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Repair Maintenance

The most basic maintenance policy for units is to do some maintenance of
failed units which is called corrective maintenance; i.e., when units fail, they
may undergo repair or may be scrapped and replaced. After the repair comple-
tion, units can operate again. A system with several units forms semi-Markov
processes and Markov renewal processes in stochastic processes. Such relia-
bility models are called repairman problems [1], and some useful expressions
of reliability measures of many redundant systems were summarized in [2, 3].
Early results of two-unit systems and their maintenance (see Section 6.2) were
surveyed in [4]. Furthermore, imperfect repair models that do not always be-
come like new after repair were proposed in [5, 6] (see Chapter 7).

In this chapter, we are concerned only with reliability characteristics of
repairable systems such as mean time to system failure, availability, and ex-
pected number of system failures. Such reliability measures are obtained by
using the techniques of stochastic processes as described in Section 1.3.

In Section 2.1, we consider the most fundamental one-unit system and
survey its reliability quantities such as transition probabilities, downtime dis-
tribution, and availabilities. Another point of interest is the repair limit policy
where the repair of a failed unit is stopped if it is not completed within a
planned time T [7]. It is shown that there exists an optimum repair limit time
T ∗ that minimizes the expected cost rate when the repair cost is proportional
to time. In Section 2.2, we consider a system with a main unit supported by
n spare units, and obtain the mean time to system failure and the expected
number of failed spare units [8]. Using these results, we propose several opti-
mization problems. Finally, in Section 2.3, we consider (n + 1)-unit standby
and parallel systems, and derive transition probabilities and first-passage time
distributions.
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40 2 Repair Maintenance

2.1 One-Unit System

An operating unit is repaired or replaced when it fails. When the failed unit
undergoes repair, it takes a certain time which may not be negligible. When
the repair is completed, the unit begins to operate again. If the failed unit
cannot be repaired and spare units are not on hand, it takes a replacement
time which may not be negligible.

We consider one operating unit that is repaired immediately when it fails.
The failed unit is returned to the operating state when its repair is completed
and becomes as good as new. It is assumed that the switchover time from the
operating state to the repair state and from the repair state to the operating
state are instantaneous. The successive operating times between failures are
independently and identically distributed. The successive repair times are also
independently, identically distributed and independent of the operating times.
Of course, we can consider the repair time as the time required to make a
replacement. In this case, the failed unit is replaced with a new one, and its
unit operates as same as the failed one.

This system is the most fundamental system that repeats up and down
states alternately. The process of such a system can be described by a Markov
renewal process with two states, i.e., an alternating renewal process given in
Section 1.3 [9]. Many of the known results were summarized in [1, 10].

This section surveys the reliability quantities of a one-unit system and
considers a repair limit policy in which the unit under repair is replaced with
a new one when the repair is not completed by a fixed time.

2.1.1 Reliability Quantities

(1) Renewal Functions and Transition Probabilities

In the analysis of stochastic models, we are interested in the expected number
of system failures during (0, t] and the probability that the system is operating
at time t. We obtain the stochastic behavior of a one-unit system by using
the techniques in Markov renewal processes.

Assume that the failure time of an operating unit has a general distribution
F (t) with finite mean µ and the repair time of failed units has a general
distribution G(t) with finite mean β, where Φ ≡ 1 − Φ for any function Φ,
where, in general, µ and β are referred to as mean time to failure (MTTF)
and mean time to repair (MTTR), respectively. To analyze the system, we
define the following states.

State 0: Unit is operating.
State 1: Unit is under repair.

Suppose that the unit begins to operate at time 0. The system forms a Markov
renewal or semi-Markov process with two states of up and down as shown in
Figure 1.4 of Section 1.3.2.
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Define the mass function Qij(t) from state i to state j by the probability
that after making a transition into state i, the system next makes a transition
into state j (i, j = 0, 1), in an amount of time less than or equal to time t.
Then, from a Markov renewal process, we can easily have

Q01(t) = F (t), Q10(t) = G(t).

Let Mij(t) denote the expected number of occurrences of state j during
(0, t] when the system goes into state i at time 0, where the first visit to state
j is not counted when i = j. Then, from Section 1.3, we have the following
renewal equations:

M01(t) = Q01(t) ∗ [1 + M11(t)], M10(t) = Q10(t) ∗ [1 + M00(t)],

and M11(t) = Q10(t) ∗ M01(t), M00(t) = Q01(t) ∗ M10(t), where the asterisk
denotes the pairwise Stieltjes convolution; i.e., a(t) ∗ b(t) ≡ ∫ t

0 a(t − u)db(u).
Thus, forming the Laplace–Stieltjes (LS) transforms of both sides of these
equations and solving them, we have

M∗
01(s) =

Q∗
01(s)

1 − Q∗
01(s)Q

∗
10(s)

=
F ∗(s)

1 − F ∗(s)G∗(s)
(2.1)

M∗
10(s) =

Q∗
10(s)

1 − Q∗
01(s)Q

∗
10(s)

=
G∗(s)

1 − F ∗(s)G∗(s)
(2.2)

and M∗
11(s) = G∗(s)M∗

01(s) = M∗
00(s) = F ∗(s)M∗

10(s), where the asterisk of
the function denotes the LS transform with itself; i.e., Φ∗(s) ≡ ∫∞

0 e−stdΦ(t)
for any function Φ(t).

Furthermore, let Pij(t) denote the probability that the system is in state
j at time t if it starts in state i at time 0. Then, from Section 1.3,

P00(t) = 1 − Q01(t) + Q01(t) ∗ P10(t)
P11(t) = 1 − Q10(t) + Q10(t) ∗ P01(t)

and P10(t) = Q10(t) ∗ P00(t), P01(t) = Q01(t) ∗ P11(t). Thus, again forming
the LS transforms,

P ∗
00(s) =

1 − Q∗
01(s)

1 − Q∗
01(s)Q

∗
10(s)

=
1 − F ∗(s)

1 − F ∗(s)G∗(s)
(2.3)

P ∗
11(s) =

1 − Q∗
10(s)

1 − Q∗
01(s)Q

∗
10(s)

=
1 − G∗(s)

1 − F ∗(s)G∗(s)
(2.4)

and P ∗
10(s) = G∗(s)P ∗

00(s), P ∗
01(s) = F ∗(s)P ∗

11(s). Thus, from (2.1) to (2.4),
we have the following relations.

P01(t) = M01(t) − M00(t), P10(t) = M10(t) − M11(t).

Moreover, we have
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P ∗
01(s) =

F ∗(s)[1 − G∗(s)]
1 − F ∗(s)G∗(s)

=
∫ ∞

0
e−stG(t − u) dM01(u)

P ∗
10(s) =

G∗(s)[1 − F ∗(s)]
1 − F ∗(s)G∗(s)

=
∫ ∞

0
e−stF (t − u) dM10(u);

i.e.,

P01(t) =
∫ t

0
G(t − u) dM01(u), P10(t) =

∫ t

0
F (t − u) dM10(u).

These relations with renewal functions and transition probabilities would be
useful for the analysis of more complex systems.

Next, let h(t) and r(t) be the failure rate and the repair rate of the unit,
respectively; i.e., h(t) ≡ f(t)/F (t) and r(t) ≡ g(t)/G(t), where f and g are
the respective density functions of F and G. Then, from (2.1) to (2.4), we also
have

min
x≤t

h(x)
∫ t

0
P00(u) du ≤ M01(t) ≤ max

x≤t
h(x)

∫ t

0
P00(u) du

min
x≤t

r(x)
∫ t

0
P11(u) du ≤ M10(t) ≤ max

x≤t
r(x)

∫ t

0
P11(u) du.

All inequalities equal when both F and G are exponential, which is shown in
Example 2.1.

There exist Pj ≡ limt→∞ Pij(t) and Mj ≡ limt→∞ Mij(t)/t, independent
of an initial state i, because the system forms a Markov renewal process with
one positive recurrent. Thus, from (1.63) we have

M0 = lim
s→0

sM∗
00(s) =

1
µ + β

= M1 (2.5)

P0 = lim
s→0

P ∗
00(s) =

µ

µ + β
= 1 − P1. (2.6)

In general, it is often impossible to invert explicitly the LS transforms of
M∗

ij(s) and P ∗
ij(s) in (2.1) to (2.4), and it is very difficult even to invert them

numerically [11,12]. However, we can state the following asymptotic describing
behaviors for small t and large t.

First, we consider the approximation calculation for small t. Reliability
calculations for small t are needed in considering the near-term future security
of an operating bulk power system [13]. We can rewrite (2.3) as

P ∗
00(s) = 1 − F ∗(s) + F ∗(s)G∗(s) − [F ∗(s)]2G∗(s) + · · · .

Because the probability that the process makes more than two transitions in
a short time is very small, by dropping the terms with higher degrees than
F ∗(s)G∗(s), we have

P ∗
00(s) ≈ 1 − F ∗(s) + F ∗(s)G∗(s);
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i.e.,

P00(t) ≈ F (t) +
∫ t

0
G(t − u) dF (u). (2.7)

Similarly,

P01(t) ≈
∫ t

0
G(t − u) dF (u) (2.8)

M00(t) ≈
∫ t

0
G(t − u) dF (u), M01(t) ≈ F (t). (2.9)

Next, we obtain the asymptotic forms for large t [9]. By expanding e−st in
a Taylor series on the LS transforms of F ∗(s) and G∗(s) as s → 0, it follows
that

F ∗(s) = 1 − µs +
1
2
(µ2 + σ2

µ)s2 + o(s2)

G∗(s) = 1 − βs +
1
2
(β2 + σ2

β)s2 + o(s2),

where σ2
µ and σ2

β are the variances of F and G, respectively, and o(s) is an
infinite decimal higher than s. Thus, substituting these equations into (2.1),
we have

M∗
01(s) =

1
µ + β

1
s

− µ

µ + β
+

1
2

+
σ2

µ + σ2
β

2(µ + β)2
+ o(1).

Formal inversion of M∗
01(s) gives that for large t,

M01(t) =
t

µ + β
− µ

µ + β
+

1
2

+
σ2

µ + σ2
β

2(µ + β)2
+ o(1). (2.10)

Similarly,

M00(t) =
t

µ + β
− 1

2
+

σ2
µ + σ2

β

2(µ + σ)2
+ o(1) (2.11)

P00(t) =
µ

µ + β
+ o(1), P01(t) =

β

µ + β
+ o(1). (2.12)

Example 2.1. Suppose that F (t) = 1 − e−λt and G(t) = 1 − e−θt (θ 	= λ).
Then, it is easy to invert the LS transforms of P ∗

01(s) and M∗
01(s),

P01(t) =
λ

λ + θ
[1 − e−(λ+θ)t]

M01(t) =
λθt

λ + θ
+
(

λ

λ + θ

)2

[1 − e−(λ+θ)t].

Furthermore, for small t,

P01(t) ≈ λ

θ − λ
(e−λt − e−θt), M01(t) ≈ 1 − e−λt
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P01(t)

P01(t) for small t

P01(t) for large t

0

6.25 × 10−2

100 200 300 400 500 600

Fig. 2.1. Comparisons of P01(t)

and for large t,

P01(t) ≈ λ

λ + θ
, M01(t) ≈ λθt

λ + θ
+
(

λ

λ + θ

)2

.

Figure 2.1 shows the value of P01(t) and the approximate values of P01(t)
for small t and large t when 1/λ = 1500 hours and 1/θ = 100 hours. In this
case, we can use these approximate values for about fewer than 100 hours and
more than 500 hours. This indicates that these approximations are compara-
tively fitted for a long interval of time t.

Example 2.2. When F (t) = 1 − (1 + λt)e−λt and the time for repair is
constant β,

P ∗
01(s) =

λ2(1 − e−βs)
(s + λ)2 − λ2e−βs

.

Furthermore, for small t,

P01(t) ≈ 1 − (1 + λt)e−λt −
{

0 for t < β

1 − [1 + λ(t − β)]e−λ(t−β) for t ≥ β

and for large t,

P01(t) ≈ β

2/λ + β
.
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(2) Downtime Distribution

A quantity of most interest is the behavior of system down or system failure.
It is of great importance to know how long and how many times the system
is down during (0, t], because the system down is sometimes costly and/or
dangerous. It was shown in [10] that the downtime distribution of a one-unit
system is given from the result of a stochastic process [14]. The excess time
which is the time spent in t due to failures was proposed and its stochastic
properties were reviewed in [15, 16]. Furthermore, the downtime distribution
was derived in the case where failure and repair times are dependent [17].

We have already derived in (1): the probability P01(t) that the system is
down at time t, the mean downtime

∫ t

0 P01(u)du during (0, t], and the expected
number M01(t) of system down during (0, t]. Of other interest is to show (i)
the downtime distribution, (ii) the mean time that the total downtime during
(0, t] exceeds a specified level δ > 0 for the first time, and (iii) the first time
that an amount of downtime exceeds a specified level c.

Suppose that the unit begins to operate at time 0. Let D(t) denote the
total amount of downtime during (0, t]. Then, the distribution of downtime
D(t) is, from (1.35) in Section 1.3,

Ω(t, x) ≡ Pr{D(t) ≤ x}

=

⎧⎪⎨⎪⎩
∞∑

n=0

G(n)(x)[F (n)(t − x) − F (n+1)(t − x)] for t > x

1 for t ≤ x,

(2.13)

where F (n)(t) (G(n)(t)) denotes the n-fold Stieltjes convolution of F (G) with
itself, and F (0)(t) = G(0)(t) ≡ 1 for t ≥ 0 and 0 for t < 0. Equation (2.13) can
also be written as

Ω(t + x, x) = Pr{D(t + x) ≤ x}

=
∞∑

n=0

G(n)(x)[F (n)(t) − F (n+1)(t)] (2.14)

which is called excess time [15]. Furthermore, the survival distribution of
downtime is

1 − Ω(t, x) = Pr{D(t) > x}

=

⎧⎪⎨⎪⎩
∞∑

n=0

[G(n)(x) − G(n+1)(x)]F (n+1)(t − x) for t > x

0 for t ≤ x.

(2.15)

Takács also proved the following important theorem.

Theorem 2.1. Suppose that µ, β and σ2
µ, σ2

β are the means and variances
of distributions F (t) and G(t), respectively. If σ2

µ < ∞ and σ2
β < ∞ then
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lim
t→∞ Pr

{
D(t) − βt/(µ + β)√

[(βσµ)2 + (µσβ)2]t/(µ + β)3
≤ x

}
=

1√
2π

∫ x

−∞
e−u2/2du. (2.16)

That is, if the means and variances of F and G are statistically estimated then
the probability of the amount of D(t) is approximately obtained for large t,
by using a standard normal distribution.

Next, let Tδ ≡ mint{D(t) > δ} be the first time that the total downtime
exceeds a specified level δ > 0. Then, from (2.15),

Jδ(t) ≡ Pr{Tδ ≤ t} = Pr{D(t) > δ}

=
∞∑

n=0

[G(n)(δ) − G(n+1)(δ)]F (n+1)(t − δ) for t > δ. (2.17)

The mean time that the total time first exceeds δ is

lδ ≡
∫ ∞

0
Jδ(t) dt = δ + µ

∞∑
n=0

G(n)(δ). (2.18)

Example 2.3. Suppose that F (t) = 1 − e−λt and the time for repair is
constant β [1, pp. 78–79]. Then, the downtime distribution is

Ω(t, x) =
[x/β]∑
n=0

[λ(t − x)]n

n!
e−λ(t−x) for t > x

and

lδ = δ +
1
λ

{[
δ

β

]
+ 1

}
,

where [x] denotes the greatest integer contained in x. In addition, the expected
number of systems down during (0, t] is

M01(t) =
[

t

β

]
+ 1 −

[t/β]∑
j=0

j∑
k=0

λk(t − βj)ke−λ(t−βj)

k!

and the probability that the system is down at time t is

P01(t) = 1 −
[t/β]∑
j=0

λj(t − βj)je−λ(t−βj)

j!
.

Finally, we consider the first time that an amount of a single downtime
exceeds a fixed time c > 0, where c is considered to be a critically allowed
time for repair [18]. For example, we can give a fuel charge and discharge
system for a nuclear reactor that shuts down spontaneously when the system
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has failed more than time c [19]. The distribution L(t) of the first time that
an amount of downtime first exceeds time c is given by applying a terminating
renewal process. Then, from (1.39) and (1.40), the LS transform of L(t) and
its mean time l are, respectively,

L∗(s) =
F ∗(s)e−scG(c)

1 − F ∗(s)
∫ c

0 e−st dG(t)
, l =

µ +
∫ c

0 G(t) dt

G(c)
. (2.19)

(3) Availability

We derive the exact expressions of availabilities for a one-unit system with
repair introduced in Section 1.1. Suppose that the unit begins to operate at
time 0.

(i) Pointwise availability : From (2.3),

A(t) = P00(t) = F (t)∗[1+F (t)∗G(t)+F (t)∗G(t)∗F (t)∗G(t)+· · · ]; (2.20)

i.e.,

A(t) = F (t) +
∫ t

0
F (t − u) dM00(u)

and its LS transform is

A∗(s) =
1 − F ∗(s)

1 − F ∗(s)G∗(s)
. (2.21)

Furthermore, when m01(t) ≡ dM01(t)/dt exists, from the results (1) of
Section 2.1.1, we have

min
x≤t

h(x)A(t) ≤ m01(t) ≤ max
x≤t

h(x)A(t)

A(t) ≡ 1 − A(t) =
∫ t

0
G(t − u)m01(u) du.

Thus, we have the inequality [20, p. 107]

A(t) ≤ max
x≤t

h(x)
∫ t

0
G(t − u)A(u) du

≤ max
x≤t

h(x)
∫ t

0
G(u) du ≤ max

x≤t
h(x)β (2.22)

which give the upper bounds of the unavailability at time t.
(ii) Interval availability :

1
t

∫ t

0
A(u) du =

1
t

∫ t

0
P00(u) du. (2.23)
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(iii) Limiting interval availability:

A = lim
t→∞ P00(t) =

µ

µ + β
=

MTTF
MTTF + MTTR

(2.24)

which is sometimes called simply availability.
(iv) Multiple cycle availability:

A(n) =
∫ ∞

0

∫ ∞

0

x

x + y
dF (n)(x) dG(n)(y) (n = 1, 2, . . . ). (2.25)

(v) Multiple cycle availability with probability: Because

Pr

{
a

n∑
i=1

Xi ≥
n∑

i=1

Yi

}
=
∫ ∞

0
G(n)(ax) dF (n)(x) for a > 0

Pr
{ ∑n

i=1 Xi∑n
i=1(Xi + Yi)

≥ y

}
=
∫ ∞

0
G(n)

(x

y
− x

)
dF (n)(x) for 0 < y ≤ 1.

Thus, putting y = Aν(n) in the above equation,∫ ∞

0
G(n)

( x

Aν(n)
− x

)
dF (n)(x) = ν (n = 1, 2, . . . ). (2.26)

(vi) Interval availability with probability: Let U(t) denote the total amount
of uptime during (0, t]; i.e., U(t) ≡ t − D(t). Then, from the downtime
distribution in (2.13),

Pr
{

U(t)
t

≥ y

}
= Pr{D(t) ≤ t − ty}

=
∞∑

n=0

G(n)(t − ty)[F (n)(ty) − F (n+1)(ty)] for 0 < y ≤ 1.

Thus, it is given by solving
∞∑

n=0

G(n)(t − tAν(t))[F (n)(tAν(t)) − F (n+1)(tAν(t))] = ν. (2.27)

Furthermore, the interval reliability is, from (1.14),

R(x; t) = F (t + x) +
∫ t

0
F (t + x − u) dM00(u) (2.28)

and its Laplace transform is

R∗(x; s) =
∫ ∞

0
e−stR(x; t) dt =

esx
∫∞

x
e−stF (t) dt

1 − F ∗(s)G∗(s)
. (2.29)

Thus, the limiting interval reliability is [21, 22]

R(x) ≡ lim
t→∞ R(x; t) = lim

s→0
sR∗(x; s) =

∫∞
x

F (t)dt

µ + β
. (2.30)
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We give the exact expressions of the above availabilities for two particular
cases [10,23–26].

Example 2.4. When F (t) = 1 − e−λt and G(t) = 1 − e−θt, the availabilities
are given as follows.

(i) A(t) =
θ

λ + θ
+

λ

λ + θ
e−(λ+θ)t

A(t) =
λ

λ + θ
(1 − e−(λ+θ)t) ≤ λ

λ + θ
<

λ

θ
.

(ii)
1
t

∫ t

0
A(u) du =

θ

λ + θ
+

λ

(λ + θ)2t
(1 − e−(λ+θ)t)

1
t

∫ t

0
A(u) du =

λ

λ + θ
− λ

(λ + θ)2t
(1 − e−(λ+θ)t) ≤ λt

2
.

(iii) A =
θ

λ + θ
.

(iv) A(n) =
∫ ∞

0

n(λθ)n

(n − 1)!
y2n−1Γ (−n, λy)e(λ−θ)y dy,

where Γ (α, x) ≡ ∫∞
x

uα−1e−u du. In particular,

A(1) =

⎧⎪⎨⎪⎩
θ

θ − λ
+

λθ

(θ − λ)2
log

λ

θ
for λ 	= θ

1
2

for λ = θ.

(v) Aν(n) is given by solving

n−1∑
j=0

(
n + j − 1

j

){
θ[(1/Aν(n))−1]

λ+θ[(1/Aν(n))−1]

}j{
λ

λ+θ[1/(Aν(n))−1]

}n

= 1 − ν.

In particular,

Aν(1) =
(1 − ν)θ

λν + (1 − ν)θ
.

(vi) Aν(t) is given by solving

e−λtAν(t)

[
1+

√
λθtAν(t)

∫ t(1−Aν(t))

0
e−θyy−1/2I1(2

√
λθyAν(t)) dy

]
= ν,

where I1(x) ≡ ∑∞
j=0(x/2)2j+1/ [j!(j + 1)!].

The interval reliability is

R(x; t) =
[

θ

λ + θ
+

λ

λ + θ
e−(λ+θ)t

]
e−λx = A(t)F (x)

and its limiting interval reliability is
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R(x) =
θ

λ + θ
e−λx = AF (x).

Example 2.5. Suppose that F (t) = 1 − e−λt and the time for repair is
constant β.

(i) A(t) =
[t/β]∑
j=0

λj(t − βj)j

j!
e−λ(t−βj).

(ii)
1
t

∫ t

0
A(u) du =

1
λt

⎧⎨⎩
[

t

β

]
+ 1 −

[t/β]∑
j=0

j∑
k=0

λk(t − βj)k

k!
e−λ(t−βj)

⎫⎬⎭ .

(iii) A =
1/λ

1/λ + β
.

(iv) A(n) = n(nλβ)nenλβΓ (−n, nλβ).
In particular,

A(1) = 1 − λβeλβ

∫ ∞

λβ

u−1e−u du.

(v) Aν(n) is given by solving

n−1∑
j=0

[nλβAν(n)/(1 − Aν(n))]j

j!
exp[−nλβAν(n)/(1 − Aν(n))] = ν.

In particular,

Aν(1) =
log(1/ν)

λβ + log(1/ν)
.

(vi) Aν(t) is given by solving

[t(1−Aν(t))/β]∑
j=0

[λtAν(t)]j

j!
exp[−λtAν(t)] = ν.

Finally, we give the example of asymptotic behavior shown in [1, 26].

Example 2.6. We wish to compute the time T when the probability that the
system is down more than T in t = 10, 000 hours of operation is given by 0.90,
and the availability Aν(t) when ν = 0.90. The failure and repair distributions
are unknown, but from the sample data, the estimates of means and variances
are:

µ = 1, 000, σ2
µ = 100, 000, β = 100, σ2

β = 400.

Then, from Theorem 2.1, when t = 10, 000,

D(t) − βt/(µ + β)√
[(βσµ)2 + (µσβ)2]t/(µ + β)3

=
D(10, 000) − 909.09

102.56
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is approximately normally distributed with mean 0 and variance 1. Thus,

Pr{D(t) > T} = Pr
{

D(10, 000) − 909.09
102.56

>
T − 909.09

102.56

}
≈ 1√

2π

∫ ∞

(T−909.09)/102.56
e−u2/2 du = 0.90.

Because u0 = −1.28 such that (1/
√

2π)
∫∞

u0
e−u2/2du = 0.90, we have

T = 909.09 − 102.56 × 1.28 = 777.81.

Moreover, from the relation U(t) = t − D(t), we have

Pr

{
U(t)/t − µ/(µ + β)√

[(βσµ)2 + (µσβ)2]/[t(µ + β)3]
> −y

}
≈ 1√

2π

∫ y

−∞
e−u2/2 du

= 0.90.

Thus, we have approximately

Aν(t) =
µ

µ + β
+ u0

√
(βσµ)2 + (µσβ)2

t(µ + β)3
= 0.896.

In this case, it can be said that with probability 0.90 the system will operate
for at least 89.6 percent of the time interval 10, 000 hours.

2.1.2 Repair Limit Policy

Until now, we have analyzed a one-unit system which is repaired upon failure
and then returns to operation without having any preventive maintenance
(PM). The first PM policy for an operating unit, in which it is repaired at
failure or at time T , whichever occurs first, was defined in [27]. The optimum
PM policy that maximizes the availability was derived in [10]. We discuss
some PM policies in Chapters 6 and 7.

An alternative considered here is to repair a failed unit if the repair time
is short or to replace it if the repair time is long. This is achieved by stopping
the repair if it is not completed within a repair limit time, and the unit is
replaced. This policy is optimum over both deterministic and random repair
limit time policies [28]. We discuss optimum repair limit policies that minimize
the expected cost rates for an infinite time span. An optimum repair limit time
is analytically obtained in the case where the repair cost is proportional to
time.

Similar repair limit problems can be applied to army vehicles [29–33].
When a unit requires repair, it is first inspected and its repair cost is estimated.
If the estimated cost exceeds a certain amount, the unit is not repaired but
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is replaced. The authors further derived the repair limiting value, in which
the expected future cost per vehicle-year when the failed vehicle is repaired
is equal to the cost when the failed vehicle is scrapped and a new one is
substituted. They used three methods of optimizing the repair limit policies
such as simulation, hill-climbing, and dynamic programming. More general
forms of repair costs were given in [34]. Using the nonparametric and graphical
methods, several problems were solved in [35,36].

Consider a one-unit system that is repaired or replaced if it fails. Let µ
denote the finite mean failure time of the unit and G(t) denote the repair
distribution of the failed unit with finite mean β. It is assumed that a failure
of the unit is immediately detected, and it is repaired or replaced and becomes
as good as new upon repair or replacement.

When the unit fails, its repair is started immediately, and when the repair
is not completed within time T (0 ≤ T ≤ ∞), which is called the repair limit
time, it is replaced with a new one. Let c1 be the replacement cost of a failed
unit that includes all costs caused by failure and replacement. Let cr(t) be the
expected repair cost during (0, t], which also includes all costs incurred due
to repair and downtime during (0, t], and be bounded on a finite interval.

Consider one cycle from the beginning of an operative unit to the repair
or replacement completion. Each cycle is independently and identically dis-
tributed, and hence, a sequence of cycles forms a renewal process. Then, the
expected cost of one cycle is

[c1 + cr(T )]G(T ) +
∫ T

0
cr(t) dG(t) = c1G(T ) +

∫ T

0
G(t) dcr(t)

and the mean time of one cycle is

µ + TG(T ) +
∫ T

0
t dG(t) = µ +

∫ T

0
G(t) dt.

Thus, from Theorem 1.6, the expected cost rate for an infinite span (see (3.3)
in Chapter 3) is

C(T ) =
c1G(T ) +

∫ T

0 G(t) dcr(t)

µ +
∫ T

0 G(t) dt
. (2.31)

It is evident that

C(0) ≡ lim
T→0

C(T ) =
c1

µ
(2.32)

C(∞) ≡ lim
T→∞

C(T ) =

∫∞
0 G(t) dcr(t)

µ + β
(2.33)

which represent the expected cost rates with only replacement and only repair
maintenance, respectively.

Consider the special case where the repair cost is proportional to time;
i.e., cr(t) = atb for a > 0 and b ≥ 0. The repair cost would be dependent on
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downtime and repairpersons, both of which are approximately proportional
to time. In this case, the expected cost rate is

C(T ) =
c1G(T ) + ab

∫ T

0 tb−1G(t) dt

µ +
∫ T

0 G(t) dt
. (2.34)

If
∫∞
0 tbdG(t) ≡ βb < ∞ then

C(∞) =
aβb

µ + β
. (2.35)

We find an optimum repair limit time T ∗ that minimizes C(T ). It is as-
sumed that there exists a density function g(t) of G(t) and let r(t) ≡ g(t)/G(t)
be the repair rate. Then, differentiating C(T ) with respect to T and setting
it equal to zero yield

r(T )

[
µ +

∫ T

0
G(t) dt

]
+ G(T )

=
ab

c1

{
T b−1

[
µ +

∫ T

0
G(t) dt

]
−
∫ T

0
tb−1G(t) dt

}
. (2.36)

If there exists a finite and positive T ∗ that minimizes C(T ), it has to sat-
isfy (2.36). Otherwise, an optimum repair limit time is T ∗ = 0 or T ∗ = ∞.

Consider the particular case of b = 1; i.e., cr(t) = at. Let

k ≡ aµ − c1

c1µ
, K ≡ aµ

c1(µ + β)
,

where k might be negative. Substituting b = 1 into (2.36),

r(T )

[
µ +

∫ T

0
G(t) dt

]
+ G(T ) =

aµ

c1
. (2.37)

Letting Q(T ) be the left-hand side of (2.37), we have

Q(0) ≡ µr(0) + 1, Q(∞) = (µ + β)r(∞)

and furthermore, Q(T ) and r(T ) are monotonic together. Hence, if r(t) is
strictly decreasing and Q(0) > aµ/c1 > Q(∞); i.e., r(0) > k and r(∞) < K,
there exists uniquely a finite and positive T ∗ that minimizes C(T ), and

C(T ∗) = a − c1r(T ∗). (2.38)

If r(0) ≤ k then Q(T ) < aµ/c1 and dC(T )/dT > 0 for any T > 0. Thus,
the optimum time is T ∗ = 0; i.e., no repair should be made. If r(∞) ≥ K
then Q(T ) > aµ/c1 and dC(T )/dT < 0 for any T < ∞. Thus, the optimum
time is T ∗ = ∞; i.e., no replacement should be made.

From the above discussions, we have the following optimum policy when
r(t) is continuous and strictly decreasing.
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Table 2.1. Optimum repair limit time T ∗ and expected cost rate C(T ∗) when a = 3,
µ = 10, and c1 = 10

θ T ∗ C(T ∗)
0.1 0.062 0.989
0.2 0.239 0.953
0.3 0.510 0.900
0.4 0.854 0.836
0.5 1.252 0.766
0.6 1.693 0.694
0.7 2.170 0.624
0.8 2.682 0.557
0.9 3.229 0.496
1.0 3.813 0.439

(i) If r(0) > k and r(∞) < K then there exists a finite and unique T ∗

(0 < T ∗ < ∞) that satisfies (2.37), and the resulting cost rate is given
in (2.38).

(ii) If r(0) ≤ k then T ∗ = 0 and the expected cost rate is given in (2.32).
(iii) If r(∞) ≥ K then T ∗ = ∞ and the expected cost rate is given in (2.35).

It is evident in the above result that if r(t) is not decreasing then T ∗ = 0
or T ∗ = ∞. In this case, if a/c1 > 1/µ + 1/β then T ∗ = 0, and conversely,
if a/c1 < 1/µ + 1/β then T ∗ = ∞. In other cases of b 	= 1, it is, in general,
difficult to discuss an optimum repair limit policy. However, it could compute
an optimum time T ∗ that satisfies (2.36) if the parameters a, b, and G(t) are
specified.

Example 2.7. Suppose that cr(t) = at and G(t) = 1 − e−θ
√

t. Then, r(t) =
θ/(2

√
t) which is strictly decreasing from infinity to zero. Then, from (2.37),

there exists a unique solution T ∗ that satisfies

aµ

c1

√
T − 1

θ
(1 − e−θ

√
T ) =

θµ

2

and from (2.38), the expected cost rate is C(T ∗) = a− c1θ/(2
√

T ∗). Table 2.1
shows a numerical example of the optimum repair limit time T ∗ and the
resulting cost rate C(T ∗) for θ = 0.1 ∼ 1.0 when a = 3, µ = 10, and c1 = 10.

Example 2.8. Suppose that cr(t) = at2 and G(t) = 1 − e−θt. Then,
from (2.36), there exists a unique solution T ∗ that satisfies

T − 1 − e−θT

θ(µθ + 1)
=

c1θ

2a

because the left-hand side is strictly increasing from 0 to ∞, and from (2.34),
the expected cost rate is C(T ∗) = 2aT ∗ − c1θ. Table 2.2 shows a numerical
example of T ∗ and C(T ∗) for θ when a = 3, µ = 10, and c1 = 10.
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Table 2.2. Optimum repair limit time T ∗ and expected cost rate C(T ∗) when a = 3,
µ = 10, and c1 = 10

θ T ∗ C(T ∗)
0.1 0.330 0.981
0.2 0.489 0.931
0.3 0.647 0.883
0.4 0.804 0.826
0.5 0.961 0.763
0.6 1.116 0.697
0.7 1.272 0.632
0.8 1.428 0.568
0.9 1.584 0.507
1.0 1.742 0.450

Until now, we have discussed the case where the repair cost is not estimated
when an operating unit fails. However, if the repair cost can be previously
estimated when an operating unit fails and the decision can be made as to
whether the failed unit should be repaired or replaced, the expected cost rate
is easily given by

C(T ) =
c1G(T ) +

∫ T

0 cr(t) dG(t)

µ +
∫ T

0 t dG(t)
. (2.39)

Finally, we introduce the following earnings in specifying the repair limit
policy. Let e0 be a net earning per unit of time made by the production of an
operating unit, e1 be an earning gained for replacing a failed unit, and e2 be
an earning rate per unit of time while the unit is under repair, where both
e1 and e2 would usually be negative. Then, by the similar method to that of
obtaining (2.31), the expected earning rate is

C(T ) =
e0µ + e1G(T ) + e2

∫ T

0 G(t) dt

µ +
∫ T

0 G(t) dt
. (2.40)

Checking up on these models with actual systems, modifying, and extend-
ing them, we could get an optimum repair limit policy.

2.2 Standby System with Spare Units

Most standby systems with spare units have been discussed only for the case
where any failed units are repaired and become as good as new upon the repair
completion. In the real world, it may be worthwhile to scrap some failed units
without repairing, depending on the nature of the failed units. For instance,
we have scrapped failed units according to the repair limit policy proposed in
Section 2.1.2.
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Consider the system with a main unit and n spare subunits that are statis-
tically not identical to each other, but any spare ones have the same function
as the main unit if they take over operation. The system functions as follows.
When the main unit fails, it undergoes repair immediately and one of the
spare units replaces it. As soon as the repair of the main unit is completed,
it begins to operate and the operating spare unit is available for further use.
Any failed spare units are scrapped. The system functions until the nth spare
unit fails; i.e., system failure occurs when the last spare unit fails while the
main unit is under repair. This model often occurs when something is broken
or lost, and we temporarily use a substitute until it is repaired or replaced.
We believe that this could be applicable to other practical fields.

We are interested in the following operating characteristics of the system.

(i) The distribution and the mean time to first system failure, given that n
spare units are provided at time 0.

(ii) The probability that the number of failed spare units is exactly equal to
n and its expected number during (0, t].

These quantities are derived by forming renewal equations, and using them,
two optimization problems to determine an initial number of spares to stock
are considered.

We adopt the expected cost per unit of time for an infinite time span; i.e.,
the expected cost rate (see Section 3.1) as an appropriate objective function.
First, we compare two systems with (1) both main and spare units and (2)
only unrepairable spare units. Secondly, we do the preventive maintenance
(PM) of the main unit. When the main unit works for a specified time T
(0 ≤ T ≤ ∞) without failure, its operation is stopped and one of the spare
units takes over operation. The main unit is serviced on failure or its age T ,
whichever occurs first. The costs incurred for each failed unit and each PM
are introduced. Then, we derive an optimum PM policy that minimizes the
expected cost rate under suitable conditions.

2.2.1 Reliability Quantities

Suppose that the failure time of the main unit has a general distribution
F (t) with finite mean µ and its repair time has a general distribution G(t)
with finite mean β, where Φ ≡ 1 − Φ for any function. The failure time of
each spare unit also has a general distribution Fs(t) with finite mean µs,
even if it has been used before; i.e., the life of spare units is not affected by
past operation. It is assumed that all random variables considered here are
independent, and all units are good at time 0. Furthermore, any failures are
instantly detected and repaired or scrapped, and each switchover is perfect
and its time is instantaneous.

Let Lj(t) (j = 1, 2, . . . , n) denote the first-passage time distribution to sys-
tem failure when j spares are provided at time 0. Then, we have the following
renewal equation.
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Ln(t) = F (t) ∗
{∫ t

0
G(u) dF (n)

s (u)

+
n−1∑
j=0

Ln−j(t) ∗
∫ t

0
[F (j)

s (u) − F (j+1)
s (u)] dG(u)

}
(n = 1, 2, . . . ), (2.41)

where the asterisk represents the Stieltjes convolution, and F
(j)
s (t) (j =

1, 2, . . . ) represents the j-fold Stieltjes convolution of Fs(t) with itself and
F

(0)
s (t) ≡ 1 for t ≥ 0. The first term of the bracket on the right-hand side

is the time distribution that all of n spares have failed before the first repair
completion of the failed main unit, and the second term is the time distri-
bution that j (j = 0, 1, . . . , n − 1) spares fail exactly before the first repair
completion, and then, the main unit with n − j spares operates again.

The first-passage time distribution Ln(t) to system failure can be calcu-
lated recursively and determined from (2.41). To obtain Ln(t) explicitly, we
introduce the notation of the generating function of LS transforms;

L∗(z, s) ≡
∞∑

j=1

zj

∫ ∞

0
e−st dLj(t) for |z| < 1.

Then, taking the LS transform on both sides of (2.41) and using the generating
function L∗(z, s), we have

L∗(z, s) =
F ∗(s)

∑∞
j=1 zj

∫∞
0 e−stG(t) dF

(j)
s (t)

1 − F ∗(s)
∑∞

j=0 zj
∫∞
0 e−st[F (j)

s (t) − F
(j+1)
s (t)] dG(t)

, (2.42)

where F ∗(s) ≡ ∫∞
0 e−stdF (t).

Moreover, let ln denote the mean first-passage time to system failure.
Then, by a similar method to that of (2.41), we easily have

ln = µ +
∫ ∞

0
[1 − F (n)

s (t)]G(t) dt +
n−1∑
j=0

ln−j

∫ ∞

0
[F (j)

s (t) − F (j+1)
s (t)] dG(t)

(n = 1, 2, . . . ) (2.43)

and hence, the generating function is

l∗(z) ≡
∞∑

j=1

zj lj =
µ[z/(1 − z)] +

∑∞
j=1 zj

∫∞
0 [1 − F

(j)
s (t)]G(t) dt

1 −∑∞
j=0 zj

∫∞
0 [F (j)

s (t) − F
(j+1)
s (t)] dG(t)

. (2.44)

In a similar way, we obtain the expected number of failed spares during
(0, t]. Let pn(t) be the probability that the total number of failed spares during
(0, t] is exactly n. Then, we have
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p0(t) = F (t) + F (t) ∗
[
F s(t)G(t) + p0(t) ∗

∫ t

0
F s(u) dG(u)

]
(2.45)

pn(t) = F (t) ∗
{[

F (n)
s (t) − F (n+1)

s (t)
]
G(t)

+
n∑

j=0

pn−j(t) ∗
∫ t

0

[
F (j)

s (u) − F (j+1)
s (u)

]
dG(u)

}
(n = 1, 2, . . . ).

(2.46)

Introducing the notation

p∗(z, s) ≡
∞∑

n=0

zn

∫ ∞

0
e−st dpn(t) for |z| < 1

we have, from (2.45) and (2.46),

p∗(z, s) =
1 − F ∗(s)

[
1 −∑∞

j=0 zj
∫∞
0 e−st d{[F (j)

s (t) − F
(j+1)
s (t)]G(t)}

]
1 − F ∗(s)

∑∞
j=0 zj

∫∞
0 e−st[F (j)

s (t) − F
(j+1)
s (t)] dG(t)

,

(2.47)
where note that p∗(1, s) ≡ limz→1 p∗(z, s) = 1. Thus, the LS transform of the
expected number M(t) ≡ ∑∞

n=1 npn(t) of failed spares during (0, t] is

M∗(s) ≡
∞∑

n=1

∫ ∞

0
e−st dM(t) = lim

z→1

∂p∗(z, s)
∂z

=
F ∗(s)

∫∞
0 e−stG(t) dMs(t)

1 − F ∗(s)G∗(s)
, (2.48)

where Ms(t) ≡ ∑∞
j=1 F

(j)
s (t) is the renewal function of Fs(t). Furthermore,

the limit of the expected number of failed spares per unit of time is

M ≡ lim
t→∞

M(t)
t

= lim
s→0

sM∗(s) =

∫∞
0 Ms(t) dG(t)

µ + β
. (2.49)

The result of M can be intuitively derived because the numerator represents
the total expected number of failed spares during the repair time of the main
unit and the denominator represents the mean time from the operation to the
repair completion of the main unit.

Example 2.9. Suppose that G(t) = 1 − e−θt. In this case, from (2.44), when
n spares are provided at time 0, the mean time to system failure is

ln = µ + n

(
µ +

1
θ

)
1 − F ∗

s (θ)
F ∗

s (θ)
.
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Note that by adding one spare unit to the system, the mean time increases a
constant α ≡ (µ + 1/θ)[1 − F ∗

s (θ)]/F ∗
s (θ). Furthermore, the LS transform of

the expected number of failed spares during (0, t] is

M∗(s) =
F ∗(s)F ∗

s (s + θ)
{1 − [θ/(s + θ)]F ∗(s)}[1 − F ∗

s (s + θ)]

and its limit per unit of time is

M =
F ∗

s (θ)
(µ + 1/θ)[1 − F ∗

s (θ)]

which is equal to 1/α; i.e., ln = µ + n/M .

2.2.2 Optimization Problems

First, we obtain the expected cost rate, by introducing costs incurred for each
failed main unit and spare unit. This expected cost rate is easily deduced from
the expected number of failed units. We compare two expected costs of the
system with both main unit and spares and the system with only spares, and
determine which of the systems is more economical.

Cost c1 is incurred for each failed main unit, which includes all costs re-
sulting from its failure and repair, and cost cs is incurred for each failed spare,
which includes all costs resulting from its failure, replacement, and cost of it-
self. Let C(t) be the total expected cost during (0, t]. Then, the expected cost
rate is, from Theorems 1.2 and 1.6 in Section 1.3,

C ≡ lim
t→∞

C(t)
t

= c1M1 + csM, (2.50)

where M1 is the expected number of the failed main unit per unit of time,
and from (2.5), M1 = 1/(µ + β).

Thus, from (2.49) the expected cost rate is

C =
c1 + cs

∫∞
0 Ms(t) dG(t)
µ + β

(2.51)

which is also equal to the expected cost per one cycle from the beginning of
the operation to the repair completion of the main unit. If only spare units
are allowed then the expected cost rate is

Cs ≡ cs

µs
. (2.52)

Therefore, comparing (2.51) and (2.52), we have C ≤ Cs if and only if

c1 ≤ cs

[
µ + β

µs
−
∫ ∞

0
Ms(t) dG(t)

]
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and vice versa.
In general, it is hard to compute the above costs directly. However, simple

results that would be useful in practical fields can be obtained in the following
particular cases. Because Ms(t) ≥ t/µs − 1 [1, p. 53], if c1 > cs(µ/µs + 1)
then C > Cs. In the case of Example 2.9, we have the relation C ≤ Cs if and
only if

c1 ≤ cs

[
µ + 1/θ

µs
− F ∗

s (θ)
1 − F ∗

s (θ)

]
and vice versa.

Next, consider the PM policy where the operating main unit is preven-
tively maintained at time T (0 ≤ T ≤ ∞) after its installation or is repaired
at failure, whichever occurs first. The several PM policies are discussed fully
in Chapter 6. In this model, spare units work temporarily during the interval
of repair or PM time of the main unit. It is assumed that the PM time has the
same distribution G(t) with finite mean β as the repair time. The main unit
becomes as good as new upon repair or PM, and begins to operate immedi-
ately. The costs incurred for each failed main unit and each failed spare are
the same as c1 and cs, respectively, as those in the previous model. The PM
cost c2 with c2 < c1 incurs for each nonfailed main unit that is preventively
maintained.

The total expected cost of one cycle from the operation to the repair or
PM completion of the main unit is

F (T )
[
c1 + cs

∫ ∞

0
Ms(t) dG(t)

]
+ F (T )

[
c2 + cs

∫ ∞

0
Ms(t) dG(t)

]
and the mean time of one cycle is∫ T

0
(t + β) dF (t) + F (T )(T + β) =

∫ T

0
F (t) dt + β.

Thus, in a similar way to that of obtaining (2.51), the expected cost rate is

C(T ) =
c̃1F (T ) + c̃2F (T )∫ T

0 F (t) dt + β
, (2.53)

where c̃1 ≡ c1 + cs

∫∞
0 Ms(t) dG(t) and c̃2 ≡ c2 + cs

∫∞
0 Ms(t) dG(t), and

c̃1 > c̃2 from c1 > c2.
We find an optimum PM time T ∗ that minimizes C(T ). Clearly, C(0) =

c̃2/β is the expected cost in the case where the main unit is always under
PM, and C(∞) is the expected cost of the main unit with no PM and is
given in (2.51). Let h(t) ≡ f(t)/F (t) be the failure rate of F (t) with h(0) ≡
limt→0 h(t) and h(∞) ≡ limt→∞ h(t), and k ≡ c̃2/[β(c̃1 − c̃2)] and K ≡
c̃1/[(µ + β)(c̃1 − c̃2)]. Then, we have the following optimum policy.

Theorem 2.2. Suppose that the failure rate h(t) is continuous and strictly
increasing.
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(i) If h(0) < k and h(∞) > K then there exists a finite and unique T ∗

(0 < T ∗ < ∞) that satisfies

h(T )

[∫ T

0
F (t) dt + β

]
− F (T ) =

c̃2

c̃1 − c̃2
(2.54)

and the resulting expected cost rate is

C(T ∗) = (c1 − c2)h(T ∗). (2.55)

(ii) If h(0) ≥ k then T ∗ = 0.
(iii) If h(∞) ≤ K then T ∗ = ∞.

Proof. Differentiating C(T ) in (2.53) with respect to T and putting it equal
to zero, we have (2.54). Letting Q(T ) be the left-hand side of (2.54), it is easily
proved that Q(0) = βh(0), Q(∞) = (µ + β)h(∞) − 1, and Q(T ) is strictly
increasing because h(t) is strictly increasing. Thus, if h(0) < k and h(∞) > K
then Q(0) < c̃2/(c̃1 − c̃2) < Q(∞), and hence, there exists a finite and unique
T ∗ that satisfies (2.54) and minimizes C(T ). Furthermore, from (2.54), we
have (2.55).

If h(0) ≥ k then Q(0) ≥ c̃2/(c̃1 − c̃2). Thus, C(T ) is strictly increasing,
and hence, T ∗ = 0. Finally, if h(∞) ≤ K then Q(∞) ≤ c̃2/(c̃1 − c̃2). Thus,
C(T ) is strictly decreasing, and T ∗ = ∞.

It is easily noted in Theorem 2.2 that if the failure rate h(t) is non-
increasing then T ∗ = 0 or T ∗ = ∞. Similar theorems are derived in Sec-
tion 3.1.

Until now, it has been assumed that the time to the PM completion has
the same repair distribution G(t). In reality, the PM time might be smaller
than the repair time. So that, suppose that the repair time is G1(t) with mean
β1 and the PM time is G2(t) with mean β2. Then, the expected cost rate is
similarly given by

C(T ) =

[
c1 + cs

∫∞
0 Ms(t) dG1(t)

]
F (T )

+
[
c2 + cs

∫∞
0 Ms(t) dG2(t)

]
F (T )∫ T

0 F (t) dt + β1F (T ) + β2F (T )
. (2.56)

Example 2.10. Consider the optimization problem of ensuring that sufficient
numbers of spares are initially provided to protect against shortage. If the
probability α of occurrences of no shortage during (0, t] is given a priori, we
can find a minimum number of spares to maintain this level of confidence. One
solution of this problem can be shown by computing a minimum n such that∑n

i=0 pi(t) ≥ α. If we need a minimum number of initial stocks during (0, t] on
the average without probabilistic guarantee, we might compute a minimum n
such that ln ≥ t, or M(t) ≤ n.
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Table 2.3. Optimum PM time T ∗, its cost rates C(T ∗), and C when 1/λs = 1,
1/θ = 5, c1 = 10, c2 = 1, and cs = 2

2/λ T ∗ C(T ∗) C

1 0.06 2.18 3.33
2 0.31 2.13 2.86
3 0.78 2.06 2.50
4 1.54 1.94 2.22
5 2.63 1.84 2.00
6 4.08 1.72 1.82
7 5.91 1.61 1.67
8 8.14 1.50 1.54
9 10.78 1.41 1.43
10 13.88 1.32 1.33

Next, compare two systems with main and spare units, and with only
spares, when F (t) = 1 − (1 + λt)e−λt, Fs(t) = 1 − exp(−λst) and G(t) =
1 − e−θt. Then, from (2.51) and (2.52), the expected cost rates are

C =
c1 + cs(λs/θ)

2/λ + 1/θ
, Cs = λscs.

Thus, C ≤ Cs if and only if c1 ≤ cs (2λs/λ) and vice versa.
Furthermore, when F (t) = 1 − (1 + λt)e−λt, the failure rate is h(t) =

λ2t/(1 + λt) which is strictly increasing from 0 to λ. Thus, from (i) of Theo-
rem 2.2, if λ(c̃1 − c̃2) > θ(2c̃2 − c̃1) then there exists a finite and unique T ∗

(0 < T ∗ < ∞) that satisfies

1
1 + λT

[
λ2T

θ
+ λT − (1 − e−λT )

]
=

c̃2

c̃1 − c̃2

and the expected cost rate is

C(T ∗) =
λ2T ∗

1 + λT ∗ (c1 − c2).

Table 2.3 gives the optimum PM time T ∗, its cost rates C(T ∗), and C
with no PM for 2/λ when 1/λs = 1, 1/θ = 5, c1 = 10, c2 = 1, and cs = 2.
This indicates that when the mean failure time 2/λ is small, the PM time T ∗

is small and it is very effective. In this case, because Cs = 2, we have that
C ≥ Cs for 2/λ ≤ 5 and C(T ∗) > Cs for 2/λ ≤ 3.

2.3 Other Redundant Systems

In this section, we briefly mention redundant systems with repair maintenance
without detailed derivations [37–40]. For the analysis of redundant systems,
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it is of great importance to know the behavior of system failure; i.e., the
probability that the system will be in system failure, the mean time to system
failure, and the expected number of system failures. For instance, if the system
failure is catastrophic, we have to make the time to system failure as long as
possible, by doing the PM and providing standby units.

2.3.1 Standby Redundant System

Consider an (n + 1)-unit standby redundant system with n + 1 repairpersons
and one operating unit supported by n identical spares (refer to [40] for s (1 ≤
s ≤ n + 1) repairpersons). Each unit fails according to a general distribution
F (t) with finite mean µ and undergoes repair immediately. When the repair is
completed, the unit rejoins the spares. It is also assumed that the repair time
of each failed unit is an independent random variable with an exponential
distribution (1 − e−θt) for 0 < θ < ∞. Let ξ(t) denote the number of units
under repair at time t. The system is said to be in state k at time t if ξ(t) = k.
In particular, it is also said that system failure occurs when the system is in
state n + 1. Furthermore, let 0 ≡ t0 < t1 < · · · < tm . . . be the failure
times of an operating unit. If we define ξm ≡ ξ(tm − 0) (m = 0, 1, . . . ) then
ξm represents the number of units under repair immediately before the mth
failure occurs. Then, we present only the results of transition probabilities
and first-passage time distributions.

The Laplace transform of the binomial moment of transition probabilities
pik(t) ≡ Pr{ξ(t) = k|ξ0 = i} (i = 0, 1, . . . , n; k = 0, 1, . . . , n + 1) is

Ψir(s) ≡
n+1∑
k=r

(
k

r

)∫ ∞

0
e−stpik(t) dt

=
Br−1(s)
s + rθ

{
r∑

j=0

(
i + 1

j

)
1

Bj−1(s)
−

i+1∑
j=0

(
i + 1

j

)
1

Bj−1(s)

×
∑r−1

j=0

(
n+1

j

)
(s + jθ)/Bj−1(s)∑n+1

j=0

(
n+1

j

)
(s + jθ)/Bj−1(s)

}
(r = 0, 1, . . . , n + 1)

and the limiting probability pk ≡ limt→∞ pik (k = 0, 1, . . . , n + 1) is

Ψr ≡
n+1∑
k=r

(
k

r

)
pk

=
(n+1)Br−1(0)

r

∑n
j=r−1

(
n
j

)
/Bj(0)

1+(n+1)(µθ)
∑n

j=0

(
n
j

)
/Bj(0)

(r = 1, 2, . . . , n + 1)

and Ψ0 ≡ 1, where
∑−1

j=0 ≡ 0, B−1(s) = B0(0) ≡ 1 and
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Br(s) ≡
r∏

j=0

F ∗(s + jθ)
1 − F ∗(s + jθ)

(r = 0, 1, 2, . . . )

Br(0) ≡
r∏

j=1

F ∗(jθ)
1 − F ∗(jθ)

(r = 1, 2, . . . ).

Thus, by the inversion formula of binomial moments,

p∗
ik(s) ≡

∫ ∞

0
e−stpik(t) dt =

n+1∑
r=k

(−1)r−k

(
r

k

)
Ψir(s)

(i = 0, 1, . . . , n; k = 0, 1, . . . , n + 1) (2.57)

pk =
n+1∑
r=k

(−1)r−k

(
r

k

)
Ψr (k = 0, 1, . . . , n + 1). (2.58)

It was shown in [41] that there exists the limiting probability pk for µ < ∞.
Next, the LS transform of the first-passage time distribution Fik(t) ≡∑∞

m=1 Pr{ξm = k, ξj 	= k for j = 1, 2, . . . , m − 1, tm ≤ t | ξ0 = i} is, for i < k,

F ∗
ik(s) ≡

∫ ∞

0
e−st dFik(t) =

∑i+1
j=0

(
i+1
j

)
/Bj−1(s)∑k+1

j=0

(
k+1

j

)
/Bj−1(s)

(k = 0, 1, . . . , n) (2.59)

and its mean time is

lik ≡
∫ ∞

0
t dFik(t) = µ

k+1∑
j=1

[(
k + 1

j

)
−
(

i + 1
j

)]
1

Bj−1(0)

(k = 0, 1, . . . , n), (2.60)

where
(

i
j

) ≡ 0 for j > i. The mean time lik when i = −1 and k = n agrees
with the result of [37], where state −1 means the initial condition that one
unit begins to operate and n units are on standby at time 0.

The expected number Mk (k = 0, 1, . . . , n − 1) of visits to state k before
system failure is

Mk =
n∑

r=k

(−1)r−k

(
r

k

)
Br(0)

n+1∑
j=r+1

(
n + 1

j

)
1

Bj−1(0)
(k = 0, 1, . . . , n − 1).

(2.61)
Thus, the total expected number M of unit failures before system failure from
state 0 is

M ≡ 1 +
n−1∑
k=0

Mk =
n+1∑
j=1

(
n + 1

j

)
1

Bj−1(0)
(2.62)

and the expected number of repairs before system failure is M − (n + 1). It is
noted that µM is also the mean time to system failure l−1 n in (2.60).
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In the case of one repairperson, the first-passage time from state i to state
k for i < k coincides with that of queue G/M/1. Thus, for i < k [42],

F ∗
ik(s) =

1 + [1 − F ∗(s)][Ai+1(s) − δi+1 0]
1 + [1 − F ∗(s)]Ak+1(s)

(k = 0, 1, . . . , n), (2.63)

where δik = 1 for i = k and 0 for i 	= k,

∞∑
j=0

Aj(s)zj ≡ z2
[
(1 − z){F ∗[s + θ(1 − z)] − z}

]
for |z| < 1.

From the relation of transition probability and first-passage time distribution,
we easily have

pik(t) =
∫ t

0
pk−1 k(t − u) dFi k−1(u)

pn n+1(t) = e−θt +
∫ t

0
pn n+1(t − u) dFnn(u)

Fn n(t) =
∫ t

0
Fn−1 n(t − u)θe−θu du.

Thus, forming the Laplace transforms of the above equations and using the
result of F ∗

ik(s),

p∗
i n+1(s) =

1 + [1 − F ∗(s)][Ai+1(s) − δi+1 0]
s + [1 − F ∗(s)]{sAn+1(s) + θ[An+1(s) + δn 0 − An(s)]} (2.64)

pn+1 =
1

1 + (µθ)[An+1(0) + δn 0 − An(0)]
. (2.65)

2.3.2 Parallel Redundant System

Consider an (n + 1)-unit parallel redundant system with one repairperson.
Then, it can be easily seen that this system is equivalent to a standby system
with n+1 repairpersons as described in Section 2.3.1 wherein the notations of
failure and repair change one another. For instance, the transition probability
pik in (2.57) becomes the transition probability for the number of units under
operation. The LS transform of the busy period of a repairperson is

F ∗
n−1 n(s) =

∑n
j=0

(
n
j

)
/Bj−1(s)∑n+1

j=0

(
n+1

j

)
/Bj−1(s)

(2.66)

and its mean time is

ln−1 n = µ

n∑
j=0

(
n

j

)
1

Bj(0)
. (2.67)
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In addition, when a system has n + 1 repairpersons (i.e., there are as
many repairpersons as the number of units), we may consider only n one-unit
systems [1, p. 145]. In this model, we have

pik(t) =
∑
j1

∑
j2

(
i

j1

)(
n − i

j2

)
[P11(t)]j1 [P10(t)]i−j1 [P01(t)]j2 [P00(t)]n−i−j2 ,

(2.68)
where the summation takes over j1 + j2 = k, j1 ≤ i, and j2 ≤ n− i, and Pij(t)
(i, j = 0, 1) are given in (2.3) and (2.4).

Finally, consider n parallel units in which system failure occurs where k
(1 ≤ k ≤ n) out of n units are down simultaneously. The LS transform of the
distribution of time to system failure and its mean time were obtained in [43],
by applying a birth and death process, and 2-out-of-n systems were discussed
in [4].
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