
1. Basic Tools and Techniques

1.1 Moment-generating Function and z-transform

Consider a discrete random variable X that can take on a finite number of possible
values. The probabilistic distribution of this variable can be represented by the
finite vector x = (x0, …, xk) consisting of the possible values of X and the finite
vector p consisting of the corresponding probabilities pi = Pr{X = xi}.
The mapping xi pi is usually called the probability mass function (p.m.f.)

X must take one of the values xi. Therefore

k

i
ip

0
1 (1.1)

Example 1.1

Suppose that one performs k independent trials and each trial can result either in a
success (with probability) or in a failure (with probability 1). Let random
variable X represent the number of successes that occur in k trials. Such a variable
is called a binomial random variable. The p.m.f. of X takes the form

 xi = i, ,)1(iki
i

i

k
p ki0

According to the binomial theorem it can be seen that

k

i

kiki
k

i
i

i

k
p

00
1)]1([)1(

The expected value of X is defined as a weighted average of the possible values
that X can take on, where each value is weighted by the probability that X assumes
that value:

2 The Universal Generating Function in Reliability Analysis and Optimization

k

i
ii pxXE

0
)((1.2)

Example 1.2

The expected value of a binomial random variable is

kk
i

k
k

i

k
ipxXE

kiki
k

i

k

i

iki
k

i
ii

11
1

0

00

)]1([)1(
1

)1()(

The moment-generating function)(tm of the discrete random variable X with

p.m.f. x, p is defined for all values of t by

k

i
i

itxtX peeEtm
0

)()((1.3)

The function)(tm is called the moment-generating function because all of the

moments of random variable X can be obtained by successively differentiating
m(t). For example:

k

i
i

itx
i

k

i
i

itx
pexpe

t
tm

00
.)(

d

d
)(' (1.4)

Hence

k

i
ii XEpxm

0
)()0(' (1.5)

Then

k

i
i

itx
i

k

i
i

itx
i pexpex

t
tm

t
tm

0

2

0
)(

d

d
))('(

d

d
)('' (1.6)

and

 1 Basic Tools and Techniques 3

k

i
i XEpxm

i0

22)()0('' (1.7)

The nth derivative of)(tm is equal to E(XP

n
P)at t = 0.

Example 1.3

The moment-generating function of the binomial distribution takes the form

ktik
k

i

it

k

i

ikititX

e
i

k
e

i

k
eeEtm

)1()1()(

)1()()(

0

0

Hence

tkt eektm 1)1()(' and E(X) = m '(0) = k .

The moment-generating function of a random variable uniquely determines its
p.m.f. This means that a one-to-one correspondence exists between the p.m.f. and
the moment-generating function.

The following important property of moment-generating function is of special
interest for us. The moment-generating function of the sum of the independent
random variables is the product of the individual moment-generating functions of
these variables. Let mX(t) and mY(t) be the moment-generating functions of random
variables X and Y respectively. The p.m.f. of the random variables are represented
by the vectors

 x = (x0, …,),
Xkx pX = (pX0, …,)

XXkp

and
y = (y0, …,),

Yky pY = (pY0, …,)
YYkp

respectively. Then m X+Y (t), the moment-generating function of X + Y, is obtained as

Xk

i

Yk

j
jY

ity

iX
itx

YXYX pepetmtmtm
0 0

)()()(

Xk

i
jYiX

Yk

j

jyixtXk

i
jYiX

jtyYk

j

itx
ppeppee

0 0

)(

0 0
 (1.8)

4 The Universal Generating Function in Reliability Analysis and Optimization

The resulting moment-generating function)(tm YX relates the probabilities of

all the possible combinations of realizations X = xi, Y = yj, for any i and j, with the
values that the random function X + Y takes on for these combinations.

In general, for n independent discrete random variables X1, …, Xn

)()(
1

1

tmtm
n

i
X

X i
n

i
i

 (1.9)

By replacing the function et by the variable z in Equation (1.3) we obtain
another function related to random variable X that uniquely determines its p.m.f.:

(z)=E(z P

X
P)=

k

i
i

ix
pz

0
 (1.10)

This function is usually called the z-transform of discrete random variable X.
The z-transform preserves some basic properties of the moment-generating
functions. The first derivative of)(z is equal to E(X) at z = 1. Indeed:

k

i
i

ix
i

k

i
i

ix
pzxpz

t
z

0

1

0
)(

d

d
)(' (1.11)

Hence

 '(1) =
k

i
ii XEpx

0
)((1.12)

The z-transform of the sum of independent random variables is the product of
the individual z-transforms of these variables:

Y

ji

ji
XY

ji

ji
X

Y

j

i
X

i

i

k

j
YX

yxk

i

k

j
YX

yx
k

i

k

j
Y

y
k

i
X

x
YXYX

ppzppzz

pzpzzzz

0

)(

000

00
)()()(

 (1.13)

and in general

n

i
X

X
z

i
n

i
i 1

)(

1

 (1.14)

 1 Basic Tools and Techniques 5

The reader wishing to learn more about the generating function and z-transform
is referred to the books by Grimmett and Stirzaker [3] and Ross [4].

Example 1.4

Suppose that one performs k independent trials and each trial can result either in a
success (with probability) or in a failure (with probability 1). Let random
variable Xj represent the number of successes that occur in the jth trial.

The p.m.f. of any variable Xj (kj1) is

 Pr{Xj = 1} = , Pr{Xj = 0} = 1 .

The corresponding z-transform takes the form

Xj(z) = z P

1 + (1)z P

0
P

The random number of successes that occur in k trials is equal to the sum of the
numbers of successes in each trial

k

j
jXX

1

Therefore, the corresponding z-transform can be obtained as

iki
k

i

i
k

i

ikii

k
n

j
XX

i

k
zz

i

k

zzzz
j

)1()1(

])1([)()(

00

0

1

This z-transform corresponds to the binomial p.m.f:

 xi = i, ,)1(iki
i

i

k
p ki0

6 The Universal Generating Function in Reliability Analysis and Optimization

1.2 Mathematical Fundamentals of the Universal
Generating Function

1.2.1 Definition of the Universal Generating Function

Consider n independent discrete random variables X1, …, Xn and assume that each
variable Xi has a p.m.f. represented by the vectors xi, pi. In order to evaluate the
p.m.f. of an arbitrary function f(X1, …, Xn), one has to evaluate the vector y of all of
the possible values of this function and the vector q of probabilities that the
function takes these values.

Each possible value of function f corresponds to a combination of the values of
its arguments X1, …, Xn. The total number of possible combinations is

n

i
ikK

1
)1((1.15)

where ki + 1 is the number of different realizations of random variable Xi. Since all
of the n variables are statistically independent, the probability of each unique
combination is equal to the product of the probabilities of the realizations of
arguments composing this combination.

The probability of the jth combination of the realizations of the variables can be
obtained as

n

i
ijj i

pq

1
 (1.16)

and the corresponding value of the function can be obtained as

)...,,(
11 nnjjj xxff (1.17)

Some different combinations may produce the same values of the function. All
of the combinations are mutually exclusive. Therefore, the probability that the
function takes on some value is equal to the sum of probabilities of the
combinations producing this value. Let Ah be a set of combinations producing the
value fh. If the total number of different realizations of the function f(X1, …, Xn) is
H, then the p.m.f. of the function is

)1:(),1:(
1),...,(

11

HhpHhf
n

i
ij

Axx
h i

hnnjj

qy (1.18)

 1 Basic Tools and Techniques 7

Example 1.5

Consider two random variables X1 and X2 with p.m.f. x1 = (1, 4), p1 = (0.6, 0.4) and
x2 = (0.5, 1, 2), p2 = (0.1, 0.6, 0.3). In order to obtain the p.m.f. of the function

2
1

X
XY we have to consider all of the possible combinations of the values taken

by the variables. These combinations are presented in Table 1.1.
The values of the function Y corresponding to different combinations of

realizations of its random arguments and the probabilities of these combinations
can be presented in the form

 y = (1, 2, 1, 4, 1, 16), q = (0.06, 0.04, 0.36, 0.24, 0.18, 0.12)

Table 1.1. p.m.f. of the function of two variables

No of
combination

Combination
probability

Value
of X1

Value
of X2

Value
of Y

1 0.6 0.1 = 0.06 1 0.5 1
2 0.4 0.1 = 0.04 4 0.5 2
3 0.6 0.6 = 0.36 1 1 1
4 0.4 0.6 = 0.24 4 1 4
5 0.6 0.3 = 0.18 1 2 1
6 0.4 0.3 = 0.12 4 2 16

Note that some different combinations produce the same values of the function
Y. Since all of the combinations are mutually exclusive, we can obtain the
probability that the function takes some value as being the sum of the probabilities
of different combinations of the values of its arguments that produce this value:

 Pr{Y = 1} = Pr{X1 = 1, X2 = 0.5} + Pr{X1 = 1, X2 = 1}

 + Pr{X1 = 1, X2 = 2} = 0.06 + 0.36 + 0.18 = 0.6

The p.m.f. of the function Y is

 y = (1, 2, 4, 16), q = (0. 6, 0.04, 0.24, 0.12)

The z-transform of each random variable Xi represents its p.m.f.),...,,(0 iiki xx

)...,,(0 iiki pp in the polynomial form

i
ij

k

j

x
ij zp

0
 (1.19)

According to (1.14), the product of the z-transform polynomials corresponding
to the variables X1, …, Xn determines the p.m.f. of the sum of these variables.

In a similar way one can obtain the z-transform representing the p.m.f. of the
arbitrary function f by replacing the product of the polynomials by a more general

8 The Universal Generating Function in Reliability Analysis and Optimization

composition operator f over z-transform representations of p.m.f. of n

independent variables:

1

1

1
2

20 0

),...,(

000
)(...)(

k

j

k

j

xxfn

i
ij

k

j

k

j

x
ij

n

n

nnjij

i

i

i

iij

if
zpzp (1.20)

The technique based on using z-transform and composition operators f is

named the universal z-transform or universal (moment) generating function (UGF)
technique. In the context of this technique, the z-transform of a random variable for
which the operator f is defined is referred to as its u-function. We refer to the u-

function of variable Xi as uj(z), and to the u-function of the function f(X1, …, Xn) as
U(z). According to this notation

))(...,),(),(()(21 zuzuzuzU n
f

 (1.21)

where ui(z) takes the form (1.19) and U(z) takes the form (1.20). For functions of
two arguments, two interchangeable notations can be used:

)()())(),(()(2121 zuzuzuzuzU
ff

 (1.22)

Despite the fact that the u-function resembles a polynomial, it is not a
polynomial because:

 - Its coefficients and exponents are not necessarily scalar variables, but can be
other mathematical objects (e.g. vectors);

 - Operators defined over the u-functions can differ from the operator of the
polynomial product (unlike the ordinary z-transform, where only the product
of polynomials is defined).

When the u-function U(z) represents the p.m.f. of a random function
f(X1,…, Xn), the expected value of this function can be obtained (as an analogy with
the regular z-transform) as the first derivative of U(z) at z = 1.

In general, the u-functions can be used not just for representing the p.m.f. of
random variables. In the following chapters we also use other interpretations.
However, in any interpretation the coefficients of the terms in the u-function
represent the probabilistic characteristics of some object or state encoded by the
exponent in these terms.

The u-functions inherit the essential property of the regular polynomials: they
allow for collecting like terms. Indeed, if a u-function representing the p.m.f. of a

random variable X contains the terms hx
hzp and mx

mzp for which xh = xm, the two

terms can be replaced by a single term mx
mh zpp)(, since in this case

Pr{X = xh} = Pr{X = xm} = ph+pm.

 1 Basic Tools and Techniques 9

Example 1.6

Consider the p.m.f. of the function Y from Example 1.5, obtained from Table 1.1.
The u-function corresponding to this p.m.f. takes the form:

 U(z) = 0.06z1 + 0.04z2 + 0.36z1 + 0.24z4 + 0.18z1 + 0.12z16

By collecting the like terms in this u-function we obtain:

 U(z) = 0.6z1 + 0.04z2 + 0.24z4 + 0.12z16

which corresponds to the final p.m.f. obtained in Example 1.5.
The expected value of Y can be obtained as

 E(Y) = U '(1) = 0.6 1 + 0.04 2 + 0.24 4 + 0.12 16 = 3.56

The described technique of determining the p.m.f. of functions is based on an
enumerative approach. This approach is extremely resource consuming. Indeed, the
resulting u-function U(z) contains K terms (see Equation (1.15)), which requires
excessive storage space. In order to obtain U(z) one has to perform (n - 1)K
procedures of probabilities multiplication and K procedures of function evaluation.
Fortunately, many functions used in reliability engineering produce the same
values for different combinations of the values of their arguments. The
combination of recursive determination of the functions with simplification
techniques based on the like terms collection allows one to reduce considerably the
computational burden associated with evaluating the p.m.f. of complex functions.

Example 1.7

Consider the function

 Y = f(X1, …, X5) = (max(X1, X2) + min(X3, X4)) X5

of five independent random variables X1, …, X5. The probability mass functions of
these variables are determined by pairs of vectors xi, pi (50 i) and are
presented in Table 1.2.

These p.m.f. can be represented in the form of u-functions as follows:

 u1(z) = 121110
121110

xxx
zpzpzp = 0.6z P

5
P+ 0.3z P

8
P+ 0.1z P

12

 u2(z) = 2120
2120

xx
zpzp = 0.7z P

8
P+ 0.3z P

10
P

 u3(z) = 3130
3130

xx
zpzp = 0.6z P

0
P+ 0.4z P

1

 u4(z) = 424140
424140

xxx
zpzpzp = 0.1z P

0
P+ 0.5z P

8
P + 0.4z P

10
P

 u5(z) = 5150
5150

xx
zpzp = 0.5z P

1
P + 0.5z P

1.5
P

10 The Universal Generating Function in Reliability Analysis and Optimization

Using the straightforward approach one can obtain the p.m.f. of the random
variable Y applying the operator (1.20) over these u-functions. Since k1 + 1 = 3,
k2 + 1 = 2, k3 + 1 = 2, k4 + 1 = 3, k5 + 1 = 2, the total number of term multiplication
procedures that one has to perform using this equation is 3 2 2 3 2 = 72.

Table 1.2. p.m.f. of random variables

X1 p1 0.6 0.3 0.1

x1 5 8 12

X2 p2 0.7 0.3 -

x2 8 10 -

X3 p3 0.6 0.4 -

x3 0 1 -

X4 p4 0.1 0.5 0.4

x4 0 8 10

X5 p5 0.5 0.5 -

x5 1 1.5 -

Now let us introduce three auxiliary random variables X6, X7 and X8, and define
the same function recursively:

 X6 = max{X1, X2}

 X7 = min{X3, X4}

 X8 = X6 + X7

 Y = X8 X5

We can obtain the p.m.f. of variable Y using composition operators over pairs
of u-functions as follows:

 u6(z) = u1(z)
max

u1(z) = (0.6z P

5
P+ 0.3z P

8 + 0.1z P

12
P)

max

(0.7z P

8 + 0.3z P

10
P)

 =0.42z P

max{5,8}
P + 0.21z P

max{8,8} + 0.07zmax{12,8} + 0.18zmax{5,10} + 0.09zmax{8,10}

+ 0.03zmax{12,10} = 0.63z8 + 0.27z10 + 0.1z12

 u7(z) = u3(z)
min

u4(z) = (0.6z P

0
P+ 0.4z P

2
P)

min

(0.1z P

0
P + 0.5z P

3 + 0.4z P

5
P)

 = 0.06z P

min{0,0}
P + 0.04z P

min{2,0} + 0.3zmin{0,3} + 0.2zmin{2,3}

 +0.24zmin{0,5} + 0.16zmin{2,5} = 0.64z0 + 0.36z2

 u8(z) = u6(z) u7(z) = (0.63z P

8
P + 0.27z P

10
P + 0.1z P

12
P) (0.64z P

0 + 0.36z P

2
P)

 1 Basic Tools and Techniques 11

 = 0.4032z P

8+0
P + 0.1728z P

10+0
P + 0.064z12+0 + 0.2268z8+2 + 0.0972z10+2

 + 0.036z12+2 = 0.4032z8 + 0.3996z10 + 0.1612z12 + 0.036z14

 U(z) = u8(z) u5(z)

 = (0.4032z P

8
P + 0.3996z P

10 + 0.1612z P

12
P + 0.036z P

14
P)(0.5z P

1
P + 0.5z P

1.5
P)

 = 0.2016z P

8×1
P + 0.1998z10×1 + 0.0806z12×1 + 0.018z14×1 + 0.2016z8×1.5

 + 0.1998z10×1.5 + 0.0806z12×1.5 + 0.018z14×1.5 = 0.2016z8 + 0.1998z10

 + 0.2822z12 + 0.018z14 + 0.1998z15 + 0.0806z18 + 0.018z21

The final u-function U(z) represents the p.m.f. of Y, which takes the form

 y = (8, 10, 12, 14, 15, 18, 21)

 q = (0.2016, 0.1998, 0.2822, 0.018, 0.1998, 0.0806, 0.018)

Observe that during the recursive derivation of this p.m.f. we used only 26 term
multiplication procedures. This considerable computational complexity reduction
is possible because of the like term collection in intermediate u-functions.

The problem of system reliability analysis usually includes evaluation of the
p.m.f. of some random values characterizing the system's behaviour. These values
can be very complex functions of a large number of random variables. The explicit
derivation of such functions is an extremely complicated task. Fortunately, the
UGF method for many types of system allows one to obtain the system u-function
recursively. This property of the UGF method is based on the associative property
of many functions used in reliability engineering. The recursive approach presumes
obtaining u-functions of subsystems containing several basic elements and then
treating the subsystem as a single element with the u-function obtained when
computing the u-function of a higher level subsystem. Combining the recursive
approach with the simplification technique reduces the number of terms in the
intermediate u-functions and provides a drastic reduction of the computational
burden.

1.2.2 Properties of Composition Operators

The properties of composition operator f strictly depend on the properties of the

function f(X1, …, Xn). Since the procedure of the multiplication of the probabilities
in this operator is commutative and associative, the entire operator can also possess
these properties if the function possesses them.
 If

f(X1, X2, …, Xn) = f(f(X1, X2, …, Xn-1), Xn), (1.23)

12 The Universal Generating Function in Reliability Analysis and Optimization

then:

)).()),(...,),(),(((

))(...,),(),(()(

121

21

zuzuzuzu

zuzuzuzU

nn
ff

n
f

 (1.24)

Therefore, one can obtain the u-function U(z) assigning U1(z) = u1(z) and
applying operator

f
 consecutively:

 Uj(z) =
f

 (Uj 1(z), uj(z)) for 2 j n, (1.25)

such that finally U(z) = Un(z).

If the function f possesses the associative property

f(X1, …, Xj, Xj+1, …, Xn)=f(f(X1, …, Xj), f(Xj+1, …, Xn)) (1.26)

for any j, then the
f

 operator also possesses this property:

))(...,),((1 zuzu n
f

))(...,),(()),(...,),(((11 zuzuzuzu nj
f

j
ff

 (1.27)

If, in addition to the property (1.24), the function f is also commutative:

f(X1, …, Xj, Xj+1,…, Xn) = f(X1, …, Xj+1, Xj,…, Xn) (1.28)

then for any j, which provides the commutative property for the
f

 operator:

))(),...,(),(),...,((

))(),...,(),(),...,((

11

11

zuzuzuzu

zuzuzuzu

njj
f

njj
f

 (1.29)

the order of arguments in the function f(X1, …, Xn) is inessential and the u-function
U(z) can be obtained using recursive procedures (1.23) and (1.25) over any
permutation of u-functions of random arguments X1, …, Xn.

If a function takes the recursive form

f(f1(X1, …, Xj), f2(Xj+1, …, Xh), …, fm(Xl, …, Xn)) (1.30)

then the corresponding u-function U(z) can also be obtained recursively:

 1 Basic Tools and Techniques 13

)).(),...,(()),...,(),...,(()),(),...,(((11
21

zuzuzuzuzuzu nlhjj
mffff

 (1.31)

Example 1.8

Consider the variables X1, X2, X3 with p.m.f. presented in Table 1.1. The u-
functions of these variables are:

 u1(z) = 0.6z5 + 0.3z8 + 0.1z12

 u2(z) = 0.7z8 + 0.3z10

 u3(z) = 0.6z0 + 0.4z1

The function Y = min(X1, X2, X3) possesses both commutative and associative
properties. Therefore

 min(min(X1, X2), X3) = min(min(X2, X1), X3) = min(min(X1, X3), X2)

 = min(min(X3, X1), X2) = min(min(X2, X3), X1) = min(min(X3, X2), X1).

The u-function of Y can be obtained using the recursive procedure

 u4(z) = u1(z)
min

u2(z) = (0.6z P

5 + 0.3z P

8 + 0.1z P

12
P)

min

(0.7z8 + 0.3z10)

 = 0.42zmin{5,8} + 0.21zmin{8,8} + 0.07zmin{12,8}

 + 0.18zmin{5,10} + 0.09zmin{8,10} + 0.03zmin{12,10} = 0.6z5 + 0.37z8 + 0.03z10

 U(z) = u4(z)
min

u3(z) = (0.6z P

5 + 0.37z P

8 + 0.03z P

10
P)

min

(0.6z P

0
P + 0.4z P

1
P)

 = 0.36z P

min{5,0}
P + 0.222z P

min{8,0}
P+ 0.018z P

min{12,0}
P

 + 0.24z P

min{5,1}
P + 0.148z P

min{8,1}
P + 0.012z P

min{12,1}
P = 0.6z P

0
P + 0.4z P

1

The same u-function can also be obtained using another recursive procedure

 u4(z) = u1(z)
min

u3(z) = (0.6z P

5
P + 0.3z P

8 + 0.1z P

12
P)

min

(0.6z P

0
P + 0.4z P

1
P)

 = 0.36z P

min{5,0}
P + 0.18z P

min{8,0}
P+ 0.06z P

min{12,0}
P

 +0.24z P

min{5,1}
P+ 0.12z P

min{8,1}
P + 0.04z P

min{12,1}
P = 0.6z P

0 + 0.4z P

1
P;

 U(z) = u3(z)
min

u2(z) = (0.6z P

0
P+ 0.4z P

1)
min

(0.7z P

8
P + 0.3z P

10
P)

 = 0.42z P

min{0,8}
P+ 0.28z P

min{1,8}
P + 0.18z P

min{0,10}
P + 0.12z P

min{1,10}
P= 0.6z P

0
P + 0.4z P

1

Observe that while both recursive procedures produce the same u-function, their
computational complexity differs . In the first case, 12 term multiplication

14 The Universal Generating Function in Reliability Analysis and Optimization

operations have been performed; in the second case, only 10 operations have been
performed.

Consider a random variable X with p.m.f. represented by u-function
k
j

jx
jX zpzu 0 .)(In order to obtain the u-function representing the p.m.f. of

function f(X, c) of the variable X and a constant c one can apply the following
simplified operator:

 U(z) =
k

j

cjxf
j

k

j f

jx
j

f
X zpczpczu

0

),(

0
)()((1.32)

This can be easily proved if we represent the constant c as the random variable
C that can take the value of c with a probability of 1. The u-function of such a
variable takes the form

 uc(z) = z c (1.33)

Applying the operator f over the two u-functions uX(z) and uc(z) we obtain

Equation (1.32).

1.3 Introduction to Genetic Algorithms

An abundance of optimization methods have been used to solve various reliability
optimization problems. The algorithms applied are either heuristics or exact
procedures based mainly on modifications of dynamic programming and nonlinear
programming. Most of these methods are strongly problem oriented. This means
that, since they are designed for solving certain optimization problems, they cannot
be easily adapted for solving other problems. In recent years, many studies on
reliability optimization use a universal optimization approach based on
metaheuristics. These metaheuristics hardly depend on the specific nature of the
problem that is solved and, therefore, can be easily applied to solve a wide range of
optimization problems. The metaheuristics are based on artificial reasoning rather
than on classical mathematical programming. Their important advantage is that
they do not require any information about the objective function besides its values
corresponding to the points visited in the solution space. All metaheuristics use the
idea of randomness when performing a search, but they also use past knowledge in
order to direct the search. Such search algorithms are known as randomized search
techniques.

Genetic algorithms (GAs) are one of the most widely used metaheuristics. They
were inspired by the optimization procedure that exists in nature, the biological
phenomenon of evolution. A GA maintains a population of different solutions
allowing them to mate, produce offspring, mutate, and fight for survival. The

 1 Basic Tools and Techniques 15

principle of survival of the fittest ensures the population’s drive towards
optimization. The GAs have become the popular universal tool for solving various
optimization problems, as they have the following advantages:

- they can be easily implemented and adapted;
- they usually converge rapidly on solutions of good quality;
- they can easily handle constrained optimization problems;
- they produce variety of good quality solutions simultaneously, which is

important in the decision-making process.
The GA concept was developed by John Holland at the University of Michigan

and first described in his book [5]. Holland was impressed by the ease with which
biological organisms could perform tasks, which eluded even the most powerful
computers. He also noted that very few artificial systems have the most remarkable
characteristics of biological systems: robustness and flexibility. Unlike technical
systems, biological ones have methods for self-guidance, self-repair and
reproducing these features. Holland’s biologically inspired approach to
optimization is based on the following analogies:

- As in nature, where there are many organisms, there are many possible
solutions to a given problem.

- As in nature, where an organism contains many genes defining its properties,
each solution is defined by many interacting variables (parameters).

- As in nature, where groups of organisms live together in a population and
some organisms in the population are more fit than others, a group of
possible solutions can be stored together in computer memory and some of
them are closer to the optimum than others.

- As in nature, where organisms that are fitter have more chances of mating
and having offspring, solutions that are closer to the optimum can be selected
more often to combine their parameters to form new solutions.

- As in nature, where organisms produced by good parents are more likely to
be better adapted than the average organism because they received good
genes, offspring of good solutions are more likely to be better than a random
guess, since they are composed of better parameters.

- As in nature, where survival of the fittest ensures that the successful traits
continue to get passed along to subsequent generations, and are refined as the
population evolves, the survival-of-the-fittest rule ensures that the
composition of the parameters corresponding to the best guesses continually
get refined.

GAs maintain a population of individual solutions, each one represented by a
finite string of symbols, known as the genome, encoding a possible solution within
a given problem space. This space, referred to as the search space, comprises all of
the possible solutions to the problem at hand. Generally speaking, a GA is applied
to spaces, which are too large to be searched exhaustively.

GAs exploit the idea of the survival of the fittest and an interbreeding
population to create a novel and innovative search strategy. They iteratively create
new populations from the old ones by ranking the strings and interbreeding the
fittest to create new strings, which are (hopefully) closer to the optimum solution
for the problem at hand. In each generation, a GA creates a set of strings from

16 The Universal Generating Function in Reliability Analysis and Optimization

pieces of the previous strings, occasionally adding random new data to keep the
population from stagnating. The result is a search strategy that is tailored for vast,
complex, multimodal search spaces.

The idea of survival of the fittest is of great importance to genetic algorithms.
GAs use what is termed as the fitness function in order to select the fittest string to
be used to create new, and conceivably better, populations of strings. The fitness
function takes a string and assigns it a relative fitness value. The method by which
it does this and the nature of the fitness value do not matter. The only thing that the
fitness function must do is rank the strings in some way by producing their fitness
values. These values are then used to select the fittest strings.

GAs use the idea of randomness when performing a search. However, it must
be clearly understood that the GAs are not simply random search algorithms.
Random search algorithms can be inherently inefficient due to the directionless
nature of their search. GAs are not directionless. They utilize knowledge from
previous generations of strings in order to construct new strings that will approach
the optimal solution. GAs are a form of a randomized search, and the way that the
strings are chosen and combined comprise a stochastic process.

The essential differences between GAs and other forms of optimization,
according to Goldberg [6], are as follows.

GAs usually use a coded form of the solution parameters rather than their actual
values. Solution encoding in a form of strings of symbols (an analogy to
chromosomes containing genes) provides the possibility of crossover and mutation.
The symbolic alphabet that was used was initially binary, due to certain
computational advantages purported in [5]. This has been extended in recent years
to include character-based encodings, integer and real-valued encodings, and tree
representations [7].

GAs do not just use a single point on the problem space, rather they use a set,
or population, of points (solutions) to conduct a search. This gives the GAs the
power to search noisy spaces littered with local optimum points. Instead of relying
on a single point to search through the space, GAs look at many different areas of
the problem space at once, and use all of this information as a guide.

GAs use only payoff information to guide themselves through the problem
space. Many search techniques need a range of information to guide themselves.
For example, gradient methods require derivatives. The only information a GA
needs to continue searching for the optimum is some measure of fitness about a
point in the space.

GAs are probabilistic in nature, not deterministic. This is a direct result of the
randomization techniques used by GAs.

GAs are inherently parallel. Herein lies one of their most powerful features.
GAs, by their nature, are very parallel, dealing with a large number of solutions
simultaneously. Using schemata theory, Holland has estimated that a GA,
processing n strings at each generation, in reality processes n3 useful substrings [6].

Two of the most common GA implementations are “generational” and “steady
state”, although recently the steady-state technique has received increased attention
[8]. This interest is partly attributed to the fact that steady-state techniques can
offer a substantial reduction in the memory requirements of a system: the technique

 1 Basic Tools and Techniques 17

abolishes the need to maintain more than one population during the evolutionary
process, which is necessary in the generational GA. In this way, genetic systems
have greater portability for a variety of computer environments because of the
reduced memory overhead. Another reason for the increased interest in steady-state
techniques is that, in many cases, a steady-state GA has been shown to be more
effective than a generational GA [9, 10]. This improved performance can be
attributed to factors such as the diversity of the population and the immediate
availability of superior individuals.

A comprehensive description of a generational GA can be found in [6]. Here,
we present the structure of a steady-state GA.

1.3.1 Structure of Steady-state Genetic Algorithms

The steady-state GA (see Figure 1.1) proceeds as follows [11]: an initial population
of solutions is generated randomly or heuristically. Within this population, new
solutions are obtained during the genetic cycle by using the crossover operator.
This operator produces an offspring from a randomly selected pair of parent
solutions (the parent solutions are selected with a probability proportional to their
relative fitness), facilitating the inheritance of some basic properties from the
parents to the offspring. The newly obtained offspring undergoes mutation with the
probability pmut.

Figure 1.1. Structure of a steady-state GA

Each new solution is decoded and its objective function (fitness) values are
estimated. These values, which are a measure of quality, are used to compare
different solutions. The comparison is accomplished by a selection procedure that
determines which solution is better: the newly obtained solution or the worst
solution in the population. The better solution joins the population, while the other

Random
generation

Selection

Population
of

solutions

?

Crossover

 New solution

Mutation

Decoding
&

criteria
evaluation

18 The Universal Generating Function in Reliability Analysis and Optimization

is discarded. If the population contains equivalent solutions following selection,
then redundancies are eliminated and the population size decreases as a result.

A genetic cycle terminates when Nrep new solutions are produced or when the
number of solutions in the population reaches a specified level. Then, new
randomly constructed solutions are generated to replenish the shrunken population,
and a new genetic cycle begins. The whole GA is terminated when its termination
condition is satisfied. This condition can be specified in the same way as in a
generational GA. The following is the steady-state GA in pseudo-code format.

begin STEADY STATE GA
 Initialize population
 Evaluate population {compute fitness values}
 while GA termination criterion is not satisfied do

{GENETIC CYCLE}
while genetic cycle termination criterion is not satisfied do

 Select at random Parent Solutions S1, S2 from
 Crossover: (S1, S2) SO {offspring}
 Mutate offspring SO S*O with probability pmut

 Evaluate S*O

Replace SW {the worst solution in with S*O } if S*O is
better than SW

 Eliminate identical solutions in
 end while
 Replenish with new randomly generated solutions
 end while
end GA

Example 1.9

In this example we present several initial stages of a steady-state GA, that
maximizes the function of six integer variables x1, …, x6 taking the form

12
6

2
5

2
4

2
3

2
2

2
161

])8.8()8.2()1.3(

)7.7()8.1()4.3[(1000),...,(

xxx

xxxxxf

The variables can take values from 1 to 9. The initial population, consisting of
five solutions ordered according to their fitness (value of function f), is:

No. x1 x2 x3 x4 x5 x6 f(x1,…,x6)
1 4 2 4 1 2 5 297.8
2 3 7 7 7 2 7 213.8
3 7 5 3 5 3 9 204.2
4 2 7 4 2 1 4 142.5
5 8 2 3 1 1 4 135.2

Using the random generator that produces the numbers of the solutions, the GA
chooses the first and third strings, i.e. (4 2 4 1 2 5) and (7 5 3 5 3 9) respectively.
From these strings, it produces a new one by applying a crossover procedure that

 1 Basic Tools and Techniques 19

takes the three first numbers from the better parent string and the last three
numbers from the inferior parent string. The resulting string is (4 2 4 5 3 9). The
fitness of this new solution is f(x1, …, x6) = 562.4. The new solution enters the
population, replacing the one with the lowest fitness. The new population is now

No. x1 x2 x3 x4 x5 x6 f(x1,…,x6)
1 4 2 4 5 3 9 562.4
2 4 2 4 1 2 5 297.8
3 3 7 7 7 2 7 213.8
4 7 5 3 5 3 9 204.2
5 2 7 4 2 1 4 142.5

Choosing at random the third and fourth strings, (3 7 7 7 2 7) and (7 5 3 5 3 9)
respectively, the GA produces the new string (3 7 7 5 3 9) using the crossover
operator. This string undergoes a mutation that changes one of its numbers by one
(here, the fourth element of the string changes from 5 to 4). The resulting string
(3 7 7 4 3 9) has a fitness of f(x1, …, x6) = 349.9. This solution is better than the
inferior one in the population; therefore, the new solution replaces the inferior one.
Now the population takes the form

No. x1 x2 x3 x4 x5 x6 f(x1,…,x6)
1 4 2 4 5 3 9 562.4
2 3 7 7 4 3 9 349.9
3 4 2 4 1 2 5 297.8
4 3 7 7 7 2 7 213.8
5 7 5 3 5 3 9 204.2

A new solution (4 2 4 4 3 9) is obtained by the crossover operator over the
randomly chosen first and second solutions, i.e. (4 2 4 5 3 9) and (3 7 7 4 3 9)
respectively. After the mutation this solution takes the form (4 2 4 5 3 9) and has
the fitness f(x1,…, x6) = 1165.5. The population obtained after the new solution
joins it is

No. x1 x2 x3 x4 x5 x6 f(x1,…,x6)
1 4 2 5 4 3 9 1165.5
2 4 2 4 5 3 9 562.4
3 3 7 7 4 3 9 349.9
4 4 2 4 1 2 5 297.8
5 3 7 7 7 2 7 213.8

Note that the mutation procedure is not applied to all the solutions obtained by
the crossover. This procedure is used with some prespecified probability pmut. In
our example, only the second and the third newly obtained solutions underwent the
mutation.

The actual GAs operate with much larger populations and produce thousands of
new solutions using the crossover and mutation procedures. The steady-state GA
with a population size of 100 obtained the optimal solution for the problem
presented after producing about 3000 new solutions. Note that the total number of

20 The Universal Generating Function in Reliability Analysis and Optimization

possible solutions is 96 = 531441. The GA managed to find the optimal solution by
exploring less than 0.6% of the entire solution space.

Both types of GA are based on the crossover and mutation procedures, which
depend strongly on the solution encoding technique. These procedures should
preserve the feasibility of the solutions and provide the inheritance of their
essential properties.

1.3.2 Adaptation of Genetic Algorithms to Specific Optimization
Problems

There are three basic steps in applying a GA to a specific problem.
In the first step, one defines the solution representation (encoding in a form of a

string of symbols) and determines the decoding procedure, which evaluates the
fitness of the solution represented by the arbitrary string.

In the second step, one has to adapt the crossover and mutation procedures to
the given representation in order to provide feasibility for the new solutions
produced by these procedures as well as inheriting the basic properties of the
parent solutions by their offspring.

In the third step, one has to choose the basic GA parameters, such as the
population size, the mutation probability, the crossover probability (generational
GA) or the number of crossovers per genetic cycle (in the steady-state GA), and
formulate the termination condition in order to provide the greatest possible GA
efficiency (convergence speed).

The strings representing GA solutions are randomly generated by the
population generation procedure, modified by the crossover and mutation
procedures, and decoded by the fitness evaluation procedure. Therefore, the
solution representation in the GA should meet the following requirements:

- It should be easily generated (the sophisticated complex solution generation
procedures reduce the GA speed).

- It should be as compact as possible (using very long strings requires
excessive computational resources and slows the GA convergence).

- It should be unambiguous (i.e. different solutions should be represented by
different strings).

- It should represent feasible solutions (if not any randomly generated string
represents a feasible solution, then the feasibility should be provided by
simple string transformation).

- It should provide feasibility inheritance of new solutions obtained from
feasible ones by the crossover and mutation operators.

The field of reliability optimization includes the problems of finding optimal
parameters, optimal allocation and assignment of different elements into a system,
and optimal sequencing of the elements. Many of these problems are combinatorial
by their nature. The most suitable symbol alphabet for this class of problems is
integer numbers. The finite string of integer numbers can be easily generated and
stored. The random generator produces integer numbers for each element of the
string in a specified range. This range should be the same for each element in order
to make the string generation procedure simple and fast. If for some reason

 1 Basic Tools and Techniques 21

different string elements should belong to different ranges, then the string should
be transformed to provide solution feasibility.

In the following sections we show how integer strings can be interpreted for
solving different kinds of optimization problems.

1.3.2.1 Parameter Determination Problems

When the problem lies in determining a vector of H parameters (x1, x2, …, xH) that
maximizes an objective function f(x1, x2, …, xH) one always has to specify the
ranges of the parameter variation:

maxmin
jjj xxx for Hj1 (1.34)

In order to facilitate the search in the solution space determined by inequalities
(1.34), integer strings a = (a1 a2 … aH) should be generated with elements ranging
from 0 to N and the values of parameters should be obtained for each string as

./)(minmaxmin Nxxaxx jjjjj (1.35)

Note that the space of the integer strings just approximately maps the space of
the real-valued parameters. The number N determines the precision of the search.

The search resolution for the jth parameter is ./)(minmax Nxx jj Therefore, the

increase of N provides a more precise search. On the other hand, the size of the
search space of integer strings grows drastically with the increase of N, which
slows the GA convergence. A reasonable compromise can be found by using a
multistage GA search. In this method, a moderate value of N is chosen and the GA
is run to obtain a "crude" solution. Then the ranges of all the parameters are
corrected to accomplish the search in a small vicinity of the vector of parameters
obtained and the GA is started again. The desired search precision can be obtained
by a few iterations.

Example 1.10

Consider a problem in which one has to minimize a function of seven parameters.
Assume that following a preliminary decision the ranges of the possible variations
of the parameters are different.

Let the random generator provide the generation of integer numbers in the
range of 0 -100 (N = 100). The random integer string and the corresponding values
of the parameters obtained according to (1.35) are presented in Table 1.3.

Table 1.3. Example of parameters encoding

No. of variable 1 2 3 4 5 6 7
xj

min 0.0 0.0 1.0 1.0 1.0 0.0 0.0
xj

max 3.0 3.0 5.0 5.0 5.0 5.0 5.0
Random integer string 21 4 0 100 72 98 0

Decoded variable 0.63 0.12 1.0 5.0 3.88 4.9 0.0

22 The Universal Generating Function in Reliability Analysis and Optimization

1.3.2.2 Partition and Allocation Problems

The partition problem can be considered as a problem of allocating Y items
belonging to a set in K mutually disjoint subsets i, i.e. such that

K

i
i

1
, ji , i j (1.36)

Each set can contain from 0 to Y items. The partition of the set can be
represented by the Y-length string a = (a1 a2 … aY 1 aY) in which aj is a number of
the set to which item j belongs. Note that, in the strings representing feasible
solutions of the partition problem, each element can take a value in the range (1,
K).

Now consider a more complicated allocation problem in which the number of
items is not specified. Assume that there are H types of different items with an
unlimited number of items for each type h. The number of items of each type
allocated in each subset can vary. To represent an allocation of the variable number
of items in K subsets one can use the following string encoding
a = (a11 a12 …a1K a21 a22 … a2K… aH1 aH2… aHK), in which aij corresponds to the
number of items of type i belonging to subset j. Observe that the different subsets
can contain identical elements.

Example 1.11

Consider the problem of allocating items of three different types in two disjoint
subsets. In this problem, H=3 and K=2. Any possible allocation can be represented
by an integer string using the encoding described above. For example, the string
(2 1 0 1 1 1) encodes the solution in which two type 1 items are allocated in the
first subset and one in the second subset, one item of type 2 is allocated in the
second subset, one item of type 3 is allocated in each of the two subsets.

When K = 1, one has an assignment problem in which a number of different
items should be chosen from a list containing an unlimited number of items of K
different types. Any solution of the assignment problem can be represented by the
string a = (a1 a2 … aK), in which aj corresponds to the number of chosen items of
type j.

The range of variance of string elements for both allocation and assignment
problems can be specified based on the preliminary estimation of the
characteristics of the optimal solution (maximal possible number of elements of the
same type included into the single subset). The greater the range, the greater the
solution space to be explored (note that the minimal possible value of the string
element is always zero in order to provide the possibility of not choosing any
element of the given type to the given subset). In many practical applications, the
total number of items belonging to each subset is also limited. In this case, any
string representing a solution in which this constraint is not met should be
transformed in the following way:

 1 Basic Tools and Techniques 23

otherwise,

if,/
11

*

ij

H

h
hjj

H

h
hjjij

ij

a

aNaNa
a for 1 i H,1 j K (1.37)

where Nj is the maximal allowed number of items in subset j.

Example 1.12

Consider the case in which the items of three types should be allocated into two
subsets. Assume that it is prohibited to allocate more than five items of each type
to the same subset. The GA should produce strings with elements ranging from 0
to 5. An example of such a string is (4 2 5 1 0 2).

 Assume that for some reason the total numbers of items in the first and in the
second subsets are restricted to seven and six respectively. In order to obtain a
feasible solution, one has to apply the transform (1.37) in which N1 = 7, N2 = 6:

3

1
1

h
ha 4+5+0=9,

3

1
2

h
ha 2+1+2=5

The string elements take the values

 a11 = 4 7/9 = 3, a21 = 5 7/9 = 3, a31 = 0 7/9 = 0

 a12 = 2 6/5 = 2, a22 = 1 6/5 = 1, a32 = 2 6/5 = 2

After the transformation, one obtains the following string: (3 2 3 1 0 2).

When the number of item types and subsets is large, the solution representation
described above results in an enormous growth of the length of the string. Besides,
to represent a reasonable solution (especially when the number of items belonging
to each subset is limited), such a string should contain a large fraction of zeros
because only a few items should be included in each subset. This redundancy
causes an increase in the need of computational resources and lowers the efficiency
of the GA. To reduce the redundancy of the solution representation, each inclusion
of m items of type h into subset k is represented by a triplet (m h k). In order to
preserve the constant length of the strings, one has to specify in advance a maximal
reasonable number of such inclusions I. The string representing up to I inclusions
takes the form (m1 h1 k1 m2 h2 k2 … mI hI kI). The range of string elements should be
(0, max{M, H, K}), where M is the maximal possible number of elements of the
same type included into a single subset. An arbitrary string generated in this range
can still produce infeasible solutions. In order to provide the feasibility, one has to

apply the transform jxj aa 1
* mod , where x is equal to M, H and K for the string

elements corresponding to m, h and k respectively. If one of the elements of the
triplet is equal to zero, then this means that no inclusion is made.

24 The Universal Generating Function in Reliability Analysis and Optimization

For example, the string (3 1 2 1 2 3 2 1 1 2 2 2 3 2) represents the same
allocation as string (3 2 3 1 0 2) in Example 1.12. Note that the permutation of
triplets, as well as an addition or reduction of triplets containing zeros, does not
change the solution. For example, the string (4 0 1 2 3 2 2 1 2 3 1 1 1 2 2 3 2 1)
also represents the same allocation as that of the previous string.

1.3.2.3 Mixed Partition and Parameter Determination Problems

Consider a problem in which Y items should be allocated in K subsets and a value
of a certain parameter should be assigned to each item. The first option of
representing solutions of such a problem in the GA is by using a 2Y-length string
which takes the form a = (a11 a12 a21 a22 … aY1 aY2). In this string, aj1 and aj2

correspond respectively to the number of the set the item j belongs to and to the
value of the parameter associated with this item. The elements of the string should
be generated in the range (0, max{K, N}), where N is chosen as described in
Section 1.3.2.1. The solution decoding procedure should transform the odd
elements of the string as follows:

1
*
1 mod1 jKj aa (1.38)

in order to obtain the class number in the range from 1 to K. The even elements of
the string should be transformed as follows:

21
*

2 mod jNj aa (1.39)

in order to obtain the parameter value encoded by the integer number in the range
from 0 to N. The value of the parameter is then obtained using Equation (1.35).

Example 1.13

Consider a problem in which seven items (N = 7) should be allocated to three
separated subsets (K = 3) and a value of a parameter associated with each item
should be chosen. The solution should encode both items’ distribution among the
subsets and the parameters. Let the range of the string elements be (0, 100)
(N = 100). The string

(99 21 22 4 75 0 14 100 29 72 60 98 1 0)

(in which elements corresponding to the numbers of the subsets are marked in
italics) represents the solution presented in Table 1.4. The values corresponding to
the numbers of the groups are obtained using Equation (1.38) as

199mod1mod1 311
*
11 aa K

 222mod1mod1 321
*
21 aa K

 1 Basic Tools and Techniques 25

and so on. The numbers that determine the units' weights are obtained using
Equation (1.39) as

2121modmod 10112101
*
12 aa

 44modmod 10122101
*
22 aa

and so on. Observe that, in this solution, items 1, 3, and 6 belong to the first subset,
items 2 and 7 belong to the second subset, and items 4 and 5 belong to the third
subset. The parameters are identical to those in Example 1.10.

Table 1.4. Example of the solution encoding for the mixed partition and
parameter determination problem

No. of unit 1 2 3 4 5 6 7
No. of subset 1 2 1 3 3 1 2

Integer code parameter value 21 4 0 100 72 98 0

This encoding scheme has two disadvantages:
- A large number of different strings can represent an identical solution. Indeed,

when K is much smaller than N, many different values of aji produce the same
value of jiK amod1 (actually, this transform maps any value mK+n for n<K and

m = 1, 2, …, (N n)/K into the same number n+1). Note for example that the
string

(3 21 76 4 27 0 29 100 89 72 18 98 70)

represents the same solution as the string presented above. This causes a situation
where the GA population is overwhelmed with different strings corresponding to
the same solution, which misleads the search process.

- The string is quite long, which slows the GA process and increases need for
computational resources.

In order to avoid these problems, another solution representation can be
suggested that lies in using a Y-length string in which element aj represents both
the number of the set and the value of the parameter corresponding to item j. To
obtain such a compound representation, the string elements should be generated in
the range (0, K(N+1) 1). The number of the subset that element j belongs to should
be obtained as

 1+ aj/(N+1) (1.40)

and the number corresponding to the value of jth parameter should be obtained as

jN a1mod (1.41)

Consider the example presented above with K = 3 and N = 100. The range of
the string elements should be (0, 302). The string

26 The Universal Generating Function in Reliability Analysis and Optimization

 (21 105 0 302 274 98 101)

corresponds to the same solution as the strings in the previous example (Table 1.4).

1.3.2.4 Sequencing Problems

The sequencing problem lies in ordering a group of unique items. It can be
considered as a special case of the partition problem in which the number of items
Y is equal to the number of subsets K and each subset should not be empty. As in
the partition problem, the sequences of items can be represented by Y-length
strings (a1 a2 … aY 1 aY) in which aj is a number of a set to which item j belongs.
However, in the case of the sequencing problem, the string representing a feasible
solution should be a permutation of Y integer numbers, i.e. it should contain all the
numbers from 1 to Y and each number in the string should be unique. While the
decoding of such strings is very simple (it just explicitly represents the order of
item numbers), the generation procedure should be more sophisticated to satisfy
the above-mentioned constraints.

The simplest procedure for generating a random string permutation is as
follows:

1. Fill the entire string with zeros.
2. For i from 1 to Y in the sequence:

2.1. Generate a random number j in the range (1, Y).
2.2. If aj = 0 assign aj = i or else find the closest zero element to the right of aj

and assign i to this element (treat the string as a circle, i.e. consider a0 to be the
closest element to the right of aY).

Like the generation procedures for the partition problem, this one also requires
the generation of Y random numbers.

1.3.2.5 Determination of Solution Fitness

Having a solution represented in the GA by an integer string a one then has to
estimate the quality of this solution (or, in terms of the evolution process, the
fitness of the individual). The GA seeks solutions with the greatest possible fitness.
Therefore, the fitness should be defined in such a way that its greatest values
correspond to the best solutions.

For example, when optimizing the system reliability R (which is a function of
some of the parameters represented by a) one can define the solution fitness equal
to this index, since one wants to maximize it. On the contrary, when minimizing
the system cost C, one has to define the solution fitness as M C, where M is a
constant number. In this case, the maximal solution fitness corresponds to its
minimal cost.

In the majority of optimization problems, the optimal solution should satisfy
some constraints. There are three different approaches to handling the constraints
in GA [7]. One of these uses penalty functions as an adjustment to the fitness
function; two other approaches use "decoder" or "repair" algorithms to avoid
building illegal solutions or repair them respectively. The "decoder" and "repair"
approaches suffer from the disadvantage of being tailored to the specific problems
and thus are not sufficiently general to handle a variety of problems. On the other

 1 Basic Tools and Techniques 27

hand, the penalty approach based on generating potential solutions without
considering the constraints and on decreasing the fitness of solutions, violating the
constraints, is suitable for problems with a relatively small number of constraints.
For heavily constrained problems, the penalty approach causes the GA to spend
most of its time evaluating solutions violating the constraints. Fortunately, the
reliability optimization problems usually deal with few constraints.

Using the penalty approach one transforms a constrained problem into an
unconstrained one by associating a penalty with all constraint violations. The
penalty is incorporated into the fitness function. Thus, the original problem of
maximizing a function f(a) is transformed into the maximization of the function

f(a)
J

j
jj

1
 (1.42)

where J is the total number of constraints, j is a penalty coefficient related to the
jth constraint (j = 1, …, J) and j is a measure of the constraint violation. Note that
the penalty coefficient should be chosen in such a way as to allow the solution with
the smallest value of f(a) that meets all of the constraints to have a fitness greater
than the solution with the greatest value of f(a) but violating at least one constraint.

Consider, for example, a typical problem of maximizing the system reliability
subject to cost constraint: R(a) max subject to C(a) C*.

The system cost and reliability are functions of parameters encoded by a string
a: C(a) and R(a) respectively. The system cost should not be greater than C*. The
fitness of any solution a can be defined as

 M+R(a) (C*, a)
where (1.43)

(C*, a)=(1+C(a) C*)1(C(a)>C*)

The coefficient should be greater than one. In this case the fitness of any solution
violating the constraint is smaller than M (the smallest violation of the constraint
C(a) C* produces a penalty greater than) while the fitness of any solution
meeting the constraint is greater than M. In order to keep the fitness of the
solutions positive, one can choose M> (1+Cmax C*), where Cmax is the maximal
possible system cost.

Another typical optimization problem is minimizing the system cost subject to
the reliability constraint: C(a) min subject to R(a) R*.

The fitness of any solution a of this problem can be defined as

 M C(a) (R*,a)
where (1.44)

(A*, a)=(1+R* R(a))1(R(a)<R*)

The coefficient should be greater than Cmax. In this case, the fitness of any
solution violating the constraint is smaller than M Cmax whereas the fitness of any

28 The Universal Generating Function in Reliability Analysis and Optimization

solution meeting the constraint is greater than M Cmax. In order to keep the fitness
of the solutions positive, one can choose M>Cmax + 2 .

1.3.2.6 Basic Genetic Algorithm Procedures and Parameters

The crossover procedures create a new solution as the offspring of a pair of
existing ones (parent solutions). The offspring should inherit some useful
properties of both parents in order to facilitate their propagation throughout the
population. The mutation procedure is applied to the offspring solution. It
introduces slight changes into the solution encoding string by modifying some of
the string elements. Both of these procedures should be developed in such a way as
to provide the feasibility of the offspring solutions given that parent solutions are
feasible.

When applied to parameter determination, partition, and assignment problems,
the solution feasibility means that the values of all of the string elements belong to
a specified range. The most commonly used crossover procedures for these
problems generate offspring in which every position is occupied by a
corresponding element from one of the parents. This property of the offspring
solution provides its feasibility. For example, in the uniform crossover each string
element is copied either from the first or second parent string with equal
probability.

The commonly used mutation procedure changes the value of a randomly
selected string element by 1 (increasing or decreasing this value with equal
probability). If after the mutation the element is out of the specified range, it takes
the minimal or maximal allowed value.

When applied to the sequencing problems, the crossover and mutation
operators should produce the offspring that preserve the form of permutations. This
means that the offspring string should contain all of the elements that appear in the
initial strings and each element should appear in the offspring only once. Any
omission or duplication of the element constitutes an error. For example, in the
fragment crossover operator all of the elements from the first parent string are
copied to the same positions of the offspring. Then, all of the elements belonging
to a randomly chosen set of adjacent positions in the offspring are reallocated
within this set in the order that they appear in the second parent string. It can be
seen that this operator provides the feasibility of the permutation solutions.

The widely used mutation procedure that preserves the permutation feasibility
swaps two string elements initially located in two randomly chosen positions.

There are no general rules in order to choose the values of basic GA parameters
for solving specific optimization problems. The best way to determine the proper
combination of these values is by experimental comparison between GAs with
different parameters.

A detailed description of a variety of different crossover and mutation operators
and recommendations concerning the choice of GA parameters can be found in the
GA literature.

