
8

Inspection Policies

System reliability can be improved by providing some standby units. Espe-
cially, even a single standby unit plays an important role in the case where
failures of an operating unit are costly and/or dangerous. A typical example is
the case of standby electric generators in nuclear power plants, hospitals, and
other public facilities. It is, however, extremely serious if a standby generator
fails at the very moment of electric power supply stoppage. Hence, frequent
inspections are necessary to avoid such unfavorable situations.

Similar examples can be found in army defense systems, in which all
weapons are on standby, and hence, must be checked at suitable times. For
example, missiles are stored for a great part of their lifetimes after delivery.
However, their reliabilities are known to decrease with time because some
parts deteriorate with time. Thus, it would be important to test the functions
of missiles as to whether they can operate normally. We need to check them
periodically to monitor their reliabilities and to repair them if necessary.

Earlier work has been done on the problem of checking a single unit. The
optimum schedules of inspections that minimize two expected costs until fail-
ure detection and per unit of time were summarized in [1]. The modified
models where checking times are nonnegligible, a unit is inoperative during
checking times, and checking hastens failures and failure symptoms, were con-
sidered in [2–5]. Furthermore, the availability of a periodic inspection model [6]
and the mean duration of hidden faults [7,8] were derived. The downtime cost
of checking intervals for a continuous production process [9,10] and two types
of inspection [11,12] were proposed. The optimum inspection policies for more
complicated systems were discussed in [13–20]. A good survey of optimization
problems for inspection models was made in [21].

It was difficult to compute an optimum solution of the algorithm presented
by [1] before high-power computers were popular. Nearly optimum inspection
policies were considered in [22–28]. A continuous inspection intensity was in-
troduced and the approximate checking interval was derived in [29,30]. Using
these approximate methods, some modified inspection models were discussed
and compared with other methods [31–37].

201
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All failures cannot be detected upon inspection. The imperfect inspection
models were treated in [38–41], and the parameter of an exponential failure
distribution was estimated in [42]. Furthermore, optimum inspection models
for a unit with hidden failure [43] were discussed in [44]. In such models, even
if a unit fails, it continues to operate in hidden failure, and then, it fails. Such
a type of failure is called unrevealed fault [45], pending failure [25], or fault
latency [47].

Most faults occur intermittently in digital systems. The optimum periodic
tests for intermittent faults were discussed in [48–50]. A simple algorithm to
compute an optimum time was developed in [51], and random test for fault
detection in combinational circuits was introduced in [52].

It is especially important to check and maintain standby and protective
units. The optimum inspection models for standby units [53–57] and protec-
tive devices [59–61] were presented. Also, the following inspection maintenance
to actual systems was done: building, industrial plant, and underwater struc-
ture [62–64]; combustion turbine units and standby equipment in dormant
systems and nuclear generating stations [65–67]; productive equipment [68];
fail-safe structure [69]; manufacturing station [70]; automatic trips and warn-
ing instruments [71]; bearing [72]; and safety-critical systems [73]. Moreover,
the delay time models were reviewed in [74,75], where a defect arises and be-
comes a failure after its delay time, and were applied to plant maintenance [76].

This chapter reviews the results of [1] and mainly summarizes our own
results of inspection models. In Section 8.1, we briefly mention the results
of [1], and consider the inspection model with finite number of checks [77].
In Section 8.2, we summarize four approximate inspection policies [31–35,78].
In Section 8.3, we derive two optimum inspection policies for a standby unit
as an example of an electric generator [53]. In Section 8.4, we consider the
inspection policy for a storage system required to achieve a high reliability,
and derive an optimum checking number until overhaul that minimizes the
expected cost rate [80–83]. In Section 8.5, we discuss optimum testing times
for intermittent faults [49, 50]. Finally, in Section 8.6, we rewrite the results
of a standard model for inspection policies for units that have to be operating
for a finite interval [84,85]. It is shown that the proposed partition method is
a useful technique for analyzing maintenance policies for a finite interval. The
inspection with preventive maintenance and random inspection is covered in
Sections 7.3 and 9.3, respectively.

8.1 Standard Inspection Policy

A unit should operate for an infinite time span and is checked at successive
times Tk (k = 1, 2, . . . ), where T0 ≡ 0 (see Figure 8.1). Any failure is detected
at the next checking time and is replaced immediately. A unit has a failure
distribution F (t) with finite mean µ whose failure rate h(t) is not unchanged
by any check. It is assumed that all times needed for checks and replacement
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Failure Detection of failure

Downtime from failure to detection

0

T1 T2 T3 Tk−1 Tk

Fig. 8.1. Process of sequential inspection with checking time Tk

are negligible. Let c1 be the cost of one check and c2 be the loss cost per unit
of time for the time elapsed between a failure and its detection at the next
checking time, and c3 be the replacement cost of a failed unit. Then, the total
expected cost until replacement is

C1(T1, T2, . . . ) ≡
∞∑

k=0

∫ Tk+1

Tk

[c1(k + 1) + c2(Tk+1 − t)] dF (t) + c3

=
∞∑

k=0

[c1 + c2(Tk+1 − Tk)]F (Tk) − c2µ + c3, (8.1)

where throughout this chapter, we use the notation Φ ≡ 1 − Φ.
Differentiating the expected cost C1(T1, T2, . . . ) with Tk and putting it

equal to zero,

Tk+1 − Tk =
F (Tk) − F (Tk−1)

f(Tk)
− c1

c2
(k = 1, 2, . . . ), (8.2)

where f is a density function of F . The optimum checking intervals are de-
creasing when f is PF2 (Pólya frequency function of order 2), and Algorithm
1 for computing the optimum inspection schedule is given in [1].

Algorithm 1

1. Choose T1 to satisfy c1 = c2
∫ T1

0 F (t)dt.
2. Compute T2, T3, . . . recursively from (8.2).
3. If any δk > δk−1, reduce T1 and repeat, where δk ≡ Tk+1 − Tk. If any

δk < 0, increase T1 and repeat.
4. Continue until T1 < T2 < . . . are determined to the degree of accuracy

required.

Clearly, because the mean time to replacement time is
∑∞

k=0(Tk+1 −
Tk)F (Tk), the expected cost rate is, from (3.3) in Chapter 3,

C2(T1, T2, . . . ) ≡ c1
∑∞

k=0 F (Tk) − c2µ + c3∑∞
k=0(Tk+1 − Tk)F (Tk)

+ c2. (8.3)

In particular, when a unit is checked at periodic times and the failure time
is exponential, i.e., Tk = kT (k = 0, 1, 2, . . . ) and F (t) = 1 − e−λt, the total
expected cost is
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C1(T ) =
c1 + c2T

1 − e−λT
− c2

λ
+ c3. (8.4)

The optimum checking time T ∗ to minimize (8.4) is given by a unique solution
that satisfies

eλT − (1 + λT ) =
λc1

c2
. (8.5)

Similarly, the expected cost rate is

C2(T ) =
c1 − (c2/λ − c3)(1 − e−λT )

T
+ c2. (8.6)

When c2/λ > c3, the optimum T ∗ is given by solving

1 − (1 + λT )e−λT =
c1

c2/λ − c3
. (8.7)

The following total expected cost for a continuous production system was
proposed in [9].

C̃1(T1, T2, . . . ) ≡
∞∑

k=0

∫ Tk+1

Tk

[c1(k + 1) + c2(Tk+1 − Tk)] dF (t) + c3

= c1

∞∑
k=0

F (Tk) + c2

∞∑
k=0

(Tk+1 − Tk)[F (Tk) − F (Tk+1)] + c3.

(8.8)

In this case, Equation (8.2) can rewritten as

Tk+1 − 2Tk + Tk−1 =
F (Tk+1) − 2F (Tk) + F (Tk−1)

f(Tk)
− c1

c2

(k = 1, 2, . . . ). (8.9)

In general, it would be important to consider the availability more than the
expected cost in some production systems [86, 87]. Let β1 be the time of one
check and β3 be the replacement time of a failed unit. Then, the availability
is, from (3) of Section 2.1.1,

A(T1, T2, . . . ) ≡
∫∞
0 F (t) dt∑∞

k=0[β1 + Tk+1 − Tk]F (Tk) + β3
.

Thus, the policy maximizing A(T1, T2, . . . ) is the same one as minimizing
C1(T1, T2, . . . ) in (8.1) by replacing ci = βi (i = 1, 3) and c2 = 1.

Next, we consider the inspection model with a finite number of checks,
because a system such as missiles involves some parts that have to be replaced
when the total operating times of checks have exceeded a prespecified time
of quality warranty. A unit is checked at times Tk (k = 1, 2, . . . , N − 1) and
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is replaced at time TN (N = 1, 2, . . . ). The periodic inspection policy was
suggested in [86], where a system is maintained preventively at the Nth check
or is replaced at failure, whichever occurs first. We may consider replacement
as preventive maintenance or overhaul.

In the above finite inspection model, the expected cost when a failure is
detected and a unit is replaced at time Tk (k = 1, 2, . . . , N) is

N∑
k=1

∫ Tk

Tk−1

[c1k + c2(Tk − t) + c3] dF (t)

and the expected cost when a unit is replaced without failure at time TN is

(c1N + c3)F (TN ).

Thus, the total expected cost until replacement is

N−1∑
k=0

[c1 + c2(Tk+1 − Tk)]F (Tk) − c2

∫ TN

0
F (t) dt + c3.

Similarly, the mean time to replacement is

N∑
k=1

∫ Tk

Tk−1

Tk dF (t) + TNF (TN ) =
N−1∑
k=0

(Tk+1 − Tk)F (Tk).

Therefore, the expected cost rate is

C2(T1, T2, . . . , TN ) =
c1
∑N−1

k=0 F (Tk) − c2
∫ TN

0 F (t) dt + c3∑N−1
k=0 (Tk+1 − Tk)F (Tk)

+ c2. (8.10)

In particular, when Tk = kT (k = 1, 2, . . . , N) and F (t) = 1 − e−λt, the
expected cost rate is

C2(T ) =
c1

T
− 1

λT
(1 − e−λT )

(
c2 − c3λ

1 − e−λNT

)
+ c2. (8.11)

Differentiating C2(T ) with respect to T and putting it to 0, we have(
c2

λ
− c3

1−e−λNT

)
[1−(1+λT )e−λT ] − c3λNT e−λNT (1 − e−λT )

(1−e−λNT )2
= c1. (8.12)

Denoting the left-hand side of (8.12) by QN (T ), limT→0 QN (T ) = −c3/N
and limT→∞ QN (T ) = c2/λ − c3. First, we prove that QN (T ) is an increasing
function of T for c2/λ > c1 + c3. It is noted that the first term in QN (T )
is strictly increasing in T . Differentiating −T e−λNT (1 − e−λT )/(1 − e−λNT )2

with respect to T ,
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A[λNT (1 − e−λT )(1 + e−λNT ) − (1 − e−λNT )(1 − e−λT + λT e−λT )],

where A ≡ e−λNT /(1 − e−λNT )3 > 0 for T > 0. Denoting the quantity in the
bracket of the above equation by LN (T ),

L1(T ) = (1 − e−λT )(λT − 1 + e−λT ) > 0

LN+1(T ) − LN (T ) = (1 − e−λT )[λT (1 − Ne−λNT + Ne−λ(N+1)T )

− (1 − e−λT )e−λNT ]

> (1 − e−λT )2[1 − (N + 1)e−λNT + Ne−λ(N+1)T ] > 0.

Hence, LN (T ) is strictly increasing in N . Thus, LN (T ) is always positive
for any N , and the second term of QN (T ) is an increasing function of T ,
which completes the proof. Therefore, there exists a finite and unique T ∗

N

(0 < T ∗
N < ∞) that satisfies (8.12) for c2/λ > c1 + c3, and it minimizes C2(T )

in (8.11).
Next, we investigate properties of T ∗

N . We prove that QN (T ) is also an
increasing function of N as follows. From (8.12),

QN+1(T ) − QN (T ) = c3(1 − e−λT )[1 − EN (T )]

×
[
1 − (1 + λT )e−λT

EN (T )EN+1(T )
+ λT

(
N

EN (T )2
− (N + 1)e−λT

EN+1(T )2

)]
,

where EN (T ) ≡ 1−e−λNT . The first term in the bracket of the above equation
is positive. The second term can be rewritten as

N

EN (T )2
− (N + 1)e−λT

EN+1(T )2
=

NEN+1(T )2 − (N + 1)e−λT EN (T )2

EN (T )2EN+1(T )2

and the numerator of the right-hand side is

NEN+1(T )2 − (N + 1)e−λT EN (T )2

= e−λT [N(eλT − 1)(1 − e−λ(2N+1)T ) − (1 − e−λNT )2] > 0.

Hence, QN (T ) is a strictly increasing function of N because QN+1(T ) −
QN (T ) > 0. Thus, T ∗

N decreases when N increases. When N = 1, we have
from (8.12),

1 − (1 + λT )e−λT =
(c1 + c3)λ

c2
(8.13)

and when N = ∞,

1 − (1 + λT )e−λT =
c1λ

c2 − c3λ
. (8.14)

Because [(c1 + c3)λ]/c2 > c1λ/(c2 − c3λ), we easily find that T ∗
∞ < T ∗

N ≤ T ∗
1 ,

where T ∗
1 and T ∗

∞ are the respective solutions of (8.13) and (8.14).



8.2 Asymptotic Inspection Schedules 207

Table 8.1. Optimum checking time T ∗
N when c1 = 10, c2 = 1, and c3 = 100

λ = 1.0 × 10−3 λ = 1.1 × 10−3 λ = 1.2 × 10−3

N m
1.0 1.1 1.2 1.3 1.0 1.1 1.2 1.3 1.0 1.1 1.2 1.3

1 564 436 355 309 543 423 347 307 526 412 341 307
2 396 315 259 223 380 304 251 219 367 294 245 217
3 328 268 224 193 314 258 216 188 303 249 210 185
4 289 243 206 178 277 233 198 173 267 225 192 169
5 264 228 195 170 253 218 188 165 243 210 181 161
6 246 217 189 165 236 208 181 160 226 200 174 156
7 233 210 184 162 223 200 176 157 214 192 170 154
8 222 204 181 161 212 194 173 156 204 186 167 153
9 214 200 179 160 204 190 171 155 196 182 165 152
10 207 196 178 160 197 187 170 155 189 179 163 152

The condition of c2/λ > c1 + c3 means that the total loss cost until the
whole life of a unit is higher than the sum of costs of checks and replacements.
This would be realistic in the actual field.

Example 8.1. We compute the optimum checking time T ∗
N that minimizes

C2(T ) in (8.11) when F (t) = 1 − exp(−λtm) (m ≥ 1). When m = 1, it
corresponds to an exponential case. Table 8.1 shows the optimum time T ∗

N

for λ = 1.0 × 10−3, 1.1 × 10−3, 1.2 × 10−3/hour, m = 1.0, 1.1, 1.2, 1.3 and
N = 1, 2, . . . , 10 when c1 = 10, c2 = 1, and c3 = 100. This indicates that T ∗

N

decreases when λ, m, and N increase, and that a unit should be checked once
every several weeks.

8.2 Asymptotic Inspection Schedules

The computing procedure for obtaining the optimum inspection schedule was
specified in [1]. Unfortunately, it is difficult to compute Algorithm 1 numeri-
cally, because the computations are repeated until the procedures are deter-
mined to the required degree by changing the first checking time. To avoid
this, a nearly optimum inspection policy that depends on a single parameter
p was suggested in [22]. This policy was used for Weibull and gamma distri-
bution cases [23,24]. Furthermore, the procedure of introducing a continuous
intensity n(t) of checks per unit of time was proposed in [29,30]. This section
summarizes four approximate calculations of optimum checking procedures.

(1) Periodic Inspection

When a unit is checked at periodic times kT (k = 1, 2, . . . ), the total expected
cost is, from (8.1),
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C1(T ) =
c1

T
[E{D} + µ] + c2E{D} + c3, (8.15)

where E{D} ≡ ∑∞
k=0

∫ T

0 [F (t + kT ) − F (kT )] dt, which is the mean duration
of time elapsed between a failure and its detection.

Suppose that F (t) has the piecewise linear approximation:

F (t + kT ) − F (kT ) =
t

T
[F ((k + 1)T ) − F (kT )] (0 ≤ t ≤ T ). (8.16)

Then, E{D} = T/2; i.e., the mean duration of undetected failure is half the
time between the checking times. The result is also given when the failure
times between successive checking times are independent and distributed uni-
formly. In this case, the optimum checking time is T̃1 =

√
(2c1µ)/c2. This time

is also derived from (8.5) by putting eλT ≈ 1 + λT + (λT )2/2 approximately
and λ = 1/µ.

(2) Munford and Shahani’s Method

The asymptotic method for computing the optimum schedule was proposed
in [22]. When a unit is operating at time Tk−1, the probability that it fails in
an interval (Tk−1, Tk] is constant for all k; i.e.,

F (Tk) − F (Tk−1)
F (Tk−1)

≡ p (k = 1, 2, . . . ). (8.17)

This represents that the probability that a unit with age Tk−1 fails in interval
(Tk−1, Tk] is given by a constant p. Noting that F (T1) = p, Equation (8.17)
can be solved for Tk, and we have

F (Tk) = qk or Tk = F
−1

(qk) (k = 1, 2, . . . ), (8.18)

where q ≡ 1 − p (0 < p < 1). Thus, from (8.1), the total expected cost is

C1(p) =
c1

p
+ c2

∞∑
k=1

Tkqk−1p − c2µ + c3. (8.19)

We seek p that minimizes C1(p) in (8.19). It was assumed in [28] that p is not
constant and is an increasing function of the checking number.

(3) Keller’s Method

An inspection intensity n(t) is defined as follows [29]: n(t)dt denotes the prob-
ability that a unit is checked at interval (t, t + dt) (see Figure 8.2). From this
definition, when a unit is checked at times Tk, we have the relation∫ Tk

0
n(t) dt = k (k = 1, 2, . . . ). (8.20)



8.2 Asymptotic Inspection Schedules 209

any size is 1

t

n(t)
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Fig. 8.2. Inspection intensity n(t)

Furthermore, suppose that the mean time from the failure at time t to its
detection at time t + a is half of a checking interval, the same as obtained in
case (1). Then, we have ∫ t+a

t

n(u) du =
1
2

which can be approximately written as∫ t+a

t

n(u) du ≈ an(t) =
1
2

and hence, a = 1/[2n(t)]. By the same arguments, we can easily see that
the next checking interval, when a unit was checked at time Tk, is 1/n(Tk)
approximately.

Therefore, the total expected cost in (8.1) is given by

C(n(t)) =
∫ ∞

0

[
c1

∫ t

0
n(u) du +

c2

2n(t)

]
dF (t) + c3

=
∫ ∞

0
F (t)

[
c1n(t) +

c2h(t)
2n(t)

]
dt + c3, (8.21)

where h(t) ≡ f(t)/F (t) which is the failure rate. Differentiating C(n(t)) with
n(t) and putting it to zero,

n(t) =

√
c2h(t)
2c1

. (8.22)

Thus, from (8.20), the optimum checking time is given by the equation:



210 8 Inspection Policies

k =
∫ Tk

0

√
c2

2c1
h(t) dt (k = 1, 2, . . . ). (8.23)

The inspection intensity n(t) was also obtained in [36] by solving the Eu-
ler equation in (8.21), and using n(t), the optimum policies for models with
imperfect inspection were derived in [88].

In particular, when F (t) = 1−e−λt, the interval between checks is constant,
and is

√
2c1/(λc2) which agrees with the result of case (1). It is of great

interest that a function
√

2c1/(λc2) evolves into the same form as an optimum
order time of a classical inventory control model [89], by denoting c1 and c2
as the ordering cost per order and holding cost per unit of time, respectively,
and λ as the constant demand rate for an inventory unit.

(4) Nakagawa and Yasui’s Method

When Tn is sufficiently large, we may assume approximately [79]

Tn+1 − Tn + ε = Tn − Tn−1. (8.24)

It is easy to see that if f is PF2 then ε ≥ 0 because the optimum checking
intervals are decreasing [1]. Further substituting the relation (8.24) into (8.2),

c1

c2
− ε =

∫ Tn

Tn−1
[f(t) − f(Tn)] dt

f(Tn)
≥ 0 (8.25)

because f(t) ≥ f(Tn) for t ≤ Tn and large Tn. Thus, we have 0 ≤ ε ≤ c1/c2.
From the above discussion, we can specify the computation for obtaining

the asymptotic inspection schedule.

Algorithm 2

1. Choose an appropriate ε from 0 < ε < c1/c2.
2. Determine a checking time Tn after sufficient time for required accuracy.
3. Compute Tn−1 to satisfy

Tn − Tn−1 − ε =
F (Tn) − F (Tn−1)

f(Tn)
− c1

c2
.

4. Compute Tn−1 > Tn−2 > . . . recursively from (8.2).
5. Continue until Tk < 0 or Tk+1 − Tk > Tk.

Example 8.2. Suppose that the failure time has a Weibull distribution with
a shape parameter m; i.e., F (t) = 1 − exp[−(λt)m].

(1) Periodic inspection. The optimum checking time is

λT̃1 =
[
2λc1

c2
Γ
(
1 +

1
m

)]1/2

.
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Table 8.2. Comparisons of Nakagawa, Barlow, Munford, and Keller policies when
F (t) = 1 − exp[−(λt)2], 1/λ = 500, and c1/c2 = 10

Nakagawa Barlow Munford Keller
k Tn = 1500 p = 0.215

ε = 5 ε = 4.5
1 219.6 207.1 205.6 205.6 246.0 177.8
2 318.7 308.9 307.6 307.6 347.9 282.3
3 402.0 393.5 392.3 392.3 426.1 369.9
4 476.4 468.7 467.5 467.5 492.0 448.1
5 544.8 537.6 536.4 536.5 550.1 520.0
6 608.7 601.9 600.7 600.8 602.6 587.2
7 669.1 662.6 661.5 661.6 650.9 650.8
8 726.6 720.4 719.2 719.4 695.8 711.4
9 781.7 775.8 774.6 774.8 738.0 769.5
10 834.8 829.1 827.8 828.2 777.9 825.5
11 886.1 880.6 879.3 879.7 815.9 879.6
12 935.8 930.5 929.1 929.7 852.2 932.2
13 984.1 979.0 977.4 978.3 887.0 983.3
14 1031.1 1026.2 1024.5 1025.6 920.5 1033.1

(2) Munford and Shahani’s method. From (8.19), we obtain p that minimizes

g(p) =
λc1

pc2
+
(

log
1
q

)1/m ∞∑
k=1

k1/mqk−1p

and the optimum checking intervals are

λTk =
(

k log
1
q

)1/m

(k = 1, 2, . . . ).

(3) Keller’s method. From (8.23),

Tk =
[
(m + 1)k

√
c1

2mλmc2

]2/(m+1)

(k = 1, 2, . . . ).

In particular, when m = 1, Tk = k
√

2c1/(λc2).

Table 8.2 shows the comparisons of the methods of Barlow et al., Munford
et al., Keller, and Nakagawa et al., when m = 2, 1/λ = 500, c1/c2 = 10.
Nakagawa and Yasui’s method gives a fairly good approximation of Barlow’s
one. In particular, when we choose ε = 4.5, the results are almost the same as
the sequence of optimum checking times. The computation of Keller’s method
is very easy, and this method would be very useful for obtaining checking times
in the actual field.
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8.3 Inspection for a Standby Unit

In this section, we consider an inspection policy for a single standby electric
generator. We check a standby generator frequently to guarantee the upper
bound of the probability that it has failed at the time of the electric power
supply stoppage, but to reduce unnecessary costs do not check it too fre-
quently.

The details of the model are described as follows.

(1) The failure time of a standby generator has a general distribution F (t)
and its failure is detected only at the next checking time.

(2) A failed standby generator, which was detected at some check, undergoes
repair immediately and its repair time has a general distribution G(t).

(3) The time required for the check is negligible and a standby generator
becomes as good as new upon inspection or repair.

(4) The next checking time is scheduled at constant time T (0 < T ≤ ∞)
after either the prior check or the repair completion.

(5) Costs c0 and c1 are incurred for each repair and check, respectively, and
cost c2 is incurred for the failure of a generator when the electric power
supply stops, where c2 > c0 ≥ c1.

(6) The policy terminates with the time of electric power supply stoppage,
which occurs according to an exponential distribution (1 − e−αt).

Under the assumptions above, we consider two optimization problems: (a)
an optimum checking time T ∗ that minimizes the expected cost until the
time of electric power supply stoppage, and (b) the largest T such that the
probability that a generator has failed at the time of electric power supply
stoppage is not greater than a prespecified value ε.

To obtain the expected cost of the inspection model as described above,
we derive the expected numbers of checks and repairs of a standby electric
generator, and the probability that it has failed at the time of electric power
supply stoppage.

As an initial condition, it is assumed for convenience that a generator goes
into standby and is good at time 0. Furthermore, for simplicity of equations,
we define D(t) ≡ 0 for t < T and ≡ 1 for t ≥ T ; i.e., D(t) is a degenerate
distribution at time T .

Let H(t) be the distribution of the recurrence time to the state that a
standby generator is good upon inspection or repair completion. Then, we
have

H(t) =
∫ t

0
F (u) dD(u) +

[∫ t

0
F (u) dD(u)

]
∗ G(t), (8.26)

where the asterisk represents the Stieltjes convolution. Equation (8.26) can be
explained by the first term on the right-hand side being the probability that a
standby generator is good upon inspection until time t, and the second term
the probability that a failed generator is detected at a check and its repair is
completed until time t.
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In addition, let M0(t) and M1(t) be the expected numbers of repairs of a
failed generator and of checks of a standby generator during (0, t], respectively.
Then, the following renewal-type equations are given by

M0(t) =
∫ t

0
F (u) dD(u) + H(t) ∗ M0(t) (8.27)

M1(t) = D(t) + H(t) ∗ M1(t). (8.28)

Thus, forming the Laplace–Stieltjes (LS) transforms of (8.26), (8.27), and
(8.28), respectively, we have

H∗(s) = e−sT [F (T ) + F (T )G∗(s)] (8.29)

M∗
0 (s) =

e−sT F (T )
1 − H∗(s)

, M∗
1 (s) =

e−sT

1 − H∗(s)
, (8.30)

where throughout this section, we denote the LS transform of the function by
the corresponding asterisk; e.g., G∗(s) ≡ ∫∞

0 e−stdG(t) for s > 0.
Next, let P (t) denote the probability that a standby generator has failed

at time t; i.e., a standby generator, which is not good, will be detected at the
next check or a failed generator, which was detected at the prior check, is now
under repair. Then, the probability that a standby generator is good at time
t is given by

P (t) = F (t)D(t) + H(t) ∗ P (t).

Forming the LS transform of P (t), we have

1 − P ∗(s) =

∫ T

0 se−stF (t) dt

1 − H∗(s)
. (8.31)

We consider the total expected cost until the time of electric power supply
stoppage. Note that the inspection model of a standby generator may involve
at least the following three costs: the costs c0 and c1 incurred by each repair
and each check, respectively, and the cost c2 incurred by failure of a standby
generator when the electric power supply stops.

Suppose that the electric power supply stops at time t. Then, the total
expected cost during (0, t] is given by

C̃(t) = c0M0(t) + c1M1(t) + c2P (t).

Thus, dropping the condition that the electric power supply stops at time t
from assumption (6), we have the expected cost:

C1(T ) ≡
∫ ∞

0
C̃(t)αe−αt dt = c0M

∗
0 (α) + c1M

∗
1 (α) + c2P

∗(α)

which is a function of T . Using (8.30) and (8.31), C1(T ) can be written as



214 8 Inspection Policies

C1(T ) =
e−αT [c0F (T ) + c1] − c2

∫ T

0 αe−αT F (t) dt

1 − e−αT [F (T ) + F (T )G∗(α)]
+ c2. (8.32)

It is evident that

C1(0) ≡ lim
T→0

C1(T ) = ∞, C1(∞) ≡ lim
T→∞

C1(T ) = c2F
∗(α)

which represents the expected cost for the case where no inspection is made.
We seek an optimum checking time T ∗

1 that minimizes the expected cost
C1(T ) given in (8.32). Differentiating log C1(T ) with respect to T , we have,
for large T ,

d[log C1(T )]
dT

≈ αe−αT

[
c2G

∗(α) − c0 − c1

c2F ∗(α)
− G∗(α)

]
.

Thus, if the quantity in the bracket on the right-hand side is positive; i.e.,

c2G
∗(α)[1 − F ∗(α)] > c0 + c1, (8.33)

then there exists at least some finite T such that C1(∞) > C1(T ), and hence,
it is better to check a standby generator at finite time T .

In general, it is difficult to discuss analytically an optimum checking time
T ∗ that minimizes C1(T ). In particular, consider the case where F (t) = 1 −
e−λt and G(t) ≡ 1 for t ≥ 0; i.e., the failure time is exponential and the repair
time is negligible. Then, the resulting cost is

C1(T ) =
e−αT [c0(1−e−λT ) + c1] + c2[1−e−αT − α

α+λ (1−e−(α+λ)T )]
1 − e−αT

. (8.34)

Differentiating C1(T ) with respect to T and setting it equal to zero,

c0e−λT

[
1+

λ

α
(1 − e−αT )

]
+ c2

[
1 − e−λT − λ

α+λ
(1 − e−(α+λ)T )

]
= c0 + c1,

(8.35)
where the left-hand side is strictly increasing in the case of c2 > [(α+λ)/α]c0,
and conversely, nonincreasing in the case of c2 ≤ [(α + λ)/α]c0. Further note
that the left-hand side is c0 as T → 0 and [α/(α + λ)]c2 as T → ∞.

Therefore, we have the following results from the above discussion.

(i) If c2 > [(α + λ)/α](c1 + c0) then there exists a finite checking time T ∗
1

that satisfies (8.35), and the resulting cost is

C1(T ∗) = c2 − c1 − c0 −
(

c2 − c0
α + λ

α

)
e−λT ∗

. (8.36)

(ii) If c2 ≤ [(α + λ)/α](c1 + c0) then T ∗
1 = ∞; i.e., no inspection is made, and

C1(∞) = c2[λ/(α + λ)].
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Note that the inequality of c2 > [(α+λ)/α](c1 + c0) has been already derived
from (8.33).

It is also of interest to make the probability as small as possible by checks,
that a standby generator has failed at the time of electric power supply stop-
page. If the probability is prespecified, we can compute a checking time T 1
such that P ∗(α) ≤ ε; i.e.,∫ T

0 e−αt dF (t) − e−αT F (T )G∗(α)
1 − e−αT [F (T ) + F (T )G∗(α)]

≤ ε. (8.37)

For instance, if the repair time is negligible, i.e., G∗(α) = 1, then the left-hand
side of (8.37) is strictly increasing in T . Hence, there exists a unique checking
time T that satisfies ∫ T

0 F (t)αe−αt dt

1 − e−αT
= ε (8.38)

for sufficiently small ε > 0.
Until now, we have assumed that a standby generator becomes as good as

new upon inspection. Next, we make the same assumption as the previous ones
except that the failure rate of a standby generator remains undisturbed by
any inspection. This assumption would be more plausible than the previous
model in practice, however, the analysis becomes more difficult. Then, the
expected cost until the time of electric power supply stoppage is [53]

C2(T ) =

c0
∑∞

k=1 e−αkT [F ((k − 1)T ) − F (kT )]

+ c1
∑∞

k=1 e−αkT F ((k − 1)T ) − c2[1 − F ∗(α)]
1 − G∗(α)

∑∞
k=1 e−αkT [F ((k − 1)T ) − F (kT )]

+ c2. (8.39)

It is evident that C2(0) = ∞ and C2(∞) = c2F
∗(α). Furthermore, for large T ,

d[log C2(T )]
dT

≈ αe−αT

[
c2G

∗(α) − c0 − c1

c2F ∗(α)
− G∗(α)

]
.

Thus, if c2G
∗(α)[1 − F ∗(α)] > c0 + c1, then there exists at least some finite

T such that C2(∞) > C2(T ), which agrees with the results of the previous
model.

It is very difficult to obtain analytically an optimum time T ∗
2 that min-

imizes C2(T ) in (8.39). It is noted, however, that the expected cost C2(T )
agrees with (8.34) in the special case of F (t) = 1 − e−λt and G(t) ≡ 1 for
t ≥ 0.

Example 8.3. We give a numerical example where F (t) = (1 + λt)e−λt and
G(t) = (1 + θt)e−θt, both of which are the gamma distribution with shape
parameter 2. Table 8.3 shows the optimum checking times T ∗

1 and T ∗
2 for the

mean failure time 2/λ and cost c2, when c0 = 30 dollars, c1 = 3 dollars,
1/θ = 12 hours, and 1/α = 1460 hours; i.e., the electric power supply stops
6 times a year on the average. It has been shown that both of the checking
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Table 8.3. Dependent of mean failure time 2/λ and cost c2 in optimum checking
times T ∗

1 and T ∗
2 when c0 = 30, c1 = 3, 1/θ = 12, and 1/α = 1460

c2 = 150 c2 = 250 c2 = 350
2/λ T ∗

1 T ∗
2 T ∗

1 T ∗
2 T ∗

1 T ∗
2

1200 292 480 249 308 224 241
1600 368 535 311 354 279 280
2000 439 594 369 399 330 318
2400 507 656 424 445 379 356
2800 572 720 477 491 425 393
3200 635 783 528 537 469 430
3600 697 848 578 582 512 467
4000 757 914 626 628 554 503

times are increasing if 2/λ is increasing and are decreasing if c2 is increasing.
In addition, T ∗

1 becomes greater than T ∗
2 when c2 and 2/λ are large enough.

8.4 Inspection for a Storage System

A system such as missiles is in storage for a long time from delivery to the
actual usage and has to hold a high mission reliability when it is used [90].
After a system is transported to each firing operation unit via the depot, it
is installed on a launcher and is stored in a warehouse for a great part of
its lifetime, and waits for its operation. Therefore, missiles are often called
dormant systems.

However, the reliability of a storage system goes down with time because
some kinds of electronic and electric parts of a system degrade with time
[91–95]. The periodic inspection of stored electronic equipment was studied
and how to compute its reliability after ten years of storage was shown in [96].
We should test and maintain a storage system at periodic times to hold a
high reliability, because it is impossible to check whether a storage system
can operate normally.

In most inspection models, it has been assumed that the function test can
clarify all system failures. However, a missile is exposed to a very severe flight
environment and some kinds of failures are revealed only in such severe con-
ditions. That is, some failures of a missile cannot be detected by the function
test on the ground. To solve this problem, we assume that a system is divided
into two independent units: Unit 1 becomes new after every test because all
failures of unit 1 are detected by the function test and are removed com-
pletely by maintenance, but unit 2 degrades steadily with time from delivery
to overhaul because all failures of unit 2 cannot be detected by any test. The
reliability of a system deteriorates gradually with time as the reliability of
unit 2 deteriorates steadily.
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This section considers a system in storage that is required to achieve a
higher reliability than a prespecified level q (0 < q ≤ 1). To hold the reliability,
a system is tested and is maintained at periodic times NT (N = 1, 2, . . . ), and
is overhauled if the reliability becomes equal to or lower than q. A test number
N∗ and the time N∗T +t0 until overhaul, are derived when a system reliability
is just equal to q. Using them, the expected cost rate C(T ) until overhaul is
obtained, and an optimum test time T ∗ that minimizes it is computed. Finally,
numerical examples are given when failure times of units have exponential
and Weibull distributions. Two extended models were considered in [82, 97],
where a system is also replaced at time (N + 1)T , and may be degraded at
each inspection, respectively.

A system consists of unit 1 and unit 2, where the failure time of unit i
has a cumulative hazard function Hi(t) (i = 1, 2). When a system is tested at
periodic times NT (N = 1, 2, . . . ), unit 1 is maintained and is like new after
every test, and unit 2 is not done; i.e., its hazard rate remains unchanged by
any tests.

From the above assumptions, the reliability function R(t) of a system with
no inspection is

R(t) = e−H1(t)−H2(t). (8.40)

If a system is tested and maintained at time t, the reliability just after test is

R(t+0) = e−H2(t).

Thus, the reliabilities just before and after the Nth test are, respectively,

R(NT−0) = e−H1(T )−H2(NT ), R(NT+0) = e−H2(NT ). (8.41)

Next, suppose that the overhaul is performed if a system reliability is equal
to or lower than q. Then, if

e−H1(T )−H2(NT ) > q ≥ e−H1(T )−H2[(N+1)T ] (8.42)

then the time to overhaul is NT + t0, where t0 (0 < t0 ≤ T ) satisfies

e−H1(t0)−H2(NT+t0) = q. (8.43)

This shows that the reliability is greater than q just before the Nth test and
is equal to q at time NT + t0.

Let c1 and c2 be the test and the overhaul costs, respectively. Then, de-
noting the time interval [0, NT + t0] as one cycle, the expected cost rate until
overhaul is given by

C(T,N) =
Nc1 + c2

NT + t0
. (8.44)

We consider two particular cases where the cumulative hazard functions
Hi(t) are exponential and Weibull ones. A test number N∗ that satisfies (8.42),
and t0 that satisfies (8.43), are computed. Using these quantities, we compute
the expected cost C(T,N) until overhaul and seek an optimum test time T ∗

that minimizes it.
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(1) Exponential Case

When the failure time of units has an exponential distribution, i.e., Hi(t) =
λit (i = 1, 2), Equation (8.42) is rewritten as

1
Na + 1

log
1
q

≤ λT <
1

(N − 1)a + 1
log

1
q
, (8.45)

where λ ≡ λ1+λ2 and a ≡ H2(T )/[H1(T )+H2(T )] = λ2/λ (0 < a < 1) which
represents an efficiency of inspection [90], and is widely adopted in practical
reliability calculation of a storage system.

When a test time T is given, a test number N∗ that satisfies (8.45) is
determined. Particularly, if log(1/q) ≤ λT then N∗ = 0, and N∗ diverges as
λT tends to 0. In this case, Equation (8.43) is

N∗λ2T + λt0 = log
1
q
. (8.46)

From (8.46), we can compute t0 easily. Thus, the total time to overhaul is

N∗T + t0 = N∗(1 − a)T +
1
λ

log
1
q

(8.47)

and the expected cost rate is

C(T,N∗) =
N∗c1 + c2

N∗(1 − a)T + 1
λ log 1

q

. (8.48)

When a test time T is given, we compute N∗ from (8.45) and N∗T + t0
from (8.47). Substituting these values into (8.48), we have C(T,N∗). Changing
T from 0 to log(1/q)/[λ(1−a)], because λT is less than log(1/q)/(1−a) from
(8.45), we can compute an optimum T ∗ that minimizes C(T,N∗). In the
particular case of λT ≥ log(1/q)/(1 − a), N∗ = 0 and the expected cost rate
is C(T, 0) = c2/t0 = λc2/ log(1/q).

Example 8.4. Table 8.4 presents the optimum number N∗ and the total
time λ(N∗T + t0) to overhaul for λT when a = 0.1 and q = 0.8. For example,
when λT increases from 0.203 to 0.223, N∗ = 1 and λ(N∗T + t0) increases
from 0.406 to 0.424. In accordance with the decrease in λT , both N∗ and
λ(N∗T + t0) increase as shown in (8.45) and (8.47), respectively.

Table 8.5 gives the optimum number N∗ and time λT ∗ that minimize
the expected cost C(T,N) for c2/c1, a and q, and the resulting total time
λ(N∗T ∗ + t0) and the expected cost rate C(T ∗, N∗)/λ for c1 = 1. These
indicate that λT ∗ increases and λ(N∗T ∗ + t0) decreases when c1/c2 and a
increase, and both λT ∗ and λ(N∗T ∗ + t0) decrease when q increases.
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Table 8.4. Optimum inspection number N∗ and total time to overhaul λ(N∗T +t0)
for λT when a = 0.1 and q = 0.8

λT N∗ λ(N∗T + t0)
[0.223, ∞) 0 [0.223, ∞)
[0.203, 0.223) 1 [0.406, 0.424)
[0.186, 0.203) 2 [0.558, 0.588)
[0.172, 0.186) 3 [0.687, 0.725)
[0.159, 0.172) 4 [0.797, 0.841)
[0.149, 0.159) 5 [0.893, 0.940)
[0.139, 0.149) 6 [0.976, 1.026)
[0.131, 0.139) 7 [1.050, 1.102)
[0.124, 0.131) 8 [1.116, 1.168)
[0.117, 0.124) 9 [1.174, 1.227)
[0.112, 0.117) 10 [1.227, 1.280)

Table 8.5. Optimum inspection time λT ∗, total time to overhaul λ(N∗T + t0), and
expected cost rate C(T ∗)/λ

c2/c1 a q N∗ λT ∗ λ(N∗T ∗ + t0) C(T ∗, N∗)/λ

10 0.1 0.8 8 0.131 1.168 15.41
50 0.1 0.8 19 0.080 1.586 43.51
10 0.5 0.8 2 0.149 0.372 32.27
10 0.1 0.9 7 0.062 0.552 32.63

(2) Weibull Case

When the failure time of units has a Weibull distribution; i.e., Hi(t) = (λit)m

(i = 1, 2), Equations (8.42) and (8.43) are rewritten as{
1

a[(N + 1)m − 1] + 1
log

1
q

}1/m

≤ λT <

{
1

a[Nm − 1] + 1
log

1
q

}1/m

(8.49)

(1 − a)tm0 + a(NT + t0)m =
1

λm
log

1
q
, (8.50)

respectively, where λm ≡ λm
1 + λm

2 and

a ≡ H2(T )
H1(T ) + H2(T )

=
λm

2

λm
1 + λm

2
.

When an inspection time T is given, N∗ and t0 are computed from (8.49)
and (8.50). Substituting these values into (8.44), we have C(T,N∗), and chang-
ing T from 0 to [log(1/q)/(1−a)]1/m/λ, we can compute an optimum T ∗ that
minimizes C(T,N∗).
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Fig. 8.3. Relation between λT and C(T )/λ in the exponential case

Example 8.5. When the failure time of unit i has Weibull distribution {1 −
exp[−(λit)1.5]} and c1 = 1, c2 = 10, a = 0.1, and q = 0.8, Figure 8.3 shows
the relationship between λT and C(T,N∗)/λ, and that the optimum time is
λT ∗ = 0.230 and the resulting cost rate is C(T ∗, N∗)/λ = 11.19. In this case,
the optimum number is N∗ = 5 and the total time is λ(N∗T ∗ + t0) = 1.34.

8.5 Intermittent Faults

Digital systems have two types of faults from the viewpoint of operational
failures: permanent faults due to hardware failures or software errors, and
intermittent faults due to transient failures [98, 99]. Intermittent faults are
automatically detected by the error-correcting code and corrected by the er-
ror control [100, 101] or the restart [102, 103]. However, some faults occur
repeatedly, and consequently, will be permanent faults. Some tests are ap-
plied to detect and isolate faults, but it would waste time and money to do
more frequent tests.

Continuous and repetitive tests for a continuous Markov model with inter-
mittent faults were considered in [48]. Redundant systems with independent
modules were treated in [46]. Furthermore, they were extended for non-Markov
models [98] and redundant systems with dependent modules [104].

This section applies the inspection policy to intermittent faults where the
test is planned at periodic times kT (k = 1, 2, . . . ) to detect these faults (see
Figure 8.4). We obtain the mean time to detect a fault and the expected
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Operating state Fault state Detection of fault

0
T T T

Fig. 8.4. Process of periodic inspection for intermittent faults

number of tests. In addition, we discuss optimum times T ∗ that minimize the
expected cost until fault detection, and maximize the probability of detect-
ing the first fault. An imperfect test model where faults are detected with
probability p was treated in [50].

Suppose that faults occur intermittently; i.e., a unit repeats the operating
state (State 0) and fault state (State 1) alternately. The times of respective
operating and fault states are independent and have identical exponential
distributions (1− e−λt) and (1− e−θt) with θ > λ. The periodic test to detect
faults is planned at times kT (k = 1, 2, . . . ). It is assumed that the faults of a
unit are investigated only through test which is perfect; i.e., faults are always
detected by test when they occur and are isolated. The time required for test
is negligible.

The transition probabilities P0j(t) from state 0 to state j (j = 0, 1) are,
from Section 2.1,

P00(t) =
θ

λ + θ
+

λ

λ + θ
e−(λ+θ)t, P01(t) =

λ

λ + θ
(1 − e−(λ+θ)t).

Using the above equations, we have the following reliability quantities. The
expected number M(T ) of tests to detect a fault is

M(T ) =
∞∑

j=0

(j + 1)[P00(T )]jP01(T ) =
1

P01(T )
, (8.51)

the mean time l(T ) to detect a fault is

l(T ) =
∞∑

j=0

(j + 1)T [P00(T )]jP01(T ) =
T

P01(T )
, (8.52)

the probability P0(T ) that the first occurrence of faults is detected at the first
test is

P0(T ) =
∫ T

0
e−θ(T−t)λe−λt dt =

λ

θ − λ
(e−λT − e−θT ), (8.53)

the probability P1(T ) that the first occurrence of faults is detected at some
test is

P1(T ) = P0(T ) + e−λT P1(T ),
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i.e.,

P1(T ) =
λ

θ − λ

e−λT − e−θT

1 − e−λT
, (8.54)

and the probability QN (T ) that some fault is detected until the Nth test is

QN (T ) = 1 − [P00(T )]N . (8.55)

Using the above quantities, we consider the following four optimum poli-
cies. The expected cost until fault detection is, from (8.51) and (8.52),

C(T ) ≡ c1M(T ) + c2l(T ) =
c1 + c2T

P01(T )
, (8.56)

where c1 = cost of one test and c2 = operational cost rate of a unit. We seek
an optimum time T ∗

1 that minimizes C(T ). Differentiating C(T ) with respect
to T and setting it equal to zero imply

1
λ + θ

(e(λ+θ)T − 1) − T =
c1

c2
. (8.57)

The left-hand side of (8.57) is strictly increasing from 0 to infinity. Thus, there
exists a finite and unique T ∗

1 that satisfies (8.57).
We derive an optimum time T ∗

2 that maximizes the probability P0(T ).
From (8.53), it is evident that limT→0 P0(T ) = 0, and

dP0(T )
dT

=
λ

θ − λ
(θe−θT − λe−λT ).

Thus, by putting dP0(T )/dT = 0 because θ > λ, an optimum T ∗
2 is

T ∗
2 =

log θ − log λ

θ − λ
. (8.58)

Furthermore, we derive a maximum time T ∗
3 that satisfies P1(T ) ≥ q1; i.e.,

the probability that the first occurrence of faults is detected at some test is
greater than a specified q1 (0 < q1 < 1). It is evident that limT→0 P1(T ) = 1,
limT→∞ P1(T ) = 0, and

dP1(T )
dT

=
λ

θ − λ

e−(λ+θ)T

(1 − e−λT )2
[θ(eλT − 1) − λ(eθT − 1)] < 0.

Thus, P1(T ) is strictly decreasing from 1 to 0, and hence, there exists a finite
and unique T ∗

3 that satisfies P1(T ) = q1.
Next, suppose that the testing times Ti (i = 1, 2, 3) are determined from

the above results. The probability that a fault is detected until the Nth test
is greater than q2 (0 < q2 < 1) is QN (T ) ≥ q2. Thus, a minimum number N∗

that satisfies [P00(T ∗
i )]N ≤ 1 − q2 is
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Table 8.6. Optimum time T ∗
1 to minimize C(T ) and maximum time T ∗

3 to satisfy
P1(T ) ≥ q1

T ∗
1 T ∗

3

θ/λ c1/c2 q1 (%)
1 5 10 50 100 50 60 70 80 90

1.2 0.80 1.39 1.70 2.50 2.87 1.29 0.96 0.68 0.43 0.20
1.5 0.85 1.49 1.82 2.70 3.10 1.33 0.99 0.69 0.44 0.20
2.0 0.90 1.60 1.97 2.93 3.37 1.38 1.02 0.71 0.44 0.21
5.0 1.03 1.86 2.30 3.49 4.03 1.49 1.07 0.74 0.45 0.21
10.0 1.09 1.97 2.45 3.73 4.32 1.54 1.10 0.75 0.46 0.21
50.0 1.14 2.07 2.59 3.95 4.59 1.58 1.12 0.76 0.46 0.21

Table 8.7. Optimum time T ∗
2 to maximize P0(T ) and minimum number N∗ such

that QN (T ∗
2 ) ≥ q2

N∗

θ/λ T ∗
2 q2 (%)

50 60 70 80 90
1.2 1.09 2 2 3 4 5
1.5 1.22 2 2 3 4 6
2.0 1.39 3 3 4 5 7
5.0 2.01 5 6 8 10 14
10.0 2.56 8 11 14 19 26
50.0 4.00 36 48 62 83 119

N∗ =
[

log(1 − q2)
log P00(T ∗

i )

]
+ 1 (8.59)

where [x] denotes the greatest integer contained in x.

Example 8.6. Suppose that θ/λ = 1.2, 1.5, 2.0, 5.0, 10.0, 50.0; i.e., all times
are relative to the mean fault time 1/θ. Table 8.6 presents the optimum time
T ∗

1 that minimizes the expected cost C(T ) in (8.56) for c1/c2 = 1, 5, 10, 50,
100, and the maximum time T ∗

3 that satisfies P1(T ) ≥ q1 for q1 = 50, 60, 70,
80, 90 (%). Table 8.7 shows the optimum time T ∗

2 that maximizes P0(T ) and
minimum number N∗ that satisfies QN (T ∗

2 ) ≥ q2.
For example, when θ/λ = 10 and c1/c2 = 10, the optimum time is T ∗

1 =
2.45. In particular, when 1/λ = 24 hours and 1/θ = 2.4 hours, the test should
be done at about every 6 (� 2.45×2.4) hours. To maximize the probability of
detecting the first fault at the first test, T ∗

2 = 2.01 for θ/λ = 5.0. If the same
test in this case is repeated ten times, a fault is detected with more than 80%
probability from Table 8.7. Furthermore, if the test is done at T ∗

3 = 0.45, the
probability of detecting the first fault is more than 80% from Table 8.6.

We have adopted the testing time T ∗
1 in cost, and T ∗

2 and T ∗
3 in probabilities

of detecting the first occurrence of faults. In particular, the result of T ∗
2 =
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(log θ − log λ)/(θ −λ) is quite simple. If λ and θ vary a little, we can compute
T ∗

2 easily and should make the next test at time T ∗
2 . These testing strategies

could be applied to real digital systems by suitable modifications.

8.6 Inspection for a Finite Interval

Most units would be operating for a finite interval. Practically, the working
time of units is finite in actual fields. Very few papers treated with replace-
ments for a finite time span. The optimum sequential policy [1] and the asymp-
totic costs [105,106] of age replacement for a finite interval were obtained.

This section summarizes inspection policies for an operating unit for a
finite interval (0, S] (0 < S < ∞) in which its failure is detected only by
inspection. Generally, it would be more difficult to compute optimum inspec-
tion policies in a finite case than those in an infinite one. We consider three
inspection models of periodic and sequential inspections in Section 8.1, and
asymptotic inspection in Section 8.2.

In periodic inspection, an interval S is divided equally into N parts and a
unit is checked at periodic times kT (k = 1, 2, . . . , N) where NT ≡ S. When
the failure time is exponential, we first compute a checking time in an infinite
case, and using the partition method, we derive an optimum policy that shows
how to compute an optimum number N∗ of checks in a finite case.

In sequential inspection, we show how to compute optimum checking times.
Such computations might be troublesome, because we have to solve some
simultaneous equations, however, they would be easier than those of Algo-
rithm 1 in Section 8.1 as recent personal computers have developed greatly.

In asymptotic inspection, we introduce an inspection intensity and show
how to compute approximate checking times by a simpler method than that
of the sequential one. Finally, we give numerical examples and show that the
asymptotic inspection has a good approximation to the sequential one.

(1) Periodic Inspection

Suppose that a unit has to be operating for a finite interval (0, S] and fails
according to a general distribution F (t) with a density function f(t). To detect
failures, a unit is checked at periodic times kT (k = 1, 2, . . . , N). Then, from
(8.1), the total expected cost until failure detection or time S is

C(N) =
N−1∑
k=0

∫ (k+1)T

kT

{c1(k + 1) + c2[(k + 1)T − t]} dF (t) + c1NF (NT ) + c3

=
(

c1 +
c2S

N

)N−1∑
k=0

F
(kS

N

)
− c2

∫ S

0
F (t) dt + c3 (N = 1, 2, . . . ). (8.60)



8.6 Inspection for a Finite Interval 225

Table 8.8. Approximate time T̃ , optimum number N∗, and time T ∗ = S/N∗, and
expected cost C̃(N∗) for S = 100, 50 and c1/c2 = 2, 5, 10 when λ = 0.01

S c1/c2 T̃ N∗ T ∗ C̃(N∗)/c2

2 19.355 5 20.0 76.72
100 5 30.040 3 33.3 85.48

10 41.622 2 50.0 96.39
2 19.355 3 16.7 47.85

50 5 30.040 2 25.0 53.36
10 41.622 1 50.0 60.00

It is evident that limN→∞ C(N) = ∞ and

C(1) = c1 + c2

∫ S

0
F (t) dt + c3.

Thus, there exists a finite number N∗ (1 ≤ N∗ < ∞) that minimizes C(N).
In particular, assume that the failure time is exponential; i.e., F (t) =

1 − e−λt. Then, the expected cost C(N) in (8.60) can be rewritten as

C(N) =
(

c1 +
c2S

N

)
1 − e−λS

1 − e−λS/N
− c2

λ
(1−e−λS)+c3 (N = 1, 2, . . . ). (8.61)

To find an optimum number N∗ that minimizes C(N), we put T = S/N .
Then, Equation (8.61) becomes

C(T ) = (c1 + c2T )
1 − e−λS

1 − e−λT
− c2

λ
(1 − e−λS) + c3. (8.62)

Differentiating C(T ) with respect to T and setting it equal to zero, we have

eλT − (1 + λT ) =
λc1

c2
(8.63)

which agrees with (8.5). Thus, there exists a finite and unique T̃ (0 < T̃ < ∞)
that satisfies (8.63).

Therefore, we show the following partition method.

(i) If T̃ < S then we put [S/T̃ ] ≡ N and calculate C(N) and C(N + 1) from
(8.61), where [x] denotes the greatest integer contained in x. If C(N) ≤
C(N + 1) then N∗ = N , and conversely, if C(N) > C(N + 1) then N∗ =
N + 1.

(ii) If T̃ ≥ S then N∗ = 1.

Note that T̃ gives the optimum checking time for an infinite time span in an
exponential case.

Example 8.7. Table 8.8 presents the approximate checking time T̃ , the
optimum checking number N∗, and time T ∗ = S/N∗, and the expected cost
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C̃(N∗) ≡ C(N∗) + (c2/λ)(1 − e−λS) − c3 for S = 100, 50 and c1/c2 = 2,
5, 10 when λ = 0.01. If S is large then it would be sufficient to compute
approximate checking times T̃ .

T1

S

T2 T3 TN−1 TN

Fig. 8.5. Process of sequential inspection in a finite interval

(2) Sequential Inspection

An operating unit is checked at successive times 0 < T1 < T2 < · · · < TN ,
where T0 ≡ 0 and TN ≡ S (see Figure 8.5). In a similar way to that of
obtaining (8.60), the total expected cost until failure detection or time S is

C(N) =
N−1∑
k=0

∫ Tk+1

Tk

[c1(k + 1) + c2(Tk+1 − t)] dF (t) + c1NF (TN ) + c3

(N = 1, 2, . . . ). (8.64)

Putting that ∂C(N)/∂Tk = 0, which is a necessary condition for minimizing
C(N), we have

Tk+1 − Tk =
F (Tk) − F (Tk−1)

f(Tk)
− c1

c2
(k = 1, 2, . . . , N − 1) (8.65)

and the resulting minimum expected cost is

C̃(N) ≡ C(N) + c2

∫ S

0
F (t) dt − c3 =

N−1∑
k=0

[c1 + c2(Tk+1 − Tk)]F (Tk)

(N = 1, 2, . . . ). (8.66)

For example, when N = 3, the checking times T1 and T2 are given by the
solutions of equations

S − T2 =
F (T2) − F (T1)

f(T2)
− c1

c2

T2 − T1 =
F (T1)
f(T1)

− c1

c2
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Table 8.9. Checking time Tk and expected cost C̃(N ) for N = 1, 2, . . . , 8 when
S = 100, c1/c2 = 2, and F (t) = 1 − e−λt2

N 1 2 3 4 5 6 7 8
T1 100 64.14 50.9 44.1 40.3 38.1 36.8 36.3
T2 100 77.1 66.0 60.0 56.2 54.3 53.3
T3 100 84.0 75.4 70.5 67.8 66.6
T4 100 88.6 82.3 78.9 77.3
T5 100 91.1 87.9 85.9
T6 100 94.9 92.5
T7 100 97.2
T8 100

C̃(N )/c2 102.00 93.55 91.52 91.16 91.47 92.11 92.91 93.79

and the expected cost is

C̃(3) = c1 + c2T1 + [c1 + c2(T2 − T1)]F (T1) + [c1 + c2(S − T2)]F (T2).

From the above discussion, we compute Tk (k = 1, 2, . . . , N − 1) which
satisfies (8.65), and substituting them into (8.66), we obtain the expected
cost C(N). Next, comparing C(N) for all N ≥ 1, we can get the optimum
checking number N∗ and times T ∗

k (k = 1, 2, . . . , N∗).

Example 8.8. Table 8.9 gives the checking time Tk (k = 1, 2, . . . , N) and the
expected cost C̃(N) for S = 100 and c1/c2 = 2 when F (t) = 1 − exp(−λt2).
In this case, we set that the mean failure time is equal to S; i.e.,∫ ∞

0
e−λt2 dt =

1
2

√
π

λ
= S.

Comparing C̃(N) for N = 1, 2, . . . , 8, the expected cost is minimum at N = 4.
That is, the optimum checking number is N∗ = 4 and optimum checking times
are 44.1, 66.0, 84.0, 100.

(3) Asymptotic Inspection

Suppose that n(t) is an inspection intensity defined in (3) of Section 8.2.
Then, from (8.21) and (8.64), the approximate total expected cost is

C(n(t)) =
∫ S

0

[
c1

∫ t

0
n(u) du +

c2

2n(t)

]
dF (t) + c1F (S)

∫ S

0
n(t) dt + c3.

(8.67)

Differentiating C(n(t)) with n(t) and setting it equal to zero, we have (8.22).
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We compute approximate checking times T̃k (k = 1, 2, . . . , N − 1) and
checking number Ñ , using (8.22). First, we put that∫ S

0

√
c2h(t)
2c1

dt ≡ X

and [X] ≡ N , where [x] is defined in policy (i) in (1). Then, we obtain AN

(0 < AN ≤ 1) such that

AN

∫ S

0

√
c2h(t)
2c1

dt = N

and define an inspection intensity as

ñ(t) = AN

√
c2h(t)
2c1

. (8.68)

Using (8.68), we compute checking times Tk that satisfy∫ Tk

0
ñ(t) dt = k (k = 1, 2, . . . , N), (8.69)

where T0 = 0 and TN = S. Then, the total expected cost is given in (8.66).
Next, we put N by N + 1 and do a similar computation. At last, we

compare C(N) and C(N +1), and choose the small one as the total expected
cost C(Ñ) and the corresponding checking times T̃k (k = 1, 2, . . . , Ñ) as an
asymptotic inspection policy.

Example 8.9. Consider a numerical example when the parameters are the
same as those of Example 8.8. Then, because λ = π/4 × 104, n(t) =

√
λt/2,

[X] = N = 4, and AN = (12/100)/
√

π/200, we have that ñ(t) = 6
√

t /103.
Thus, from (8.69), checking times are∫ Tk

0

6
1000

√
t dt =

1
250

T
3/2
k = k (k = 1, 2, 3).

Also, when N = 5, AN = (15/100)/
√

π/200, and ñ(t) = 3
√

t /4 × 102. In this
case, checking times are∫ Tk

0

3
400

√
t dt =

1
200

T
3/2
k = k (k = 1, 2, 3, 4).

Table 8.10 shows the checking times and the resulting costs for N = 4 and
5. Because C̃(4) < C̃(5), the approximate checking number is Ñ = 4 and its
checking times T̃k are 39.7, 63.0, 82.5, 100. These checking times are a little
smaller than those in Table 8.9, however, they are closely approximate to the
optimum ones.



References 229

Table 8.10. Checking time T̃k and expected cost C̃(N ) for N = 4, 5 when S = 100,
c1/c2 = 2, and F (t) = 1 − e−λt2

N 4 5
1 39.7 34.2
2 63.0 54.3
3 82.5 71.1
4 100.0 86.2
5 100.0

C̃(N )/c2 91.22 91.58
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