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Periodic Replacement

When we consider large and complex systems that consist of many kinds of
units, we should make only minimal repair at each failure, and make the
planned replacement or do preventive maintenance at periodic times. We con-
sider the following replacement policy which is called periodic replacement
with minimal repair at failures [1]. A unit is replaced periodically at planned
times kT (k = 1, 2, . . . ). Only minimal repair after each failure is made so
that the failure rate remains undisturbed by any repair of failures between
successive replacements.

This policy is commonly used with complex systems such as computers
and airplanes. A practical procedure for applying the policy to large motors
and small electrical parts was given in [2]. More general cost structures and
several modified models were provided in [3–11]. On the other hand, the policy
regarding the version that a unit is replaced at the Nth failure and (N −
1)th previous failures are corrected with minimal repair proposed in [12]. The
stochastic models to describe the failure pattern of repairable units subject
to minimal maintenance are dealt with [13].

This chapter summarizes the periodic replacement with minimal repair
based on our original work with reference to the book [1]. In Section 4.1, we
make clear the theoretical definition of minimal repair, and give some use-
ful theorems that can be applied to the analysis of optimum policies [14].
In Section 4.2, we consider the periodic replacement policy in which a unit
is replaced at planned time T and any failed units undergo minimal repair
between replacements. We obtain the expected cost rate as an objective func-
tion and analytically derive an optimum replacement time T ∗ that minimizes
it [15]. In Section 4.3, we propose the extended replacement policy in which a
unit is replaced at time T or at the Nth failure, whichever occurs first. Using
the results in Section 4.1, we derive an optimum number N∗ that minimizes
the expected cost rate for a specified T [16–18]. Furthermore, in Section 4.4,
we show five models of replacement with discounting and replacement in dis-
crete time [15], replacement of a used unit [15], replacement with random and
wearout failures, and replacement with threshold level [19]. Finally, in Sec-
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96 4 Periodic Replacement

tion 4.5, we introduce periodic replacements with two types of failures [16]
and with two types of units [20].

4.1 Definition of Minimal Repair

Suppose that a unit begins to operate at time 0. If a unit fails then it undergoes
minimal repair and begins to operate again. It is assumed that the time for
repair is negligible. Let us denote by 0 ≡ Y0 ≤ Y1 ≤ · · · ≤ Yn ≤ · · · the
successive failure times of a unit. The times between failures Xn ≡ Yn −Yn−1
(n = 1, 2, . . . ) are nonnegative random variables.

We define to make minimal repair at failure as follows.

Definition 4.1. Let F (t) ≡ Pr{X1 ≤ t} for t ≥ 0. A unit undergoes minimal
repair at failures if and only if

Pr{Xn ≤ x|X1+X2+ · · ·+Xn−1 = t} =
F (t + x)−F (t)

F (t)
(n = 2, 3, . . . ) (4.1)

for x > 0, t ≥ 0 such that F (t) < 1, where F ≡ 1 − F .

The function [F (t+x)−F (t)]/F (t) is called the failure rate and represents
the probability that a unit with age t fails in a finite interval (t, t + x]. The
definition means that the failure rate remains undisturbed by any minimal
repair of failures; i.e., a unit after each minimal repair has the same failure
rate as before failure.

Assume that F (t) has a density function f(t) and h(t) ≡ f(t)/F (t), which
is continuous. The function h(t) is also called the instantaneous failure rate
or simply the failure rate and has the same monotone property as [F (t+x)−
F (t)]/F (t) as shown in Section 1.1. Moreover, H(t) ≡ ∫ t

0 h(u)du is called the
cumulative hazard function and satisfies a relation F (t) = e−H(t).

Theorem 4.1. Let Gn(x) ≡ Pr{Yn ≤ x} and Fn(x) ≡ Pr{Xn ≤ x}
(n = 1, 2, . . . ). Then,

Gn(x) = 1 −
n−1∑
j=0

[H(x)]j

j!
e−H(x) (n = 1, 2, . . . ) (4.2)

Fn(x) = 1 −
∫ ∞

0
F (t + x)

[H(t)]n−2

(n − 2)!
h(t) dt (n = 2, 3, . . . ). (4.3)

Proof. By mathematical induction, we have
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G1(x) = F1(x) = F (x)

Gn+1(x) =
∫ ∞

0
Pr{Xn+1 ≤ x − t|Yn = t} dGn(t)

=
∫ x

0

F (x) − F (t)
F (t)

[H(t)]n−1

(n − 1)!
f(t) dt

= 1 −
n−1∑
j=0

[H(x)]j

j!
e−H(x) − e−H(x)

∫ x

0

[H(t)]n−1

(n − 1)!
h(t) dt

= 1 −
n∑

j=0

[H(x)]j

j!
e−H(x) (n = 1, 2, . . . ).

Similarly,

Fn+1(x) =
∫ ∞

0
Pr{Xn+1 ≤ x|Yn = t} dGn(t)

=
∫ ∞

0

F (t + x) − F (t)
F (t)

[H(t)]n−1

(n − 1)!
f(t) dt

= 1 −
∫ ∞

0
F (t + x)

[H(t)]n−1

(n − 1)!
h(t) dt (n = 1, 2, . . . ).

It easily follows from Theorem 4.1 that

E{Yn} ≡
∫ ∞

0
Gn(x)dx =

n−1∑
j=0

∫ ∞

0

[H(x)]j

j!
e−H(x) dx (n = 1, 2, . . . ) (4.4)

E{Xn} = E{Yn} − E{Yn−1} =
∫ ∞

0

[H(x)]n−1

(n − 1)!
e−H(x) dx (n = 1, 2, . . . ).

(4.5)
In particular, when F (t) = 1 − e−λt, i.e., H(t) = λt,

Fn(x) = 1 − e−λx, Gn(x) = 1 −
n−1∑
j=0

(λx)j

j!
e−λx (n = 1, 2, . . . )

E{Xn} =
1
λ

, E{Yn} =
n

λ
.

Let N(t) be the number of failures of a unit during [0, t]; i.e., N(t) ≡
maxn{Yn ≤ t}. Clearly,

pn(t) ≡ Pr{N(t) = n} = Pr{Yn ≤ t < Yn+1} = Gn(t) − Gn+1(t)

=
[H(t)]n

n!
e−H(t) (n = 0, 1, 2, . . . ) (4.6)
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and moreover,
E{N(t)} = V {N(t)} = H(t); (4.7)

that is, failures occur at a non-homogeneous Poisson process with mean-value
function H(t) in Section 1.3 [21].

Next, assume that the failure rate [F (t+x)−F (t)]/F (t) or h(t) is increasing
in t for x > 0, t ≥ 0. Then, there exists limt→∞ h(t) ≡ h(∞), which may
possibly be infinity.

Theorem 4.2. If the failure rate is increasing then E{Xn} is decreasing
in n, and converges to 1/h(∞) as n → ∞, where 1/h(∞) = 0 whenever
h(∞) = ∞.

Proof. Let

γ(t) ≡
∫ ∞

0

[
1 − F (t + x) − F (t)

F (t)

]
dx

which represents the mean residual lifetime of a unit with age t. Then, γ(t) is
decreasing in t from the assumption that [F (t + x) − F (t)]/F (t) is increasing,
and

lim
t→∞ γ(t) = lim

t→∞
1

F (t)

∫ ∞

t

F (x)dx =
1

h(∞)
.

Furthermore, noting from (4.1) that

E{Xn+1} = E{γ(Yn)}

and using the relation Yn+1 ≥ Yn, we have the inequality

E{Xn+1} = E{γ(Yn)} ≤ E{γ(Yn−1)} = E{Xn} (n = 1, 2, . . . ).

Therefore, because Yn → ∞ as n → ∞, we have, by monotone convergence,

lim
n→∞ E{γ(Yn)} =

1
h(∞)

which completes the proof.

Theorem 4.3. If failure rate h(t) is increasing then∫ T

0 {[H(t)]n/n!}f(t) dt∫ T

0 {[H(t)]n/n!}F (t) dt
(4.8)

is increasing in n and converges to h(T ) as n → ∞ for any T > 0.

Proof. Letting
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q(T ) ≡
∫ T

0
[H(t)]n+1f(t) dt

∫ T

0
[H(t)]nF (t) dt

−
∫ T

0
[H(t)]nf(t) dt

∫ T

0
[H(t)]n+1F (t) dt

we obviously have that limT→0 q(T ) = 0, and because h(t) is increasing,

dq(T )
dT

= [H(T )]nF (T )
∫ T

0
[H(t)]nF (t)[H(T ) − H(t)][h(T ) − h(t)] dt ≥ 0.

Thus, q(T ) is increasing in T from 0, and hence, q(T ) ≥ 0 for all T > 0, which
implies that the function (4.8) is increasing in n.

Next, to prove that the function (4.8) converges to h(T ) as n → ∞, we
introduce the following result. If φ(t) and ψ(t) are continuous, φ(b) 	= 0 and
ψ(b) 	= 0, then for 0 ≤ a < b,

lim
n→∞

∫ b

a
tnφ(t) dt∫ b

a
tnψ(t) dt

=
φ(b)
ψ(b)

. (4.9)

For, putting t = bx, c = a/b, φ(bx) = f(x), and ψ(bx) = g(x), Equation (4.9)
is rewritten as

lim
n→∞

∫ 1
c

xnf(x) dx∫ 1
c

xng(x) dx
=

f(1)
g(1)

.

This is easily shown from the fact that

lim
n→∞(n + 1)

∫ 1

c

xnf(x) dx = f(1)

for any c (0 ≤ c < 1). Thus, letting H(t) = x in (4.8) and using (4.9), it
follows that

lim
n→∞

∫ T

0 {[H(t)]n/n!}f(t) dt∫ T

0 {[H(t)]n/n!}F (t) dt
= lim

n→∞

∫H(T )
0 xne−x dx∫H(T )

0 xne−x/h(H−1(x)) dx
= h(T ),

where H−1(x) is the inverse function of x = H(t).

In particular, when F (t) = 1 − e−λt,∫ T

0 {[H(t)]n/n!}f(t) dt∫ T

0 {[H(t)]n/n!}F (t) dt
= λ (n = 0, 1, 2, . . . ).

Let G(t) represent any distribution with failure rate r(t) ≡ g(t)/G(t) and
finite mean, where g(t) is a density function of G(t) and G ≡ 1 − G.

Theorem 4.4. If both h(t) and r(t) are continuous and increasing then
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0 {[H(t)]n−1/(n − 1)!}G(t)f(t) dt∫∞

0 {[H(t)]n/n!}G(t)F (t) dt
(4.10)

is increasing in n and converges to h(∞) + r(∞) as n → ∞.

Proof. Integrating by parts, we have∫ ∞

0

[H(t)]n−1

(n − 1)!
G(t)f(t) dt =

∫ ∞

0

[H(t)]n

n!
G(t)f(t) dt +

∫ ∞

0

[H(t)]n

n!
F (t)g(t) dt.

First, we show ∫∞
0 [H(t)]nG(t)f(t) dt∫∞
0 [H(t)]nG(t)F (t) dt

(4.11)

is increasing in n when h(t) is increasing. By a similar method to that of
proving Theorem 4.3, letting

q(T ) ≡
∫ T

0
[H(t)]n+1G(t)f(t) dt

∫ T

0
[H(t)]nG(t)F (t) dt

−
∫ T

0
[H(t)]nG(t)f(t) dt

∫ T

0
[H(t)]n+1G(t)F (t) dt

for any T > 0, we have limT→0 q(T ) = 0 and dq(T )/dT ≥ 0. Thus, q(T ) ≥ 0
for all T > 0, and hence, the function (4.11) is increasing in n. Similarly,∫∞

0 [H(t)]nF (t)g(t) dt∫∞
0 [H(t)]nF (t)G(t) dt

(4.12)

is also increasing in n. Therefore, from (4.11) and (4.12), the function (4.10)
is also increasing in n.

Next, we show that

lim
n→∞

∫∞
0 [H(t)]nG(t)f(t) dt∫∞
0 [H(t)]nG(t)F (t) dt

= h(∞). (4.13)

Clearly, ∫∞
0 [H(t)]nG(t)f(t) dt∫∞
0 [H(t)]nG(t)F (t) dt

≤ h(∞).

On the other hand, we have, for any T > 0,∫∞
0 [H(t)]nG(t)f(t) dt∫∞
0 [H(t)]nG(t)F (t) dt

=

∫ T

0 [H(t)]nG(t)f(t) dt +
∫∞

T
[H(t)]nG(t)f(t) dt∫ T

0 [H(t)]nG(t)F (t) dt +
∫∞

T
[H(t)]nG(t)F (t) dt

≥ h(T )
∫∞

T
[H(t)]nG(t)F (t) dt∫ T

0 [H(t)]nG(t)F (t) dt +
∫∞

T
[H(t)]nG(t)F (t) dt

=
h(T )

1 + {∫ T

0 [H(t)]nG(t)F (t) dt /
∫∞

T
[H(t)]nG(t)F (t) dt}

.
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Furthermore, the bracket of the denominator is, for T < T1,∫ T

0 [H(t)]nG(t)F (t) dt∫∞
T

[H(t)]nG(t)F (t) dt
≤ [H(T )]n

∫ T

0 G(t)F (t) dt∫∞
T1

[H(t)]nG(t)F (t) dt

≤ [H(T )]n

[H(T1)]n

∫ T

0 G(t)F (t) dt∫∞
T1

G(t)F (t) dt
→ 0 as n → ∞.

Thus, we have

h(∞) ≥ lim
n→∞

∫∞
0 [H(t)]nG(t)f(t) dt∫∞
0 [H(t)]nG(t)F (t) dt

≥ h(T )

which implies (4.13) because T is arbitrary. Similarly,

lim
n→∞

∫∞
0 [H(t)]nF (t)g(t) dt∫∞
0 [H(t)]nF (t)G(t) dt

= r(∞). (4.14)

Therefore, combining (4.13) and (4.14), we complete the proof.

From Theorems 4.3 and 4.4, we easily have that for any function φ(t) that
is continuous and φ(t) 	= 0 for any t > 0, if the failure rate h(t) is increasing
then ∫ T

0 {[H(t)]n/n!}φ(t)f(t) dt∫ T

0 {[H(t)]n/n!}φ(t)F (t) dt
(4.15)

is increasing in n and converges to h(T ) as n → ∞ for any T > 0.
In all results of Theorems 4.2 through 4.4 it can easily be seen that if the

failure rates are strictly increasing then E{Xn}, the functions (4.8), (4.10),
and (4.15) are also strictly increasing.

4.2 Periodic Replacement with Minimal Repair

A new unit begins to operate at time t = 0, and when it fails, only minimal
repair is made. Also, a unit is replaced at periodic times kT (k = 1, 2, . . . )
independent of its age, and any unit becomes as good as new after replace-
ment (Figure 4.1). It is assumed that the repair and replacement times are
negligible. Suppose that the failure times of a unit have a density function
f(t) and a distribution F (t) with finite mean µ ≡ ∫∞

0 F (t)dt < ∞ and its
failure rate h(t) ≡ f(t)/F (t).

Consider one cycle with constant time T (0 < T ≤ ∞) from the planned
replacement to the next one. Let c1 be the cost of minimal repair and c2 be
the cost of the planned replacement. Then, the expected cost of one cycle is,
from (3.2),
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Planned replacement Minimal repair at failure

(k − 1)T kT (k + 1)T

Fig. 4.1. Process of periodic replacement with minimal repair

c1E{N1(T )} + c2E{N2(T )} = c1H(T ) + c2

because the expected number of failures during one cycle is E{N1(T )} =∫ T

0 h(t)dt ≡ H(T ) from (4.7). Therefore, from (3.3), the expected cost rate
is [1, p. 99],

C(T ) =
1
T

[c1H(T ) + c2]. (4.16)

If a unit is never replaced (i.e., T = ∞) then limT→∞ H(T )/T = h(∞) if it
exists, which may possibly be infinite, and C(∞) ≡ limT→∞ C(T ) = c1h(∞).

Furthermore, suppose that a unit is replaced when the total operating time
is T . Then, the availability is given by

A(T ) =
T

T + β1H(T ) + β2
, (4.17)

where β1 = time of minimal repair and β2 = time of replacement. Thus, the
policy maximizing A(T ) is the same as minimizing the expected cost rate
C(T ) in (4.16) by replacing βi with ci.

We seek an optimum planned time T ∗ that minimizes the expected cost
rate C(T ) in (4.16). Differentiating C(T ) with respect to T and setting it
equal to zero, we have

Th(T ) − H(T ) =
c2

c1
or

∫ T

0
t dh(t) =

c2

c1
. (4.18)

Suppose that the failure rate h(t) is continuous and strictly increasing.
Then, the left-hand side of (4.18) is also strictly increasing because

(T + ∆T )h(T + ∆T ) − H(T + ∆T ) − Th(T ) + H(T )

= T [h(T + ∆T ) − h(T )] +
∫ T+∆T

T

[h(T + ∆T ) − h(t)] dt > 0

for any ∆T > 0. Thus, if a solution T ∗ to (4.18) exists then it is unique, and
the resulting cost rate is

C(T ∗) = c1h(T ∗). (4.19)

In addition, if
∫∞
0 tdh(t) > c2/c1 then there exists a finite solution to (4.18).

Also, from (4.18),
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c2

c1

T

h(T ∗)

h(T )

0 T ∗

H(T ∗)

Fig. 4.2. Optimum T ∗ for failure rate h(T )

Th(T ) − H(T ) > T1h(T ) − H(T1)

for any T > T1. Thus, if h(t) is strictly increasing to infinity then there exists
a finite and unique T ∗ that satisfies (4.18).

When h(t) is strictly increasing, we have, from Theorem 3.3,

Th(T ) −
∫ T

0
h(t) dt ≥ h(T )

∫ T

0
F (t) dt − F (T )

whose right-hand side agrees with (3.9). That is, an optimum T ∗ is not greater
than that of an age replacement in Section 3.1. Thus, from Theorem 3.2, if
h(∞) > (c1 + c2)/(µc1) then a finite solution to (4.18) exists.

Figure 4.2 shows graphically an optimum time T ∗ given in (4.18) for the
failure rate h(T ). If h(T ) were roughly drawn then T ∗ could be given by the
time when the area covered with slash lines becomes equal to the ratio of
c2/c1. So that, when h(T ) is a concave function, H(T ∗) > c2/c1, and when
h(T ) is a convex function, H(T ∗) < c2/c1. For example, when the failure
distribution is Weibull, i.e., F (t) = 1− exp(−tm) (m > 1), H(T ∗) > c2/c1 for
1 < m < 2, = c2/c1 for m = 2 and < c2/c1 for m > 2. If the cumulative hazard
function H(t) were statistically estimated, the replacement time that satisfies
H(T ) = c2/c1 could be utilized as one indicator of replacement time [22] (see
Example 3.1 in Chapter 3).

If the cost of minimal repair depends on the age t of a unit and is given
by c1(t), the expected cost rate is

C(T ) =
1
T

[∫ T

0
c1(t)h(t) dt + c2

]
. (4.20)

Finally, we consider a system consisting of n identical units that operate
independently of each other. It is assumed that all are replaced together at
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times kT (k = 1, 2, . . . ) and each failed unit between replacements undergoes
minimal repair. Then, the expected cost rate is

C(T ; n) =
1
T

[nc1H(T ) + c2], (4.21)

where c1 = cost of minimal repair for one failed unit, and c2 = cost of planned
replacement for all units at time T .

4.3 Periodic Replacement with Nth Failure

A unit is replaced at time T or at the Nth (N = 1, 2, . . . ) failure after its
installation, whichever occurs first, where T is a positive constant and pre-
viously specified. A unit undergoes only minimal repair at failures between
replacements. This policy is called Policy IV [12].

From Theorem 4.1, the mean time to replacement is

T Pr{YN > T} +
∫ T

0
t dPr{YN ≤ t} =

∫ T

0
Pr{YN > t} dt

=
N−1∑
j=0

∫ T

0
pj(t) dt,

where pj(t) is given in (4.6), and the expected number of failures before re-
placement is

N−1∑
j=0

j Pr{N(T ) = j} + (N − 1) Pr{YN ≤ T}

= N − 1 −
N−1∑
j=0

(N − 1 − j)pj(T ).

Therefore, from (3.3), the expected cost rate is

C(N ; T ) =
c1

[
N − 1 −∑N−1

j=0 (N − 1 − j)pj(T )
]

+ c2∑N−1
j=0

∫ T

0 pj(t) dt
(N = 1, 2, . . . ),

(4.22)

where c1 = cost of minimal repair and c2 = cost of planned replacement at
time T or at number N . It is evident that

C(∞; T ) ≡ lim
N→∞

C(N ; T ) =
1
T

[c1H(T ) + c2]

which agrees with (4.16) for the periodic replacement with planned time T .
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Let T ∗ be the optimum time that minimizes C(∞; T ) and is given by
a unique solution to (4.18) if it exists, or T ∗ = ∞ if it does not. We seek
an optimum number N∗ such that C(N∗; T ) = minN C(N ; T ) for a fixed
0 < T ≤ ∞, when the failure rate h(t) is continuous and strictly increasing.

Theorem 4.5. Suppose that 0 < T ∗ ≤ ∞.

(i) If T > T ∗ then there exists a finite and unique minimum N∗ that satisfies

L(N ; T ) ≥ c2

c1
(N = 1, 2, . . . ), (4.23)

where

L(N ; T ) ≡
∑∞

j=N pj(T )
∑N−1

j=0

∫ T

0 pj(t) dt∫ T

0 pN (t) dt

−
⎡⎣N − 1 −

N−1∑
j=0

(N − 1 − j)pj(T )

⎤⎦ (N = 1, 2, . . . ).

(ii) If T ≤ T ∗ or T ∗ = ∞ then no N∗ satisfying (4.23) exists.

Proof. For simplicity of computation, we put C(0; T ) = ∞. To find an
N∗ that minimizes C(N ; T ) for a fixed T , we form the inequality C(N +
1; T ) ≥ C(N ; T ), and have (4.23). Hence, we may seek a minimum N∗ that
satisfies (4.23).

Using the relation

∞∑
j=N+1

[H(T )]j

j!
e−H(T ) =

∫ T

0

[H(t)]N

N !
dF (t) (N = 0, 1, 2, . . . )

we have, from Theorem 4.3,

L(N + 1;T ) − L(N ; T )

=
N∑

j=0

∫ T

0
pj(t) dt

[∑∞
j=N+1 pj(T )∫ T

0 pN+1(t) dt
−
∑∞

j=N pj(T )∫ T

0 pN (t) dt

]
> 0

and
L(∞;T ) ≡ lim

N→∞
L(N ; T ) = Th(T ) − H(T )

which is equal to the left-hand side of (4.18) and is strictly increasing in T .
Suppose that 0 < T ∗ < ∞. If L(∞;T ) > c2/c1, i.e., T > T ∗, then there

exists a finite and unique minimum N∗ that satisfies (4.23). On the other
hand, if L(∞;T ) ≤ c2/c1, i.e., T ≤ T ∗, then C(N ; T ) is decreasing in N , and
no solution satisfying (4.23) exists. Finally, if T ∗ = ∞ then no solution to
(4.23) exists inasmuch as L(∞;T ) < c2/c1 for all T .
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This theorem describes that when a unit is planned to be replaced at time
T > T ∗ for some reason, it also should be replaced at the N∗th failure before
time T .

If c2 is the cost of planned replacement at the Nth failure and c3 is the
cost at time T , then the expected cost rate in (4.22) is rewritten as

C(N ; T ) =

c1

[
N− 1 −∑N−1

j=0 (N− 1 − j)pj(T )
]

+ c2
∑∞

j=N pj(T ) + c3
∑N−1

j=0 pj(T )∑N−1
j=0

∫ T

0 pj(t) dt
. (4.24)

Similar replacement policies were discussed in [23–33].
Next, suppose that a unit is replaced only at the Nth failure. Then, the

expected cost rate is, from (4.22),

C(N) ≡ lim
T→∞

C(N ; T ) =
c1(N − 1) + c2∑N−1
j=0

∫∞
0 pj(t) dt

(N = 1, 2, . . . ). (4.25)

In a similar way to that of obtaining Theorem 4.5, we derive an optimum
number N∗ that minimizes C(N).

Theorem 4.6. If h(∞) > c2/(µc1) then there exists a finite and unique
minimum N∗ that satisfies

L(N) ≥ c2

c1
(N = 1, 2, . . . ) (4.26)

and the resulting cost rate is

c1∫∞
0 pN∗−1(t) dt

< C(N∗) ≤ c1∫∞
0 pN∗(t) dt

, (4.27)

where

L(N) ≡ lim
T→∞

L(N ; T ) =

∑N−1
j=0

∫∞
0 pj(t) dt∫∞

0 pN (t) dt
− (N − 1) (N = 1, 2, . . . ).

Proof. The inequality C(N +1) ≥ C(N) implies (4.26). It is easily seen that
L(N + 1) − L(N) > 0 from Theorem 4.2. Thus, if a solution to (4.26) exists
then it is unique.

Furthermore, we have the inequality

L(N) ≥ µ∫∞
0 pN (t) dt

(4.28)

because
∫∞
0 pN (t)dt is decreasing in N from Theorem 4.2. Therefore, if

lim
N→∞

µ∫∞
0 pN (t) dt

>
c2

c1
,
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i.e., if h(∞) > c2/(µc1), then a solution to (4.26) exists, and it is unique.
Also, we easily have (4.27) from the inequalities L(N∗ − 1) < c2/c1 and
L(N∗) ≥ c2/c1.

Suppose that h(∞) > c2/(µc1). Then, from (4.28), there exists a finite and
unique minimum N that satisfies∫ ∞

0
pN (t) dt ≤ µc1

c2
(N = 1, 2, . . . ) (4.29)

and N∗ ≤ N .

Example 4.1. Suppose that the failure time of a unit has a Weibull distribu-
tion; i.e., F (t) = exp(−tm) for m > 1. Then, h(t) is strictly increasing from
0 to infinity, and ∫ ∞

0

[H(t)]N

N !
e−H(t) dt =

1
m

Γ (N + 1/m)
Γ (N + 1)

N−1∑
j=0

∫ ∞

0

[H(t)]j

j!
e−H(t) dt =

Γ (N + 1/m)
Γ (N)

.

Thus, there exists a finite and unique minimum that satisfies (4.26), which is
given by

N∗ =
[

c2 − c1

(m − 1)c1

]
+ 1,

where [x] denotes the greatest integer contained in x.

4.4 Modified Replacement Models

We show the following modified models of periodic replacement with mini-
mal repair at failures: (1) replacement with discounting, (2) replacement in
discrete time, (3) replacement of a used unit, (4) replacement with random
and wearout failures, and (5) replacement with threshold level. The detailed
derivations are omitted and optimum policies for each model are directly
given.

(1) Replacement with Discounting

Suppose that all costs are discounted with rate α (0 < α < ∞). In a similar
way to that for obtaining (3.14) in (1) of Section 3.2, the total expected cost
for an infinite time span is

C(T ; α) =
c1
∫ T

0 e−αth(t) dt + c2e−αT

1 − e−αT
. (4.30)
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Differentiating C(T ; α) with respect to T and setting it equal to zero

1 − e−αT

α
h(T ) −

∫ T

0
e−αth(t) dt =

c2

c1
(4.31)

and the resulting cost rate is

C(T ∗; α) =
c1

α
h(T ∗) − c2. (4.32)

Note that limα→0 αC(T ; α) = C(T ) in (4.16), and (4.31) agrees with (4.18)
as α → 0.

(2) Replacement in Discrete Time

A unit is replaced at cycles kN (k = 1, 2, . . . ) and a failed unit between
planned replacements undergoes only minimal repair. Then, using the same
notation and methods in (2) of Section 3.2, the expected cost rate is

C(N) =
1
N

⎡⎣c1

N∑
j=1

hj + c2

⎤⎦ (N = 1, 2, . . . ) (4.33)

and an optimum number N∗ is given by a minimum solution that satisfies

NhN+1 −
N∑

j=1

hj ≥ c2

c1
(N = 1, 2, . . . ). (4.34)

(3) Replacement of a Used Unit

Consider the periodic replacement with minimal repair at failures for a used
unit. A unit is replaced at times kT (k = 1, 2, . . . ) by the same used unit with
age x, where x (0 ≤ x < ∞) is previously specified. Then, the expected cost
rate is, from (4.16),

C(T ; x) =
1
T

[
c1

∫ T+x

x

h(t) dt + c2(x)

]
, (4.35)

where c1 = cost of minimal repair and c2(x) = acquisition cost of a used unit
with age x which may be decreasing in x. In this case, (4.18) and (4.19) are
rewritten as

Th(T + x) −
∫ T+x

x

h(t) dt =
c2(x)

c1
(4.36)

C(T ∗; x) = c1h(T ∗ + x). (4.37)

Next, consider the problem that it is most economical to use a unit of a
certain age. Suppose that x is a variable, and inversely, T is constant and c2(x)
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is differentiable. Then, differentiating C(T ; x) with respect to x and setting it
equal to zero imply

h(T + x) − h(x) = −c′
2(x)
c1

(4.38)

which is a necessary condition that a finite x minimizes C(T ; x) for a fixed T .

(4) Replacement with Random and Wearout Failures

We consider a modified replacement policy for a unit with random and wearout
failure periods, where an operating unit enters a wearout failure period at a
fixed time T0, after it has operated continuously in a random failure period. It
is assumed that a unit is replaced at planned time T +T0, where T0 is constant
and previously given, and it undergoes only minimal repair at failures between
replacements [34,35].

Suppose that a unit has a constant failure rate λ for 0 < t ≤ T0 in a
random failure period and λ+h(t−T0) for t > T0 in a wearout failure period.
Then, the expected cost rate is

C(T ; T0) = c1λ +
c1H(T ) + c2

T + T0
. (4.39)

Thus, if h(t) is strictly increasing and there exists a solution T ∗ that satisfies

(T + T0)h(T ) − H(T ) =
c2

c1
(4.40)

then it is unique and the resulting cost rate is

C(T ∗; T0) = c1[λ + h(T ∗)]. (4.41)

Furthermore, it is easy to see that T ∗ is a decreasing function of T0 because
the left-hand side of (4.40) is increasing in T0 for a fixed T . Thus, an optimum
time T ∗ is less than the optimum one given in (4.18) as we have expected.

(5) Replacement with Threshold Level

Suppose that if more failures have occurred between periodic replacements
then the total cost would be higher than expected. For example, if more than
K failures have occurred and the number of K parts is needed for providing
against K − 1 spares during a planned interval, an extra cost would result
from the downtime, the ordering and delivery of spares, and repair. Let N(T )
be the total number of failures during (0, T ] and K be its threshold number.
Then, from (4.16) and (4.6), the expected cost rate is
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C(T ; K) =
1
T

[c1H(T ) + c2 + c3 Pr{N(T ) ≥ K}]

=
1
T

⎡⎣c1H(T ) + c2 + c3

∞∑
j=K

pj(T )

⎤⎦ , (4.42)

where c3 = additional cost when the number of failures has exceeded a thresh-
old level K.

4.5 Replacements with Two Different Types

Periodic replacement with minimal repair is modified and extended in several
ways. We show typical models of periodic replacement with (1) two types of
failures and (2) two types of units.

(1) Two Types of Failures

We may generally classify failure into failure modes: partial and total failures,
slight and serious failures, minor and major failures, or simply faults and
failures. Generalized replacement models of two types of failures were proposed
in [36–40].

Consider a unit with two types of failures. When a unit fails, type 1 failure
occurs with probability p (0 ≤ p ≤ 1) and is removed by minimal repair, and
type 2 failure occurs with probability 1 − p and is removed by replacement.
Type 1 failure is a minor failure that is easily restored to the same operating
state by minimal repair, and type 2 failure incurs a total breakdown and needs
replacement or repair.

A unit is replaced at the time of type 2 failure or Nth type 1 failure,
whichever occurs first. Then, the expected number of minimal repairs, i.e.,
type 1 failures before replacement, is

(N − 1)pN +
N∑

j=1

(j − 1)pj−1(1 − p) =

⎧⎨⎩
p − pN

1 − p
for 0 ≤ p < 1

N − 1 for p = 1.

Thus, the expected cost rate is, from (4.25),

C(N ; p) =
c1[(p − pN )/(1 − p)] + c2∑N−1

j=0 pj
∫∞
0 pj(t) dt

(N = 1, 2, . . . ) (4.43)

for 0 ≤ p < 1, where c1 = cost of minimal repair for type 1 failure and
c2 = cost of replacement at the Nth type 1 or type 2 failure. When p → 1,
C(N ; 1) ≡ limp→1 C(N ; p) is equal to (4.25) and the optimum policy is given
in Theorem 4.6. When p = 0, C(N ; 0) = c2/µ, which is constant for all N ,
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and a unit is replaced only at type 2 failure. Therefore, we need only discuss
an optimum policy in the case of 0 < p < 1 when the failure rate h(t) is
strictly increasing. To simplify equations, we denote µp ≡ ∫∞

0 [F (t)]p dt =∫∞
0 e−pH(t) dt. When p = 1, µ1 = µ which is the mean time to failure of a

unit.

Theorem 4.7. (i) If h(∞) > [c1p + c2(1 − p)]/[c1(1 − p)µ1−p] then there
exists a finite and unique minimum N∗(p) that satisfies

L(N ; p) ≥ c2

c1
(N = 1, 2, . . . ), (4.44)

where

L(N ; p) ≡
∑N−1

j=0 pj
∫∞
0 pj(t) dt∫∞

0 pN (t) dt
− p − pN

1 − p
(N = 1, 2, . . . ).

(ii) If h(∞) ≤ [c1p + c2(1 − p)]/[c1(1 − p)µ1−p] then N∗(p) = ∞, and the
resulting cost rate is

C(∞; p) ≡ lim
N→∞

C(N ; p) =
c1[p/(1 − p)] + c2

µ1−p
. (4.45)

Proof. The inequality C(N + 1; p) ≥ C(N ; p) implies (4.44). Furthermore,
it is easily seen from Theorem 4.2 that L(N ; p) is an increasing function of N ,
and hence, limN→∞ L(N ; p) = µ1−ph(∞)− [p/(1−p)]. Thus, in a similar way
to that of obtaining Theorem 4.6, if h(∞) > [c1p + c2(1 − p)]/[c1(1 − p)µ1−p]
then there exists a finite and unique minimum N∗(p) that satisfies (4.44). On
the other hand, if h(∞) ≤ [c1p+c2(1−p)]/[c1(1−p)µ1−p] then L(N ; p) < c2/c1
for all N , and hence, N∗(p) = ∞, and we have (4.45).

It is easily noted that ∂L(N ; p)/∂p > 0 for all N . Thus, if h(∞) > [c1p +
c2(1 − p)]/[c1(1 − p)µ1−p] for 0 < p < 1 then N∗(p) is decreasing in p, and
N ≥ N∗(p) ≥ N∗, where both N∗ and N exist and are given in (4.26) and
(4.29), respectively.

Until now, it has been assumed that the replacement costs for both the
Nth type 1 failure and type 2 failure are the same. In reality, they may be
different from each other. It is supposed that c2 is the replacement cost of the
Nth type 1 failure and c3 is the replacement cost of the type 2 failure. Then,
the expected cost rate in (4.43) is rewritten as

C(N ; p) =
c1[(p − pN )/(1 − p)] + c2p

N + c3(1 − pN )∑N−1
j=0 pj

∫∞
0 pj(t) dt

(N = 1, 2, . . . ).

(4.46)

Example 4.2. We compute an optimum number N∗(p) that minimizes the
expected cost rate C(N ; p) in (4.46) when F (t) = exp(−tm) for m > 1. When
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c2 = c3, it is shown from Theorem 4.7 that N∗(p) exists uniquely and is
decreasing in p for 0 < p < 1. Furthermore, when p = 1, N∗(p) is given in
Example 4.1. If c1 + (c3 − c2)(1 − p) > 0 then N∗(p) is given by a minimum
value such that

(1 − p)Γ (N + 1)
Γ (N + 1/m)

N−1∑
j=0

pjΓ (j + 1/m)
Γ (j + 1)

+ pN ≥ c1p + c3(1 − p)
c1 + (c3 − c2)(1 − p)

.

It is easily seen that N∗(p) is small when c1/c2 or c3/c2 for c2 > c1 is large.
Conversely, if c1 + (c3 − c2)(1 − p) ≤ 0 then N∗(p) = ∞.

Table 4.1. Variation in the optimum number N∗(p) for probability p of type 1
failure and ratio of c3 to c2 when m = 2 and c1/c2 = 0.1

c3/c2p
0.8 0.9 1.0 1.2 1.5 2.0 3.0

0.1 ∞ ∞ 30 6 2 1 1
0.2 ∞ ∞ 27 6 3 1 1
0.3 ∞ 220 24 6 3 2 1
0.4 ∞ 112 22 7 3 2 1
0.6 288 39 17 7 4 2 1
0.7 64 25 15 8 5 3 2
0.8 26 17 13 8 6 4 2
0.9 14 12 11 9 7 5 4
1.0 10 10 10 10 10 10 10

Table 4.1 gives the optimum number N∗(p) for probability p of type 1
failure and the ratio of cost c3 to cost c2 when m = 2 and c1/c2 = 0.1. It
is of great interest that N∗(p) is increasing in p for c3 > c2, however, it is
decreasing for c3 ≤ c2. We can explain the reason why N∗(p) is increasing in
p for c3/c2. If c3 > c2 then the replacement cost for type 1 failure is cheaper
than that for type 2 failure and the number of its failures increases with p, and
so, N∗(p) is large when p is large. This situation reflects a real situation. On
the other hand, if c3 ≤ c2 then it is not useful to replace the unit frequently
before type 2 failure, however, the total cost of minimal repairs for type 1
increases as the number of its failures does with p. Thus, it may be better to
replace the unit preventively at some number N when p is large. Evidently,
N∗(p) is rapidly increasing when c1 is small enough.

(2) Two Types of Units

Most systems consist of vital and nonvital parts or essential and nonessen-
tial units. If vital parts fail then a system becomes dangerous or incurs high
cost. It would be wise to make replacements or overhauls before failure at
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periodic times. The optimum replacement policies for systems with two units
were derived in [42–48]. Furthermore, the optimum inspection schedule of a
production system [49] and a storage system [50] with two types of units was
studied.

Consider a system with two types of units that operate statistically in-
dependently. When unit 1 fails, it undergoes minimal repair instantaneously
and begins to operate again. When unit 2 fails, the system is replaced with-
out repairing unit 2. Unit 1 has a failure distribution F1(t), the failure rate
h1(t) and H1(t) ≡ ∫ t

0 h1(u)du, which have the same assumptions as those in
Section 4.2, whereas unit 2 has a failure distribution F2(t) with finite mean
µ2 and the failure rate h2(t), where F i ≡ 1 − Fi (i = 1, 2).

Suppose that the system is replaced at the time of unit 2 failure or Nth
unit 1 failure, whichever occurs first. Then, the mean time to replacement is

N−1∑
j=0

∫ ∞

0
tpj(t) dF2(t) +

∫ ∞

0
tF 2(t)pN−1(t)h1(t) dt =

N−1∑
j=0

∫ ∞

0
F 2(t)pj(t) dt,

where pj(t) = {[H1(t)]j/j!}e−H1(t) (j = 0, 1, 2, . . . ), and the expected number
of minimal repairs before replacement is

N−1∑
j=0

j

∫ ∞

0
pj(t) dF2(t) + (N − 1)

∫ ∞

0
F 2(t)pN−1(t)h1(t) dt

=
N−2∑
j=0

∫ ∞

0
F 2(t)pj(t)h1(t) dt,

where
∑−1

j=0 ≡ 0. Thus, the expected cost rate is

C(N) =
c1
∑N−2

j=0

∫∞
0 F 2(t)pj(t)h1(t) dt + c2∑N−1

j=0

∫∞
0 F 2(t)pj(t) dt

(N = 1, 2, . . . ). (4.47)

When F 2(t) ≡ 1 for t ≥ 0, C(N) is equal to (4.25), and when F 2(t) ≡ 1 for
t ≤ T and 0 for t > T , this is equal to (4.22).

We have the following optimum number N∗ that minimizes C(N).

Theorem 4.8. Suppose that h1(t) is continuous and increasing. If there
exists a minimum N∗ that satisfies

L(N) ≥ c2

c1
(N = 1, 2, . . . ) (4.48)

then it is unique and it minimizes C(N), where
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L(N) ≡
∫∞
0 F 2(t)pN−1(t)h1(t) dt∫∞

0 F 2(t)pN (t) dt

N−1∑
j=0

∫ ∞

0
F 2(t)pj(t) dt

−
N−2∑
j=0

∫ ∞

0
F 2(t)pj(t)h1(t) dt (N = 1, 2, . . . ).

Proof. The inequality C(N + 1) ≥ C(N) implies (4.48). In addition,

L(N + 1) − L(N) =
N∑

j=0

∫ ∞

0
F 2(t)pj(t) dt

×
[∫∞

0 F 2(t)pN (t)h1(t) dt∫∞
0 F 2(t)pN+1(t) dt

−
∫∞
0 F 2(t)pN−1(t)h1(t) dt∫∞

0 F 2(t)pN (t) dt

]
≥ 0

because
∫∞
0 F 2(t)pN (t)h1(t)dt/

∫∞
0 F 2(t)pN+1(t)dt is increasing in N from

Theorem 4.4, when h1(t) is increasing. Thus, if a minimum solution to (4.48)
exists then it is unique.

Furthermore, we also have, from Theorem 4.4,

L(∞) ≡ lim
N→∞

L(N) = µ2[h1(∞) + h2(∞)] −
∫ ∞

0
F 2(t)h1(t) dt.

Thus, if h1(t)+h2(t) is strictly increasing and h1(∞)+h2(∞) > (1/µ2)[(c2/c1)
+
∫∞
0 F 2(t)h1(t) dt] then there exists a finite and unique minimum N∗ that

satisfies (4.48). For example, suppose that h2(t) is strictly increasing and h1(t)
is increasing. Then, because L(∞) ≥ µ2h2(∞), if h2(∞) > c2/(µ2c1) then a
finite minimum to (4.48) exists uniquely.

If c2 is the replacement cost of the Nth failure of unit 1 and c3 is the
replacement cost of unit 2 failure, then the expected cost rate C(N) in (4.47)
is rewritten as

C(N) =

c1
∑N−2

j=0

∫∞
0 F 2(t)pj(t)h1(t) dt + c2

∫∞
0 F 2(t)pN−1(t)h1(t) dt

+ c3
[
1 − ∫∞

0 F 2(t)pN−1(t)h1(t) dt
]∑N−1

j=0

∫∞
0 F 2(t)pj(t) dt

(N = 1, 2, . . . ). (4.49)
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