task
performance time to be unsatisfactory. The definition of the structure function for
task processing systems depends on the discipline of the elements' interaction in
the system.

When the system operation is associated with consecutive discrete actions
performed by the ordered line of elements, each element starts its operation after
the previous one has completed its operation. Assume that the random
performances G; of each element j is characterized by its processing speed. The
random processing time 7; of any system element j is defined as 7; =1/G ;. The

total time of task completion for the entire system is
n n 1
T=2T;=20; (4.3)
Jj=1 Jj=1

The entire system processing speed is therefore

G=1/T=(%G")" (44)
j=l

Note that if for any j G; = 0 the equation cannot be used, but it is obvious that in
this case G = 0. Therefore, one can define the structure function for the series task
processing system as
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n . n
1/_21Gj if HIG]-;to
beer (Gi 1. Gy) =X(Gp s Gy) =1 77 = 4.5)
n
0 if [1G; =0
j=1

One can see that the structure functions presented above are associative and
commutative (i.e. meet conditions (1.26) and (1.28)). Therefore, the u-functions
for any series system of described types can be obtained recursively by
consecutively determining the u-functions of arbitrary subsets of the elements. For
example the u-function of a system consisting of four elements connected in a
series can be determined in the following ways:

[(u1(2) ¢S§r uy(z)) (ﬁr u3(z)] ¢S<>Z 1y (z)

= (u1(2) ¢§r uy(2)) ¢S%(M3(z) %%r u4(2)) (4.6)

and by any permutation of the elements' u-functions in this expression.

Example 4.1

Consider a system consisting of n elements with the total failures connected in
series. Each element j has only two states: operational with a nominal performance
of g;; and failure with a performance of zero. The probability of the operational
state is p;. The u-function of such an element is presented by the following
expression:

8 .
uj(2)=1-p+pp®t, j=1,..n

In order to find the u-function for the entire MSS, the corresponding
®¢ger operators should be applied. For the MSS with the structure function (4.2)

the system u-function takes the form

For the MSS with the structure function (4.5) the system u-function takes the form

n 0 n (28711)71
U(2) = ®uy (2),.mstty (2)} = (1= Hlp.,-l)z + 11 pjiz =
J= J=

Since the failure of each single element causes the failure of the entire system,
the MSS can have only two states: one with the performance level of zero (failure
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of at least one element) and one with the performance level ¢ = min{gq1,.... &1}
for the flow transmission MSS and ¢ =1/ Z?zl gj_-ll for the task processing MSS.

The measures of the system performance A(w) = Pr{G>w}, A (w) =
E(max(w—G,0)) and ¢ = E(G) are presented in the Table 4.1.

Table 4.1. Measures of MSS performance

w A(w) A" (w) £
R n n n
w>g 0 w(l - Hle)"'(W_g)H pj1=W—£’Hpj1
j=1 j=1 j=1 n
§H Pj]
A 1 " j:1
O<w<g I Pji wil- TI P )

j=1 i=1

The u-function of a subsystem containing » identical elements (p;=p, g;=g for
any j) takes the form

(1-pMz°+p"z8 (4.7)
for the system with the structure function (4.2) and takes the form

(1-p™Mz° + p"z8’" (4.8)
for the system with the structure function (4.5).

4.1.2 Parallel Systems

In the flow transmission MSS, in which the flow can be dispersed and transferred
by parallel channels simultaneously (which provides the work sharing), the total
capacity of a subsystem containing » independent elements connected in parallel is
equal to the sum of the capacities of the individual elements. Therefore, the
structure function for such a subsystem takes the form

#..(G,,...G,) =+(G,,...G) =Y G, 4.9)

Jj=1

In some cases only one channel out of n can be chosen for theflow transmission
(no flow dispersion is allowed). This happens when the transmission is associated
with the consumption of certain limited resources that does not allow simultaneous
use of more than one channel. The most effective way for such a system to function
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is by choosing the channel with the greatest transmission capacity from the set of
available channels. In this case, the structure function takes the form

bpar Gy Gy) =max{G...... G, ). (4.10)

In the task processing MSS, the definition of the structure function depends on
the nature of the elements’ interaction within the system.

First consider a system without work sharing in which the parallel elements act
in a competitive manner. If the system contains n parallel elements, then all the
elements begin to execute the same task simultaneously. The task is assumed to be
completed by the system when it is completed by at least one of its elements. The
entire system processing time is defined by the minimum element processing time
and the entire system processing speed is defined by the maximum element
processing speed. Therefore, the system structure function coincides with (4.10).

Now consider a system of n parallel elements with work sharing for which the
following assumptions are made:

1. The work x to be performed can be divided among the system elements in

any proportion.

2. The time required to make a decision about the optimal work sharing is
negligible, the decision is made before the task execution and is based on
the information about the elements state during the instant the demand for
the task executing arrives.

3. The probability of the elements failure during any task execution is
negligible.

The elements start performing the work simultaneously, sharing its total

amount x in such a manner that element j has to perform x; portion of the work and

X = Z’;Zl x ;. The time of the work processing by element j is x/G;. The system
processing time is defined as the time during which the last portion of work is
completed: 7' =max<;c,{x;/G;}. The minimal time of the entire work
completion can be achieved if the elements share the work in proportion to their

processing speed Gj: x; =xG/ 2 4-1Gx. The system processing time 7 in this

case is equal to x/ ZZ:I G, and its total processing speed G is equal to the sum of

the processing speeds of its elements. Therefore, the structure function of such a
system coincides with the structure function (4.9).

One can see that the structure functions presented also meet the conditions
(1.26) and (1.28). Therefore, the u-functions for any parallel system of described
types can be obtained recursively by the consecutive determination of u-functions
of arbitrary subsets of the elements.

Example 4.2

Consider a system consisting of two elements with total failures connected in
parallel. The elements have nominal performance g;, and g, (g11<g»1) and the
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probability of operational state p;; and p,; respectively. The performances in the
failed states are g9 = g0 =0. The u-function for the entire MSS is

U(z) =uy(2) g uy(z)
=[(1-p1)2° + ppyzn ]¢,® (1= pa)z” + pyyz® ]
par

which for structure function (4.9) takes the form

U(z)= (- p1)(1=paz° + p (1= pypz®n

g 8,,+8
+pud=piz"2 + pyypyz”t 2

and for structure function (4.10) takes the form
_ 0 81 81
Uz)=1=pi)U=pypz + pri(l=papz”" + pyr(I=prpz
+ PP M XEE) = (1= py )= po)2” + pry(= pr)2® + pyyz

The measures of the system output performance for MSSs of both types are
presented in Tables 4.2 and 4.3.

Table 4.2. Measures of MSS performance for system with structure function (4.9)

w A(w) A(w) &
w>g11+821 0 w-p11811—P21821
£21<W<g11+ga1 PP gupn(pa—1)+gapu(pu-1)+w(l-pup2)
gu<ws< g D21 (I-p2)(w=gupn) Pugutpagai
O<w<g, Putpa—pupa (Tp1)(L—-pa)w

Table 4.3. Measures of MSS performance for system with structure function (4.10)

w Aw) A (w) €
w>g21 0 wpngn—pag2t+pupgu
g1<w< g9y )23 (I=pa)(w=gupn) pu(l=pa)gui+paiga
O<w<gi putpa—pupa (I-pi)(A—pa)w

The u-function of a subsystem containing » identical parallel elements (p;; = p,
gi1 = g for any j) can be obtained by applying the operator ®¢par u(2),....,u(z))

over n identical u-functions u(z) of an individual element. The u-function of this
subsystem takes the form
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n

|
> ﬁpk(l—l’)n_kzkg 4.11)
k=0 k!(n—k)!

for the structure function (4.9) and

1-p)" " +A-(1-p)")z* 4.12)
for the structure function (4.10).
4.1.3 Series-Parallel Systems

The structure functions of complex series-parallel systems can always be
represented as compositions of the structure functions of statistically independent
subsystems containing only elements connected in a series or in parallel.
Therefore, in order to obtain the u-function of a series-parallel system one has to
apply the composition operators recursively in order to obtain u-functions of the
intermediate pure series or pure parallel structures.

The following algorithm realizes this approach:

1. Find the pure parallel and pure series subsystems in the MSS.

2. Obtain u-functions of these subsystems using the corresponding ®¢Sﬂ and

® b operators.

3. Replace the subsystems with single elements having the u-function
obtained for the given subsystem.

4. If the MSS contains more then one element return to step 1.

The resulting u-function represents the performance distribution of the entire
system.

The choice of the structure functions used for series and parallel subsystems
depends on the type of system. Table 4.4 presents the possible combinations of
structure functions corresponding to the different types of MSS.

Table 4.4. Structure functions for a purely series and for purely parallel subsystems

No of MSS Description Structure function for ~ Structure function for
type of MSS series elements (@) parallel elements (@)
Flow transmission MSS
1 with flow dispersion “4.2) 4.9)
Flow transmission MSS
2 without flow dispersion “4.2) (4.10)
Task processing MSS
3 with work sharing 4.5) 4.9)
Task processing MSS

4 without work sharing 4.5) (4.10)
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Example 4.3

In order to illustrate the recursive approach (the reliability block diagram method)
consider the series-parallel system presented in Figure 4.1A.

First, one can find only one pure series subsystem consisting of elements with
the wu-functions uy(z), u3(z) and wuy(z). By calculating the u-function
Ui(2)=u,(2) ® uz(z) ¢E@ uy(z) and replacing the three elements with a single

er
element with the u-function U,(z) one obtains a system with the structure presented
in Figure 4.1B. This system contains a purely parallel subsystem consisting of
elements with the u-functions Ui(z) and us(z), which in their turn can be replaced
by a single element with the u-function U,(z) = Ul(z)g) us(z) (Figure 4.1C).

The structure obtained has three elements connected in a series that can be replaced
with a single element having the u-function U;(z) =u;(z) P Uz(z)¢® ug(z)

(Figure 4.1D). The resulting structure contains two elements connected in parallel.
The u-function of this structure representing the p.m.f. of the entire MSS
performance is obtained as U(z) = U3(z) ¢® u7(2).

'par

7<)

A B
Ful<z>l—|uz(z>l—| ub<z>}—+ Us(z)
17(2) u7(z)

C D

Figure 4.1. Example of recursive determination of the MSS u-function

Assume that in the series-parallel system presented in Figure 4.1A all of the
system elements can have two states (elements with total failure) and have the
parameters presented in Table 4.5. Each element j has a nominal performance rate
g1 in working state and performance rate of zero when it fails. The system is
repairable and the steady-state probability that element j is in working state
(element availability) is p;;.

Table 4.5. Parameters of elements of series-parallel system

T 1 2 3 4 5 6 7
gi 5 3 5 4 2 6 3
pit 0.9 0.8 0.9 0.7 0.6 0.8 0.8
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The process of calculating U(z) for the flow transmission system with flow
dispersion (for which ¢, and @, functions are defined by Equations (4.2) and
(4.9) respectively) is as follows:

1:(2) ® u3(2) =(0.82°+0.22") ® (0.927+0.12")=0.722"+0.287"
Un(2)=(ux2) ® u3(2)) O u(z)

= (0.722+0.282%) ® (0.77*+0.32%)=0.5042’+0.4967"
Uz(z)=U1(z)@MS(z)=(o.504z3+0.496z0) ® (0.62°+0.42")

= 0.3024z°+0.49927°+0.19847°
u1(z) ® Uyz)=(0.92+0.17") ® (0.30247°+0.49927°+0.19847")

=0.272162°+0.449287°+0.278567";
Us(2)=(u1(z) ® Us(z)) ® ug(z)=(0.272167°+0.449287°

+0.278562%) @ (0.82°+0.22%)= 0.21772877+0.3594242°+0.4228487"
U(2)=Us(2) ®us(2)
= (0.217728°+0.35942477+0.422848") ® (0.87+0.22")
= 0.17418247°+0.28753927°+0.04354567°+0.41016327°+0.08456967°
Having the system u-function that represents its performance distribution one
can easily obtain the system mean performance ¢ = U'(1) = 4.567. The system

availability for different demand levels can be obtained by applying the operator
9,, (3.15) over the u-function U(z):

A(w) =0.91543 for O<w<3
A(w) =0.50527 for 3<w<5
A(w) =0.461722 for 5<w<6
A(w) =0.174182 for 6<w<8

A(w) =0 for w>8
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The process of calculating U(z) for the task processing system without work
sharing (for which ¢, and @, functions are defined by Equations (4.5) and (4.10)
respectively) is as follows:

16(2) ® 3(2) = (0.827+0.22%) ® (0.97°+0.12°%) = 0.727°+0.282";
Ui(2) = (ux(2) ®us(2)) ®ua(z)

= (0.722°740.282") ® (0.72'40.32) = 0.5042"*+0.4967"
Us(2) = Ui(2) ® us(2)) = (0.5047'%74+0.4962°) ® (0.62°+0.42°%)

=0.62240.20167'*77+0.19847°
ui1(z) ® Up(z) = (0.92°+0.1z%) ® (0.627+0.20162"7+0.19842")

=0.547"%+0.181447'°17+0.278567"
Us(2) = (u1(2) ® Us(2)) ®ue(z) = (0.547"4°+0.181447"07

+0.278567°) ® (0.87°+0.27°) = 0.4327"1544+0.1451527°¥7+0.4228487°
Uz) = Us(z) ® us(z) = (0.4327"1°*+0.1451527°%7+0.4228487°)

® (0.82°+0.27°%) = 0.82°+0.0864z"1**+0.02903047"%

max

+0.08445696
The main performance measures of this system are:
&=U'(1)=2.549
A(w) =0.91543 for 0<w<0.87, A(w) = 0.8864 for 0.87<w<1.429
A(w) = 0.8 for 1.429<w<3, A(w) = 0 for w>3

The procedure described above obtains recursively the same MSS u-function
that can be obtained directly by operator %)(ul(z),uz(z),u3(z),u4(z),u5 (2)) using

the following structure function:
ﬂGls GZa G39 G43 G55 G6’ G7)

= ¢par(¢ser(Gl5 ¢par(¢ser(G2’ G3’ G4)’ GS)» GG)’ G7)
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The recursive procedure for obtaining the MSS u-function is not only more
convenient than the direct one, but, and much more important, it allows one to
reduce the computational burden of the algorithm considerably. Indeed, using the
direct procedure corresponding to Equation (1.20) one has to evaluate the system
structure function for each combination of values of random variables Gy, ..., G;

(]_[3.:1 k ; times, where k; is the number of states of element j). Using the recursive

algorithm one can take advantage of the fact that some subsystems have the same
performance rates in different states, which makes these states indistinguishable
and reduces the total number of terms in the corresponding u-functions.

In Example 4.3 the number of evaluations of the system structure function
using the direct Equation (1.20) for the system with two-state elements is 2" = 128.
Each evaluation requires calculating a function of seven arguments. Using the
reliability block diagram method one obtains the system u-function just by 30
procedures of structure function evaluation (each procedure requires calculating
simple functions of just two arguments). This is possible because of the reduction
in the lengths of intermediate u-functions by like terms collection. For example, it
can be easily seen that in the subsystem of elements 2, 3 and 4 all eight possible
combinations of the elements' states produce just two different values of the
subsystem performance: 0 and min(g;;, g31, g41) in the case of the flow
transmission system, or O and g»1831841/(821831+821841+831841) in the case of the
task processing system. After obtaining the u-function U;(z) for this subsystem and
collecting like terms one gets a two-term equivalent u-function that is used further
in the recursive algorithm. Such simplification is impossible when the entire
expression (1.20) is used.

Example 4.4

Assume that in the series-parallel system presented in Figure 4.1A all of the system
elements can have two states (elements with total failure). The system is
unrepairable and the reliability of each element is defined by the Weibull hazard
function

h(t)= An”"!

The accumulated hazard function takes the form

H@) = (A"

The elements’ nominal performance rates g;;, the hazard function scale
parameters 4; and the shape parameters y; are presented in Table 4.6. One can see
that some elements have increasing failure rates (y >1) that correspond to their
aging and some elements have constant failure rates (y = 1).

Since the MSS reliability varies with the time, in order to obtain the
performance measures of the system the reliability of its elements Pr{G; = g;1} =
exp(—H,(t)) should be calculated for each time instant. Then the entire system
characteristics can be evaluated for the given demand w. Figures 4.2, 4.3 and 4.4
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present & R(w) and A'(w) as functions of time for different types of system
(numbered according to Table 4.4).

Table 4.6. Parameters of system elements

No Nominal Hazard function
of performance rate parameters
element g A y

1 5 0.018 1.0
2 3 0.010 1.2
3 5 0.015 1.0
4 4 0.022 1.0
5 2 0.034 1.0
6 6 0.012 22
7 3 0.025 1.8

(I
P
2
w

Figure 4.2. System reliability function for different types of MSS
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Figure 4.4. System performance deficiency for different types of MSS
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4.1.4 Series-Parallel Multi-state Systems Reducible to Binary
Systems

In some special cases the reliability (availability) of the entire system can be
obtained without derivation of its u-function. In the final stage of reliability
evaluation, such systems can be treated as binary systems.

Consider, for example, a flow transmission system consisting of n independent
multi-state components connected in a series (each component in its turn can be a
series-parallel subsystem). Let G; be the random performance of component j. The
structure  function of the series flow transmission system s
G = ¢(Gy,...,G,) = min{Gy,...,G,, }.

Assume that the system should meet a constant demand w. Therefore, the
system acceptability function takes the form F(G,w) = 1(G > w). It can be seen that

in this special case

F(G,w)=1(min(Gj....,G, } > w) = ﬁl(Gj > w) (4.13)
j=1

The system’s reliability is defined as the probability that G is no less than w and
takes the form

R(w)=Pr{F(G,w) =1} = Pr{ﬁl(Gj zw) =1}
J=1

= ﬁPr{l(Gj z2w)=1}= ﬁPr{F(Gj,w) =1) (4.14)
j=l1 Jj=1

This means that the system’s reliability is equal to the product of the reliabilities of
its components.

Each component j can be considered to be a binary element with the state
variable X ; =F(G;,w) and the entire system becomes the binary series system

with the state variable X and the binary structure function ¢:

n
F(Gw)=X = (X1, X,)) = [1X (4.15)
j=l

The algorithm for evaluating the system reliability can now be simplified. It
consists of the following steps:

1. Obtain the u-functions Uj(z) of all of the series components.

2. Obtain the reliability of each component j as R;(w)=7,,(U ;(2)).
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n n
3. Calculate the entire system reliability as R = H1R iw) =H15w U ().
Jj= Jj=
It can easily be seen that for the discrete random demand with p.m.f.
w = {wy,...,wy}, ¢ = {q1,..., qu} the system reliability takes the form

M M n M n
R= Y4, R00m) = X4 TIR;(w,) = 24, 116, U;(2)  (416)
m=1 m=1 j=1 m=1 j=1

Another example is a flow transmission system without flow dispersion
consisting of n independent multi-state components connected in parallel. The
structure function of such a system is G =¢(G;....,G, ) =max{Gj,...,G,}. If the

system should meet a constant demand w, its acceptability function also takes the
form F(G,w)=1(G = w). The probability of the system’s failure is

Pr{F(G,w) =0} = Pr{G < w} = Pr{max{G;,...,G,, } < w}

=Pr{JJUG,; <w)}=]Pr{l(G; <w)} = [TA-Pr{l(G; = w)})
j=1 j=l j=l

= ﬁ(l—Pr{F(Gj,w) =1)) 4.17)
j=1

The entire system reliability can now be determined as

Pr{F(G,w) =1} =1-Pr{F(G,w) = 0}

=1—ﬁ(1—Pr{F(Gj,w):1}) (4.18)

Jj=1
This means that each component j can be considered to be a binary element

with the state variable X ; = F(G;,w) and the entire system becomes the binary

parallel system with the state variable X and the binary structure function &

F(G,w):X=J(X],...,Xn):1—ﬁ(l—Xj) 4.19)
j=l

After obtaining the u-functions Uj(z) of all of the parallel components one can
calculate the system reliability as

ROw) =1= [T - R;(w) =1- [1(-8,U ;) (4.20)
j=l j=1
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for the constant demand and as

M n M n
R= 3 qul-TI1=R;w,)} = X g, l1-T]11-6,, U]} @21

m=l1 j=1 m=l1 j=1
for the discrete random demand.

Example 4.5

Consider the flow transmission series-parallel system presented in Figure 4.5. The
system consists of three components connected in a series. The first component
consists of two different elements and constitutes a subsystem without flow
dispersion. The second and third components are subsystems with a flow
dispersion consisting of two and three identical elements respectively. Each
element j can have only two states: total failure (corresponding to a performance of
zero) and operating with the nominal performance g;;. The availability of element j

is pji-

=20, p5,=0.85

gu=60.p=0.9 | [ £:=20.p»=038 ST
gm=20, 1761=0~85

21=40, p=0.8 H =20, py=0.8

821 P21 841 Ps ¢n=20, p=0.85

Figure 4.5. Example of a series-parallel system reducible to a binary system
The u-functions of the individual elements are:

1 (2) =092 +0.12%, uy(2)=0.82*° +0.27°

u3(2) = uy(z) =0.822° +0.27°

us(2) =ug(z) =u7(z) =0.85z2° +0.157°

The u-functions of the components are obtained using the corresponding
® operators:

‘par

U,(2) =09z +0.1z°) ® 0.82* +0.22°) = 0.9 +0.082*° +0.022°
Us(2) = (082 +0.22")®(0.827° +0.22°) = 0.642* +0.32% +0.042°

Us(2) = (0852 +0.152°) ®(0.852* +0.152°) ®(0.852* +0.152")

=(0.85z2 +0.157°)% = 0.6141z°° +032512* +0.05747%° +0.00347°
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For demand w = 20 we obtain

520 U1(2)) = 520(0.92%° +0.08z% +0.02:°) = 0.98
820 (U (2)) = 329 (0.64z*° +0.322%° +0.04z°) = 0.96

520 (U3(2)) = 529 (06141250 +032512%0 4005742 %°
+0.00342%) = 0.9966
The entire system availability is
A(20) = 620 (U1(2))029 (U (2))520(U3(2))
=0.98 x 0.96 x 0.9966 = 0.9376

For demand w = 40 we obtain

540 (U1(2)) = 549(0.92%° +0.0822° +0.02:°) = 0.9
540 (U»(2)) = 549(0.64z*° +0.32220 +0.047°) = 0.64

540 U3(2)) = 5400614120 +032512%0 +0.05747%°
+0.0034z") =0.9392

The entire system availability is

A(40) =040 (U1 (2))049 (U, (2))049(U3(2))
=0.9%x0.64%x0.9392 =0.541

If the demand is the random variable W with p.m.f. w = {20, 40}, ¢ = {0.7,
0.3}, the system availability is

A=0.7A(20) +0.3A(40) = 0.7x0.9376 + 0.3x 0.541 = 0.8186

It should be noted that only the reliability (availability) of series-parallel
systems can be evaluated using the MSS reduction to the binary system. The
evaluation of the mean performance and the performance deviation measures still
require the derivation of the u-function of the entire system.

4.2 Controllable Series-Parallel Multi-state Systems

Some series-parallel systems can change their configuration following certain rules
aimed at achieving maximal system efficiency. Such systems belong to the class of
controllable systems. If the rules that determine the system configuration depend
on external factorsthen thesystemreliabilitymeasuresshould be determined for each
possible configuration. If the rules are based on the states of the system elements
then they can be incorporated into algorithms evaluating the system reliability
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measures. The application of simple operators ®¢ger and ® e OVET u-functions of

the system elements is usually not enough in order to obtain the u-function of the
entire system since its structure function is affected by the configuration control
rules.

Examples of systems with controllable configuration are systems that contain
elements with fixed resource consumption [105]. Many technical devices
(processes) can work only if the available amount of some of the resources that
they consume is not lower than the specified limits. If this requirement is not met,
then the device (process) fails to work. An example of such a situation is a control
system that stops the controlled process if a decrease in its computational resources
does not allow the necessary information to be processed within the required cycle
time. Another example is a metalworking machine that cannot perform its task if
the flow of coolant supplied is less than required.

For a resource-consuming system that consists of several units, the amount of
resource necessary to provide the normal operation of a given composition of the
main producing units (controlled processes or machines) is fixed. Any deficit of
the resource makes it impossible for all of the units from the composition to
operate together (in parallel), because no unit can reduce the amount of resource it
consumes. Therefore, any resource deficit leads to turning off some of the
producing units.

Consider a system consisting of H resource-generating subsystems (RGSs)
that supply different (not interchangeable) resources to the main producing system
(MPS). RGSs can have an arbitrary series-parallel configuration, while the MPS
consists of n elements connected in parallel (Figure 4.6). Each element of the MPS
is an element with total failure and can perform in its working state only by
consuming a fixed amount of resources. The MPS is the flow transmission system
with flow dispersion. If, following failures, in any RGS there are not enough
resources to allow all of the available producing elements to work, some of these
elements should be turned off. We assume that the choice of the working MPS
elements is made by a control system in such a way as to maximize the total
performance rate of the MPS under the given resource constraints.

RGS1

U
1@ & MPS

| 811> P1isWinWiz,. .. Wil |

RGS2| p
Us(z —>
22) | 821, P21,W21,W22,...,Way |[j

RGS H | &nls PntsWnts W2, - - - Wik |
Un(z) f

Figure 4.6. Structure of controllable system with fixed resource consumption



4 Universal Generating Function in Analysis of Series-Parallel Multi-state Systems 117

Assume that the RGS & produces a random amount B, of the resource. The
p.m.f. of B, is represented by the u-function U j(z) = Zfﬁgl qpiz" | where B is

the performance rate of RGS # in state i and g;; = Pr{B;, = f,}. Each element j of
the MPS has a nominal performance g;; and availability p;; and requires the amount
wj, of each resource h (1<h<H) for normal functioning (if different MPS
elements consume different subsets of the set of H resources, this can be
represented by assigning zero to wjy, for any resource h that is not required by
element j). The p.m.f. of the random performance G; of element j is represented by

the u-function u ;(z)=p jlzg-“ +(1-p jl)zo. The distribution of the available
performance of the entire MPS Gy, can be obtained as
Upps (2) = ® 4 (11(2),...,u,,(2)). Observe that the performance G, represents the

potential performance ability of the MPS. It does not always coincide with the
output performance of the entire system G. U,,s(z) represents the conditional
distribution of G corresponding to a situation when the resources are supplied
without limitations. In order to take into account the possible deficiency of the
resources supplied we have to incorporate the MPS control rule (the rule of turning
the MPS elements off and on) into the derivation of the system u-function U(z)

representing the p.m.f. of G.

4.2.1 Systems with Identical Elements in the Main Producing
System

If an MPS contains only identical elements with g;; = g, pji = p and wy, = w;,>0 for
any j and h, the number of elements that can work in parallel when the available
amount of resource h is f; is L/)’h,-/whj, which corresponds to the total system
performance y,; = g |_/3;,,-/th (the remainder of the MPS elements must be turned
off). It must be noted that y;,; represents the total theoretical performance, which
can be achieved by using the available resource 4 by an unlimited number of
producing elements. In terms of the entire system output performance, the u-
function of the RGS % can be obtained in the following form:

k-1 k-1
U @)= Sauz = £aztul 422)
i=0 i=0

The RGS, which can provide the work of a minimal number of producing
units, becomes the system’s bottleneck. This RGS limits the total system
performance. Therefore, the u-function for a system containing H different RGS in
terms of system output performance can be obtained as

Uggs(2) = S%(Uly (Z)qu}./[ (2)) (4.23)
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Function Uggg(2) represents the entire system performance distribution in the

case of an unlimited number of available elements in the MPS.

The entire system performance is equal to the minimum of the total theoretical
performance, which can be achieved using available resources and the total
performance of the available MPS elements. To obtain the u-function U(z) of the
entire system representing the p.m.f. of its performance G, the same operator

® should be applied over the u-functions U ;¢ (z) and U yps(2) :

min

U(z) =Upggs(2) n% Upps (2) = n%(U((z),...,UIZ (2),U \ps (2))

=® w/! (z),...,U,{,(z),@(ul(z),...,un(z))) (4.24)

4.2.2 System with Different Elements in the Main Producing
System

If the MPS consists of n different elements, then it can be in one of 2" possible
states corresponding to the different combinations of the available elements. Let S
be a random set of numbers of available MPS elements and S be a realization of S

in state k (1< k <2™). The probability of state k can be evaluated as follows:

5 o 10jeS 1(igS
P =TIp /= A= pyp)'iese (4.25)
=1

The maximal possible performance of the MPS and the corresponding maximal
resources consumption in state k are

n 1(jes,
gl = 3 (g !V (4.26)
J=l
and
max _ < 1(jeSy)
wik = 2 (wjp) (1<h<H) (4.27)
J=1
respectively.

Let us define a u-function representing the distribution of the random set of
available elements. For a single element j this u-function takes the form

ui(2)=ppz s+ 1-p;”? (4.28)
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Using the union procedure U in the composition operator ® we can obtain the
v
distribution of the random set of available elements in the system consisting of

several elements. For example, if the MPS consists of two elements

ui(2) =z + (=122, un(2) = pry® + 1= pyp)”? (4.29)
and the distribution of the set of available elements takes the form

U wies(2) =141 (2) Qi (2)

=[pyzM +a- Pn)Z@]@[PmZ{Z} +(1- pyZ?]

{1 g U2}

= prpazMH 4 pr - py2!
1,2 1

+ (1= piA=p2z27? = p1ypay ™+ pry = ozt

+(1=pi)pyz® + A= p - pyp)? (4.30)

@
+(=p11)p2z

For an MPS consisting of n elements the u-function representing the
distribution of a random set of available elements takes the form

2"
Unips (2) = ©uy (2t (2)) = X Bz (431)
k=1

When each RGS £ is in state i, the amount ﬁhih of the resource generated by

this RGS can be not enough to provide the maximal performance of the MPS at
state k. In order to provide the maximum possible performance G of the MPS
under the resource constraints one has to solve the following linear programming
problem for any combination of states iy,...,iy of H RDSs and state k of the MPS:

opt(Byj, » Baiy »-s PHiy, »Si) =max g jix;
jeSi
subject to
2 WinXj < Py, for 1<h<H
o 4.32)
)CJ' (S {0,1}

where x; = 1 if the available element j is turned on (works providing performance
rate g;; and consuming wj, of each resource 1< h < H) and x; = 0 if the element is

turned off.

The performance distribution of the entire system can be obtained by
considering all of the possible combinations of the available resources generated by
the RGS and the states of the MPS. For each combination, a solution of the above
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formulated optimization problem defines the system’s performance. The u-function
representing the p.m.f. of the entire system performance G can be defined as
follows:

U(2) = 8W(2).... Uy (2).Upps (2))

k-1 k,—1 ky—1| H 2"
_ lz 22 HZ T1an) Z]“;kzopt(ﬂlipﬂziz ,,,,, By Si) (4.33)
=0 =0 in=0| A=l " k=l

To obtain the system u-function, its optimal performance should be determined
for each unique combination of available resources and for each unique state of the
MPS. In general, the total number of linear programs to be solved in order to

obtain U(z) is 2" HhH=1 kj,. In practice, the number of programs to be solved can be

reduced drastically using the following rules:
1. If for the given vector fy; ..., By;, and for each element j from the given

then the system

set of MPS elements Sy there exists i for which S, <w,,
performance is equal to zero. In this case the system performance is equal to zero
also for all combinations (B jyoeees g Hi, S such

thatﬂljl < ﬂ]il ,...,ﬂHjH < ﬂHiH and Sm C Sk'
2. If element jeS; exists for which f,; <wj, for some h, this means that in

the program (4.32) x; must be zeroed. In this case, the integer program dimension
can be reduced by removing all such elements from Sj.
3. If for the given vector fj; , f;, ... P, and for the given set Sy the solution

of the integer program (4.32) determines subset S ¢ of turned-on MPS elements
(Jj eﬁk if x=1), then the same solution must be optimal for the MPS states

characterized by any set S,: S k ©S8; ©Sg. This allows one to avoid solving

many integer programs by assigning the value of opt(fy; , £, .- Bgi, »Sk) to all
the opt(ﬂl,-1 ,ﬁZizuwﬂHiH S -

Example 4.6

Three different metalworking units (Figure 4.7) have the respective productivities
and availabilities g;=10, p;;=0.8, g,1=15, p»=0.9 and g3,=20, p;=0.85. The
system productivity should be no less than a constant demand w. Each unit
consumes two resources: electrical power and coolant.

The constant power consumption of the units is wy; = 5, wy; = 2, w3 = 3. The
power is supplied by the system consisting of two transformers that work without
load sharing (only one of the two transformers can work at any moment). The
power of the transformers is 10 and 6. The availability of the transformers is 0.9
and 0.8 respectively. The constant coolant flow consumed by the units is wy,; = 4,
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way = 5 wi = 7. Two identical pumps working in parallel supply the coolant (both
pumps can work simultaneously). The nominal coolant flow provided by each
pump is 9. The availability of each pump is 0.8.

*wu_\—pq—
-0 ;

il se
=3 =

Figure 4.7. Example of controllable series-parallel system

The u-function representing the distribution of available power takes the form

U,(2)=(0.9z"" +0.1z°) ® (0.82° +0.22°)=0.92'" +0.082° +0.022°

and the u-function representing the distribution of the available coolant takes the
form

Us(2)=(0.8z" +0.22°)®(0.82° +0.2:°) =0.642'% +0.322° +0.04°

The u-function representing the distribution of the set of available
metalworking units takes the form

Uges (2) = (0.821" +0.0227)®(0.9217 +0.127) ®(0.852 1

+0.1529) = 000322 + 0012z + 0027212 + 00173
+0108z%% 1006821 101532123 106122123

The values of the opt function obtained for all of the possible combinations of
available metalworking units (realizations S; of the random set §) and available

resources (realizations of By and B,) are presented in Table 4.7. The table contains

the maximal possible productivity of the MPS g™ and the corresponding

maximal required resources w}';;(ax for any set Sy that is not empty. It also contains
the optimal system productivity G (values of the opt function) and the

corresponding sets of turned-on elements S .



122 The Universal Generating Function in Reliability Analysis and Optimization

Table 4.7. Solutions of a linear program for a system with different elements in
an MPS

Bi=6,B,=9 | Bi=6,B,=18 | Bi=10,B,=9 | B;=10, B=18
R o § G § G S G
{1y 10 s 4 {1y 10 ({1} 10 [ {1} 10 | {1} 10
{2y 15 2 5 20 15 [ {2y 15 [ (2} 15 | {2} 15
33 20 3 7 3y 20 | {33 20 | {3} 20 | {3} 20
{12y 25 7 9 {2y 15 | {2} 15 [{1,2} 25 [{12} 25
{13} 30 8 11 | {3y 20 | {3} 20 | {3} 20 | {13} 30
{23} 35 5 12 | {3v 20 [{23} 35 | {3} 20 |{23} 35
{123} 45 10 16 | {33 20 [{23} 35 |{L,2} 25 |{123} 45

It is obvious that if S, =¢J then the entire system performance is equal to

zero. If B, =0 or B, = 0 then the entire system performance is also equal to zero
according to rule 1 (these solutions are not included in the table). Note that the
solutions marked in bold are obtained without solving the linear program (they
were obtained using rule 3 from the solutions marked in italic).

The u-function of the entire system obtained in accordance with Table 4.7 after
collecting the like terms takes the following form:

U(z) = @[(0.9110 +0.082% +0.022%),(0.64z'® +0.322° +0.047°),
op

0.003z2 +0012z +0.02721% 00172 + 0108212 + 0068713
+0153z123 10612712312 006220 +0.01132'° + 0033721
+0.104z%° 1027022 +0.03920 + 012773 +0353%

Having the system u-function we can easily obtain its mean performance

e=U"'(1)=0.0113x10+0.0337x15+0.104 x 20 + 0.270 x 25
+0.039x30+0.127x35+0.353 x 45 =30.94

and availability. For example, for system demand w = 20:

A(20) = S50 (U(2)) = 520(0.0622° +001132'% + 00337713

+0.1042%° 4027027 + 0039230 + 01272 +0353:%)
= 0104+ 0.270 + 0.039 + 0127 + 0353 = 0.893

The system availability as a function of demand is presented in Figure 4.8.
Now consider the same system in which the MPS consists of three identical
units with parameters g;; = 20, p;; = 0.85, w;; = 3 and wp = 7. The reliability
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measures of such a system can be obtained in an easier manner by using the
algorithm presented in Section 4.2.1.

From the u-functions of the RGSs U(z) and U,(z) by applying Equation (4.22)
we obtain for the first RGS:

U7 (2) = 0.9721013) 1 0,08,2006/3) 1 0,02, 20L0/5]
=0.9z%0 +0.082%° +0.02:°

and for the second RGS:
Ul(z)= 0.6472018/7] 4 .30, 2009/7) 9 94,20L0/7]

=0.64z% +0.327%° +0.047°
The u-function of the MPS is

Uy (2) = (085270 +0.15°)®(0.857%°
+0.15z9)®(0.85z%° +0.157%) = (0.85z%° +0.157%)3

=06141z% +0.32512%° + 0057427 +0.00342°

The u-function of the entire system after collecting the like terms takes the form:
U(2)=U{(2) ® U5 (2) ® Uyps(2)
=(0.9z%0 +0.082%° +0.02:°) ® (0.642%° +0.3222° +0.047°%)

®(0.6141z%° + 0325124 +0.05742%° +0.00342%)

min

=0.589z% +0.34862%° +0.06242"
From the system u-function we can obtain its mean performance

e=U"'(1)=0.589x40+0.3486x 20 = 30.532

and its availability. For example, for w = 20:

A(20) = S50 (U(2)) = 520(0.589z% + 03486220 +0.06247°)
= 0.589 +0.3486 = 0.9375

The system availability as a function of demand is presented in Figure 4.8.



124  The Universal Generating Function in Reliability Analysis and Optimization

—_— -
0. -
L]
L]
L]
0. O
L]
L]
L
0. - '
]
L]
L]
L]
0. - .
L]
L]
L]
0 -
0 1 2 3 4 5
w

Different MPS elements
- - - - Identical MPS elements

Figure 4.8. Availability of controllable series-parallel system as a function of demand

Since the system consists of three subsystems connected in a series and can be
considered as a flow transmission system, its availability for any given demand can
be obtained without derivation of the entire system u-function U(z) using the
simplified technique described in Section 4.1.4. The availability of the system for
w = 20 is calculated using this simplified technique in Example 4.5.

The RGS-MPS model considered can easily be expanded to systems with a
multilevel hierarchy. When analyzing multilevel systems, the entire RGS-MPS
system (with its performance distribution represented by its u-function) may be
considered in its turn as one of the RGSs for a higher level MPS (Figure 4.9).

RGS GS

R
RGS e RGS RGS . RGS

Figure 4.9. RGS-MPS system with hierarchical structure
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4.3 Multi-state Systems with Dependent Elements

One of the main assumptions made in the previous sections is statistical
independency of system elements. This assumption is not true for many technical
systems. Fortunately, the UGF approach can be extended to cases when the
performance distributions of some system elements are influenced by the states of
other elements or subsystems [106].

4.3.1 u-functions of Dependent Elements

Consider a subsystem consisting of a pair of multi-state elements i and j in which
the performance distribution of element j (p.m.f. of random performance G;)
depends on the state of element i. Since the states of the elements are distinguished
by their corresponding performance rates, we can assume that the performance
distribution of element j is determined by the performance rate of element i. Let
g ={gn: 1<h<k;} be the set of possible performance rates of element i. In general,
this set can be separated into M mutually disjoint subsets g;” (1<m<M):

M
Ug"=g;, &"Ngl =2, if mzl (4.34)
m=1

such that when element i has the performance rate g;,€g;” the PD of element j is
defined by the ordered sets gj, = {gjcjm» 1<c<Cjp,} and gy, = {Gjcim, 15c<Cj},
where

Giclm = Pr{Gj = 8jcim | Gi=gin € g&"} (4.35)

If each performance rate of element i corresponds to a different PD of element j,
then we have M=k; and g" = {g;.}.
We can define the set of all of the possible values of the performance rate of

M
element j as g = Ug Jim and redefine the conditional PD of element ; when
m=1

element 7 has the performance rate gy, €g;” using two ordered sets g; ={g;., 1<c<C;}
and pji, = {Pjejm> 15¢<C; }, where:

0, gjc €8 jm
P jelm = (4.36)
djclm> 8jc €8 jim

According to this definition
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Djeim = Pr{G; = gjc| Gi=guneg!"} (4.37)

for any possible realization of G; and any possible realization of G,eg,”.
Since the sets g/ (1<m<M) are mutually disjoint, the unconditional probability
that G=g;. can be obtained as

M
Pje=2Pr{G; =g |G cg/"}Pr{G; € g{"}
m=1
M k;

= 2 Pjem 2 Pin\(pin € 8&/") (4.38)
m=l1 h=1

In the case when g/ = {g;,,}

k;
Pjc= zpimpjc\m (4.39)
m=1

The unconditional probability of the combination G; = g, G; = gj. is equal to
PinPjeluny, Where p(h) is the number of the set to which g, belongs: giheg,-”(h)
Example 4.7
Assume that element 1 has the PD g, = {0, 1, 2, 3}, p; = {0.1, 0.2, 0.4, 0.3} and

the PD of element 2 depends on the performance rate of element 1 such that when
G122 (Gy eg11 = {0,1,2}) element 2 has the PD g,; = {0, 10}, g, = {0.3, 0.7} while
when G>2 (Gleg12={3}) element 2 has the PD g, = {0, 5}, gop = {0.1, 0.9}. The
conditional PDs of element 2 can be represented by the sets g, = {0,5,10} and po;
=1{0.3,0,0.7}, pop={0.1,0.9, 0}.
The unconditional probabilities p,, are:
P21 =Pr{G,=0} =Pr{G,=0| G,eg,'}Pr{G g}
+Pr{G, = 0| G,eg*}Pr{Gieg\’} = pr(P1+piatpis)+ paip(pia)
= 0.3(0.1+0.2+0.4)+0.1(0.3) = 0.24
pn=Pr{G,=5} =Pr{G,=5| Gieg,'}Pr{G eg,'}
+Pr{G,=5| G,eg*}Pr{Gieg\’} = pui(i+pitpis)t pup(pia)
= 0(0.1+0.2+0.4)+0.9(0.3) = 0.27
P23 =Pr{G, =10} =Pr{G,= 10| G,eg,'}Pr{G,eg,'}
+Pr{G,=10| G,eg,"}Pr{G,eg,’} = pa(Putpi2tpi3)t pap(Pia)
=0.7(0.1+0.2+0.4)+0(0.3)=0.49
The probability of the combination G| =2, G, =10 is
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DP13P23ju) = P1ap2sn = 0.4x0.7 = 0.28.
The probability of the combination G; =3, G, =10 is

P1aP23\u4) = P14P232 = 0.3x0=0.

The sets g; and p;,, 1<m<M define the conditional PDs of element j. They can
be represented in the form of the u-function with vector coefficients:

¢ ,
i (2)=2p 2" (4.40)
c=1
where

Pjc =(Pjels P jep s P jelM) (4.41)

Since each combination of the performance rates of the two elements G; = gy,
G; = g corresponds to the subsystem performance rate &g, g.) and the
probability of the combination iS pypj. ), We can obtain the u-function of the
subsystem as follows:

N k. C;
= ; o 5. 8
ui(2)®u ;(z) = 2. Pin? %Zl’jcz
h=1 c=1

ki Cj ¢(gihag '(‘)
= 2. Pin 2P jelu(h)? 4 (4.42)
h=1 c=1

The function &g, gjc) should be substituted by ¢l(gin, gic) OF Psergin» &) N
accordance with the type of connection between the elements. If the elements are
not connected in the reliability block diagram sense (the performance of element i
does not directly affect the performance of the subsystem, but affects the PD of
element ;) the last equation takes the form

= k; ;. = Cj _ . ki Cj .
u;()®1;(2) = X pyz*" @ L jez™ = 3 pip TP jouyz " (443)
h=1 c=1 h=1 c=1

Example 4.8

Consider two dependent elements from Example 4.7 and assume that these
elements are connected in parallel in a flow transmission system (with flow
dispersion). Having the sets g,={0, 1, 2, 3}, p,;={0.1, 0.2, 0.4, 0.3} and
£,={0,5,10}, p»;={0.3, 0, 0.7}, p,,={0.1, 0.9, 0} we define the u-functions of the
elements as
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u(z) = 0.1z° +0.2z! +0.42% +0.323
iy(z) = (0.3,0.)z° +(0,0.9)z° +(0.7,0)z'°

The u-function representing the cumulative performance of the two elements is
obtained according to (4.42):

- 4 3
u(2)®ity(2) = Y. pip X Pacu(ny? <" 4%
h=l1 c=1

=0.100.329"0 + 029 +0.72%71%) 4 0.2(0.321*°

+0z° +0.7219) £ 0.4(0.32240 + 0227 +0.722410)
+0.3(0.12* 40923 + 02319 = 0.032° + 0.062!
+0.1222 +0.032% +0.272% +0.072'% + 0.142!" + 0.282'2

Now assume that the system performance is determined only by the output
performance of the second element. The PD of the second element depends on the
state of the first element (as in the previous example). According to (4.43) we
obtain the u-function representing the performance of the second element:

3

S 4
u (2)®iin(2) = X Pii X P2clu(ny ¥
h=1 c=1

=0.100.3z° + 02> +0.72'%) +0.2(0.3z° + 0z° +0.72'?)
+0.4(0.3z° +02° +0.72'9) +0.3(0.1z° + 0.92° +02')
=0.24z° +0.272° +0.492'0

4.3.2 u-functions of a Group of Dependent Elements

Consider a pair of elements e and j. Assume that both of these elements depend on
the same element i and are mutually independent given the element i is in a certain
state /. This means that the elements e and j are conditionally independent given
the state of element i. For any state / of the element i (g,—heg,-”(h)) the PDs of the
elements e and j are defined by the pairs of vectors g, p.j.) and g, pjum, where
Pelun= {Pedu(m) 1S ¢ <C,}. Having these distributions, one can obtain the u-

function corresponding to the conditional PD of the subsystem consisting of
elements e and j by applying the operators
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C, ¢ 2,
2 Pedui* @ L P jsju(in=""
c=1 s=I

C@ Cj ¢(gec’g 's)
=2 2 Pecu(h)D jslu(h)? g (4.44)

c=1 s=1

where the function @(g.., gj) is substituted by @algec, &is) OF Pser(gec, gjs) 1N
accordance with the type of connection between the elements. Applying the
Equation (4.44) for any subset g/” (1<m<M) we can obtain the wu-function
representing all of the subsystem’s conditional PDs consisting of elements e and j
using the following operator over the u-functions u,(z) and u;(z):

o Ce o Cj )
T, (2)®U (2) = 3 Pecz® @3 P sz
c=l1 s=1
c,C;
< >y T ( eco 's)
= 33 Pee 0 2 (4.45)
c=ls=1
where
Pec® I_st = (pecllpjs\l sPecpPjsj2s - pec\ijs|M) (4.46)
Example 4.9

A flow transmission system (with flow dispersion) consists of three elements
connected in parallel. Assume that element 1 has the PD g, = {0, 1, 3},
p1=1{0.2,0.5,0.3}.

The PD of element 2 depends on the performance rate of element 1 such that
when G<1 (G,€{0, 1}) element 2 has the PD g, = {0,3}, ¢, = {0.3, 0.7} while
when G>1 (G, {3}) element 2 has the PD g, = {0, 5}, ¢, = {0.1, 0.9}.

The PD of element 3 depends on the performance rate of element 1 such that
when G| = 0 (G,€{0}) element 3 has the PD g; = {0, 2}, ¢; = {0.8, 0.2} while
when G>0 (G,e{l1, 3}) element 3 has the PD g5 = {0, 3}, ¢; = {0.2, 0.8}.

The set g, should be divided into three subsets corresponding to different PDs
of dependent elements such that

fOI' Gl Egll = {0} gZ\l = {0, 3}, q2\l = {03, 07} andg3“ = {0, 2}, q3“ = {08, 02}
fOI' Gl eg]Z = {1} gz‘z = {0, 3}, qz‘z = {03, 07} andgm = {0, 3}, q3‘2 = {02, 08}
fOI' Gl €g13 = {3} gzp = {0, 5}, qu = {01, 09} andg3‘3 = {0, 3}, q3‘3 = {02, 08}

The conditional PDs of elements 2 and 3 can be represented in the following
form:

£:=10,3,5}, poi = p2=10.3,0.7, 0}, p»3=10.1,0,0.9}
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g3=10,2,3}, p3; = {0.8,0.2, 0}, p3p= p33=10.2,0, 0.8}

The u-functions u;(z) and u,(z) take the form
i15(2) = (0.3,0.3,0.1)z° +(0.7,0.7,0)z> +(0,0,0.9)z°

i13(2) = (0.8,0.2,0.2)z% +(0.2,0,0)z° +(0,0.8,0.8)z°

The u-function of the subsystem consisting of elements 2 and 3 according to
(4.45) is

U, (2) = ity (2) ®it3(z) = [(0.3,0.3,0.1)2° +(0.7,0.7,0)2>

+(0,0,0.9)z° ] @[(0.8,0.2,0.2)20 +(0.2,0,0)z% +(0,0.8,0.8)z°]

=(0.24,0.06,0.02)z° +(0.06,0,0)z2 +(0,0.24,0.08)z>
+(0.56,0.14,0)z> +(0.14,0,0)z° +(0,0.56,0)z°
+(0,0,0.18)2° +(0,0,0)z” +(0,0,0.72)z%
=(0.24,0.06,0.02)z° +(0.06,0,0)z2 + (0.56,0.38,0.08)z>
+(0.14,0,0.18)z° +(0,0.56,0)z° +(0,0,0.72)z®

Now we can replace elements 2 and 3 by a single equivalent element with the
u-function Uy(z) and consider the system as consisting of two elements with u-

functions u,(z) and U, 4(2). The u-function of the entire system according to (4.42)
is:

= 3 6
U(z) =u (Z)(?U4(z) = pu Zp4c|u(h)zglh+g4c
h=1 c=1

=0.2(0.24z°%° £ 0.062°72 +0.562°" +0.142°"°) + 0.5(0.062'°
+0.38z3 +0.562110) + 0.3(0.022°"° +0.082°"3 +0.182°
+0.7223%8) = 0.0482° + 0.032' +0.0122% +0.1182° +0.19z*
+0.0282° +0.024z% +0.2827 +0.054z% +0.2162"!
Note that the conditional independence of two elements e and j does not imply

their unconditional independence. The two elements are conditionally independent
if for any states ¢, s and A

Pr{Ge = 8ecs Gj = &js | Gi = gih}

=Pr{G.= g | G;= g Pr{G; = g | Gi= g}
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The condition of independence of elements e and j

Pr{Ge = 8ees Gj = g]s} = Pr{Ge = gec}Pr{Gj = ng'}

does not follow from the previous equation. In our example we have
Pr{G, =3} = pop put pappiat proppis
=0.7x0.2 + 0.7x0.5 + 0x0.3 = 0.49
Pr{G; =3} =py3pput pasppiat P33 pis
=0x0.2 + 0.8x0.5 + 0.8x0.3 = 0.64
Hence
Pr{G,=3}Pr{G; =3} =0.49x0.64 = 0.3136
while

Pr{G,=3,G;=13} = P2 P33 PiitPup P3pP1i2tPraPipPis
=0.7x0x0.2 + 0.7x0.8x0.5 + 0x0.8x0.3 = 0.28

4.3.3 u-functions of Multi-state Systems with Dependent
Elements

Consecutively applying the operators & (j)w and ® and replacing pairs of

¢ b
elements by auxiliary equivalent elements, one can obtain the wu-function
representing the performance distribution of the entire system. The following
recursive algorithm obtains the system u-function:
1. Define the u-functions for all of the independent elements.
2. Define the u-functions for all of the dependent elements in the form (4.40)
and (4.41).
3. If the system contains a pair of mutually independent elements connected in
parallel or in a series, replace this pair with an equivalent element with the u-
function obtained by ®(/,]mlr or ®, operator respectively (if both elements

depend on the same external element, i.e. they are conditionally independent,
operators ®¢par or®q ~ (4.45) should be applied instead of ®¢,par or

® D respectively).

4. If the system contains a pair of dependent elements, replace this pair with an
= = =
equivalent element with the u-function obtained by ® ., @, or ® operator.

5. If the system contains more than one element, return to step 3.
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The performance distribution of the entire system is represented by the u-function
of the remaining single equivalent element.

Example 4.10

Consider an information processing system consisting of three independent
computing blocks (Figure 4.10). Each block consists of a high-priority processing
unit and a low-priority processing unit that share access to a database. When the
high-priority unit operates with the database, the low-priority unit waits for access.
Therefore, the processing speed of the low-priority unit depends on the load
(processing speed) of the high-priority unit. The processing speed distributions of
the high-priority units (elements 1, 3 and 5) are presented in Table 4.8.

Table 4.8. Unconditional PDs of system elements 1, 3 and 5

g 50 40 30 20 10 0
" 0.2 0.5 0.1 0.1 0.05 0.05
P 60 20 0
P 0.2 0.7 0.1
gs 100 80 0
ps 0.7 0.2 0.1

The conditional distributions of the processing speed of the low-priority units
(elements 2, 4 and 6) are presented in Table 4.9. The high- and low-priority units
share their work in proportion to their processing speed.

A B

Figure 4.10. Information processing system
(A: structure of computing block; B: system logic diagram)
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Table 4.9. Conditional PDs of system elements 2, 4 and 6

Condition for element 2 82 30 15 0
0< Gi<15 ) 0.8 0.15 0.05
15 G<35 pon 0.4 0.55 0.05

35< G<70 0 0.9 0.1

Condition for element 4 84 30 15 0
0< Gs<15 ) 0.8 0.15 0.05
15< G5<35 Pa: 0.6 0.35 0.05
355 G5<70 0 0.95 0.05

Condition for element 6 8s: 50 30 0
0< G5<30 ) 0.8 0.15 0.05

30< Gs<90 pon 05 0.4 0.1

90< G5<150 0.3 0.6 0.1

The first two computing blocks also share the computational load in proportion
to their processing speed. The third block obtains the output of the first two blocks
and starts processing when these blocks complete their work. The system fails if its
processing speed is lower than the demand w.

0.8 -
0.6 -
Aw)

0.4 4

0.2 4

—A

B—--C

Figure 4.11. System availability as a function of demand w

The system belongs to the task processing type. In order to obtain the UGF
representing the system PD, we first define the u-functions u(z), u3(z), us(z) from
the unconditional PDs of the corresponding elements and the wu-functions
Uy (z) ,u4(z) ,ug(z) in accordance with (4.40) and (4.41):
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uy(2) = 0.22°°40.52*°4+0.12°°+0.122°+0.052'°+0.052°
u3(2) = 0.22°°40.722°40.12°, us(z) = 0.72'°+0.22*°+0.12°

i, (z) = (0.8, 0.4, 0)22°+(0.15, 0.55, 0.9)z"°+(0.05, 0.05, 0.1)z°
i, (z) = (0.8, 0.6, 0)2°+(0.15, 0.35, 0.95)z'*+(0.05, 0.05, 0.05)z"

ug(z) =(0.8,0.5,0.3)2°+(0.15, 0.4, 0.6)2°°+(0.05, 0.1, 0.1)z°

Then we apply the following operators producing the u-functions of the
auxiliary equivalent elements:

Uy (2) =1y (2) @i (), Ug(2) =u3(2) Bty 2)

Uy(2) = us(2) ®7 (2)

The obtained u-functions represent the PD of the three computing blocks. The
PD of the subsystem consisting of two parallel blocks (equivalent element 10) is
represented by

Uig(2) =U7(2)®Us(2)

The entire system can be represented as two elements with u-functions u;¢(z)
and uy(z) connected in series. Since the system belongs to the task processing type,
its u-function is obtained by the operator (4.5)

U(2) =U10(2)®Uy(2)

The system availability can now be obtained by applying the operator &, over
U(z): Aw)=6,(U(z)). The system availability, as a function of demand w, is
presented in Figure 4.11 (curve A).

Example 4.11

A continuous production system (Figure 4.12) consists of two consecutive
production blocks. Each block consists of a main production unit and an auxiliary
production unit that share some preventive maintenance resources (cleaning,
lubrication, efc.). When the main production unit is intensively loaded, the lack of
resources prevents the auxiliary unit from being intensively loaded with high
availability.
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Figure 4.12. Continuous production system
(A: structure of production block; B: system logic diagram)

The productivity distributions of the main production units (elements 1 and 3)
are presented in Table 4.8. The conditional distributions of the auxiliary units’
productivities (elements 2 and 4) are presented in Table 4.9. The system fails if it
does not meet the demand w.

The system belongs to the flow transmission type. In order to obtain the UGF
representing the system PD, first we define the u-functions u,(z) and u3(z) from the
unconditional PDs of the corresponding elements and the u-functions u,(z)and

u4(z) in accordance with (4.40) and (4.41) (as in the previous example).

Then we apply the following operators producing the u-functions of auxiliary
equivalent elements corresponding to the production blocks:

Us(2) =u(2) @ity (2), Us(2) = u3(2) Dty (2)

The entire system can be represented as two elements with u-functions Us(z)
and Ug(z) connected in a series. Since the system belongs to the flow transmission
type, its u-function takes the form:

U(z) =Us(2) ® Ug(2)

The system availability is obtained as A(w) = 6,(U(z)). The system availability
as a function of demand w is presented in Figure 4.11 (curve B).

Example 4.12

Consider a system with indirect influence of part of the elements on its
performance. A chemical reactor contains six heating elements and two identical
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mixers (Figure 4.13). Two heating elements have nominal heating power 8 and
availability 0.9, four heating elements have heating power 5 and availability 0.85.
The heating elements are powered by two independent power sources with nominal
power 25 and availability 0.95 for each one. The heating power of the elements
cannot exceed the total power of the available sources.

Figure 4.13. Chemical reactor (A: structure of reactor; B: system logic diagram)

The productivity distribution of each mixer depends on the cumulative power
of the heaters. The greater the heating effect, the greater the productivity and
availability of the mixers. The mixers are conditionally independent given the state
of the heating subsystem. The conditional distributions of the mixers’
productivities (element 4) are presented in Table 4.10. The total productivity of the
reactor is equal to the cumulated productivity of the two mixers. The system fails if
it does not meet the demand w.

Table 4.10. Conditional performance distributions of the mixers

Condition 8+ 40 30 15 0

0< G,<10 0 0 0.2 0.8
10<G<20  p,. 0 0 0.8 0.2
20< G,<25 0 0.2 0.6 0.2
25< G,<30 0.3 0.4 0.2 0.1
30< G;<40 0.7 0.1 0.1 0.1

The heating subsystem is the series-parallel system of flow transmission type.
In order to obtain the UGF representing the subsystem PD, first we define the u-
functions uy(z), ux(z), us(z) as

u1(2) = 0.952°+0.052°, un(z) = 0.92°4+0.12°, 13(2)=0.852°+0.152°
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and then obtain the wu-function representing the PD of the subsystem by
consecutively applying the composition operators. The u-function of the power
supply system is

Us(2) =) ()@ (2)
The u-function of the heaters is obtained as follows:
Ug(2) =uz(2)Quz(2), U7(2) =Us(2)Qu3(2), Ug(2) = U7(2)Qu3(2)

Ug(2) = Us(2)®u3(2) , Uyg(2) = Uy(2) ®u3(2)

Observe that this u-function can be obtained in a simpler manner by defining an
auxiliary element with the u-function U;(z) equivalent to the u-function of two
parallel elements 3:

Ug(2) = u(2) ®uy(2) , Uz (2) = u3(2) Quz(2)
Us(2) =U7(2)®U7(2) , Ujg(2) =Us(2) ®Us(2)

The u-function of the entire heating system (power sources and heaters) is

Up(2)=Us(z) ® Ujy(2)

The mechanical system consists of two parallel mixers and belongs to the flow
transmission type. Having the u-function u4(z) of a single mixer defined in

accordance with (4.40) and (4.41) as
i4(2)=(0,0,0,0.3,0.7)z*+(0, 0, 0.2, 0.4, 0.1)*

+(0.2,0.8, 0.6, 0.2, 0.1)z"*+(0.8, 0.2, 0.2, 0.1, 0.1)z°

we obtain the u-function representing the conditional PDs of the system:
U1(2) = 114 (2) @iy (2)
Since the heating system affects the reactor’s productivity only by influencing the

PD of the mixers, we apply the Ez) operator:

U(z) = Up(2)® T, (2)

The system availability can now be obtained as 4(w)=06,(U(z)). The system
availability as a function of demand w is presented in Figure 4.11 (curve C).
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4.4 Common Cause Failures in Multi-state Systems

Common cause (CC) failures (CCFs) are the failures of multiple elements due to a
common cause (single occurrence or condition). The origin of CC events can be
outside the system elements they affect (lightning or seismic events, sudden
changes in the environment, a wide range of human interventions from
maintenance errors, to intended enemy attacks), or they can originate from the
elements themselves, causing other elements to fail (examples of such events are
voltage surges caused by inappropriate switching in power systems leading to
failure propagation, and pipe-whip events in high-pressure systems). The condition
of a CCF occurring exists when some coupling factors affect a group of elements.
These include the elements being:

- involved in the same process or procedure

- sharing a common resource

- having similar design or interface

- having the same manufacturer

- having the same or close location, etc.

CCFs increase joint-failure probabilities, thereby reducing the reliability of the
technical systems.
It is assumed that all of the elements that can fail due to a certain CC belong to

a corresponding CC group (CCG). There can be several CCGs in a system, since
several factors can affect the functioning of its elements. Within each CCG, several
failure processes can exist that cause the simultaneous failure of different
subgroups of this CCG. In order to estimate the system’s reliability, the
characteristics of these failure processes should be included in the system model.
The description of the methods for estimating the effect of CCFs on the reliability
of the binary systems can be found in [107, 108].

4.4.1 Incorporating Common Cause Failures into Multi-state
Systems Reliability Analysis

An algorithm presented in this section for incorporating the CCFs into the MSS
reliability analysis is based on an implicit method suggested by Vaurio [109]. This
implicit method uses formulas (derived by Chae and Clark [110]) for probabilities
that specific elements subject to the same CCF remain in a working condition
during a given time.

Consider an MSS consisting of two-state elements (elements with total
failures). The elements are mutually independent (except for the elements
belonging to the same CCG).

The system contains J CCGs such that each CCG J is defined by the set C; of
numbers of MSS elements belonging to this group.

Each element can belong to a single CCG (the CCGs are disjoint): CGNC=D if
i#j. Each CCG j consists of L; elements.

All of the elements subject to the same CC (belonging to the same CCG) have
the same statistical characteristics (are statistically identical).
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All elements belonging to the same CCG are subject to CCF by a number of
different failure events. Each failure event J; is independent and constitutes the

simultaneous failures of a specific subset of £ elements of CCG j. The probability
of each failure event depends on the number of elements that fail, but it does not
depend on the particular elements involved. Each particular element cannot
individually affect the probability of the failure event it is involved in.
The implicit method for incorporating CCFs into the system reliability analysis
suggested in [109] consists of the following three steps:
1. Assign the unique reliability p; to all the basic system elements j.
2. Determine the expression for the system reliability in terms of the reliabilities
of the basic elements without considering any CCF. This expression is in the
form of an algebraic sum of the products (terms) of the basic element
reliabilities.
3. In any term containing a product of k element reliabilities (i.e. pip,...px)
belonging to the same CCG j (1<k<L;), replace that product with the

probability Rﬁkz/ that these specific k& elements (which are subject to failure

events 4;;,...,8;; ) all remain in a working state.
J

This probability can be obtained recursively as follows [110]:

k < 1
R = I1 RY) (4.47)
i=n—k+1
n—-1
O _ ep el
R}, = H[ij]( j (4.48)
k=1
where R;kg is the probability that specific £ elements belonging to CCG j, which

contains a total of the » elements, all remain in working condition (R}OZ =1 for any

j and 7 by definition) and Is}k is the probability of the non-occurrence of the failed
state caused by the event 9 ;.

The implicit method can be easily applied to an MSS if the final expression for
its reliability is obtained in an explicit analytical form. Obtaining the analytical
expressions for complex MSSs using the UGF method is an extremely time-
consuming task. In contrast, the method provides simple numerical algorithms for
computing the system’s reliability for arbitrary time and demand without obtaining
analytical expressions. To adapt the implicit method to the numerical algorithms,
the modified u-function technique has been suggested [111].

In the u-function of the MSS subsystem e
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ke
Ue(2) = 2 apiz% (4.49)

i=1

the coefficients «,; are products of the reliabilities of the individual elements. In

order to keep track of the occurrence of different reliability functions in these
coefficients, the u-function is modified as follows:

~ kﬁ
U,(z) = Za:l_zgei:sei (4.50)
i=1

To obtain the system u-function in the form (4.50) from u-function (4.49), one
has to perform the following steps for each term a,;z%¢ :

1. Assign 0 to the vector s,; that consists of J integer numbers.

2. Obtain coefficient a:l- by replacing in the product «,; = p;p;...p; all of the

reliabilities of the individual elements belonging to any CCG with 1.

3. When replacing reliability p;, of element / belonging to CCG j, increment by
1 the corresponding element s.(j) of the vector-indicator s.. Finally each
element s.(j) of the vector-indicator s, contains a number of replaced
reliabilities of elements belonging to CCG .

Based on these steps one can obtain the u-function u;(z) of a single two-state

MSS element i not belonging to any CCG as

~ 1,0 0 f 0 0 0
i(2) = ppz + (1= i)z = py 28 4 270 g2 (4.51)

where g;; and p;; are the nominal performance and reliability of the element

respectively, fis a performance rate in the failed state.
The u-function u;(z) of the MSS element belonging to CCG j takes the form

uy(z) = 288 4 S0 _ S (4.52)

where s;(k)=1(k=j) for 1<k<J.

The composition operators over u-functions (4.50) are the same as regular
composition operators ® , except for the rule that defines the treatment of vector-

indicators:

~ ~ o o ko, .
%(Ul (2),Uy(2)) = ¢®+(za1i2g“’5“ , zaQ/Zgz,l’ 2j )
’ Ti=l j=1
k] kz . . . .
=3 Zaia* #(211-82,)81:%82; 453)

2j z
i=l j=I /
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The vector-indicators are always summed independently on function ¢ chosen

for a specific operator.
Consequently, applying the composition operators (4.53) in accordance with
the reliability block diagram method (described in Section 4.1.3), one can obtain

the u-function of the entire MSS in the form (4.50). In each term i of this sum, a:l-

is a product of the reliabilities of the basic elements not belonging to any CCG, and
g.; 1s the total MSS output performance in state i of the system. Each element s.,(y)
of vector-indicator s,; contains a number of elements belonging to CCG j that
should also be taken into account when calculating the probability of the

corresponding MSS state. Multiplying the a:,- coefficients by the probabilities that

specific s.(j) elements of each CCG j do not fail, one can obtain the probability of
state / which should be the coefficient of the ith term of the u#-function of the MSS
calculated with respect to the CCF.

Thus, the u-function of an MSS can be obtained by applying the following Q
operator over the u-function of the MSS:

~ ke oy
U(z) = 'Q(Ue (2)) = Q[z aeizgew(sei(l) ,,,,, S e[(J))]

i=1

b v L) g
=Zi aeille,zj 2 (4.54)
i= j=

The numerical algorithm for the evaluation of the entire MSS u-function with
respect to CCF is as follows:
1. Determine the reliabilities of the individual system elements p; and

R;kz (0<k<L;) values for each CCG j (1<j<J) using (4.47) and
>

(4.48).
2. Determine the u-functions of the individual MSS elements using definitions
(4.51) and (4.52).

3. For a given MSS topology, obtain the entire system u-function U (z)by

applying the composition operators (4.53) over the u-functions of the individual
system elements (the ¢ functions should be chosen in accordance with the
system type and connection between the elements).

4. Obtain the u-function of the MSS using the © operator (4.54) over U (2).

Example 4.13

Consider a series-parallel task processing MSS (with work sharing) containing two
subsystems (components) connected in a series (Figure 4.14A).
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gu=5,pi(0) M 1 CCG1

5 | 9o

T
[\S}

175 1 g4=10, pu(?)

g31=>5 = 3
3 7 CCG2

CCG 4

A B
Figure 4.14. Examples of series-parallel MSS with CCF

The first component has three parallel elements with the same nominal
performance rate: g, = g»1 = g31 = 5. The reliability of the first element is p;. Two
other elements of the first component compose a CCG, which is characterized by
the probabilities }N’H and1~’12. For this CCG, Rl(lz):};]]};]z and Rl(zz) :};121}312. The

second component has a single element with a nominal performance rate of g4,=10
and the reliability p4. All of the elements have the performance /=0 when they fail.
Following (4.51) and (4.52), we obtain the u-function for the first element as

0,(0 0,(0
O_ 5 00

for elements belonging to the CCG as

uy(z) = plz5’(0)+z

ur(2) = us(z) = 220400 0
and for element of the second component as

uy(2) = paz' O+ (1-pyz"

The u-function of the first component is obtained using the ® operator:
+

Ui(2) =® ((2), ux(2), u3(2))
= (plZS’(O)+ZO’(O) _plZO,(O)) (? (25,(1)4_20,(0) —ZO’(I)) @ (ZS’(1)+ZO’(0) _ZO,(l))
= i O (1-3p) " P 42p 2V (3py-2)* Y
£2(1-2p)2>V+ pi 2 O+(1—p1)z “P+2(p1—-1)2"V+(1—p )2
The u-function of the second component is equal to the u-function of its single
element Uy(z)=uy(z2).

To obtain the u-function U (z) corresponding to the entire system we use the

® operator:

U(z) = ® (Ui(2),Us(2))=pipaz>P+ps(1-3p)) 2" P+2p1piz™
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+pa(3p1=2)2 > P+2ps(1-2p1)2> > Otp paz® > Otpy(1-p )@

+pu(pr=1)2"V+(1=p pa)z*®

Now, using operator £, we obtain the u-function for the entire system with respect
to CCF:

U(z) = Q (U(2) )=qi2+q2+q32> +qu2’

where
2 5275
= Rl(,z)P1P4= A1Popips

‘12_R12 pa(l 3P1)+2R12P1P4—1’11P12P4(1 =3p)+2 B Py pips
=R 5,3p,-2)+2 RY p.(1-2p)+
93= Ry ps(3p1=2)T2 Ry 5 pa(1-2p1)*p1ps

~y~ -
= R1R2p4(3p1=2)+2 B 1R pa(1-2p1)+pips
614*R12 p4(1 P1)+2R12P4(P1—1)+(1 —P1D4)

= P1 P2 pas(1=p1)+2 By R palpi=1)+(1—-p1pa)
The system performance distribution is determined by the vectors
£=1{6,5,33,0}, 9= 1{q1, 92 43, 94}
Using the operators J,, we can obtain the system reliability for any demand w:
0, w>6
q1, S5<w=<6

R(W):5W(U(Z)): q1 + 492, 33<w<S5s
q1+qy +q3, 0<w<33

G1+92+q3+q4 =1, w=0
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Example 4.14

The non-repairable series-parallel MSS (Figure 4.14B) consists of four components
connected in a series. All of the MSS elements have Weibull cumulative hazard
functions H(?) = ( at)ﬂ . Parameters of the elements are presented in Table 4.11. The
performance of any element in a failed state is /=0.

Table 4.11. Parameters of MSS elements

No of No of Nominal Parameters of individual element cumulative No of
element component performance hazard function H(f)=(or)’ CCG
i & a B

1 1 0.20 - - 1

2 1 0.20 - - 1

3 1 0.20 0.004 1.0 -

4 1 0.50 0.001 0.5 -

5 2 0.60 - - 1

6 2 0.30 0.008 1.0 -

7 2 0.20 - - 2

8 3 1.30 - - 1

9 4 0.85 0.0012 1.0 -

10 4 0.25 - - 2

There are two CCGs in the given MSS: C={1, 2, 5, 8}, C,={7, 10}. The failure
processes & in these CCGs that govern simultaneous failures of a specific set of k

clements are characterized by the cumulative hazard functions H j (¢). The
probability of the non-occurrence of the failure event governed by the process
9 in time interval [0, 7] is Py () = exp(—H ;. (7)) -
For CCG 1:

Hi1(H)=(0.0010)"%,  H\5(£)=0.08H,,(7)

Hi3(0)=0.02H,,(?), H4(£)=0.007H,,(¢)
For CCG 2:

H>1(6)=0.003¢, Hx(1)=0.2H(?)

The structure presented is interpreted as flow transmission MSS with flow
dispersion and task processing MSS with work sharing. The reliability functions
R(t,w) for both MSSs obtained using the numerical algorithm described above are
presented in Figure 4.15. One can see that the task processing MSS has more
different levels of PD than the flow transmission MSS. This is due to the nature of
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the operator ® which, as distinct from the operator ®,, reduces the diversity

min >
of the possible performance levels.

A B

Figure 4.15. Reliability functions R (#, w) for MSSs with CCF
(A: flow transmission system; B: task processing system)

To estimate the influence of CCF on MSS reliability we compare two systems
of each type: an MSS without CCF in which elements belonging to the CCG j have

their individual reliability functions equal to 13jl(t) , and the same MSS with CCF.

Since it is difficult visually to distinguish the differences between the three-
dimensional representations of reliability functions for the MSSs with and without
CCF, we present them for fixed values of ¢ (Figure 4.16) as R(w) and for fixed
values of w (Figure 4.17) as R(¢). One can see the effect of CCF in decreasing MSS
reliability. In addition, the expected MSS performances £(¢) are presented for

MSSs with and without CCF (Figure 4.17).
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Figure 4.16. Reliability functions R (25, w) and R (50, w) for MSSs with and without CCF
(A: flow transmission system; B: task processing system)
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4.4.2 Multi-state Systems with Total Common Cause Failures

In some cases CCFs lead to the total outage of all of the elements belonging to the
corresponding CCG. Usually, such total failures occur when a group of elements
share the same resource (energy source, space, protection, efc.) that has limited
availability. Examples of such situations include an electrical supply failure that
causes an outage of all production units supplied from the same source or the
failure of a waterproof casing that causes water penetration into the hermetic
compartment and destruction of all the equipment located there. The algorithm for
incorporating the total CCF in reliability analysis of MSSs is simpler than the
general algorithm considered in the previous section. This algorithm can be easily
extended to MSS with multi-state elements [112].

Consider a subsystem consisting of several elements that compose a series-
parallel structure. Assume that the elements are subject to a total CCF occurring
with probability v. The total CCF leads to outage of all of the subsystem elements.
The entire subsystem can have different performance rates, depending on the
internal states of its elements. However, when the CCF occurs, the performance
rate of the subsystem is f, which corresponds to its total failure.

The total or partial failures of subsystem elements and the entire subsystem
failure due to common cause are independent events. Probabilities of all the states
of the subsystem itself now should be treated as conditional probabilities, given the
CCF does not occur. The only possible subsystem state, when the CCF occurs, is
the state with the performance equal to f. If the u-function of a combination of
elements composing the subsystem is Uj(z), then the u-function of the subsystem
which takes into account the CCF can be determined using the following operator

&
EU;2)=1-U () +vz! (4.55)

One can model the subsystem with CCF as a series connection of the subsystem
itself and an element representing the CCF, which has PD

Pr(G =x)) =1-v, Pr(G =x;) =v (4.56)

where x; corresponds to the state when CCF does not occur and x, corresponds to
the state when CCF occurs. Such a model should reflect the fact that the subsystem
performance rate will be changed to f with probability v and will not be changed
with probability 1—v. In order to provide this property, one has to define the values
of x; and x, such that for any G

¢ser (G’xl) =G and ¢ser (G7x2) = f (4.57)

For any type of series-parallel systems described in Section 4.1, where f
corresponds to the performance rate 0, x;=co and x,=0 meet the requirement (4.57).
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Using the ® operator over U(z) and the u-function representing the PD (4.56) one

¢ser

obtains

§WU;(2)=®U i@, (1-v)z” +v2°) = 1= U ; (2) +vz° (4.58)

Replacing any CCG with the u-function Uj(z) by an equivalent element with the
u-function S(U;(z)) one can use the reliability block diagram method for

obtaining the reliability of series-parallel systems with total CCF.

Example 4.15

Consider the series-parallel flow transmission MSS with flow dispersion presented
in Figure 4.18.

/7 CCF™, 7 TCCE
/ \ \
L 1 t ! \
el LA
\ T‘ ! \ R
N 7 \ /
AN P \_ g |
lTl ===
Lo I
Component 1 Component 2

Figure 4.18. Series-parallel MSS with total CCF

The system consists of two components connected in a series. The first
component contains three parallel elements. The first and second elements are
subject to CCF, which has probability v; = 0.1. The second component contains
two parallel elements that are subject to CCF with probability v, = 0.2. Each
element j can have two states: total failure with performance rate zero and normal
functioning with nominal performance gj. The availability p; and nominal
performance of the elements are presented in Table 4.12. The system should meet
the constant demand w = 2.

First, we determine the u-functions for the individual elements as follows:

u1(2) = 0.92'40.12°, us(z2) = 0.82°+0.22°, u3(z) = 0.82°+0.22°

uy(z) = 0.92°40.12°, us(z) = 0.82°+0.22°
Using the operator ® , we determine the u-functions for the subsystem consisting
of two parallel elements, 1 and 2:

u1(2) ® uy(z) = (0.92'+0.12°)(0.827+0.22°)=0.722°+0.082%+0.18z' +0.022"

and for the subsystem consisting of two parallel elements 4 and 5:
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uy(z) ® us(z) =(0.92°40.1z°)(0.82°+0.22°)=0.722"+0.082°+0.182°+0.022°

Table 4.12. Parameters of MSS elements

No of element Availability Nominal performance rate
J Pit &n
1 0.90 1.0
2 0.80 2.0
3 0.72 2.0
4 0.90 2.0
5 0.80 3.0

To incorporate the total CCF into w-functions of the subsystems, we use the
operator & (4.58):

&n(2) @ ux(2)) = (1=1)(11(2) ® u(2))+vi2° = 0.9(0.722°+0.082°

+0.182'+0.022°)+0.12° = 0.6482°+0.0722°+0.1622'+0.1182°

&uy(2) @ us(2)) = (1-v2)(ua(2) ® us(z))+v2° = 0.8(0.722°+0.08z

+0.182°40.022°)+0.22° = 0.5672°+0.0642°+0.1442*+0.2162°

To obtain u-functions Uj(z) for the entire first component, we consider it as a
parallel connection of subsystem that has u-function &u(z) ® uy(z)) and the
+

element 3 with u-function u3(z):
Ui(2) = &ui(2) ® ux(2)) ® us(2)
= (0.6482°+0.0722*+0.1622'+0.1182°)(0.722°+0.282")
= 0.4666z°+0.0518z*+0.2982°+0.10512%+0.0454z'+0.0332°

The u-function of the second component, consisting of elements 4 and 5, is
Uy(z) = Huy(z) ®us(z)). In order to obtain the u-function for the entire system
+

consisting of two components connected in a series, we use the operator ® over

min

u-functions U,(z) and U,(z2):

Uiz) = Ui(z) ® Uy(z) =(0.4666z"+0.0518z"+0.2982°+0.10512

+0.04542'+0.0332%) ® (0.5672°+0.0642°+0.1442°+0.2162°)

min
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= 0.2692°+0.032*-0.2247°+0.22°+0.0352'+0.2422°

This u-function represents the performance distribution of the entire MSS. Using
the &(U(z)) operator we obtain the system availability as

A(2) =0.269+0.03+0.224+0.2 = 0.723
4.4.3 Multi-state Systems with Nested Common Cause Groups

In the previous sections we assumed that the CCFs affecting different CCGs are
independent. In many cases this model is not relevant because statistical
dependence between the different CCFs exists. The typical examples of such a
situation are systems with a multilevel protection. Such systems are used in many
applications (nuclear, military, underwater, airspace systems, efc.) and are designed
according to the so-called defence-in-depth methodology [113].

The multilevel protection means that a subsystem and its inner level protection
are in turn protected by the protection of the outer level. This double-protected
subsystem has its outer protection, and so forth. In such systems, the protected
subsystems can be destroyed only if all of the levels of their protection are
destroyed. Each level of protection can be destroyed only if all of the outer levels
of protection are destroyed. This creates statistical dependence among the
destruction events of the different protection levels (different CCFs). The systems
with multilevel protection can be considered as systems with nested CCGs in
which the CCF in any group can occur only if the CCFs in all CCGs containing
this group have occurred.

In this section we consider series-parallel MSSs with nested CCGs and total
CCFs and make the following assumptions:

- The elements belonging to any CCG compose a series-parallel structure
(Figure 4.19A).

- Any CCG can belong to another CCG. For any pair of CCGs A and B
ANB#J means that ACB or BCA, i.e. part of any CCG cannot belong to another
CCQG (Figure 4.19B).

- CCF in any group m cannot occur if this group belongs to another group and
the CCF in the outer group has not occurred. If the CCFs in all of the outer CCGs
that include the CCG m have occurred, the CCF in CCG m can occur with the
probability v,,.

- Any element fails with probability 1 if CCFs in all of the CCGs that this
element belongs to have occurred.

- The performance of any failed element is equal to f.

- The element failure caused by the CCFs and the transitions of this element in
the space of states caused by its individual failures and repairs are independent
events.
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Figure 4.19. Impossible CCGs. (A: elements of CCG do not compose a series-parallel
structure; B: two CCGs have common elements)

The probability of each state of an element (or subsystem) belonging to some
CCG depends on the CC event. Therefore, each subsystem belonging to a CCG is
characterized by two conditional performance distributions: the first corresponds to
the case when the CCF in this group occurs and the second corresponds to the case
when the CCF in the group does not occur. In order to represent the performance
distributions of a subsystem m belonging to some CCG, we introduce the following

double u-function (d-function) dy(2)=<U,(2),U,,(z) >, where U,(z) and U,,(z)
represent performance distributions for the first and second cases respectively.

If CCF in a group consisting of a single basic element occurs, then this element
fails with probability 1 and has the performance rate . Therefore, for a basic single
element j that has a performance distribution represented by the u-function uy(z)

d(z)=<2, uj(z)> (4.59)

It can easily be seen that any pair of elements with d-functions di(z) and d(z)
belonging to the same CCG can be replaced by the equivalent element (Figure
4.20) with the d-function

d;(2)®d;(2) =< U;j(2),0,(z)> ®< U;(2).U,(z) >

=<U, (z)%)U,-(z),ﬁ j(z)c;)ﬁ,- (2) > (4.60)

where ¢ should be substituted by @ or @y in accordance with the type of
connection between the elements.
Assume that the d-function of a series-parallel subsystem that constitutes CCG

m obtained without respect to CCF in this group is d,(z)=<U,(z), U m(2) >. Assume
also that the group m belongs to an outer CCG 4. If the CCF in group % occurs,
then the CCF in group m can occur with probability v,,. If this CCF occurs, then the
subsystem has its performance distribution represented by the u-function U,(z); if
the CCF does not occur (with probability 1-v,), then the subsystem has its
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performance distribution represented by the wu-function U m(2). Therefore, the

conditional performance distribution of the group m given CCF in group / has
occurred can be represented by the u-function

Vi Up(2) + (1-9,) U, (2) (4.61)
In the case when the CCF in CCG 4 have not occurred, CCF in the group m

also cannot occur and its conditional performance distribution is represented by the
u-function U, (2).
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Figure 4.20. Basic equivalent transformations of system elements

These considerations allow one to incorporate the CCF that occurs in the CCG
m with probability v,, into the d-function of this group by replacing the group with
an equivalent element (Figure 4.20) with the d-function obtained by applying the
following operator 7, over d.(2):

7, (dy() =17, <U,(2).0,(2)>

N N (4.62)
=v,U,,(@)+1-v,) U, (2),U, (z) >

It can be seen that when v,, = 1 the operator T, does not change the d-function.

Indeed, the totally vulnerable protection (which is equivalent to absence of any
protection) cannot affect the performance distribution of the subsystem it protects.
Consecutively applying the operators (4.60) and (4.62) and replacing the
subsystems and the CCGs with equivalent elements, one can obtain the d-function
representing the performance distribution of the entire system. The algorithm for
obtaining the d-function is based on the assumption that any system element
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belongs to at least one CCG. In order to make this algorithm universal we can
always assume that the entire system belongs to an outer CCG (is protected by an
outer protection). If such protection does not exist, then the outer protection with
vulnerability v = 1 can be added without changing the system performance
distribution. The following recursive algorithm obtains the system d-function:
1. Obtain the d-functions of all of the system elements using Equation
(4.59).
2. If the system contains a pair of elements connected in parallel or in a
series and belonging to the same CCG, replace this pair with an equivalent
element with the d-function obtained by the gﬁ or ¢® operator.
ar ser
3. If the system contains a CCG consisting of a single element, replace this
CCG with a single equivalent element with the d-function obtained using
the 7, operator.

4. If the system contains more than one element or a CCG not replaced by a
single element, return to step 2.
5. Determine the d-function of the entire series-parallel system as the d-

function of the remaining single equivalent element d(z)=<U(z), U (z)>.

According to the definition of the d-function, the u-function U (z) corresponds

to the case when the CCFs in the system do not occur while the u-function U(z)
represents the entire system performance distribution in which all probabilities of
the CCFs that can occur in the system are incorporated. The system reliability (or
any other performance measure) can now be obtained by applying the
corresponding operators over the u-function U(z).

Example 4.16

Consider the system with multiple protection presented in Figure 4.21A. In this
system, each CCG corresponds to a subsystem that has its own protection. Each
CCG can contain other CCGs (protected subsystems). The CCF in any CCG
corresponds to the destruction of the corresponding protection. If the protection of
the CCG is destroyed, all unprotected elements in this CCG fail (the performance
of a failed element is zero). The protection cannot be destroyed if an outer
protection is not destroyed.

Assume that the performance distribution of each individual element j is
represented by the wu-function uy(z). The destruction probability v, of each
protection m is assumed to be known. The d-functions of the individual elements
are

dl(Z) = <ZO’ ul(Z)>9 dZ(Z) = <ZO, H2(2)>, d3(Z) = <ZO’ Ll3(Z)>
dy(2) = <2°, ua(z)>, ds(2) = <2°, us(z)>

According to the recursive algorithm, in order to obtain the system’s
availability one has to perform the following steps:
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Figure 4.21. Example of recursive algorithm

Replace elements 1 and 2 connected in series by a single equivalent element 7
with the d-function

dq(z)= di(2) g) di(z) = <2", ui(z)> ¢® <2, uy(z)> = <2, ui(2) g) uy(2)>

(see Figure 4.21B).
Replace element 7 with its protection by an equivalent element 8 with the d-
function
dS(Z) = ﬂvl (d7(2)): 7[\/1 <ZO, ul(z) ¢S® UZ(Z)>

=<2’ + (1=v)ui(2) ¢® uy(z), uy(2) ¢® uy(z)>
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(see Figure 4.21C).
Replace elements 8 and 3 connected in parallel by a single equivalent element 9
with the d-function (taking into account that u(z) é@ 2= u(z) for any u(z))

do(z) = ds(2) g di(2)
=<2’ + (1=v)ui(2) ¢® u(z), u1(2) ¢® us(z)> g <2, uy(2)>

=<2’ + (1=v)ui(2) %@; u(2), (ui(2) %@; us(z)) zg?r us(z)>

(see Figure 4.21D).

Replace element 4 with its inner protection by an equivalent element 10 with
the d-function

do(2) = 7y, (da(2)) = 7, <2, us(2)> = <voz” + (1-v)us(2), us(2)>

see (Figure 4.21E).

Replace element 10 with its protection by an equivalent element 11 with the d-
function

dhi(2) = 7, (dro(@)= 7, V22’ + (1-v2)ua(2), ua(z)>
= <v3pz’ + vs(1-v)ua(2)H(1-v3)ua(z), ua(z)>

=<3z’ + (1=v3n)ua(2), us(z)>

(see Figure 4.21F).

Replace elements 9 and 11 connected in parallel by a single equivalent element
12 with the d-function

din(2) = dy(2) g) dii(2)=<vi2’ + (1=v)u(2)

¢S® ux(2), (u1(2) ¢® ux(2)) ¢® u3(2)> g) <vpvsz” + (1=vav3)ua(z), us(z)>
Cr ser par ar

= <vvwsz’ + (1-v)vavsun(2) ¢® uy(z) + vi(1=vpv3)us(z)

Hl=v)(1=vavs)(un(2) © ux(2)) g us(2), (2) ® 1,(2) g us(2) g uy(2)>

(see Figure 4.21G).

Replace element 5 with its protection by an equivalent element 13 with the d-
function

di3 (2) = 7, (ds(2) = 7, <2, us(2)> = <vz” + (1=va)us(2), us(z)>

(see Figure 4.21H).
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Replace elements 12 and 13 connected in series by a single equivalent element
14 with the d-function

d]4(Z) = d]z(Z) ¢S®u d|3(Z) = <V1V2V3ZO + (1—V1)V2V3U1(Z) ¢S®er le(Z)

T vi(1=vav3)uy(z) + (1=vi)(1=vav3)(ui(z) ¢S®er uy(z)) gr uy(z), (u1(2) gr u(2))
gr us(2) gr uy(z)> ¢S®er <vg2’ + (1=vy)us(z), us(z)>

= <v4zo+v1v2v3(1—v4)zo + (1=v)vov3(1=vg)u(2) ¢(S>§ u(z) ¢® us(z)

T vi(1=vv3)(1-va)ua(z) ¢(§r us(z)

+ (I=v)(1=vv3)(1=v)((u1(2) gr uy(z)) ggr uy(z))

B us(2), ((n(2) @ x(2)) g us(2) g uy(2)) ® us(z)>

(see Figure 4.211).
Finally, replace element 14 with its protection by an equivalent element 15 with
the d-function

dys(z) = Ty, (diy(2)) = Ty, <2’ + vvavs(1-vy)2°

+ (1=v)vov3(1=vy)u(2) ¢S®er u(z) ¢S®er us(z) + vi(1=vpv3)(1—v4)uy(z) ¢S®er us(z)
+ (1=v)(1=vov3)(1=vg)((u1(2) gr uy(z)) gr uy(z)) (gr us(2), ((u1(2) ¢S®er uy(z))
g us(2) ﬁ uy(z)) gr us(z))>

= < vsz + vivas(1=vg)vsz’ + (1=vyvavs(1=vy)vsuy (2) ¢S®er u(z) ‘g us(z)

T vi(1-vav3)(1-va)vsua(z) gc)r us(z)

+ (1=v)(=v2v3)(1-vavs((u1(2) f? us(z)) qg?r uy(z)) g us(z)

+ (1=vs)((u1(2) gr uy(z2)) g us(2) qg? uy(z)) (/g? us(z), ((u1(2) gr uy(2))

gf us(2) % us(2)) g us(z) >

(see Figure 4.217).
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The entire system performance distribution is represented by the first u-
function of ds(z)

Uz) = vavsz” + v1v2v3(l—v4)v520+ (1=v))vov3(1=vy)vsuy(z) E uy(z) ¢® us(z)
T vi(1=vv3)(1-va)vsua(2) gr us(2)
+ (I=v)(1=vav3)(1=va)vs((u1(2) gr us(2)) ai%r uy(z)) vgir us(z)

T (1=v5)((i(2) © ux(2)) ga)r us(2) gr uy(2))®us(z)

Example 4.17

Consider a series-parallel MSS (power substation) that consists of three basic
subsystems (Figure 4.22A):

1. blocks of commutation equipment (elements 1-5);

2. power transformers (elements 6-8);

3. output medium voltage line sections (elements 9-12).
All of the elements of this flow transmission system (with flow dispersion) are
two-state units with nominal performance rates (the power that the elements can
transform/transmit) g;; and the availabilities p;; presented in Table 4.13. The failed
elements have performance zero.

Table 4.13. Parameters of elements of power substation

b 1 2 3 4 5 6 7 9 10 11 12
gi 2 6 6 3 5 5 4 4 3 4 5

pﬂ 092 09 095 088 095 097 097 097 093 096 090 094

8

The d-function of two-state element ; takes the form

diz) =<, pp 257 + (1- py)e">

In order to increase the system survivability (the probability that the system
meets demand w) in the case of an external attack, the system can be divided into
four spatially separated groups represented by the following sets of elements:
{1,2,3}, {4}, {6,7,9,10,11} and {5,8,12}. The probability of impact in the case of
attack is v; = 0.3. Since the groups are separated, no more than one group can be
affected by a single impact. Four subsystems belonging to the separated groups can
be protected (located indoors within concrete constructions). These subsystems
include elements 2 and 3, element 6, elements 9 and 10, elements 5, 8 and 12. The
probability of protection destruction in the case of impact is v, = 0.6, while the
probability of destruction of the unprotected elements in the case of impact is 1
(unprotected elements do not survive the impact).
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Figure 4.22. Series-parallel power substation (system with multilevel protection)

In order to evaluate the influence of each type of protection, four different
configurations are compared:
A. Both separation and indoor allocation are applied (Figure 4.22A).
B. All of the elements are gathered in the same place (no separation). Indoor
allocation is applied (Figure 4.22B).
C. The groups of elements are separated, but all of the elements are located
outdoors (Figure 4.22C).
D. All of the elements are gathered in the same place and located outdoors
(Figure 4.22D).
In Figure 4.23, one can see the system survivability (obtained using the method
presented in this section) as a function of the demand for cases A, B, C, and D.
Observe that the protection of parts of the system is not effective when the
system tolerates only a very small decrease of its performance below its maximal
possible performance. In our case the indoor allocation of some system elements
can increase the system survivability only when w<9 (compare curves B and D).



4 Universal Generating Function in Analysis of Multi-state Series-parallel Systems 159

Indeed, in the case of impact, even if all of the elements located indoors survive,
they cannot provide the system's performance greater than 9.

The separation is also effective only when the demand is considerably smaller
than the maximal possible system performance. Moreover, the separation can
decrease the system’s survivability when the demand is close to its maximal
performance. Indeed, by separating the system elements one creates additional
vulnerable CCGs, which contribute to an additional overall system exposure to the
impact. When the demand is relatively small, the separation increases the system’s
survivability because the smaller parts can be destroyed by a single impact. In our
case, the separation is effective for w<5. When w>5 the separation decreases the
system’s survivability (compare curves C and D).

The total survivability improvement achieved by separation and protection of
its elements for w<5 is greater than 23%.

0 . . . . . . . . . . . . . —
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A— —B C—o—D

Figure 4.23. Survivability of power substation as a function of demand
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4.5 Importance Analysis in Multi-state Systems

Information about the importance of the elements that constitute a system with
respect to its safety, reliability, availability, and performance, is of great practical
aid to system designers and managers. Indeed, the identification of which elements
most influence the overall system performance allows one to trace technical
bottlenecks and provides guidelines for effective actions of system improvement.
In this sense, importance measures (IMs) are used to quantify the contribution of
individual elements to the system’s performance measures (e.g. reliability,
availability, mean performance, expected performance deficiency).

IMs were first introduced by Birnbaum [114]. The Birnbaum importance
measure gives the contributions to the system’s reliability due to the reliability of
the various system elements. Elements for which a variation in reliability results in
the largest variation of the entire system’s reliability have the highest importance.
Fussell and Vesely later proposed a measure based on the cut-sets importance
[115]. According to the Fussell-Vesely measure, the importance of an element
depends on the number and the order of the cut-sets in which it appears. Other
concepts of importance measures have been proposed and used based on different
views of the elements’ influence on the system’s performance. Structural IMs
account for the topographic importance of the logic position of the element in the
system [116, 117]. Criticality IMs consider the conditional probability of the
failure of an element, given that the system has failed [118, 119]. Joint IMs
account for the introduction of the elements’ interactions in their contribution to
the system’s reliability [120, 121].

IMs are being widely used in risk-informed applications of the nuclear industry
to characterize the importance of basic events, i.e. element failures, human errors,
common cause failures, etc., with respect to the risk associated to the system [122-
125]. In this framework, the risk importance measures are based on two other IMs:
the performance reduction worth and the performance achievement worth [122].
The former is a measure of the ‘worth’ of the basic failure event in achieving the
present level of system performance and, when applied to elements, it highlights
the importance of maintaining the current level of element reliability (with respect
to the basic failure event). The latter, the performance achievement worth, is
associated to the variation of the system’s performance consequent to an
improvement of the element reliability.

In a general context, the IMs reflect the changes in distribution of the
performance of the entire system caused by constraints imposed n the performance
of one of its elements. Once the system PD is determined, one can focus on
specific system performance measures, e.g. system availability, for the definition
of the relevant measures of element importance.
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4.5.1 Reliability Importance of Two-state Elements in Multi-state
Systems

Consider a system consisting of two-state elements. Each element j has
performance g;; in the state of perfect functioning and performance gj in the state

of total failure, which corresponds to its u-function u,(z) = p jlzgf "'+(1-p jl)zgf" .
Let O be a system output performance measure (O = A for availability or

reliability; O=¢& for mean system performance, O=A" for expected
performance deficiency). The system performance measure (PM) O can be
expressed for the given demand distribution as a function of parameters of system
elements

OW@115 811, 8105 -+ Pji1s &i1> &jos +++» Prls Enls no) (4.63)

In order to obtain this index, one has to determine the u-functions of individual
elements u;(z) for 1<i<n, to obtain the u-function of the PMs of interest (see
Section 3.3) using the corresponding operators and to calculate the derivatives of
these u-functions at z = 1.

Let Oy and O; be the system PM when element j is fixed in its faulty and
functioning state respectively, while the remainder of the elements are free to
randomly change their states. The PMs Oy, and O;; according to their definition are

O_/‘o =011, g11» g10s --+,0, &j15 £jos ++ s Pnl> &nls gn0) (4.64)

01 =011, 11> 810> --» L, Zj1s G0s -+ > Duts En1s &n0) (4.65)

Oy corresponds to the system PM when the element j is in the state of total
failure with probability pj, = 1 (which can be represented by the u-function
uj(z)= 28009, O;, corresponds to the system PM when the element j is in the state
of perfect functioning with probability p;; = 1 (which can be represented by the u-
function u;r (z) = Pall ). Therefore, Oy and O;; can be obtained by substituting

uz) by u;(z) and u}’(z) respectively before using the procedure of system PM

determination.
The system output performance measure O can be expressed as

O = Opjo + Onpj1 = Op(1-p;j1)+0;1p; (4.66)

Definitions of four of the most frequently used IMs with reference to PM O and
element j are as follows

The performance reduction worth is the ratio of the actual system PM to the
valueofthePMwhenelementjisconsideredas always failed:

107j= 0100 (4.67)
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This index measures the potential damage to the system’s performance caused by
the total unavailability of element j.

The performance achievement worth is the ratio of the system PM obtained
when element j is always in the operable state to the actual value of the system’s
PM (when all of the elements including element ; are left free to change their states
randomly in accordance with their PD):

Ioa;= 0410 (4.68)

This index measures the contribution of element j to enhancing the system’s
performance by considering the maximum improvement on the system’s PM
achievable by making the element fully available.

The Fussell-Vesely measure represents the relative PM reduction due to the
total failure of element j:

1ofy = (0=0,)10 = 1-1/Ior; (4.69)

Similarly, one can define the relative PM achievement when element j is
always in the operable state:

Iov; = (0;1-0)/0 = Ipa~1 (4.70)

The Birnbaum importance measure represents the variation of the system PM
when element j switches from the condition of perfect functioning to the condition
of total failure. It is a differential measure of the importance of element j, since it is
equal to the rate at which the system PM changes with respect to changes in the
reliability of element ;:

Ipb; =0010p ;1 =0(pj10;1 +(1=p;j1)0;0)/0p;;=0;,-0;5 (471)

Note that for the Fussel-Vesely and Birnbaum IMs, depending on the system’s
PM, an improvement in the system’s performance can correspond either to an
increase of the considered PM (e.g. the availability or mean performance) or to a
decrease (e.g. the expected performance deficiency). In the latter case, the absolute
values of 1v;, If; and Ib; are taken as the importance values.

The IMs for each MSS element depend strongly on that element's place in the
system, its nominal performance level, and the system’s demand. The notion of
element relevancy is closely connected to the element’s importance. The element is
relevant if some changes in its state that take place without changes in the states of
the reminder of the elements cause changes in the PM of the entire system.
According to this definition, if the element j is irrelevant then Oy = O;; = O.
Therefore, for the irrelevant element

]0}"]' = Ioaj =1 (472)
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while
Iof = Iov; = Ioh;= 0 (4.73)

Example 4.18

Consider a system consisting of # elements with total failures connected in a series
described in Example 4.1. For any element j g0 = 0. The reliability measures of
this system are presented in Table 4.1. The corresponding analytically obtained

IMs are presented in Tables 4.14. - 4.18. In these tables = = Z?:l Pl

The element with the minimal availability has the greatest impact on MSS
availability (“a chain fails at its weakest link”). The importance indices associated
with the system’s availability do not depend on the elements' performance rates or
on demand. IMs associated with the system’s mean performance and performance
deficiency also do not depend on the performance rate of the individual element j;
however, the performance rate g;; can influence these indices if it affects the entire
system performance g.

Table 4.14. Performance reduction worth IMs for series MSS

w [A”j IA,rj Igrj
w>g not defined 1-gnlw

not defined

0<w<g not defined 1-7

Table 4.15. Performance achievement worth IMs for series MSS

w 14a; Iy a; lea;
wp 4 —&r
w> g not defined LA
le(W—g”)

1/pq

p].] - J

0<ws<g pj —p-.l(lfﬂ')
J

Table 4.16. Relative performance reduction IMs for series MSS

v Lt Iy 7 L1
! ér
w>g not defined "
w—gr 1
V4
0<w<g 1 D
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Table 4.17. Relative performance achievement IMs for series MSS

w Tyv; I v I.v;
A-p;ér
w>g not defined Lt
Pj](ngﬂ')

1/p:q-1

A (-p;pr oz

0<w<g I/le_l —
Pﬂ( )

Table 4.18. Birnbaum importance IMs for series MSS

w 14b; I.b; I.b;
w>g 0 éﬁ/pﬂ
&rlpj
0<ws<g ﬁ/pjl wn/pjl

Example 4.19

Consider a task processing system without work sharing presented in Example 4.2.
The system consists of two elements with total failures (g9 = g0 = 0) connected in
parallel. The analytically obtained system reliability measures are presented in
Table 4.3. The importance measures can also be obtained analytically. The
measures /or;, loa; and Ipb; are presented in Tables 4.19-4.21.

Table 4.19. Performance reduction worth IMs for parallel MSS

w I In 1 .n

W= P11811 — P21821 + P11P21811

W>goi not defined

W= P21821
1+ 2= prven
w—P11811 P21821
gn<ws< g1 1 w
O<w<gy; 1-pu+pul/ pa 1-pu
IAVZ IA’ V2 ]Erz
w>g21 not defined w—P1i811 ~ P21821 + P11P21811
W= P11811
. 1— L P8
gn<ws< g not defined 1-pa P21 PLEL

O<w<g, 1= port par/ pui 1-pa
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Table 4.20. Performance achievement worth IMs for parallel MSS

w I 4ay Iy-a I.ay

w=g11— P21(g21 —&11)

w>gs not defined W= png&i — P2821 1 Pr1P21811
w=gii (- pr)&11 + P21821
guws g ! W= P18 (= pap) P& + P21821
O<w<g 1/(p11s 21— pupan) 0
I 4a,) Iy-ap I.a,
fi w—821
w>gs not defined W= png&i — P82t PriP21811
821
gu<ws=gn Vpa 0 (= p2D)p11g11 + P21821
O<w<gi 1/( p11s p21— pupat) 0
Table 4.21. Birnbaum IMs for parallel MSS
w L 1-b 1,.by
w>g21 0 (1-paDgn
gu<ws g 0 (1-pa)gn gu(1-p2)
0<w<g 1-pa (1-p2)w
14by 1,-by 1,b,
W>g21 0 &21—Pngi
n<ws g1 1 w—pugi £1—Pngn
O<w=g 1-pi (1-p1)w
Example 4.20

Consider the series-parallel system from Example 4.3 (Figure 4.1A). The IMs 1,b;
of elements 1, 5, and 7 as functions of system demand w are presented in Figure
4.24A and B for the system interpreted as a flow transmission MSS with flow
dispersion and task processing MSS without work sharing. Observe that 1,b(w) are
step nonmonotonic functions.

One can see that the values of w exist for which the importance of some
elements is equal to zero. This means that these elements are irrelevant (have no
influence on the system’s entire availability). For example, in the case of the task
processing system, the subsystem consisting of elements from 1 to 6 cannot have a
performance that is greater then 1.154. Therefore, when 1.154<w<3, the system
satisfies the demand only when element 7 is available. In this case, the entire
system availability is equal to the availability of element 7, which is reflected by
the element’s importance index: I;b;(w) = 1. The remainder of the elements are
irrelevant for demands greater than 1.154: I;b(w) = 0 for 1<j<6. Note that,
although for the task processing system element 7 has the greatest importance, the
importance of this element for the flow transmission system can be lower than the
importance of some other elements at certain intervals of demand variance. For
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example, for 3<w<5 the importance of element 1 is greater than the importance of
element 7.

]
0.6 -
0.8 -
0.4 - 06 4
1,b, 1,b,
' 0.4 1
021 : —
I I 0 2 T
0 m 0 ‘ L S——
01 23 4586 7 8 0 1 2 3
w w
j=1 + j= =7 j=1 + j=5 =7

B
Figure 4.24. IM 1,b;(w) of system elements
in flow transmission MSS (A) and task processing MSS (B)

>

Unlike the IM associated with the system availability /,b;, the IM associated
with the system mean performance /.b; for element 7 is the greatest for both

types of system. The values of /.b; forj=1, ..., 7 are presented in Table 4.22.

Table 4.22. The IMs /b ' for elements of series-parallel system

No of element 1 2 3 4 5 6 7
Flow transmission MSS 2.170 1.361 1.210 1.555 1.440 2.441 3.000
Task processing MSS 0.139 0.032 0.028 0.036 0.103 0.156 2.375

The IMs 1, b; as functions of system demand w are presented in Figure 4.25
for j = 1, 5 and 7. Observe that 7 A b;(w) are piecewise linear functions. The
demand intervals when the function 7 A b; (w) is constant always correspond to the

irrelevancy of system element ;.
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1,4b;

1,
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j=1 j=5 =7 j=1 j=5 =7
A B

Figure 4.25.IM [ b (w) of system elements
in flow transmission MSS (A) and task processing MSS (B)

4.5.2 Importance of Common Cause Group Reliability

In systems that contain CCGs with total CCF, the reliabilities of the groups (the
probabilities that the groups do not fail) affect the reliability of the entire system. If
a system consists of nonidentical elements and has a complex structure with nested
CCGs, reliabilities of different groups play different roles in providing for the
system's reliability. The evaluation of the relative influence of the group’s
reliability on the reliability of the entire system provides useful information about
the importance of these groups.

For example, in systems with complex multilevel protection, the protection
survivability (the ability to tolerate destructive external impacts) can depend on the
type and location of the protection. The importance of each protection depends not
only on its survivability but also on characteristics of the subsystem it protects.

Importance evaluation is an essential point in tracing bottlenecks in protected
systems and in identifying the most important protections. The protection
survivability importance analysis can also help the analyst to find the irrelevant
protections, i.e. protections that have no impact on the entire system’s reliability.
Elimination of irrelevant protections simplifies the system and reduces its cost. In
the complex multi-state systems with multilevel protection, finding the irrelevant
protections is not a trivial task.

In order to evaluate the CCG reliability importance we use the MSS model with
nested CCGs. The algorithm presented in Section 4.4.3 allows one to evaluate the
system’s performance measures O as a function of the probabilities of total CCFs
in its CCGs.
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Assume that the system has M CCGs. For the given system structure and the
fixed performance distributions of the system elements, the system PM O is a
function of the CCF probabilities in these CCGs: O(vy,...,Vy,...,Vy). Since the
reliability of CCG m s, is defined as the probability of non-occurrence of CCF in
this group (s,, = 1-v,) we can express the system PM as a function of CCG
reliabilities O(sy,...,S,...,S)) and define in accordance with (4.64) and (4.65):

Om0= O(Sl, ey O, Ceey SM) and Oml = O(Sl, ey 1, ceey SM) (474)

where O, corresponds to the system PM when the failure in CCG m has occurred
(in accordance with Equation (4.62), this can be represented by the d-function

<U m(z),lj m(z)> of this CCG) and O,, corresponds to the system PM when the
failure in CCG m has not occurred (which can be represented by the d-function
<U m (z),lj m(2)>). Therefore, O, and O,, can be obtained by substituting d,(z)

by <U,, (z),l}m (z)> and < ﬁm (z),ljm (z) > respectively in the procedure of

determining the system’s PM. The corresponding IMs can be obtained using
Equation (4.67)-(4.71).

Example 4.21

Consider the simplest binary systems with multiple protections. In order to
evaluate the protections’ survivability importance we use the Birnbaum IM ,b,,.

The system consists of identical binary elements with availability a. The d-
function of each element can be represented as:

d(2)=<2’, az'+(1-a)z* >

where performance 1 corresponds to its normal state and performance 0
corresponds to failure. The entire system succeeds (survives) if its performance is
G = 1. Consider the following cases.

Case I: n-level (concentric) protection of a single element (Figure 4.26A). The
system’s availability and the survivability importance of mth protection are
respectively:

=

" (I—Si)
A=dall-T](-s)land I 4b,, = a=t——

i=1 ~Sm

~ |

This means that the protection with the greatest survivability has the greatest
importance. The increase of protection survivability lowers the importance of the
rest of the protections.

Case 2: n identical protected elements connected in a series (Figure 4.26B).
The system’s availability and the importance of mth protection are respectively
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n

0 Ly
A=a"[]s; and 14b,, =a" =—
i=1 Sm

This means that the protection with the lowest survivability has the greatest
importance. The increase of protection survivability increases the importance of the
remainder of the protections. It can be easily seen that the absence of protection in
at least one of the elements makes all of the protections irrelevant (if for any i s;= 0
then A4 = 0 and I,b; = 0 for all of j#i). This means that the protection of the
elements connected in a series has no sense if at least one element remains
unprotected (see protection 1 in Figure 4.27).

Case 3: n identical protected elements connected in parallel (Figure 4.26C).
The system’s availability and the importance of the mth protection are respectively

n
" H(l—asi)
A=1-[[(—as;)and I b, =a=l———
i-1 1-as,

As in the case of a single element with multiple protections, the protection with
the greatest survivability has the greatest importance and the increase of protection
survivability lowers the importance of the remainder of the protections.

While in complex systems composed of different multi-state elements, the
relations between the elements' survivability and importance are more complicated,
the general dependencies are the same as in the cases considered.
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Figure 4.26. Simplest binary systems with multiple protections



170 The Universal Generating Function in Reliability Analysis and Optimization

Example 4.22

Consider the multi-state flow transmission series-parallel system (with flow
dispersion) presented in Figure 4.27. The system consists of seven elements (with
performance distributions as presented in Table 4.23) and six protection groups.
The survivability of any protection is 0.8. The survivability importance of the
protections as functions of demand w are presented in Figure 4.28.

Figure 4.27. Structure of series-parallel MSS with multiple protections

Table 4.23. Performance distributions of multi-state elements

No of element (;)
State (/1) 1 2 3 4 5
P &n P &n P &n  &n  &h P &h P g Pih &

005 0 010 O 010 O 010 O 010 O 005 0 025 O

0
1 005 3 005 2 010 1 030 3 020 2 095 5 075 6
2 015 5 08 8 08 4 060 4 070 4 - - - -
3 075 7 - - - - o ..o

First observe that protection 1 is irrelevant for any w (I,b;(w) = 0). Indeed,
when protection 2 is not destroyed, protection 1 does not affect the system’s
survivability. When protection 2 is destroyed then element 2 is always destroyed
and the subsystem consisting of elements 2, 3 and 4 has a performance rate of 0
independent of the state of protection 1.

Some protections can be irrelevant only for certain intervals of w. For example,
protection 2 affects the system’s survivability only when protection 3 is destroyed.
In this case, element 1 is always destroyed, which prevents the system from having
a performance rate greater than 8. Therefore /5b,(w) = 0 for w>8.

Protection 4 affects the system’s survivability only when protection 6 is
destroyed. In this case, element 5 is always destroyed. If element 7 is in a normal
state, then the performance rate of the subsystem remaining after the destruction of
protection 6 (elements 6 and 7) is not less than 6. If element 7 does not perform its
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task, then the performance of the subsystem is no greater than 5 (maximal
performance of element 6). This does not depend on the state of protection 4.
Therefore, I,bs(w) =0 for 5<w<6.

0.12 |
0.1 4
0.8 |
1% 06 |

0.04

0 2 4 ok
0 2 4 6 8 1012 14

—o— =1 —O— oA e—c5 T2 =8 )6

Figure 4.28. Survivability importance of protections as functions of demand

For w>11 Ixb3(w) = Izbg(w). Indeed, the system can provide a performance
greater than 11 only if both protections 3 and 6 survive. It is the same for
protections 4 and 5: when protection 6 is destroyed, the system can provide a
performance greater than 6 only if both protections 4 and 5 survive. Therefore, for
w>6 [Ab4(W) = [Ab5(W)

Note also that the greater the availability of the two-state element, the greater
the importance of its individual protection. For example, when w<5 both elements
6 and 7 can meet the demand, but /5b4(w)>Ixbs5(w).

In general, the outer-level protections are more important than the inner-level
ones, since they protect more elements. In our case, protections 3 and 6 have the
greatest importance for any w.

In order to estimate the effect of survivability of protections on their
importance, consider Figure 4.29 representing the functions /,b;(s,,) for different j
and m when the system should meet the demand w = 5. Observe that although the
relations among the different protections in complex MSSs are much more
complicated than in the simple binary systems considered above, the general
tendencies are the same. Observe, for example, that the mutual influence of the
protections in pairs 2 and 3, 4 and 6, 5 and 7 resembles the mutual influence of
protections in Case 1 of Example 4.21, since these pairs of protections are partly
concentric (both protect the same subsystems). The greater the survivability of one
of the protections in the pair the lower the importance of the other one. When the
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outer protection becomes invulnerable, the inner protection becomes irrelevant
(Ipnby =0 when s3=1and Ipb, = Inbs =0 when s¢ = 1).

1
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Figure 4.29. Survivability importance of protections as functions of protection
survivability

The mutual influence of protections in pairs 2 and 4, 3 and 4, 2 and 6, and 3 and
6 resembles the mutual influence of the protections in Case 2 of Example 4.21,
since these pairs of protections protect subsystems connected in the series. In this
case the greater the survivability of one of the protections in the pair, the greater
the importance of another one.

The mutual influence of protections 4 and 5 resembles the mutual influence of
protections in Case 3 of Example 4.21, since this pair of protections protects
parallel elements. In this case, the greater the survivability of one of the protection
in the pair the lower the importance of another one.

4.5.3 Reliability Importance of Multi-state Elements in Mullti-
state Systems

Early progress towards the extension of IMs to the case of MSSs can be found in
[126, 127], where the measures related to the occupancy of a given state by an
element have been proposed. These measures characterize the importance of a
given element being in a certain state or moving to the neighbouring state with
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respect to the system’s performance. The IM of a given element is, therefore,
represented by a vector of values, one for each state of the element. Such
representation may be difficult for the practical reliability analyst to interpret. In
the following sections we consider integrated IMs based on element performance
restriction.

4.5.3.1 Extension of Importance Measures to Multi-state Elements
Assume that the states of each element j are ordered in such a manner
thatg ;o <g; <..<g Jh-1- One can introduce a performance threshold o and

divide this set into two ordered subsets corresponding respectively to the element
performance above and below the level «. Let element j be constrained to a
performance rate not greater than ¢, while the remainder of the elements of the

MSS are not constrained: we denote by 0]§a|M the system PM obtained in this

>alM
j

situation in which element j is constrained to performances above . The MSS
performance measures so introduced rely on a restriction of the achievable
performance of the MSS elements. Different modelling assumptions in the
enforcement of this restriction will lead to different performance values. The letter

situation. Similarly, we denote by O the system PM resulting from the dual

M in the definitions of OJS-O’IM and O;am is used to code the modelling approach

<
OTa|M

r and

to the restriction of element behaviour. Substituting the measures
>aM
0;
for multi-state elements:
performance reduction worth

to the binary equivalents Oy and O;;, we can define importance measures

Iorf™ = 0105 4.75)
performance achievement worth
aM _ H>aM
lopa;™ =0;77" 10 (4.76)
relative performance reduction (Fussell-Vesely)
aM _ ~  <aM
Iof;"" =(0-0;"7")/0 4.77)
relative performance achievement

aM _ H>aM
IOVj = (Oj 0)/0 (4.78)

Birnbaum importance
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aM _ H>aM  A<aM
IObj = Oj Oj 4.79)

This latter IM extends the concept of the IM introduced in [126]. Combining the
different definitions of importance measures with different types of the system PM
and different model assumptions M relative to the types of element restriction, one
can obtain many different importance measures for MSS, each one bearing specific
physical information. The choice of the proper IM to use depends on the system’s
mission and the type of improvement actions that one is aiming at in the system
design or operation.

In the following section we consider two models of element performance
restriction and discuss their application with respect to the importance measures

Iof™ and 1o65™.

4.5.3.2 State-space Reachability Restriction Approach

Let Oy, be the PM of the MSS when element j is in a fixed state / while the rest of
the elements evolve stochastically among their corresponding states with
performance distributions {giy, pn}, 1<i<n, i#j, 0<h<k;. Using pivotal

decomposition, we obtain the overall expected system performance

=
0= 2 PO (4.80)
h=0

We denote by #;, the state in the ordered set of states of element j whose
performance gjh_,-a is equal to or immediately below «, i.e. gjh‘,-a <a< gjh‘,-a e
The conditional probability f’jh that element j is in a state 4 characterized by a
performance g, not greater than a prespecified level threshold o (h < h ja) can be

obtained as

h.
jo
=pin! XPjm=0jnl 05" (4.81)

m=0

Similarly, the conditional probability p i of element j being in a state 7 when it

is known that 7> h;, is

pin=PriG; =g |G, >a}=p/Pr{G; >a}
k-1
_ < _ >a
=pjn!  XPm=PpulP; (4.82)

m=h,+1
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In Equation (4.81) and (4.82), pjs-a and p;“are probabilities that element j is in
states with performance not greater than « and greater than « respectively.

The state-space reachability restriction model (coded with the letter s: M = s) is
based on the restrictive condition on the states reachable by element j. In this

. <
model we define as O}“'S

visit only states with performance not greater than o:

the system PM obtained when element j is forced to

h. h.
ja ja

05 = % piOjm= 3 PimOjm! P5” (4.83)
m=0 m=0

als

Similarly, we define as 0; the system performance measure obtained under

the condition that the element j stays in states with performance greater than o:

k-1 k-1
) i . i
0 = S pOim= L POl P} (4.84)
m=h;,+1 m=h;,+1

According to these definitions

0=05" p5* 1 07k pre (4.85)

Using the definition of the performance measures O, Of-“'s and O;“'S we can

specify the IMs. For example, the Birnbaum importance takes the form

als _ H>als _ H<als
]Obj —Oj Oj (4.86)

From (4.86) and since pf“ + p?“ =1

0=05% + 15b% p> = 07 —1,p%k 3 (4.87)
And thus
Iob%" = (0-05)1 p7% = (0;% -~ 0)/ p3* (4.88)

From Equation (4.66) and (4.71) we can see that for two-state elements:

0:0j0+]0bjpj1: Ojl_IObjij (489)
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Comparing (4.87) and (4.89) we see that the Iob;’|s measure for MSSs is

really an extension of the definition of the Birnbaum importance for two-state
elements, for which k; = 2 and = 0. As such, it measures the rate of improvement

of the system PM deriving from improvements on the probability p?a of element j

occupying states characterized by performance higher than c.
The Fussel-Vesely importance measure (relative performance reduction) takes
the form

Iof™* =1-05""/0 (4.90)
It can be easily seen that
Ioh™ =11 01 p7* 4.91)

The element IMs based on the state-space reachability restriction approach
quantify the effect on the system performance of element j remaining confined in
the dual subspaces of states corresponding to performances greater or not greater
than .

4.5.3.3 Performance Level Limitation Approach

We consider again a threshold & on the performance of element j. However, we
assume that the space of reachable states of element  is not restricted, i.e. element j
can visit any of its states independently on whether the associated performance is
below or above « and it can do so with the original state probability distribution.
Limitations, however, are imposed on the performance rate of element j: we
consider a deteriorated version of the element that is not capable of providing a
performance greater than ¢, in spite of the possibility of reaching any state, and an
enhanced version of element j that provides performances always not less than «,

even when residing in states below 4 ja The limitation on the performance is such

that, when in states # > & the deteriorated element j is not capable of providing

ja’
the design performance corresponding to its state; in these cases it is assumed that
it provides the performance . On the other hand, when the enhanced element is

working in states 4 < h it is assumed that it provides the performance . We

ja’
code this modelling approach by the letter w: M=w.
The output performance measures Of-‘ﬂw and O;“'Win this model take the

form



4 Universal Generating Function in Analysis of Multi-state Series-parallel Systems 177

h. -
< ja J
0ja|w: ijmojm_"ojo’l )y Pim
m=0

m=h;,+1
hjq
- Zp]m0]m+oj p] (492)
m=0
and
| hig k-1
>a ‘
Oj Wzojo'l ijm+ Z p]mojm
m=0 m=h;,+1
- k-1
=09p5 SO (4.93)
m=h;,+1

where Of’is the system PM when element j remains fixed operating with

performance o while the remainder of the system elements visit their states in
accordance with their performance distributions. It can be seen that

o5 v o7 0+ 07 (4.94)

In this case, the Birnbaum importance takes the form

bq|w _ O>a|w _ O§a|w

J
» = B =
a s a
:Oj ijm+ Z P jm ]m_zp]m ]m_Oj 2 P jm
m=0 m=h;,+1 m=0 m=h,+1
hi ;-1
= XpjmOF ~O0jm)+ X Pim(Ojm =0F)
m=0 m=h;,+1 (4.95)
k-1
= zpjm |O]0'( _ij |
m=0

Hence, in the performance level limitation model the Birnbaum IM is equal to
the expected value of the absolute deviation of the system PM from its value when
element j has performance «.

The Fussel-Vesely IM (relative performance reduction) takes the form

Iofi =1-05"10=(0;""-0%)10 (4.96)
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Birnbaum and Fussel-Vesely IMs are related as follows:

<alw
h ) 4.97)

1™ = 1o f ™. 0+(0% -0
The element IMs based on a limitation of the achievable performance level give
information on which level & of element performance is the most beneficial from
the point of view of the entire system PM.
Observe that according to the definitions (4.83), (4.84) and (4.92), (4.93)

0]S_a|w _ Ojé_alspjs'a " O?p;a (4.98)
and
0}>_a|w _ O;a|sp]>.a n O?pjg-a (4.99)

From these equations one can obtain relations between Birnbaum and Fussel-
Vesely IMs as defined according to the two approaches

Iob§™ = Iob{¥ p7* +(0f ~ 05" )2p5* -1 (4.100)
and

Iof& =10 —(0% -05*)p7* /0 (4.101)

4.5.3.4 Evaluating System Performance Measures

In order to evaluate the system PM O when all of its elements are not restricted,
one has to apply the reliability block diagram technique over u-functions of the
individual elements representing their performance distributions in the form:

USRI
u;(z) = > Pjnz Jh (4.102)
h=0

In order to obtain the IMs in accordance with the state-space reachability
restriction approach, one has to modify the u-function of element j as follows:

h.
Jjo )
ui(z)="Y (pjy/p;*)z5" (4.103)
h=0

als

when evaluating OJS» and



4 Universal Generating Function in Analysis of Multi-state Series-parallel Systems 179

k-1
u ()= ¥ (pplpi*z%" (4.104)
h=h;,+1

when evaluating O]?a|s and then apply the reliability block diagram technique.

In order to obtain the PMs in accordance with the performance level limitation
approach one has to modify the u-function of element j as follows:

ja ,
ui2)= Y ppuzh+p;¥z” (4.105)
h=0
when evaluating 0?-04W and
< o &
u;i(z) :pj—-aza + X Pz Jh (4.106)
h=h,+1

when evaluating OJ>-“|W and then apply the reliability block diagram technique.

Note that the PM O? can also be easily obtained by using the u-function of

element ; in the form u,(z) = z°

Example 4.23

Consider the series-parallel flow transmission system (with flow dispersion)
presented in Figure 4.30 with elements having performance distributions given in
Table 4.24.

254 5

Figure 4.30. Structure of series-parallel MSS with multi-state elements

Elements 2, 3, 5, and 6 are identical. However, the pairs of elements 2, 3 and 5,
6 have different influences on the system’s entire performance, since they are
connected in a series with different elements (1 and 4 respectively). Therefore,
while we expect elements 2 and 3 have the same importance (as well as elements 5
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and 6), the importance of element 2 (or 3) differs from the importance of element 5
(or 6). The demand w is assumed to be constant in time, but different values of the
constant will be considered.

Table 4.24. Performance distributions of multi-state elements

No of element (;)
State (/) 1 2 3 4 5 6 7

P gn P En P En  &n  &h P Eh P g Pk &

0 010 0 010 O 010 O 020 0 010 O 010 0 015 O
1 005 1 005 2 005 2 010 2 005 2 005 2 015 6
2 015 3 08 4 08 4 045 6 08 4 08 4 005 10
3 035 5 - - - - 025 8 - - - - 045 14
4 035 7 - - - - - - - - - - 020 18

In this example we perform the importance analysis based on the Fussel-Vesely

IM (relative performance reduction). In Figure 4.31 the [7,f jzls(w) and

141 J-2|W(w) measures are presented for elements 1, 2 (identical to 3) and 4 and 5

(identical to 6) for different time-constant system demands w. The first measure
shows how critical it is for the MSS availability that the element visits only states
with performance below or equal to « =2. The second measure shows how
critical for the MSS availability it is to limit the performance of the element below
the threshold value o = 2.

1 T

|

|

0.8 I
0.6

]A]jz‘s IAf/’z‘w
0.4 A
0.2 4
0 == T T T T T 0 =
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
W w
—_— 2 — — b e =5 —_— 2 — — e e i=5
A B

Figure 4.31. Behaviour of the elements' IMs. A: IAfj2|S (w); B: IAsz'W(w)
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The functions 7,/7(w) and I,/?"(w) differ significantly. While

IAfj2|W(w) = 0 for w<2, since Ofa|w =0 for these demands, IAfj2|S (w) >0, since

als

the reduction of the state-space for obtaining OJS- changes the probabilities of

being in the states with g;<2, and, therefore, OJS.O"S #0.

Recall also that from the definitions, /,f ]-2|S =1lor I,f j-2|W= 1 means that,

when the element j has a performance restricted below ¢, the entire system fails.
The importance measure / ,f j2|s for elements j = 1 and j = 4 becomes 1 when w =

9. Indeed, the greatest performance of the subsystem of unrestricted elements 4, 5,
and 6 is 8 while the greatest performance of the subsystem of elements 1, 2, and 3
is 1 when element 1 is allowed to visit only states with a performance not greater
than o =2 (i.e. g0 = 0 or g1; = 1). Therefore, the MSS cannot have a performance
greater than 8+1 = 9. Similarly, the greatest performance of the subsystem of
unrestricted elements 1, 2, and 3 is 7, while the greatest performance of the
subsystem of elements 4, 5, and 6 is 2 when element 4 is allowed to visit only
states with a performance not greater than =2 (g4 = 0 or g4; = 2). Therefore, in
this case the MSS cannot have a performance greater than 742 = 9.

On the contrary, the importance [ ,f j2|w for elements j = 1 and j = 4 becomes

1 for different values of w. When the performance of element 1 is restricted by « =
2, the MSS cannot have a performance greater than 8+2 = 10; when the
performance of element 4 is restricted by o =2, the MSS cannot have a

performance greater than 7+2 = 9. Therefore, 7, f12|W= 1 for w>10 while

L2 = 1 for ws9.

Figure 4.31 also shows that an element which is the most important with
respect to a value of the demand w can be less important for a different value. This
is a typical situation in MSSs. For example, when 5<w<6 element 4 is the most
important one among elements 1-6 when their ability to perform above a =2 is
considered, while for w<5 it becomes less important than element 1.

The I, fj2|s(w) and I, f]-2|w(w) functions are presented in Figure 4.32.

Analogously to [ ,f jzlw(w) , the function 7, f j-2|w(w) is equal to zero when w<2,

. . . < . . .
since in this case A‘f'w = A. For increasing demand values, the difference between

Asjalw and A (system performance deficiency when element j is not constrained)
increases from zero to a constant level. Therefore, the ratio

InS j2|w(w) = (Asjzlw —A)/A first increases and then begins to decrease.
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Figure 4.32. Behaviour of the elements' IMs. A: 1 f j2|s (w); B: Ipf j2|w (w)
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Figure 4.35. Behaviour of the elements’ IMs. A: [ f7a|s (w); B: I f7alw (w)
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A similar behaviour is shown by I, f J-2|S(w). It can be seen that values of

demand w exist for which the increase of the element performance above the
threshold « causes the greatest relative reduction of the system performance

deficiency (maxima of the curves /, f J-2|W(w) and I, f 1-2|S (w) in Figure 4.32). It is

also confirmed that the relative importance of different elements depends on the
value of the demand (for example, element 2 is more important than element 5 for
w<8 and less important for w>8).

The mean system performance ¢ does not depend on the demand. Figure 4.33

reports the indices /. f jals and I, ff'w as functions of «. Note that while

1.1 ja|w(a) are continuous functions, I, f jals () are stepwise functions since

Igf;"S(al) :Igff|s(a2) forany o and ap such that g, <y <ay<g, .
. JNja Jhja+

Both functions are decreasing, which means that the higher levels of performance
threshold « cause a less relative increase of the system’s performance.

Note that both Igij"s and 1, ff'w take a value of zero (ie.

<alw _ H<als

performance achievable by element j, g k-

=0) when the o level is above or equal to the maximum

Improvement of the performance of a certain element above a given thresholde
may be achieved, either by increasing the probability of residing in states with

performances larger than « (as indicated by the I, f ;Ils measures) or by increasing

the performances of some states (as indicated by I, f jgx\w

example, element 7, whose IMs for different threshold values « as functions of the

measures). Consider, for

demand w are given in Figures 4.34 and 4.35. Observe that 7, f7a‘w(w) =0 when

w<a and 1y f7alw(w) =1 when w>gq, since the logic of the system is such that its

performance is not affected by limitations on the performance of element 7 if its
threshold « is set to a value greater than the demand w, whereas the system fails
completely if element 7 has a performance below the system’s demand. Also, the

1 Af7als (w) function does not depend on «, when ¢« varies within the performance

intervals 1-6, 6-10, 10-14, 14-18. The jumps in the step-functions IAf7a‘s (w)
occur at values w = g, and correspond to the restrictions to state 2 with w > g7,,.

Functions [ Af7“|s(w) and /7 Af7“‘w(w) are continuous. When « increases, the

relative reduction of the system’s performance deficiency becomes smaller
(because a smaller number of states are subject to restriction). Note that the demand
w for which the greatest relative reduction of system performance deficiency is

achieved (maximum of the function [, f7a‘w(w)) increases with the increase of a.
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4.6 Universal Generating Function in Analysis of
Continuum-state Systems

Some systems and elements exhibit continuous performance variation (for
example, when their performance degrades due to gradual failures). In these cases,
one can discern a continuum of different states. The structure functions
#¢(Gy.,...,G, ) representing  such  continuous-state ~ systems are  mappings
[glmin’glmax] x [mein’meax] X o X [gnrnin’gnmax] - [gmin’gmax] >

where [g;min»& jmax 18 the closed interval of performance variation of element j

and [gmin-8&max] 1S the closed interval of performance variation of the entire

system. Such functions were introduced in [128-130] and are called the continuum
structure functions.

The stochastic behaviour of continuous-state systems and elements may be
specified through the complemented distribution functions [131]:

C;(x)=Pr{G; 2x}, C(x)=Pr{#(G,....G,) = x} (4.107)

An example of such a function (cumulated curve) is presented in Figure 4.36.

Ci(x)

1 A<
| G
C(xmin"'i‘» - Ir 4
Gi

. | | L]
Cxmin+(i+1)d) |F———— t——— e
| | | G
_____ I 1L 4
P I O P "
x Xmintd ... Xminti0  Xmint(@+1)8 ... xpinthd

Figure 4.36. Complemented distribution functions for continuous and discrete variables

The method for estimating the boundary points for performance measures of
continuum-state systems suggested by Lisnianski [132] uses the approximation of
continuous performance distributions by discrete performance distributions. This
method is based on the assumptions that the continuum structure functions are
monotonic, i.e.

#(Gy....G,) S 4(Gy...sGy) if G; <G ifor 1< j<n (4.108)
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or
#(Gy....G,) 2 4(Gy...sGy) if G; <G ifor 1< j<n (4.109)

and that the functions C I (x) for all of the elements are continuous (with possible

jumps at the end points). These assumptions are relevant for many types of
practical system.

In order to obtain the discrete approximation of the continuous performance
distribution of element j, we divide the interval [g;min,& max]into A equal

subintervals. The length of each subinterval is

_ & jmax ~ & jmin
a}._T (4.110)

In order to obtain the lower and upper bound approximations of distribution of
performance G;, we introduce discrete random variables G;and G such that

Pr{éj Zgjmm+zaj}=Pr{Gj Zgjmm-{'laj}

=Pr(G} 2 g jpin +i0,), 0<i<h @.111)
and

<Pr{Gj Zgjmin+ia_/+x}, 0<i<h, 0£x<8j “4.112)

Pr{éj Zgjmm-f'laj +X}=PT{GJ Zgjmm+laj}
>Pr{Gj2gjmin+i8j+x}, 0<i<h, O£x<8j 4.113)

The complemented distribution functions of G jand G ; are presented in Figure

4.36. Since for any variable X with a complemented distribution function C(x)
Pr{x; <X <x;}=C(x))-C(xy), we can obtain that for G;

Pr{G; = g jmin} =0

Pr{G; =g jmin +10 ;)

=C(gjmin +(=10;)=C (g jmin +i0;), 1<i<h

Pr{G; = g jmin +h0;} =Pr{G; = g jmax }

=C(g jmin +(h=1)0;)=C;(g jmax —0)
Pr{szgjmin+i6j+x}=0,0£i<h,0<x<6j 4.114)

and for G 5
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Pr(G} = g jmin +i0,)

=C](gjmm+151)—Cj(gjmm+(l+1)6j), 0<i<h
Pr{Gj:gjmin+haj}:Pr{Gj:gjmax}:Cj(gjmaX)

Pr{(G; =g jmin +i0; +x}=0, 0<i<h, 0<x<d; (4.115)

These expressions define the p.m.f. of the discrete variables G jand G 'z
Observe that the inequalities (4.112) and (4.113) guarantee that for any j
E(Gj)SE(Gj)and E(@j)ZE(GJ-). Therefore, for any increasing monotonic

function f;

E(f(GrsG ) < E(f(GyroisG,) < E(F (G G,)) (4.116)
and for any decreasing monotonic function v:

EM(Gyy., G)) € EMNGyyeny G)) < EMNG ey G)) (4.117)

Since the system performance measures are defined as expected values of
functions of performances of individual elements (see Section 3.3), the upper and
lower bounds for these measures can be obtained by replacing the continuous-state
elements with multi-state elements having discrete performances distributed as
defined by Equations (4.114) and (4.115).

Having the complemented distribution functions Cj(x) of system elements, one
can determine the u-functions of the corresponding multi-state elements with
discrete performance as

h-1

7 7 : j min i0 ;
Z/IJ(Z) = Z{C/[g/mm +(l—1)6j]—Cj(gjmm +16j)}zg’ A J
i=1

+C (g jmax —0)z5™ (4.118)

h-1

7 ; : i min i0
i 1(2)= 2AC (& jmin +10 ;) = C;Lg jmin + (i + 13 ; )z 5mn ™
i=0

+C (g jmax )25 ™ (4.119)

Applying the reliability block diagram technique over u-functions u j(z) one

obtains the u-function U(z) representing the p.m.f. of the entire system consisting
of elements with discrete performance distributions with p.m.f. (4.114). Applying
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this technique over u-functions u j(z)one obtains the u-function U(z)

representing the p.m.f. of the entire system consisting of elements with discrete
performance distributions with p.m.f. (4.115). Having the wu-functions U (z)and

U(z) one can obtain the boundary points for the system performance measures as
described in Section 3.3.

Example 4.24

Consider the series-parallel continuum-state system presented in Figure 4.37. Each
element of the system can be either available or totally unavailable due to a
catastrophic failure. If the element is available, then its performance rate varies
continuously depending on the state of the element's operating environment. The
performance rate of the unavailable element is zero.

Figure 4.37. Structure of continuum-state system

Observe that if the element's availability is a; and its complemented distribution
function given that the element is available is Cj- (x), then the performance
distribution of this element is defined by the complemented distribution function
C ki (x) that takes the form

1, x<0

Ci(x)=4 az, 0<x<gpnp

*
Clij (x), X > Zmin

The first element has the availability a; = 0.8 and exponentially distributed
performance with mean g =40 and gym,z = O (the probability that
G| > Zimax = 1000 is neglected). The second element has availability a, = 0.7 and
uniformly distributed performance with g, = 30 and gyn.x = 60. The third
element has availability a; = 0.95 and normally distributed performance with mean
M3 =70 and standard deviation o3 =10 (the probabilities that G3 < gsmin = 0 and
that G3 > gzmax = 1000 are neglected). In the state of failure, all the elements have
performance zero. The system fails if its performance is less that the constant
demand w = 20.
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The complemented distribution functions of the element performances taking
into account the element availabilities are

1, x<0
Cl(x): —x/
ae M x>0
1, x<0
ap, 0<x<gmin
Cr(x)=
aZ(gmax_x)/(gmaX_gmin)’ gminsxggmax
0, X > & max
1, x<0
C3(x)= 1

N -m)? 120
[ e =) /29 g5, x50

as (1 -
o3V27m 5

Considering the complemented distribution functions in the interval [0, 1000]
and assigning 0 =1, Lisnianski [132] has obtained for the system interpreted as a

flow transmission MSS with flow dispersion £=U'(1)=47.21and
A” =3.07 when the element performance distributions are represented by u-
functions u j(2),and £=U'(1)=4623and A =3.19 when the element
performance distributions are represented by wu-functions ﬁj (z). Using these

boundary points, one can estimate the performance measures with maximal relative
errors
100x(47.21-46.23)/46.23=2.1%

for mean performance and

100x(3.19-3.07)/3.07=3.9%

for expected performance deficiency.
For the system interpreted as a task processing MSS without work sharing,

e=U' (1)=24.23 and A~ =3.32 when the element performance distributions are

=U'(1)=23.83 and A~ =3.45 when the

represented by u-functions u j(2), and &
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element performance distributions are represented by wu-functions u j(2). This

gives the estimations of the performance measures with maximal relative errors
100x(24.23-23.83)/46.23=1.7%

for mean performance and
100x(3.45-3.32)/3.32=3.9%

for expected performance deficiency.

The upper and lower boundary points for mean performance and expected
unsupplied demand are presented in Figure 4.38 as functions of step 0 for both
types of systems. The decrease of step 0 provides improvement in the accuracy of
boundary points estimation. However, it considerably increases the computational
burden, since the number of terms in the w-functions u j(z) and u j(z) is

proportional to 1/0.

60 4.5

& A4

50 4 4

40 3.5 4

801 3 \\\

20— 25—
01 2 3 456 7 8 910M1 012 3 456 7 8 9 1011

0 0

—— ——A —— ——B —— ——A —— ——B

Figure 4.38. Boundary points for expected performance deficiency and mean performance
(A: flow transmission system; B: task processing system)





