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Imperfect Preventive Maintenance

The maintenance of an operating unit after failure is costly, and sometimes, it
requires a long time to repair failed units. It would be an important problem
to determine when to maintain preventively the unit before it fails. However,
it would be not wise to maintain the unit too often. From this viewpoint, com-
monly considered maintenance policies are preventive replacement for units
with no repair as described in Chapters 3 through 5 and preventive mainte-
nance for units with repair discussed in Chapter 6. It may be wise to maintain
units to prevent failures when their failure rates increase with age.

The usual preventive maintenance (PM) of the unit is done before failure
at a specified time T after its installation. The mean time to failure (MTTF),
the availability, and the expected cost are derived as the reliability measures
for maintained units. Optimum PM policies that maximize or minimize these
measures have been summarized in Chapter 6. All models have assumed that
the unit after PM becomes as good as new. Actually, this assumption might
not be true. The unit after PM usually might be younger at PM, and occa-
sionally, it might be worse than before PM because of faulty procedures, e.g.,
wrong adjustments, bad parts, and damage done during PM. Generally, the
improvement of the unit by PM would depend on the resources spent for PM.

It was first assumed in [1] that the inspection to detect failures may not be
perfect. Similar models such that inspection, test, and detection of failures are
uncertain were treated in [2, 3]. The imperfect PM where the unit after PM
is not like new with a certain probability was considered, and the optimum
PM policies that maximize the availability or minimize the expected cost were
discussed in [4–7]. In addition, the PM policies with several reliability levels
were presented in [8].

It is imperative to check a computer system and remove as many unit
faults, failures, and degradations as possible, by providing fault-tolerant tech-
niques. Imperfect maintenance for a computer system was first treated in [9].
The MTTF and availability were obtained in [10–12] in the case where al-
though the system is usually renewed after PM, it sometimes remains un-
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172 7 Imperfect Preventive Maintenance

changed. The imperfect test of intermittent faults incurred in digital systems
was studied in [13].

Two imperfect PM models of the unit were considered [14, 15]: the age
becomes x units of time younger at each PM and the failure rate is reduced
in proportion to that before PM or to the PM cost. The improvement factor
in failure rate after maintenance [16, 17] and the system degradation with
time where the PM restores the hazard function to the same shape [18] were
introduced. Furthermore, the PM policy that slows the degradation rate was
considered in [19].

On the other hand, it was assumed in [20–22] that a failed unit becomes
as good as new after repair with a certain probability, and some properties
of its failure distribution were investigated. Similar imperfect repair models
were generalized by [23–31]. Also, the stochastic properties of imperfect re-
pair models with PM were derived in [32, 33]. Multivariate distributions and
their probabilistic quantities of these models were derived in [34–36]. The
improvement factors of imperfect PM and repair were statistically estimated
in [37–40]. The PM was classified into four terms of its effect [41]: perfect
maintenance, minimal maintenance, imperfect maintenance, and worse main-
tenance. Some chapters [42–44] of recently published books summarized many
results of imperfect maintenance.

This chapter summarizes our results of imperfect maintenance models that
could be applied to actual systems and would be helpful for further studies in
research fields. It is assumed in Section 7.1 that the operating unit is replaced
at failure or is maintained preventively at time T . Then, the unit after PM
has the same failure rate as before PM with a certain probability. The ex-
pected cost rate is obtained and an optimum PM policy that minimizes it is
discussed analytically [5]. Section 7.2 considers several imperfect PM models
with minimal repair at failures: (1) the unit after PM becomes as good as new
with a certain probability; (2) the age becomes younger at each PM; and (3)
the age or failure rate after PM reduces in proportion to that before PM. The
expected cost rates of four models are obtained and optimum policies for each
model are derived [15].

Section 7.3 considers a modified inspection model where the unit after in-
spection becomes like new with a certain probability. The MTTF, the expected
number of inspections, and the total expected cost are obtained [45,46]. Fur-
thermore, an imperfect inspection model with two human errors is proposed.
Section 7.4 considers the imperfect PM of a computer system that is main-
tained at periodic times [12]. The MTTF and the availability are obtained,
and optimum policies that maximize them are discussed. Finally, Section 7.5
suggests a sequential imperfect PM model where the PM is done at successive
times and the age or failure rate reduces in proportion to that before PM. The
expected cost rates are obtained and optimum policies that minimize them
are discussed [47]. It is shown in numerical examples that optimum intervals
are uniquely determined when the failure time has a Weibull distribution.



7.1 Imperfect Maintenance Policy 173

The following notation is used throughout this chapter. A unit begins to
operate at time 0, and has the failure distribution F (t) (t ≥ 0) with finite
mean µ and its density function f(t) ≡ dF (t)/dt. Furthermore, the failure
rate h(t) ≡ f(t)/F (t) and the cumulative hazard function H(t) ≡ ∫ t

0 h(u)du,
where Φ ≡ 1 − Φ.

7.1 Imperfect Maintenance Policy

All models have assumed until now that a unit after any PM becomes as good
as new. Actually, this assumption might not be true. It sometimes occurs
that a unit after PM is worse than before PM because of faulty procedures,
e.g., wrong adjustments, bad parts, and damage done during PM. To include
this, it is assumed that the failure rate after PM is the same as before PM
with a certain probability, and a unit is not like new. This section derives the
expected cost rate of the model with imperfect PM, and discusses an optimum
policy that minimizes it.

Consider the imperfect PM policy for a one-unit system that should oper-
ate for an infinite time span.

1. The operating unit is repaired at failure or is maintained preventively
at time T (0 < T ≤ ∞), whichever occurs first, after its installation or
previous PM.

2. The unit after repair becomes as good as new.
3. The unit after PM has the same failure rate as it had before PM with

probability p (0 ≤ p < 1) and becomes as good as new with probability
q ≡ 1 − p.

4. Cost of each repair is c1 and cost of each PM is c2.
5. The repair and PM times are negligible.

Consider one cycle from time t = 0 to the time that the unit becomes as
good as new by either repair or perfect PM. Then, the expected cost of one
cycle is given by the sum of the repair cost and PM cost;

Ĉ(T ; p) = c1 Pr{unit is repaired at failure}
+ c2 Pr{expected number of PMs per one cycle}. (7.1)

The probability that the unit is repaired at failure is
∞∑

j=1

pj−1
∫ jT

(j−1)T
dF (t) = 1 − q

∞∑
j=1

pj−1F (jT ) (7.2)

and the expected number of PMs including perfect PM per one cycle is
∞∑

j=1

(j − 1)pj−1
∫ jT

(j−1)T
dF (t) + q

∞∑
j=1

jpj−1F (jT ) =
∞∑

j=1

pj−1F (jT ). (7.3)
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Furthermore, the mean time of one cycle is

∞∑
j=1

pj−1
∫ jT

(j−1)T
t dF (t) + q

∞∑
j=1

pj−1(jT )F (jT ) =
∞∑

j=1

pj−1
∫ jT

(j−1)T
F (t) dt.

(7.4)

Thus, substituting (7.2) and (7.3) into (7.1), and dividing it by (7.4), the
expected cost rate is, from (3.3),

C(T ; p) =
c1

[
1 − q

∑∞
j=1 pj−1F (jT )

]
+ c2

∑∞
j=1 pj−1F (jT )∑∞

j=1 pj−1
∫ jT

(j−1)T F (t) dt
. (7.5)

We clearly have

C(0; p) ≡ lim
T→0

C(T ; p) = ∞, C(∞; p) ≡ lim
T→∞

C(T ; p) =
c1

µ
(7.6)

which is the expected cost for the case where no PM is done and the unit is
repaired only at failure.

We seek an optimum PM time T ∗ that minimizes C(T ; p). Let

H(t; p) ≡
∑∞

j=1 pj−1jf(jt)∑∞
j=1 pj−1jF (jt)

. (7.7)

Then, differentiating C(T ; p) with respect to T and setting it equal to zero,

H(T ; p)
∞∑

j=1

pj−1
∫ jT

(j−1)T
F (t) dt − q

∞∑
j=1

pj−1F (jT ) =
c2

c1q − c2
, (7.8)

where c1q − c2 	= 0. Denoting the left-hand side of (7.8) by Q(T ; p), we easily
have that if H(t; p) is strictly increasing then Q(T ; p) is also strictly increasing
from 0 and

Q(∞; p) ≡ lim
T→∞

Q(T ; p) = µH(∞; p) − 1. (7.9)

It is assumed that H(t; p) is strictly increasing in t for any p. Then, we
have the following optimum policy.

(i) If c1q > c2 and H(∞; p) > c1q/[µ(c1q − c2)] then there exists a finite and
unique T ∗ that satisfies (7.8), and the resulting cost rate is

C(T ∗; p) =
(

c1 − c2

q

)
H(T ∗; p). (7.10)

(ii) If c1q > c2 and H(∞; p) ≤ c1q/[µ(c1q − c2)], or c1q ≤ c2 then T ∗ = ∞;
i.e., no PM should be done, and the expected cost is given in (7.6).
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Table 7.1. Optimum PM time T ∗ and expected cost rate C(T ∗; p) for p when c1 = 5
and c2 = 1

p T ∗ C(T ∗; p)
0.00 1.31 2.27
0.01 1.32 2.27
0.05 1.36 2.30
0.10 1.43 2.34
0.15 1.52 2.37
0.20 1.64 2.40
0.25 1.80 2.43
0.30 2.02 2.45
0.35 2.33 2.47
0.40 2.79 2.49

When p = 0, i.e., the PM is perfect, the model corresponds to a standard age
replacement policy, and the above results agree with those of Chapter 3.

Example 7.1. Suppose that F (t) is a gamma distribution with order 2; i.e.,
F (t) = 1 − (1 + t)e−t. Then, H(t; p) in (7.7) is

H(t; p) =
t(1 + pe−t)

1 − pe−t + t(1 + pe−t)

which is strictly increasing from 0 to 1. Thus, if c1q > 2c2 then there exists a
finite and unique T ∗ that satisfies (7.8), and otherwise, T ∗ = ∞.

Table 7.1 gives the optimum PM time T ∗ and the expected cost rate
C(T ∗; p) for p = 0.0 ∼ 0.4 when c1 = 5 and c2 = 1. Both T ∗ and C(T ∗; p)
are increasing when the probability p of imperfect PM is large. The reason is
that it is better to repair a failed unit than to perform PM when p is large.

7.2 Preventive Maintenance with Minimal Repair

Earlier results of optimum PM policies have been summarized in Chapter 6.
However, almost all models have assumed that a unit becomes as good as new
after any PM. In practice, this assumption often might not be true. A unit
after PM usually might be younger at PM, and occasionally, it might become
worse than before PM because of faulty procedures.

This section considers the following four imperfect PM models with mini-
mal repair at failures.

(1) The unit after PM has the same failure rate as before PM or becomes as
good as new with a certain probability q.

(2) The age becomes x units of time younger at each PM.
(3) The age or failure rate after PM reduces to at or bh(t) when it was t or

h(t) before PM, respectively.
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(4) The age or failure rate is reduced to the original one at the beginning of
all PMs in proportion to the PM cost.

For each model, we obtain the expected cost rates and discuss optimum PM
policies that minimize them. A numerical example is finally given when the
failure time has a Weibull distribution.

(1) Model A – Probability

Consider the periodic PM policy for a one-unit system that should operate
for an infinite time span.

1. The operating unit is maintained preventively at times kT (k = 1, 2, . . . ),
and undergoes only minimal repair at failures between PMs (see Chap-
ter 4).

2. The failure rate h(t) remains undisturbed by minimal repair.
3. The unit after PM has the same failure rate as it had before PM with

probability p (0 ≤ p < 1) and becomes as good as new with probability
q ≡ 1 − p.

4. Cost of each minimal repair is c1 and cost of each PM is c2.
5. The minimal repair and PM times are negligible.
6. The failure rate h(t) is strictly increasing.

Consider one cycle from time t = 0 to the time that the unit becomes as
good as new by perfect PM. Then, the total expected cost of one cycle is

∞∑
j=1

pj−1q

[
c1

∫ jT

0
h(t) dt + jc2

]
= c1q

∞∑
j=1

pj−1
∫ jT

0
h(t) dt +

c2

q
(7.11)

and its mean time is
∞∑

j=1

jTpj−1q =
T

q
. (7.12)

Thus, dividing (7.11) by (7.12) and arranging them, the expected cost rate is

CA(T ; p) =
1
T

⎡⎣c1q
2

∞∑
j=1

pj−1
∫ jT

0
h(t) dt + c2

⎤⎦ . (7.13)

We seek an optimum PM time T ∗ that minimizes CA(T ; p). Differentiating
CA(T ; p) with respect to T and setting it equal to zero,

∞∑
j=1

pj−1
∫ jT

0
t dh(t) =

c2

c1q2 (7.14)

whose left-hand side is strictly increasing from 0 to
∫∞
0 tdh(t), which may be

possibly infinity. It is clearly seen that
∫∞
0 t dh(t) → ∞ as h(t) → ∞.

Therefore, we have the following optimum policy.
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A
ge

x

x

x

x

T 2T 3T · · · · · · · · · (N − 1)T NT

Replacement timePM time

Fig. 7.1. Process of Model B

(i) If
∫∞
0 t dh(t) > c2/(c1q

2) then there exists a finite and unique T ∗ that
satisfies (7.14), and the resulting cost rate is

CA(T ∗; p) = c1q
2

∞∑
j=1

pj−1jh(jT ∗). (7.15)

(ii) If
∫∞
0 t dh(t) ≤ c2/(c1q

2) then T ∗ = ∞, and the expected cost rate is

CA(∞; p) ≡ lim
T→∞

CA(T ; p) = c1q
2h(∞).

(2) Model B – Age

The process in Model B is shown in Figure 7.1.

3. The age becomes x units younger at each PM, where x (0 ≤ x ≤ T ) is
constant and previously specified. Furthermore, the unit is replaced if it
operates for the time interval NT (N = 1, 2, . . . ,∞).

4. Cost of each minimal repair is c1, cost of each PM is c2, and cost of
replacement at time NT is c3 with c3 > c2.

1, 2, 5, 6. Same as the assumptions of Model A.
The expected cost rate is easily given by

CB(N ; T, x) =
1

NT

⎡⎣c1

N−1∑
j=0

∫ T+j(T−x)

j(T−x)
h(t) dt + (N − 1)c2 + c3

⎤⎦
(N = 1, 2, . . . ). (7.16)
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It is trivial that the expected cost rate is decreasing in x because the failure
rate h(t) is increasing.

We seek an optimum replacement number N∗ (1 ≤ N∗ ≤ ∞) that
minimizes CB(N ; T, x) for specified T > 0 and x. From the inequality
CB(N + 1;T, x) ≥ CB(N ; T, x), we have

L(N ; T, x) ≥ (c3 − c2)
c1

(N = 1, 2, . . . ), (7.17)

where

L(N ; T, x) ≡ N

∫ T+N(T−x)

N(T−x)
h(t) dt −

N−1∑
j=0

∫ T+j(T−x)

j(T−x)
h(t) dt

=
N−1∑
j=0

∫ T

0
{h[t + N(T − x)] − h[t + j(T − x)]} dt (N = 1, 2, . . . ).

In addition, we have

L(N + 1;T, x) − L(N ; T, x)

= (N + 1)
∫ T

0
{h[t + (N+1)(T −x)] − h[t + N(T −x)]} dt > 0.

Therefore, we have the following optimum policy.

(i) If L(∞;T, x) ≡ limN→∞ L(N ; T, x) > (c3 − c2)/c1 then there exists a
finite and unique minimum N∗ that satisfies (7.17).

(ii) If L(∞;T, x) ≤ (c3 − c2)/c1 then N∗ = ∞, and the expected cost rate is

CB(∞; T, x) ≡ lim
N→∞

CB(N ; T, x) = c1h(∞) +
c2

T
.

We clearly have N∗ < ∞ if h(t) → ∞ as t → ∞.

(3) Model C – Rate

It is assumed that:

3. The age after PM reduces to at (0 < a ≤ 1) when it was t before PM; i.e.,
the age becomes t(1− a) units of time younger at each PM. Furthermore,
the unit is replaced if it operates for NT .

1, 2, 4, 5, 6. Same as the assumptions of Model B.
The expected cost rate is

CC(N ; T, a) =
1

NT

⎡⎣c1

N−1∑
j=0

∫ (Aj+1)T

AjT

h(t) dt + (N − 1)c2 + c3

⎤⎦
(N = 1, 2, . . . ), (7.18)
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where Aj ≡ a + a2 + · · · + aj (j = 1, 2, . . . ) and A0 ≡ 0.
We can have similar results to Model B. From the inequality CC(N +

1; T, a) ≥ CC(N ; T, a),

L(N ; T, a) ≥ c3 − c2

c1
(N = 1, 2, . . . ), (7.19)

where

L(N ; T, a) ≡ N

∫ (AN+1)T

AN T

h(t) dt −
N−1∑
j=0

∫ (Aj+1)T

AjT

h(t) dt (N = 1, 2, . . . )

which is strictly increasing in N .
Therefore, we have the following optimum policy.

(i) If L(∞;T, a) > (c3 −c2)/c1 then there exists a finite and unique minimum
N∗ that satisfies (7.19).

(ii) If L(∞;T, a) ≤ (c3 − c2)/c1 then N∗ = ∞.

If the age after the jth PM reduces to ajt when it was t before the jth PM,
we have the expected cost Cc(N ; T, aj) by denoting that Aj ≡ a1 + a1a2 +
· · · + a1a2 . . . aj (j = 1, 2, . . . ) and A0 ≡ 0.

Next, it is assumed that:

3. The failure rate after PM reduces to bh(t) (0 < b ≤ 1) when it was h(t)
before PM.

The expected cost rate is

CC(N ; T, b) =
1

NT

⎡⎣c1

N−1∑
j=0

bj

∫ (j+1)T

jT

h(t) dt + (N − 1)c2 + c3

⎤⎦
(N = 1, 2, . . . ) (7.20)

and (7.19) is rewritten as

L(N ; T, b) ≥ c3 − c2

c1
(N = 1, 2, . . . ), (7.21)

where

L(N ; T, b) ≡ NbN

∫ (N+1)T

NT

h(t) dt −
N−1∑
j=0

bj

∫ (j+1)T

jT

h(t) dt (N = 1, 2, . . . )

which is strictly increasing in N .
If the failure rate becomes hj(t) for jT ≤ t < (j + 1)T between the jth

and (j + 1)th PMs, the expected cost rate in (7.20) is written in the general
form

Cc(N ; T ) =
1

NT

⎡⎣c1

N−1∑
j=0

∫ (j+1)T

jT

hj(t) dt + (N − 1)c2 + c3

⎤⎦.
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(4) Model D – Cost

Models B and C have assumed that the age reduced by PM is independent of
PM cost. In this model, it is assumed that:

3. The age or failure rate after PM is reduced in proportion to PM cost c2.
4. Cost of each minimal repair is c1 and cost of each PM is c2. Furthermore,

the cost c0 with c0 ≥ c2 is the initial cost of the unit.

1, 2, 5, 6. Same as the assumptions of Model A.
First, suppose that the age after PM reduces to [1 − (c2/c0)](x + T ) at

each PM when it was x + T immediately before PM. If the operation of the
unit enters into the steady-state then we have the equation(

1 − c2

c0

)
(x + T ) = x, i.e., x =

(
c0

c2
− 1

)
T. (7.22)

Thus, the expected cost rate is

CD(T ; c0) =
1
T

[
c1

∫ T

0
h(t + x) dt + c2

]

=
1
T

[
c1

∫ (c0/c2)T

[(c0/c2)−1]T
h(t) dt + c2

]
. (7.23)

Differentiating CD(T ; c0) with respect to T and setting it equal to zero,∫ (c0/c2)T

[(c0/c2)−1]T
t dh(t) =

c2

c1
. (7.24)

Next, suppose that the failure rate after PM reduces to [1−(c2/c0)]h(x+T )
at each PM where it was h(x + T ) before PM. In the steady-state, we have(

1 − c2

c0

)
h(x + T ) = h(x) (7.25)

and the expected cost rate is

C̃D(T ; c0) =
1
T

[
c1

∫ T

0
h(t + x) dt + c2

]
. (7.26)

Thus, the age after PM is computed from (7.25), and hence, an optimum PM
time T ∗ is computed by substituting x into (7.26) and changing T to minimize
it.

We have considered four imperfect PM models and have obtained the
expected cost rates. It is noted that all models are identical and agree with
the standard model in Section 4.2 when p = 0 in Model A, N = 1 in Models B
and C, and c0 = c2 in Model D.
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Example 7.2. We finally consider an example when the failure time has a
Weibull distribution and show how to determine optimum PM times. When
F (t) = 1 − exp(−λtm) (λ > 0, m > 1), we have the following results for each
model.

(1) Model A

The expected cost rate is, from (7.13),

CA(T ; p) =
1
T

[c1qλTmg(m) + c2] ,

where g(m) ≡ q
∑∞

j=1 pj−1jm which represents the mth moment of the geo-
metric distribution with parameter p. The optimum PM time is, from (7.14),

T ∗ =
[

c2

c1qλ(m − 1)g(m)

]1/m

.

(2) Model B

The expected cost rate is, from (7.16),

CB(N ; T, x)

=
1

NT

⎡⎣c1λ

N−1∑
j=0

{[T + j(T − x)]m− [j(T − x)]m} + (N − 1)c2 + c3

⎤⎦
and from (7.17),

N−1∑
j=0

{[T + N(T − x)]m− [T + j(T − x)]m− [N(T − x)]m+ [j(T − x)]m}

≥ c3 − c2

λc1

whose left-hand side is strictly increasing in N to ∞ for 0 ≤ x < T . Thus,
there exists a finite and unique minimum N∗ (1 ≤ N∗ < ∞).

(3) Model C

The expected cost rate is, from (7.18),

CC(N ; T, a) =
1

NT

⎡⎣c1λTm
N−1∑
j=0

[(Aj + 1)m − (Aj)m] + (N − 1)c2 + c3

⎤⎦
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and from (7.19),

Tm
N−1∑
j=0

[(AN + 1)m − (Aj + 1)m − (AN )m + (Aj)m] ≥ c3 − c2

λc1

whose left-hand side is strictly increasing in N to ∞ because m > 1. Thus,
there exists a finite and unique minimum N∗ (1 ≤ N∗ < ∞). Furthermore,
the left-hand side of the above equation is increasing in T for a fixed N and
m, and hence, the optimum N∗ is a decreasing function of T .

(4) Model D

The expected cost rate is, from (7.23),

CD(T ; c0) =
1
T

{
c1λTm

[(
c0

c2

)m

−
(

c0

c2
− 1

)m]
+ c2

}
and the optimum PM time is, from (7.24),

T ∗ =
[

c2

c1λ(m − 1) {(c0/c2)m − [(c0/c2) − 1]m}
]1/m

.

Similarly, the expected cost rate in (7.26) is

C̃D(T ; c0) =
1
T

{c1λTm[Dm − (D − 1)m] + c2}

and hence, the optimum PM time is

T ∗ =
{

c2

c1λ(m − 1)[Dm − (D − 1)m]

}1/m

,

where

D ≡ 1

1 − [1 − (c2/c0)]
1/(m−1) .

7.3 Inspection with Preventive Maintenance

In this section, we check a unit periodically to see whether it is good, and
at the same time, provide preventive maintenance. For example, we test a
unit, and if needed, we make the overhaul and the repair or replacement of
bad parts. This policy could actually be applied to the models of production
machines, standby units, and preventive medical checks for diseases [23]. The
standard inspection policy is explained in detail in Chapter 8.
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We consider a modified inspection model in which the unit after inspection
has the same age as before with probability p and becomes as good as new
with probability q. Then, we obtain the following reliability quantities: (1)
the mean time to failure and (2) the expected number of inspections until
failure detection. When the failure rate is increasing, we investigate some
properties of these quantities. Furthermore, we derive the total expected cost
and the expected cost rate until failure detection. Optimum inspection times
that minimize the expected costs are given numerically where the failure time
has a Weibull distribution. Moreover, we propose two extended cases where
the age becomes younger at each inspection; i.e., the age becomes x units
of time younger at each inspection and the age after inspection reduces to at
when it was t before inspection. Finally, we consider two types of human error
at inspection and obtain the total expected cost.

7.3.1 Imperfect Inspection

Consider the periodic inspection policy with PM for a one-unit system that
should operate for an infinite time span.

1. The operating unit is inspected and maintained preventively at times kT
(k = 1, 2, . . . ) (0 < T < ∞).

2. The failed unit is detected only through inspection.
3. The unit after inspection has the same failure rate as it had before in-

spection with probability p (0 ≤ p ≤ 1) and becomes as good as new with
probability q ≡ 1 − p.

4. Cost of each inspection is c1 and cost of time elapsed between a failure
and its detection per unit of time is c2.

5. Inspection and PM times are negligible.

Let l(T ; p) be the mean time to failure of a unit. Then, we can form the
renewal-type equation:

l(T ; p) =
∞∑

j=1

{
pj−1

∫ jT

(j−1)T
t dF (t) + pj−1qF (jT )[jT + l(T ; p)]

}
. (7.27)

The first term in the bracket on the right-hand side is the mean time until it
fails between (j−1)th and jth inspections, and the second term is the mean
time until it becomes new at the jth inspection, and after that, it fails. By
solving (7.27) and arranging it,

l(T ; p) =

∑∞
j=0 pj

∫ (j+1)T
jT

F (t) dt∑∞
j=0 pj{F (jT ) − F [(j + 1)T ]} . (7.28)

In particular, when p = 0, i.e., the unit always becomes as good as new
at each inspection,
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l(T ; 0) =
1

F (T )

∫ T

0
F (t) dt (7.29)

which agrees with (1.6) in Chapter 1. When p = 1, i.e., the unit after inspec-
tion has the same failure rate as before inspection, l(T ; 1) = µ which is the
mean failure time of the unit.

Next, let M(T ; p) be the expected number of inspections until failure de-
tection. Then, by a similar method to that of obtaining (7.27),

M(T ; p) =
∞∑

j=1

[
pj−1j{F [(j−1)T ]−F (jT )}+ pj−1qF (jT )[j+M(T ; p)]

]
;

i.e.,

M(T ; p) =

∑∞
j=0 pjF (jT )∑∞

j=0 pj
{
F (jT ) − F [(j + 1)T ]

} . (7.30)

In particular,

M(T ; 0) =
1

F (T )
, M(T ; 1) =

∞∑
j=0

F (jT ). (7.31)

It is easy to see that

TF [(j + 1)T ] ≤
∫ (j+1)T

jT

F (t) dt ≤ TF (jT )

because F (t) is a nonincreasing function of t. Thus, from (7.28) and (7.30),

T [M(T ; p) − 1] ≤ l(T ; p) ≤ TM(T ; p). (7.32)

Furthermore, it has been proved in [16] that if the failure rate is increasing
then both l(T ; p) and M(T ; p) are decreasing functions of p for a fixed T . From
this result, we have the inequalities

µ ≤ l(T ; p) ≤ 1
F (T )

∫ T

0
F (t) dt (7.33)

∞∑
j=0

F (jT ) ≤ M(T ; p) ≤ 1
F (T )

, (7.34)

where all equalities hold when F is exponential.
The total expected cost until failure detection is (see Equation (8.1) in

Chapter 8),



7.3 Inspection with Preventive Maintenance 185

Table 7.2. Optimum inspection time T ∗ for p and m when c1 = 10 and c2 = 1

m
p

1.0 1.5 2.0 2.5 3.0
0.00 97 171 236 289 330
0.01 97 170 234 286 328
0.05 97 168 228 275 314
0.10 97 164 219 262 295
0.20 97 158 204 237 260
0.30 97 151 189 214 231
0.40 97 144 175 195 207

C(T ; p) =
∞∑

j=1

{
pj−1

∫ jT

(j−1)T
[c1j + c2(jT − t)] dF (t)

+ pj−1qF (jT )[c1j + C(T ; p)]

}
.

Solving the above renewal equation with respect to C(T ; p), we have

C(T ; p) =
(c1 + c2T )

∑∞
j=0 pjF (jT ) − c2

∑∞
j=0 pj

∫ (j+1)T
jT

F (t) dt∑∞
j=0 pj{F (jT ) − F [(j+1)T ]}

= (c1 + c2T )M(T ; p) − c2l(T ; p). (7.35)

It is easy to see that limT→0 C(T ; p) = limT→∞ C(T ; p) = ∞. Thus, there
exists a finite and positive T ∗ that minimizes the expected cost C(T ; p). Also,
from the relation of (7.32), we have

c1l(T ; p)
T

≤ C(T ; p) ≤ c1M(T ; p) + c2T. (7.36)

Example 7.3. We give a numerical example when the failure time has a
Weibull distribution with shape parameter m (m ≥ 1). Suppose that F (t) =
exp[−(λt)m], 1/λ = 500, c1 = 10, and c2 = 1. Table 7.2 presents the optimum
inspection time T ∗ that minimizes the expected cost C(T ; p) for several values
of p and m. It is noted that optimum times T ∗ are independent of p for the
particular case of m = 1. Except for m = 1, they are small when p is large.
The reason is that when the failure rate increases with age, it is better to
inspect early for large p.

7.3.2 Other Inspection Models

Consider two inspection models with PM where the age becomes younger at
each inspection. It is assumed that the age becomes x (0 ≤ x ≤ T ) units of
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time younger at each inspection. Then, the probability that the unit does not
fail until time t is

S(t; T, x) = λ[k(T −x); t−kT ]
k−1∏
j=0

λ[j(T −x); T ] for kT ≤ t<(k+1)T ,

(7.37)

where λ(t; x) ≡ [F (t + x) − F (t)]/F (t) is the probability that the unit with
age t fails during (t, t + x]. Thus, the mean time to failure is

l(T ; x) =
∞∑

k=0

∫ (k+1)T

kT

S(t; T, x) dt

=
∞∑

k=0

⎧⎨⎩
k−1∏
j=0

λ[j(T − x); T ]

⎫⎬⎭
∫ k(T−x)+T

k(T−x) F (t) dt

F [k(T − x)]
, (7.38)

where
∏−1

0 ≡ 1, and the expected number of inspections until failure detection
is

M(T ; x) =
∞∑

k=0

kλ[k(T − x); T ]
k−1∏
j=0

λ[j(T − x); T ]

=
∞∑

k=0

k∏
j=0

λ[j(T − x); T ]. (7.39)

Next, it is assumed that the age after inspection reduces to at (0 ≤ a ≤ 1)
where it was t before inspection. Then, in similar ways to those of obtaining
(7.38) and (7.39),

l(T ; a) =
∞∑

k=0

⎧⎨⎩
k−1∏
j=0

λ[AjT ; T ]

⎫⎬⎭
∫ (Ak+1)T

AkT
F (t) dt

F (AkT )
(7.40)

M(T ; a) =
∞∑

k=0

k∏
j=0

λ[AjT ; T ], (7.41)

where Aj ≡ a + a2 + · · · + aj (j = 1, 2, . . . ) and A0 ≡ 0.
Note that the mean times l(T ; ·) and the expected numbers M(T ; ·) of three

models are equal in both cases of p = a = 0 and x = T (i.e., the unit becomes
as good as new by perfect inspection), and p = a = 1 and x = 0 (i.e., the unit
has the same age by imperfect inspection). Furthermore, substituting (7.38),
(7.39) and (7.40), (7.41) into (7.35), respectively, we obtain two expected costs
until failure detection.
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7.3.3 Imperfect Inspection with Human Error

It is well known that a high percentage of failures in most systems is directly
due to human error [48]. There are the following types of human error when
we inspect a standby unit at periodic times kT (k = 1, 2, . . . ) [2, 49–51]:

1. Type A human error: The unit in a good state, i.e., in a normal condition,
is judged to be bad and is repaired.

2. Type B human error: The unit in a bad state, i.e., in a failed state, is
judged to be good.

It is assumed that the probabilities of type A error and type B error are
α and β, respectively, where 0 ≤ α + β < 1. Then, the expected number of
inspections until a failed unit is detected is

∞∑
j=0

jβj−1(1 − β) =
1

1 − β
.

Consider one cycle from time t = 0 to the time when a failed unit is
detected by perfect inspection or a good unit is repaired by type A error,
whichever occurs first. Then, the total expected cost of one cycle is given by

C(T ; α, β) =
∞∑

j=0

(1 − α)j

[∫ (j+1)T

jT

c1

(
j +

1
1 − β

)
dF (t)

+ αc1(j + 1)F ((j + 1)T ) +
∫ (j+1)T

jT

c2

(
jT +

T

1 − β
− t

)
dF (t)

]

= (c1 + c2T )

⎧⎨⎩ 1
1 − β

∞∑
j=0

(1 − α)j [F (jT ) − F ((j + 1)T )]

+
∞∑

j=0

(1 − α)jF ((j + 1)T )

⎫⎬⎭− c2

∞∑
j=0

(1 − α)j

∫ (j+1)T

jT

F (t) dt. (7.42)

When α = β = 0, i.e., the inspection is perfect, Equation (7.42) is equal to
that of a standard periodic inspection policy (see Section 8.1).

In particular, when F (t) = 1 − e−λt, the expected cost is rewritten as

C(T ; α, β) = (c1 + c2T )
(1 − e−λT )/(1 − β) + e−λT

1 − (1 − α)e−λT
− c2

λ

1 − e−λT

1 − (1 − α)e−λT
.

(7.43)

Differentiating C(T ; α, β) with respect to T and setting it equal to zero,

eλT − 1
λ

[1 − β(1 − α)e−λT ] − (1 − α − β)T =
c1

c2
(1 − α − β). (7.44)

Note that the left-hand side of (7.44) is strictly increasing from 0 to ∞. There-
fore, there exists a finite and unique T ∗ that satisfies (7.44).
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7.4 Computer System with Imperfect Maintenance

Periodic maintenance of a computer system is imperative in order to inspect
and remove as many component faults, failures, and degradations as possible.
In most cases, it has been assumed that the system becomes like new and op-
erates normally after maintenance. However, the system occasionally becomes
worse for one or more of the following reasons:

(1) Hidden faults and failures that are not detected during maintenance;
(2) Human errors such as wrong adjustments and further damage done during

maintenance; or
(3) Replacement with faulty parts.

It is useful to develop an imperfect maintenance strategy for a computer
system.

This section considers a system that is maintained at periodic times kT
(k = 1, 2, . . . ). Due to imperfect PM, one of the following results occurs:
the system is not changed, is renewed, or is put in a failed state and needs
repair. The MTTF and availability of the system are derived by the usual
probability calculations. Furthermore, we calculate an optimum PM time T ∗

that maximizes the availability, and show that T ∗ is determined by a unique
solution of an equation under certain conditions. A numerical example is given
for a triple redundant system that fails when two or more units have failed.

A computer system begins to operate at time 0 and should operate for an
infinite time span.

1. The system is maintained preventively at periodic times kT (k = 1, 2, . . . )
(0 < T ≤ ∞).

2. The failed system is repaired immediately when it fails, and becomes as
good as new after repair.

3. One of the following cases after PM results.
(a) The system is not changed with probability p1; viz, PM is imperfect.
(b) The system becomes as good as new with probability p2; viz, PM is

perfect.
(c) The system fails with probability p3; viz, PM fails, where p1+p2+p3 =

1 and p2 > 0.
4. The mean times to repair actual failure in case 2 and maintenance failure

in (c) are β1 and β2 with β1 ≥ β2, respectively.
5. The PM time is negligible.

The probability that the system is renewed by repair upon actual failure
is

∞∑
j=1

pj−1
1

∫ jT

(j−1)T
dF (t) = (1 − p1)

∞∑
j=1

pj−1
1 F (jT ), (7.45)

the probability that the system is renewed by perfect maintenance is
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p2

∞∑
j=1

pj−1
1 F (jT ), (7.46)

and the probability that the system is renewed by repair after maintenance
failure is

p3

∞∑
j=1

pj−1
1 F (jT ), (7.47)

where (7.45) + (7.46) + (7.47) = 1.
Furthermore, the mean time of one cycle from time t = 0 to the time when

the system is renewed by either repair or perfect maintenance is

∞∑
j=1

pj−1
1

∫ jT

(j−1)T
t dF (t) + (p2 + p3)

∞∑
j=1

jTpj−1
1 F (jT )

= (1 − p1)
∞∑

j=1

pj−1
1

∫ jT

0
F (t) dt. (7.48)

Therefore, the mean time to failure is

l(T ; p1, p2, p3) =
∞∑

j=1

{
pj−1
1

∫ jT

(j−1)T
t dF (t)

+ pj−1
1 F (jT ) [p2(jT + l(T ; p1, p2, p3)) + p3jT ]

}
;

i.e.,

l(T ; p1, p2, p3) =
(1 − p1)

∑∞
j=1 pj−1

1

∫ jT

0 F (t) dt

1 − p2
∑∞

j=1 pj−1
1 F (jT )

(7.49)

which agrees with (5) of [11] when p3 = 0, and (9) of [13].
The availability is, from (6.10) in Chapter 6,

A(T ; p1, p2, p3) =
(1 − p1)

∑∞
j=1 pj−1

1

∫ jT

0 F (t) dt[
(1 − p1)

∑∞
j=1 pj−1

1

∫ jT

0 F (t) dt + β2p3
∑∞

j=1 pj−1
1 F (jT )

+β1(1 − p1)
∑∞

j=1 pj−1
1 F (jT )

]
(7.50)

which agrees with (10) of [11] when p3 = 0.
First, we seek an optimum PM time T ∗

1 that maximizes MTTF l(T ; p1, p2, p3)
in (7.49). It is evident that
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l(0; p1, p2, p3) ≡ lim
T→0

l(T ; p1, p2, p3) = 0

l(∞; p1, p2, p3) ≡ lim
T→∞

l(T ; p1, p2, p3) = µ. (7.51)

Thus, there exists some positive T ∗
1 (0 < T ∗

1 ≤ ∞) that maximizes l(T ; p1, p2, p3).
Differentiating l(T ; p1, p2, p3) with respect to T and setting it equal to zero,
we have

H(T ; p1)
∞∑

j=1

pj−1
1

∫ jT

0
F (t) dt +

∞∑
j=1

pj−1
1 F (jT ) =

1
p2

, (7.52)

where

H(T ; p1) ≡
∑∞

j=1 pj−1
1 jf(jT )∑∞

j=1 pj−1
1 jF (jT )

.

It can be shown that the left-hand side of (7.52) is strictly increasing from
1/(1 − p1) to µH(∞; p1)/(1 − p1) when H(t; p1) is strictly increasing. Thus,
the optimum policy is:

(i) If H(T ; p1) is strictly increasing and H(∞; p1) > (1−p1)/(µp2) then there
exists a finite and unique T ∗

1 that satisfies (7.52), and the resulting MTTF
is

l(T ∗
1 ; p1, p2, p3) =

1 − p1

p2H(T ∗
1 ; p1)

. (7.53)

(ii) If H(T ; p1) is nonincreasing, or H(T ; p1) is strictly increasing and H(∞; p1) ≤
(1 − p1)/(µp2), then T ∗

1 = ∞; viz, no PM should be done, and the MTTF
is given in (7.51).

Next, we seek an optimum PM time T ∗
2 that maximizes the availability

A(T ; p1, p2, p3) in (7.50). Differentiating A(T ; p1, p2, p3) with respect to T and
setting it equal to zero imply

H(T ; p1)
∞∑

j=1

pj−1
1

∫ jT

0
F (t) dt +

∞∑
j=1

pj−1
1 F (jT ) =

β1

β1(1 − p1) − β2p3
. (7.54)

Note that β1(1 − p1) > β2p3 because β1 ≥ β2.
Thus, we have a similar optimum policy to the previous case. Also, it is of

interest that T ∗
1 ≥ T ∗

2 because β1/[β1(1 − p1) − β2p3] ≤ 1/p2.

Example 7.4. Consider a triple redundant system that consists of three units,
and fails when two or more units have failed. This system is a 2-out-of-3 system
and is applied to the design of a fail-safe system. The failure distribution of
the system is F (t) = 3e−2t − 2e−3t, and the mean time to failure is µ = 5/6.
In addition, we have
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H(t; p1) =
6
∑∞

j=1 pj−1
1 j(e−2jt − e−3jt)∑∞

j=1 pj−1
1 j(3e−2jt − 2e−3jt)

H(0; p1) = 0, H(∞; p1) = 2

dH(t; p1)
6 dt

=
1
D

⎡⎣6
∞∑

j=1

pj−1
1 j2(e−2jt − e−3jt)

∞∑
j=1

pj−1
1 j(e−2jt − e−3jt)

−
∞∑

j=1

pj−1
1 j2(2e−2jt − 3e−3jt)

∞∑
j=1

pj−1
1 j(3e−2jt − 2e−3jt)

⎤⎦
=

1
D

⎡⎣ ∞∑
j=1

∞∑
i=1

pi+j−2
1 (i2j)(3e−it − 2e−jt)e−2(i+j)t

⎤⎦ > 0,

where

D ≡
⎡⎣ ∞∑

j=1

pj−1
1 j(3e−2jt − 2e−3jt)

⎤⎦2

.

Thus, H(t; p1) is strictly increasing from 0 to 2.
Therefore, if 1 − p1 > (5/2)(β2/β1)p3 then there exists a finite and unique

T ∗
2 that satisfies

H(T ; p1)
6

⎧⎨⎩
∞∑

j=1

pj−1
1 [9(1 − e−2jT ) − 4(1 − e−3jT )]

⎫⎬⎭
+

∞∑
j=1

pj−1
1 (3e−2jT − 2e−3jT ) =

β1

β1(1 − p1) − β2p3

and otherwise, T ∗
2 = ∞.

Table 7.3 shows the optimum PM time T ∗
2 (×102) for p1 = 10−3, 10−2,

10−1, p3 = 10−4, 10−3, 10−2, 10−1, and β2/β1 = 0.1, 1.0. For example, when
p1 = 0.1, p3 = 0.01, and β2/β1 = 0.1, T ∗

2 = 1.72 × 10−2. If the MTTF of
each unit is 104 hours then T ∗

2 = 172 hours. These results indicate that the
system should be maintained about once a week. Furthermore, it is of great
interest that the optimum T ∗

2 depends considerably on the product of β2/β1
and p3, but depends little on p1. When (β2/β1)p3 = 10−4, 10−3, 10−2, 10−1,
the approximate optimum times T ∗

2 are 0.005, 0.018, 0.06, 0.28, respectively.

7.5 Sequential Imperfect Preventive Maintenance

We consider the following two PM policies, by introducing improvement fac-
tors [15,52] in failure rate and age for a sequential PM policy [53,54]: the PM
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Table 7.3. Optimum PM time T ∗
2 (×102) to maximize availability A(T ; p1, p2, p3)

for p1, p2 and β2/β1

β2/β1 = 0.1 β2/β1 = 1.0
p3 p1

10−3 10−2 10−1 10−3 10−2 10−1

10−4 0.183 0.181 0.166 0.582 0.578 0.529
10−3 0.582 0.578 0.529 1.88 1.87 1.72
10−2 1.88 1.87 1.72 6.42 6.37 5.98
10−1 6.42 6.37 5.98 28.1 28.1 27.6

is done at fixed intervals Tk (k = 1, 2, . . . , N − 1) and is replaced at the Nth
PM; if the system fails between PMs, it undergoes only minimal repair. The
PM is imperfect as follows.

(1) The age after the kth PM reduces to akt when it was t before PM.
(2) The failure rate after the kth PM becomes bkh(t) when it was h(t) in the

period of the kth PM.

The imperfect PM model that combines two policies was considered in [55].
The expected cost rates of two models are obtained and optimum sequences

{T ∗
k } are derived. When the failure time has a Weibull distribution, optimum

policies are computed explicitly.

(1) Model A – Age

Consider the sequential PM policy for a one-unit system for an infinite time
span. It is assumed that (see Figure 7.2):

1. The PM is done at fixed intervals Tk (k = 1, 2, . . . , N − 1) and is replaced
at the Nth PM; i.e., the unit is maintained preventively at successive
times T1 < T1 + T2 < · · · < T1 + T2 + · · · + TN−1 and is replaced at time
T1 + T2 + · · · + TN , where T0 ≡ 0.

2. The unit undergoes only minimal repair at failures between replacements
and becomes as good as new at replacement.

3. The age after the kth PM reduces to akt when it was t before PM; i.e.,
the unit with age t becomes t(1 − ak) units of time younger at the kth
PM, where 0 = a0 < a1 ≤ a2 ≤ · · · ≤ aN < 1.

4. Cost of each minimal repair is c1, cost of each PM is c2, and cost of
replacement at the Nth PM is c3.

5. The times for PM, repair, and replacement are negligible.

The unit is aged from ak−1(Tk−1 + ak−2Tk−2 + · · · + ak−2ak−3 . . . a2a1T1)
after the (k−1)th PM to Tk+ak−1(Tk−1+ak−2Tk−2+· · ·+ak−2ak−3 . . . a2a1T1)
before the kth PM, i.e., from ak−1Yk−1 to Yk, where Yk ≡ Tk +ak−1Tk + · · ·+
ak−1ak−2 + · · · + a2a1T1 (k = 1, 2, . . . ), which is the age immediately before
the kth PM. Thus, the expected cost rate is
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CA(Y1, Y2, . . . , YN ) =
c1
∑N

k=1

∫ Yk

ak−1Yk−1
h(t) dt + (N−1)c2 + c3∑N−1

k=1 (1 − ak)Yk + YN

(N = 1, 2, . . . ) (7.55)

because Tk = Yk − ak−1Yk−1 and
∑N

k=1 Tk =
∑N−1

k=1 (1 − ak)Yk + YN .
To find an optimum sequence {Yk} that minimizes CA(Y1, Y2, . . . , YN ),

differentiating CA(Y1, Y2, . . . , YN ) with respect to Yk and setting it equal to
zero,

h(Yk) − akh(akYk)
1 − ak

= h(YN ) (k = 1, 2, . . . , N − 1) (7.56)

c1h(YN ) = CA(Y1, Y2, . . . , YN ). (7.57)

Suppose that YN (0 < YN < ∞) is fixed. If h(t) is strictly increasing then
there exists some Yk (0 < Yk < YN ) that satisfies (7.56), because

h(0) − akh(0)
1 − ak

< h(YN ),
h(YN ) − akh(akYN )

1 − ak
> h(YN ).

Furthermore, if dh(t)/dt is also strictly increasing then a solution to (7.56) is
unique.

Thus, substituting each Yk into (7.57), its equation becomes a function of
YN only which is

h(YN )

[
N−1∑
k=1

(1 − ak)Yk + YN

]
−

N∑
k=1

∫ Yk

ak−1Yk−1

h(t) dt =
(N − 1)c2 + c3

c1
,

(7.58)

where each Yk (k = 1, 2, . . . , N − 1) is given by some function of YN . If there
exists a solution YN to (7.58) then a sequence {Yk} minimizes the expected
cost CA(Y1, Y2, . . . , YN ).

Finally, suppose that Y1, Y2, . . . , YN are determined from (7.56) and (7.58).
Then, from (7.57), the resulting cost rate is c1h(YN ), which is a function of
N . To complete an optimum PM schedule, we may seek an optimum number
N∗ that minimizes h(YN ).

From the above discussion, we can specify the computing procedure for
obtaining the optimum PM schedule.

1. Solve (7.56) and express Yk (k = 1, 2, . . . , N − 1) by a function of YN .
2. Substitute Yk into (7.58) and solve it with respect to YN .
3. Determine N∗ that minimizes h(YN ).
4. Compute T ∗

k (k = 1, 2, . . . , N∗) from Tk = Yk − ak−1Yk−1.
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(2) Model B – Failure rate

3. The failure rate after the kth PM becomes bkh(t) when it was h(t) before
PM; i.e., the unit has the failure rate Bkh(t) in the kth PM period, where
1 = b0 < b1 ≤ b2 ≤ · · · ≤ bN−1, Bk ≡ ∏k−1

j=0 bj (k = 1, 2, . . . , N) and
1 = B1 < B2 < · · · < BN .

1, 2, 4, 5. Same as the assumptions of Model A.
The expected cost rate is

CB(T1, T2, . . . , TN ) =
c1
∑N

k=1 Bk

∫ Tk

0 h(t) dt + (N − 1)c2 + c3

T1 + T2 + · · · + TN

(N = 1, 2, . . . ). (7.59)

Differentiating CB(T1, T2, . . . , TN ) with respect to Tk and setting it equal to
zero, we have

B1h(T1) = B2h(T2) = · · · = BNh(TN ) (7.60)
c1Bkh(Tk) = CB(T1, T2, . . . , TN ) (k = 1, 2, . . . , N). (7.61)

When the failure rate is strictly increasing to infinity, we can specify the
computing procedure for obtaining an optimum schedule.

1. Solve Bkh(Tk) = D and express Tk (k = 1, 2, . . . , N) by a function of D.
2. Substitute Tk into (7.60) and solve it with respect to D.
3. Determine N∗ that minimizes D.

Example 7.5. Suppose that the failure time has a Weibull distribution; i.e.,
h(t) = mtm−1 for m > 1. From the computing procedure of Model A, by
solving (7.56), we have

Yk =
(

1 − ak

1 − am
k

)1/(m−1)

YN (k = 1, 2, . . . , N − 1). (7.62)

Substituting Yk into (7.58) and arranging it,

YN =

[
(N − 1)c2 + c3

(m − 1)c1
∑N−1

k=0 dk

]1/m

, (7.63)

where

dk ≡ (1 − ak)
(

1 − ak

1 − am
k

)1/(m−1)

(k = 0, 1, 2, . . . , N − 1).

Next, we consider the problem that minimizes



7.5 Sequential Imperfect Preventive Maintenance 195

CA(N) ≡ (N−1)c2 + c3∑N−1
k=0 dk

(N = 1, 2, . . . ) (7.64)

which is the same problem as minimizing h(YN ), i.e., CA(Y1, Y2, . . . , YN ).
From the inequality CA(N + 1) ≥ CA(N), we have

LA(N) ≥ c3

c2
(N = 1, 2, . . . ), (7.65)

where

LA(N) ≡
N−1∑
k=0

dk

dN
− (N − 1) (N = 1, 2, . . . ). (7.66)

If dk is decreasing in k then LA(N) is increasing in N . Thus, there exists a
finite and unique minimum N∗ that satisfies (7.65) if LA(∞) > c3/c2.

We show that dk is decreasing in k from the assumption that ak < ak+1.
Let g(x) ≡ (1−x)m/(1−xm) (0 < x < 1) for m > 1. Then, g(x) is decreasing
from 1 to 0, and hence,

(1 − ak)m

1 − am
k

>
(1 − ak+1)m

1 − am
k+1

which follows that dk > dk+1. Furthermore, if ak → 1 as k → ∞ then

lim
k→∞

dk = lim
x→1

[g(x)]1/(m−1) = 0;

i.e., LA(N) → ∞ as N → ∞, and a finite N∗ exists uniquely.
Therefore, if ak → 1 as k → ∞ then an N∗ is a finite and unique minimum

that satisfies (7.65), and the optimum intervals are T ∗
k = Yk − ak−1Yk−1

(k = 1, 2, . . . , N∗), where Yk and YN are given in (7.62) and (7.63).
For Model B, by solving Bkh(Tk) = D, we have

Tk =
(

D

mBk

)1/(m−1)

(k = 1, 2, . . . , N). (7.67)

Substituting Tk into (7.61) and arranging it,

D =

[
(N − 1)c2 + c3

c1
(
1 − 1

m

)∑N
k=1 [(1/mBk)]1/(m−1)

](m−1)/m

(7.68)

which is a function of N . Let us denote D by D(N). Then, from the inequality
D(N + 1) ≥ D(N), an N∗ to minimize D is given by a unique minimum that
satisfies

LB(N) ≥ c3

c2
(N = 1, 2, . . . ), (7.69)
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Table 7.4. Optimum N∗ and PM intervals of Model A when c1/c2 = 3

c3/c2 2 5 10 20 40
N∗ 1 2 4 7 11
T1 0.54 0.82 1.07 1.40 1.84
T2 0.82 0.43 0.56 0.74
T3 0.28 0.36 0.48
T4 0.92 0.27 0.35
T5 0.21 0.28
T6 0.18 0.23
T7 1.13 0.20
T8 0.17
T9 0.15
T10 0.14
T11 1.45

Table 7.5. Optimum N∗ and PM intervals of Model B when c1/c2 = 3

c3/c2 2 5 10 20 40
N∗ 2 3 4 5 6
T1 0.77 1.06 1.37 1.82 2.45
T2 0.52 0.71 0.92 1.21 1.64
T3 0.43 0.55 0.73 0.98
T4 0.31 0.42 0.56
T5 0.23 0.31
T6 0.17

where

LB(N) ≡
N∑

k=1

(
BN+1

Bk

)1/(m−1)

− (N − 1) (N = 1, 2, . . . )

which is increasing in N because Bk is increasing in k. Also, if Bk → ∞ as
k → ∞ then LB(N) → ∞ as N → ∞, and hence, a finite N∗ exists uniquely
in (7.69), and the optimum intervals T ∗

k (k = 1, 2, . . . , N∗) are given in (7.67)
and (7.68).

Tables 7.4 and 7.5 present the optimum number N∗ and the PM intervals
T ∗

1 , T ∗
2 , . . . , T ∗

N for c3/c2 = 2, 5, 10, 20, 40, where c1/c2 = 3, m = 2, and
ak = k/(k + 1), bk = 1 + k/(k + 1) (k = 0, 1, 2, . . . ). These examples show
that T ∗

1 > T ∗
2 > · · · > T ∗

N for Model B, but T ∗
1 > T ∗

N > T ∗
2 for c3/c2 = 10, 20,

40 of Model A. This indicates that it would be reasonable to do frequent PM
with age, but it would be better to do the last PM as late as possible because
the system should be replaced at the next PM. Figure 7.2 shows the graph of
Model A for time and age when c3/c2 = 10.
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Fig. 7.2. Graph of Model A when c3/c2 = 10
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