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Preface

Artificial life is an interdisciplinary field of science, hosting experts from com-
puter science, biology, physics, chemistry, and mathematics, as well as philo-
sophers and artists. It focuses on studying the phenomena of life on all levels
of complexity and organization — molecular, cellular, organismic, and pop-
ulation. These studies not only employ conventional computers (using both
software and hardware), but also take place in wetware, using techniques of
biochemical laboratory. Artificial life research is not limited to life forms ex-
isting on the Earth. It rather attempts to study the general principles of life
which are common to all instances of life, both already recognized and yet
unknown.

This book is dedicated to the software medium, the most popular and
widely employed in the artificial life research. The software medium offers
almost unlimited abilities for experiments, which are cheap, easily arranged,
and modified. Additionally, such experiments can be repeated under the same
conditions, and large amounts of data (unavailable in biological studies) can
be collected for analysis. To begin experimentation, a model of life is required.
Such models are built in software for all organizational levels of life. Most of
the models described in this book are very general and therefore allow for a
wide range of experiments.

Researchers, academicians and students in artificial life use specialized
software to verify their ideas related to evolution dynamics, self-organization,
origins of life, multicellular development, natural and artificial morphogenesis,
intelligent autonomous robotics, evolutionary robotics, evolvable hardware,
emergent collective behaviors, swarm intelligence, evolution of communica-
tion and evolution of social behaviors. Artificial life software systems are also
essential tools in practical demonstrations in undergraduate and postgradu-
ate courses in adaptive systems, evolutionary biology, collective robotics, and
nature-inspired computing.

This monograph provides an introduction and guidance in modern, at-
tractive software tools for modeling and simulation of life-like phenomena.
Software projects covered here are still actively developed and supported by
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the developers, who create their programs with both professional and ama-
teur users in mind. In most cases, the simulators are employed in research,
and results are published. Each chapter describes a single — usually free-
to-use — software model, but references to other similar software packages
and related scientific works are included as well. The origins of software pack-
ages, milestones in their development, and the most important or interesting
experiments are also reported.

Every chapter is self-consistent and can be read independently. The com-
pendium of chapters is split into four parts. The first part — Virtual Living
Worlds, focuses on individual creatures and their populations. It includes dis-
cussions of Avida: a digital laboratory for studying populations of evolving
programs; Framsticks: a model of three-dimensional creatures, their simula-
tion, evolution, and experimentation with would-be animals and prototypes of
bio-inspired robots; Nerve Garden: an Internet-based virtual terrarium rem-
iniscent of a simple ecosystem; GenePool : an interactive software for exper-
imenting with aesthetics-based sexual selection and evolution of swimming
organisms; and Sodarace: an online-based interface, learning support and en-
vironment for construction, experimenting and competition between virtual
two-dimensional mobile robots.

Dynamics of collectives of simple locally interacting entities is dealt with
in the second part — Collective Artificial Life. There, we find discussion of
several unique software (and also hardware) platforms — Repast : an advanced
agent-based simulation toolkit for studying development of natural and arti-
ficial social structures; EINSTein: a multiagent-based simulator of land com-
bat modeling individual behaviors and personalities of combatants; StarLogo:
an educational programming language for simulation of life-like phenomena
— from population dynamics to emergent behavior of complex systems; and
Eden: an interactive artwork, including hardware implementation of cellular
automata and agents, allowing observers to interact with the installation and
influence the development of the artificial ecosystem.

Already mentioned in previous chapters, cellular automata — arrays of lo-
cally interacting finite automata, which update their states depending on the
states of their neighbors, get a proper treatment in the third part — Magic
of Discrete Worlds. Two remarkable software tools for studies of discrete uni-
verses are introduced here. MCell is a powerful explorer of cellular automata,
which supports almost all known nontrivial cellular automaton rules and has
a regularly updated database of old and newly discovered patterns. Discrete
Dynamics Lab (DDLab) is an interactive tool for designing and investigat-
ing dynamics of discrete dynamical networks, including simulation of decision
networks, generating attraction basins, and searching for mobile patterns.

The book completes — the fourth part — Artificial Life Arts, with two
chapters raising aesthetical issues of would-be worlds. The first chapter of this
part reveals ways to breed images and sounds using SBEAT (for graphics)
and SBART (for music). These computer programs are designed to select
and breed genotypes that represent graphical and musical pieces. The last
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chapter of the book searches for a phenomenological understanding of what
makes artificial life appealing to scientists, artists and laymen, and why people
become attracted to certain forms of creative computer art.

The Appendix contains a table that summarizes software systems de-
scribed in this book. For each program, the table includes a short description,
information about availability on various platforms and operating systems,
software requirements, license type, and the Internet web site address.

The book covers hot topics related to computer science, evolutionary and
computational biology, simulation, robotics, cognitive science, cybernetics, ar-
tificial intelligence, multiagent societies, virtual worlds, computer graphics
and animation, neuroscience, and philosophy. We hope that academics, re-
searchers, graduate students, and amateurs interested in these fields will find
this monograph a valuable guide to artificial life and an excellent supplemen-
tary reading.

Andrew Adamatzky
April 2005 Maciej Komosinski
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Part I

Virtual Living Worlds



1

Avida: Evolution Experiments with
Self-Replicating Computer Programs

Charles Ofria and Claus O. Wilke

Avida� is a software platform for experiments with self-replicating and evolv-
ing computer programs. It provides detailed control over experimental settings
and protocols, a large array of measurement tools, and sophisticated meth-
ods to analyze and postprocess experimental data. This chapter explains the
general principles on which Avida is built, its main components and their
interactions, and gives an overview of some prior research with Avida.

1.1 Introduction to Avida

When studying biological evolution, we have to overcome a large obstacle:
Evolution happens extremely slowly. Traditionally, evolution has therefore
been a field dominated by observation and theory, even though some regard
the domestication of plants and animals as early, unwitting evolution exper-
iments. Realistically, we can carry out controlled evolution experiments only
with organisms that have very short generation times, so that populations
can undergo hundreds of generations within a timeframe of months to a few
years. With the advances in microbiology, such experiments in evolution have
become feasible with bacteria and viruses [14, 39]. However, even with mi-
croorganisms, evolution experiments still take a lot of time to complete and
are often cumbersome to carry out. In particular, certain data can be diffi-
cult or impossible to obtain, and it is often impractical to carry out enough
replicas for high statistical accuracy.

According to Daniel Dennett, “evolution will occur whenever and wher-
ever three conditions are met: replication, variation (mutation), and differen-
tial fitness (competition)” [9]. It seems to be an obvious idea to set up these
conditions in a computer and to study evolution in silico rather than in vitro.

� Parts of the material in this chapter previously appeared in Artificial Life 10:191-
229 (2004) by the chapter authors, and in the Avida documentation, whose coau-
thors also include C. Adami, R. Lenski and K. Nanlohy.
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In a computer, it is easy to measure any quantity of interest with arbitrary
precision, and the time it takes to propagate organisms for several hundred
generations is only limited by the processing power available. In fact, popula-
tion geneticists have long been carrying out computer simulations of evolving
loci, in order to test or augment their mathematical theories (see [17,23,31] for
some recent examples). However, the assumptions put into these simulations
typically mirror exactly the assumptions of the analytical calculations. There-
fore, the simulations can be used only to test whether the analytic calculations
are error-free, or whether stochastic effects cause a system to deviate from its
deterministic description, but they cannot test the model assumptions on a
more basic level.

An approach to studying evolution that lies somewhere in between evo-
lution experiments with biochemical organisms and standard Monte Carlo
simulations is the study of self-replicating and evolving computer programs
(digital organisms). These digital organisms can be quite complex and inter-
act in a multitude of different ways with their environment or each other,
so that their study is not a simulation of a particular evolutionary theory
but becomes an experimental study in its own right. In recent years, research
with digital organisms has grown substantially ( [2, 13, 21, 43, 45, 46]; see [41]
for a recent review), and is being increasingly accepted by evolutionary bi-
ologists [30]. (However, as Barton and Zuidema [3] note, general acceptance
will ultimately hinge on whether artificial life researchers embrace or ignore
the large body of population-genetics literature.) Avida is arguably the most
advanced software platform to study digital organisms to date and is cer-
tainly the one that has had the biggest impact in the biological literature so
far. Having reached version 2.0, it now supports detailed control over exper-
imental settings, a sophisticated system to design and execute experimental
protocols, a multitude of possibilities for organisms to interact with their en-
vironment, including depletable resources and conversion from one resource
into another, and a module to postprocess data from evolution experiments,
including tools to find the line of descent from final organisms to their ulti-
mate ancestor, to carry out knock-out studies with organisms, and to align
and compare organisms’ genomes.

1.1.1 History of Digital Life

The most well-known intersection of evolutionary biology with computer sci-
ence is the genetic algorithm or its many variants (genetic programming, evo-
lutionary strategies, and so on). All these variants boil down to the same basic
recipe: (1) Create random potential solutions; (2) evaluate each solution as-
signing it a fitness value to represent its quality; (3) select a subset of solutions
using fitness as a key criterion; (4) vary these solutions by making random
changes or recombining portions of them; (5) repeat from step 2 until you find
a solution that is sufficiently good.
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This technique turns out to be an excellent method for solving problems,
but it ignores many aspects of natural living systems. Most notably, natural
organisms must replicate themselves, as there is no external force to do so;
therefore, their ability to pass their genetic information on to the next gener-
ation is the final arbiter of their fitness. Furthermore, organisms in a natural
system have the ability to interact with their environment and with each other
in ways that are excluded from most algorithmic applications of evolution.

Work on more naturally evolving computational systems began in 1990,
when Steen Rasmussen was inspired by the computer game “Core War” [10].
In this game, programs are written in a simplified assembly language and
made to compete in the simulated core memory of a computer. The winning
program is the one that manages to shut down all processes associated with its
competitors. Rasmussen observed that the most successful of these programs
were the ones that replicated themselves, so that if one copy were destroyed,
others would still persist. In the original Core War game, the diversity of or-
ganisms could not increase, and hence no evolution was possible. Rasmussen
then designed a system similar to Core War in which the command that
copied instructions was flawed and would sometimes write a random instruc-
tion instead on the one intended [33]. This flawed copy command introduced
mutations into the system, and thus the potential for evolution. Rasmussen
dubbed his new program “Core World,” created a simple self-replicating an-
cestor, and let it run.

Unfortunately, this first experiment failed. While the programs seemed
to evolve initially, they soon started to copy code into each other, to the
point where no proper self-replicators survived — the system collapsed into
a nonliving state. Nevertheless, the dynamics of this system turned out to be
intriguing, displaying the partial replication of fragments of code, and repeated
occurrences of simple patterns.

The first successful experiment with evolving populations of self-replicating
computer programs was performed the following year. Thomas Ray at the Uni-
versity of Delaware designed a program of his own with significant, biologically
inspired modifications. The result was the Tierra system [34]. In Tierra, digi-
tal organisms must allocate memory before they have permission to write to
it, which prevents stray copy commands from killing other organisms. Death
only occurs when memory fills up, at which point the oldest programs are
removed to make room for new ones to be born.

The first Tierra experiment was initialized with an ancestral program that
was 80 lines long. It filled up the available memory with copies of itself, many
of which had mutations that caused a loss of functionality. Yet other mutations
were actually neutral and did not affect the organism’s ability to replicate —
and a few were even beneficial. In this initial experiment, the only selective
pressure on the population was for the organisms to increase their rate of
replication. Indeed, Ray witnessed that the organisms were slowly shrinking
the length of their genomes, since a shorter genome meant that there was less
genetic material to copy, and thus it could be copied more rapidly.
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This result was interesting enough on its own. However, other forms of
adaptation, some quite surprising, occurred as well. For example, some organ-
isms were able to shrink further by removing critical portions of their genome
and then use those same portions from more complete competitors, in a tech-
nique that Ray noted was a form of parasitism. Arms races transpired where
hosts evolved methods of eluding the parasites, and they, in turn, evolved
to get around these new defenses. Some would-be hosts, known as hyperpar-
asites, even evolved mechanisms for tricking the parasites into aiding them
in the copying of their own genomes. Evolution continued in all sorts of in-
teresting manner, making Tierra seem like a choice system for experimental
evolution work.

In 1992, Chris Adami began research on evolutionary adaptation with
Ray’s Tierra system. His intent was to get these digital organisms to evolve
solutions to specific mathematical problems, without forcing them use a pre-
defined approach. His core idea was the following: If he wanted a population
of organisms to evolve, for example, the ability to add two numbers together,
he would monitor organisms’ input and output numbers. If an output ever
was the sum of two inputs, the successful organisms would receive extra CPU
cycles as a bonus. As long as the number of extra cycles was greater than the
time it took the organism to perform the computation, the leftover cycles could
be applied toward the replication process, providing a competitive advantage
to the organism. Sure enough, Adami was able to get the organisms to evolve
some simple tasks, but he faced many limitations in trying to use Tierra to
study the evolutionary process.

In the summer of 1993, Charles Ofria and C. Titus Brown joined Adami
to develop a new digital life software platform, the Avida system. Avida was
designed to have detailed and versatile configuration capabilities, along with
high-precision measurements to record all aspects of a population. Further-
more, whereas organisms are executed sequentially in Tierra, the Avida system
simulates a parallel computer, wherein all organisms are executed effectively
simultaneously. Since its inception, Avida has had many new features added
to it, including a sophisticated environment with localized resources, an events
system to schedule actions to occur over the course of an experiment, multiple
types of CPUs to form the bodies of the digital organisms, and a sophisticated
analysis mode to postprocess data from an Avida experiment. Avida is still
under active development at both Michigan State University, led by Charles
Ofria, and at the California Institute of Technology, led by Claus Wilke.

1.1.2 The Scientific Motivation for Avida

Intuitively, it seems that natural systems should be used to best understand
how evolution produces complexity in nature, but this can be prohibitively
difficult for many questions and does not provide enough detail. Using digital
organisms in a system such as Avida can be justified on five grounds:
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1. Artificial life forms provide an opportunity to seek generalizations about
self-replicating systems beyond the organic forms that biologists have stud-
ied to date, all of which share a common ancestor and essentially the same
chemistry of DNA, RNA, and proteins. As John Maynard Smith [22] made
the case: “So far, we have been able to study only one evolving system and
we cannot wait for interstellar flight to provide us with a second. If we want
to discover generalizations about evolving systems, we will have to look at
artificial ones.” Of course, digital systems should always be studied in paral-
lel with natural ones, but any differences we find between their evolutionary
dynamics open up what is perhaps an even more interesting set of questions.

2. Digital organisms enable us to address questions that are impossible to
study with organic life forms. For example, in one of our current experiments
we are investigating the importance of genetic drift to the evolution of com-
plexity by explicitly reverting all neutral mutations while leaving both bene-
ficial and deleterious mutations unaffected. Such invasive micromanaging of a
population is not possible in a natural system, especially without disturbing
other aspects of the evolutionary process. In a digital evolving system, every
bit of memory can be viewed without disrupting the system, and changes can
be made at the precise points desired.

3. Other questions can be addressed on a scale that is unattainable with
natural organisms. In an earlier experiment with digital organisms [20], we
examined billions of genotypes to quantify the effects of mutations as well as
the form and extent of their interactions. By contrast, an experiment with
E. coli was necessarily confined to one level of genomic complexity. Digital
organisms also have a speed advantage: A population with 10,000 organisms
can have 20,000 generations processed per day on a modern desktop computer.
A similar experiment with bacteria took over a decade [19].

4. Digital organisms possess the ability to truly evolve, unlike mere nu-
merical simulations. Evolution is open-ended and the design of the evolved
solutions is unpredictable. These properties arise because selection in digital
organisms (as in real ones) occurs at the level of the whole-organism’s pheno-
type; it depends on the rates at which organisms perform tasks that enable
them to metabolize resources to convert them to energy, and the efficiency
with which they use that energy for reproduction. Genome sizes are suffi-
ciently large that evolving populations cannot test every possible genotype,
so replicate populations always find different local optima. A genome typically
consists of 50 to 1000 sequential instructions. With 26 possible instructions
at each position, there are many more potential genome states than there are
atoms in the universe.

5. Digital organisms can be used to design solutions to computational prob-
lems where it is difficult to write explicit programs that produce the desired
behavior [15, 18]. Current evolutionary algorithm approaches are based on a
simplistic view of evolution, leaving out many of the factors that are believed
to make it such a powerful force. Thus there are new opportunities for bio-
logical concepts to have a large impact outside of biology, just as principles
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of physics and mathematics are often used throughout other fields, including
biology.

1.2 The Avida Software

The Avida software is composed of three main modules: The first is the Avida
core, which maintains all of the key components needed for an experiment
to run without user interaction, including a population of digital organisms
(each with their own genomes, virtual hardware, etc.), an environment that
determines the reactions and resources with which the organisms interact, a
scheduler to allocate CPU cycles to the organisms, and various data collection
objects. The second module is the graphical user interface (GUI) that the
researcher can use to observe and interact with the rest of the Avida software,
including a population monitor, graphing utilities, and other tools to measure
or alter quantities in a population. The final component is a collection of
analysis and statistics tools, including a test environment to study organisms
outside the population, data manipulation tools to rebuild phylogenies and
examine lines of descent, mutation and local fitness analysis tools, and many
others, all bound together in a simple scripting language. A fourth module, an
interactive help and documentation system, is currently under development.

In this section, we will discuss the core module of Avida, which is the
only one needed to perform experiments with digital organisms. In the next
section, we will go into the user tools to interact with an Avida population
(the user interface) and postprocess the data that comes out of an experiment
(the analyze mode).

1.2.1 Avida Organisms

In Avida, each digital organism is a self-contained computing automaton that
has the ability to construct new automata. The organism is responsible for
building the genome (computer program) that will control the offspring au-
tomaton and for transferring that genome to the Avida world. Avida will then
construct virtual hardware for the genome to be run on, and determine how
this new organism should be placed into the population. In a typical Avida ex-
periment, a successful organism attempts to make an identical copy of its own
genome, and Avida randomly places that copy into the population, typically
by replacing another member of the population.

In principle, the only assumption made about these self-replicating au-
tomata in the core Avida software is that their initial state can be described
by a string of symbols (their genome) and that it is possible through process-
ing these symbols to autonomously produce offspring organisms. However, in
practice, our work has focused on automata with a simple von Neumann ar-
chitecture that operate on an assembly-like language inspired by the Tierra
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system. Future research projects will likely have us implement additional or-
ganism instantiations to allow us to explore additional biological questions.

In the following sections, we describe the default hardware of our virtual
computers and explain the principles of the language these machines work on.

Virtual Hardware

The structure of a virtual machine in Avida is depicted in Fig. 1.1. The core
of the machine is the central processing unit (CPU), which processes each
instruction in the genome and modifies the states of its components appropri-
ately. Mathematical operations, comparisons, and so on can be done on three
registers: AX, BX, and CX. These registers each store and manipulate data in
in the form of a single, 32-bit number. The registers behave identically, but
different instructions may act on different registers by default (see below).
The CPU also has the ability to store data in two stacks. Only one of the two
stacks is active at a time, but it is possible to switch the active stack, so that
both stacks are accessible.

The program memory is initialized with the genome of the organism. Exe-
cution begins with the first instruction in memory and proceeds sequentially:
Instructions are executed one after the other, unless an instruction (such as
a jump) explicitly interrupts sequential execution. Technically, the memory
space is organized in a circular fashion, such that after the CPU executes the
last instruction in memory, it will loop back and continue execution with the
first instruction again. However, at the same time the memory has a well-
defined starting point, important for the creation and activation of offspring
organisms.

Somewhat out of the ordinary in comparison to standard von Neumann ar-
chitectures are the four CPU components labeled heads. Heads are essentially
pointers to locations in the memory. They remove the need of absolute address-
ing of memory positions, which makes the evolution of programs more robust
to size changes that would otherwise alter these absolute positions. Among
the four heads, only one, the instruction head, has a counterpart in standard
computer architectures. The instruction head corresponds to the instruction
pointer in standard architectures and identifies the instruction currently being
executed by the CPU. It moves one instruction forward whenever the execu-
tion of the previous instruction has been completed, unless that instruction
specifically moved the instruction head elsewhere.

The other three heads (the read head, the write head, and the flow control
head) are unique to the Avida virtual hardware. The read and write heads
are used in the self-replication process. In order to generate a copy of its
genome, an organism must have a means of reading instructions from memory
and writing them back to a different location. The read head indicates the
position in memory from which instructions are currently being read, and the
write head likewise indicates the position to which instructions are currently
being written. The positions of all four heads can be manipulated with special
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nop−A

h−divide

nop−A

nop−C

if−label

h−copy

h−search

pop

dec

mov−head

nop−B

CPU

Registers Stacks

Heads

Memory

I/O

CX: 0000000...0001

Output Register

Input Register

Read Head

Write Head

Flow Control Head

Instruction Head

AX: 0011000...0100

BX: 0110101...0001

Fig. 1.1. The standard virtual hardware in Avida: CPU, registers, stacks, heads,
memory, and I/O functionality.

commands. In that way a program can position the read and write heads
appropriately in order to self-replicate.

The flow control head is used for jumps and loops. Several commands will
reposition the flow control head, and other commands will move specific heads
to the same position in memory as the flow control head.

Finally, the virtual machines have an input buffer and an output buffer,
which they use to interact with their environment. The way in which this
communication works is that the machines can read in one or several numbers
from the input buffer, perform computations on these numbers with the help
of the internal registers AX, BX, CX, and the stacks, and then write the results
to the output buffer. This interaction with the environment plays a crucial
role in the evolution of Avida organisms and will be explained in detail in
Sec. 1.2.2.

Genetic Language

It is important to understand that there is not a single language that controls
the virtual hardware of an Avida organism. Instead, we have a collection
of different languages. The virtual hardware in its current form can execute
hundreds of different instructions, but only a small fraction of them are used
in a typical experiment. The instructions are organized into subsets of the
full range of implemented instructions. We call these subsets instruction sets.
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Each instruction set forms a logical unit and can be considered a complete
genetic programming language.

Each instruction has a well-defined function in any context, that is, there
are no syntactically incorrect programs. Instructions do not have arguments
per se, but the behavior of certain instructions can be modified by succeeding
instructions in memory. A genome is therefore nothing more than a sequence
of symbols in an alphabet composed of the instruction set, similar to how
DNA is a sequence made up of 4 nucleotides or proteins are sequences with
an alphabet of 20 amino acids.

Here, we will give an overview of the default instruction set, which contains
26 instructions. This set is explained in greater detail in the Avida documen-
tation, for those who wish to work with it.

Template Matching and Heads: One important ingredient of most Avida
instruction sets is the concept of template matching. Template matching is a
method of indirectly addressing a position in memory. This method is similar
to the use of labels in many programming languages: Labels tag a position
in the program, so that jumps and function calls always go to the correct
place, even when other portions of the source code are edited. The same
reasoning applies to Avida genomes, because mutations may cause insertions
or deletions of instructions that shift the position of code segments and would
otherwise jeopardize the positions referred to. Since there are no arguments
to instructions, positions in memory are determined by series of subsequent
instructions. We refer to a series of instructions that indicates a position in
the genome as a template.

Template-based addressing works as follows. When an instruction is exe-
cuted that must reference another position in memory, subsequent nop in-
structions (described ahead) are read in as the template. The CPU then
searches linearly through the genome for the first occurrence of the com-
plement to this template and uses the end of the complement as the position
needed by the instruction. Both the direction of the search (forward or back-
ward from the current instruction) and the behavior of the instruction if no
complement is found are defined specifically for each instruction.

Avida templates are constructed out of no-operation (nop) instructions;
that is, instructions that do not alter the state of either CPU or memory when
they are directly executed. There are three template-forming NOPs, nop-A,
nop-B, and nop-C. They are circularly complementary, i.e., the complement
of nop-A is nop-B, the complement of nop-B is nop-C, and the complement of
nop-C is nop-A. A template is composed of consecutive nops only. A template
will end with the first non-nop instruction.

Nonlinear execution of code (“jumps”) has to be implemented through
clever manipulation of the different heads. This happens in two stages. First,
the instruction h-search is used to position the flow control head at the de-
sired position in memory. Then, the instruction head is moved to that position
with the command mov-head. Figure 1.2 shows an example of this.
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... Some code.
10 h-search Prepare the jump by placing the

flow control head at the end of the
complement template in forward direction.

11 nop-A This is the template. Let’s call it α.
12 nop-B

13 mov-head The actual jump. Move the flow control head
to the position of the instruction head.

14 pop Some other code that is skipped.
...

18 nop-B The complement template ᾱ.
19 nop-C

... The program continues . . .

Fig. 1.2. Example code demonstrating flow control with heads-based instruction
set.

Although this example looks somewhat awkward on first glance, evolution
of control structures such as loops are actually facilitated by this mechanism.
In order to loop over some piece of code, it is only necessary to position the
flow control head correctly once and to have the command mov-head at the
end of the block of code that should be looped over. Since there are several
ways in which the flow control head can be positioned correctly, of which the
above example is only a single one, there are many ways in which loops can
be generated.

Nop’s as Modifiers: The instructions in the Avida programming language
do not have arguments in the usual sense. However, as we have seen above for
the case of template matching, the effect of certain instructions can be mod-
ified if they are immediately followed by nop instructions. A similar concept
exists for operations that access registers. The inc instruction, for example,
increments a register by one. If inc is not followed by any nop, then by default
it acts on the BX register. However, if a nop is present immediately after the
inc, then the register on which inc acts is specified by the type of the nop. For
example, inc nop-A increments the AX register and inc nop-C the CX register.
Of course, inc nop-B increments the BX register, and hence works identical to
a single inc command. Similar nop modifications exist for a range of instruc-
tions, such as those that perform arithmetic like inc or dec, stack operations
such as push or pop, and comparisons such as if-n-equ. The details for spe-
cific instructions can be found in [29] or in the Avida documentation. For
some instructions that work on two registers, in particular comparisons, the
concept of the complement nop is important, because the two registers are
specified in this way. Similarly to the nops in the template matching, registers
are cyclically complementary to each other, i.e., BX is the complement to AX,
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CX to BX, and AX to CX. The instruction if-n-equ, for example, acts on a
register and its complement register. By default, if-n-equ compares whether
the contents of the BX and CX registers are identical. However, if if-n-equ
is followed by a nop-A, then it will compare AX and BX. Figure 1.3 shows a
piece of example code that demonstrates the principles of nop modification
and complement registers.

01 pop We assume the stack is empty. In that case,
the pop returns 0, which is stored in BX.

02 pop Write 0 into the register AX as well.
03 nop-A

04 inc Increment BX.
05 inc Increment AX.
06 nop-A

07 inc Increment AX a second time.
08 nop-A

09 swap The swap command exchanges the contents
of a register with that of its complement
register. Followed by a nop-C, it exchanges
the contents of AX and CX. Now, BX= 1, CX= 2,
and AX is undefined.

10 nop-C

11 add Now add BX and CX and store the result
in AX.

12 nop-A The program continues with BX= 1, CX= 2,
and AX= 3.

...

Fig. 1.3. Example code demonstrating the principle of nop modification.

Nop modification is also necessary for the manipulation of heads. The
instruction mov-head, for example, by default moves the instruction head to
the position of the flow control head. However, if it is followed by either a
nop-B or a nop-C, it moves the read head or the write head, respectively. A
nop-A following a mov-head leaves the default behavior unaltered.

Memory Allocation and Division: When a new Avida organism is created,
the CPUs memory is exactly the size of its genome, i.e., there is no additional
space that the organism could use to store its offspring-to-be as it makes a
copy of its program. Therefore, the first thing an organism has to do at the
start of self-replication is to allocate new memory. In the default instruction
set, memory allocation is done with the command h-alloc. This command
extends the memory by the maximal size that a child organism is allowed to
have. As we will discuss later, there are some restrictions on how large or small
a child organism is allowed to be in comparison to the parent organism, and the
restriction on the maximum size of a child organism determines the amount of
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memory that h-alloc adds. The allocation happens always at a well-defined
position in the memory. Although the memory is considered to be circular in
the sense that the CPU will continue with the first instruction of the program
once it has executed the last one, the virtual machine nevertheless keeps track
of which instruction is the beginning of the program, and which is the end.
By default, h-alloc (as well as all alternative memory allocation instructions,
such as the old allocate) insert the new memory between the end and the
beginning of the program. After the insertion, the new end is at the end of the
inserted memory. The newly inserted memory is either initialized to a default
instruction, typically nop-A, or to random code, depending on the choice of
the experimenter.

DivideAllocate

Fig. 1.4. The h-alloc command extends the memory, so that the program of the
child organism can be stored. Later, on h-divide, the program is split into two
parts, one of which turns into the child organism.

Once an organism has allocated memory, it can start to copy its program
code into the newly available memory block. This copying is done with the
help of the control structures we have already described, in conjunction with
the instruction h-copy. This instruction copies the instruction at the position
of the read head to the position of the write head and advances both heads.
Therefore, for successful self-replication an organism mainly has to assure that
initially, the read head is at the beginning of the memory, and the write head
is at the beginning of the newly allocated memory, and then it has to call
h-copy for the correct number of times.

After the self-replication has been completed, an organism issues the
h-divide command, which splits off the instructions between the read head
and the write head, and uses them as the genome of a new organism. The
new organism is handed to the Avida world, which takes care of placing it
into a suitable environment and so on. If there are instructions left between
the write head and the end of the memory, these instructions are discarded,
so that only the part of the memory from the beginning to the position of the
read head remains after the divide.
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In most natural asexual organisms, the process of division results in organ-
isms literally splitting in half, effectively creating two offspring. As such, the
default behavior of Avida is to reset the state of the parent’s CPU after the
divide, turning it back into the state it was in when it was first born. In other
words, all registers and stacks are cleared, and all heads are positioned at the
beginning of the memory. The allocation and division cycle is illustrated in
Fig. 1.4.

Not all h-divide commands that an organism issues lead necessarily to
the creation of an offspring organism. There are a number of conditions that
have to be satisfied; otherwise the command will fail. Failure of a command
means essentially that the command is ignored, while a counter keeping track
of the number of failed commands in an organism is increased. It is possible
to configure Avida to punish organisms with failed commands. The following
conditions are in place: An h-divide fails if either the parent or the offspring
would have less than 10 instructions, the parent has not allocated memory,
less than half of the parent was executed, less than half of the offspring’s
memory was copied into, or the offspring would be too small or to large (as
defined by the experimenter).

Mutations

So far, we have described all the elements that are necessary for self-replication.
However, self-replication alone is not sufficient for evolution. There must be
a source of variation in the population, which comes from random mutations.

The main form of mutations in Avida are so-called copy mutations, which
arise through erroneously copied instructions. Such miscopies are a built-in
property of the instruction h-copy. With a certain probability, chosen by the
experimenter, the command h-copy does not properly copy the instruction
at the location of the read head to the location of the write head, but instead
writes a random instruction to the position of the write head. It is important
to note that the instruction written will always be a legal one, in the sense
that the CPU can execute it. However, the instruction may not be meaningful
in the context in which it is placed in the genome, which in the worst case
can render the offspring organism nonfunctional.

Another commonly used source of mutations are insertion and deletion
mutations. These mutations are applied on h-divide. After an organism has
successfully divided off a child organism, an instruction in the child’s mem-
ory may by chance be deleted, or a random instruction may be inserted. The
probabilities with which these events occur are again determined by the exper-
imenter. Insertion and deletion mutations are useful in experiments in which
frequent changes in genome size are desired. Two types of insertion/deletion
mutations are available in the configuration files; they differ in that one is a
genome-level rate and the other is a per-site rate.

Next, there are point (or cosmic ray) mutations. These mutations affect
not only organisms as they are being created (like the other types described
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above), but all living organisms. Point mutations are random changes in the
memory of the virtual machines. One of the consequences of point mutations
is that a program may change while it is being executed. In particular, the
longer a program runs, the larger target it is for point mutations. This is in
contrast to copy or insertion and deletion mutations, whose impact depends
only on the length of the program, but not on the execution time.

Finally, it is important to note that organisms in Avida can also have
implicit mutations. Implicit mutations are modifications in a child’s program
that are not directly caused by any of the external mutation mechanisms
described above, but rather by an incorrect copy algorithm of the parent or-
ganism. For example, the copy algorithm might skip some instructions of the
parent program, or copy a section of the program twice (effectively a gene du-
plication event). Another example is an incorrectly placed read head or write
head on divide. Implicit mutations are the only ones that cannot easily be
controlled by the experimenter. They can, however, be turned off completely
by using the FAIL IMPLICIT option in the configuration files, which gets rid
of any offspring that will always contain a deterministic difference from its
parent, as opposed to one that is associated with an explicit mutation.

Phenotype

Each organism in an Avida population has a phenotype associated with it.
Phenotypes of Avida organisms are defined in the same way as they are defined
for organisms in the natural world: The phenotype of an organism comprises
all observable characteristics of that organism. As an organism in Avida goes
through its life cycle, it will self-replicate and, at the same time, interact with
the environment. The primary mode of environmental interaction is by in-
putting numbers from the environment, performing computations on those
numbers, and outputting the results. The organisms receive a benefit for per-
forming specific computations associated with resources as determined by the
experimenter.

In addition to tracking computations, the phenotype also monitors several
other aspects of the organism’s behavior, such as the organism’s gestation
length (the number of instructions the organism executes to produce an off-
spring, often also called gestation time), its age, if it has been affected by
any mutations, how it interacts with other organisms, and its overall fitness.
These data are used to determine how many CPU cycles should be allocated
to the organism and also for various statistical purposes.

Genotypes

In Avida, organisms can be classified into several taxonomic levels. The lowest,
but most important taxonomic level is called genotype. All organisms that have
exactly the same initial genomes are considered to have the same genotype.
Certain statistical data are collected only at the genotype level. We pay special
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attention to the most abundant genotype in the population — the dominant
genotype — as a method of determining what the most successful organisms
in the population are capable of. If a new genotype is truly more fit than than
the dominant one, organisms with this higher fitness will rapidly take over
the population.

We classify a genotype as threshold if there are three or more organisms
that have ever existed of that genotype (again, the value 3 is not hard-coded,
but configurable by the experimenter). Often, deleterious mutants appear in
the population. These mutants are effectively dead and disappear again in
short order. Since these mutants are not able to successfully self-replicate (or
at least not well), there is a low probability of them reaching an abundance of
three. As such, for any statistics we want to collect about the living portion of
the population, we focus on those organisms whose genotype has the threshold
characteristic.

1.2.2 The Avida World

In general, the Avida world has a fixed number N of positions or cells. Each cell
can be occupied by exactly one organism, such that the maximum population
size at any given time is N . Each of these organisms is being run on a virtual
CPU, and some of them may be running faster than others. Avida has a
scheduler (see below) that divides up time from the real CPU such that these
virtual CPUs execute in a simulated parallel fashion.

While an Avida organism runs, it may interact with the environment or
other organisms. When it finally reproduces, it hands its offspring organism
to the Avida world, which places the newborn organism into either an empty
or an occupied cell, according to rules we describe ahead. If the offspring
organism is placed into an already occupied cell, the organism currently oc-
cupying that cell is killed and removed, irrespective of whether it has already
reproduced or not.

Scheduling

In the simplest of Avida experiments, all virtual CPUs run at the same speed.
This method of time sharing is simulated by executing one instruction on
each of the N virtual CPUs in order, then starting over to execute a second
instruction on each one, and so on. An update in Avida is defined as the
point where the average organism has executed k instructions (where k = 30
by default). In this simple case, for one update we carry out k rounds of
execution.

In more complex environments, however, the situation is not so trivial.
Different organisms will have their virtual CPUs running at different speeds,
and the scheduler must portion out cycles appropriately to simulate that all
CPUs are running in parallel. Each organism has associated with it a value
called merit. The merit indicates how fast the CPU should run. Merit is a
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unitless quantity and is only meaningful when compared to the merits of
other organisms. Thus, if organism A has twice the merit of organism B, then
A should execute twice as many instructions in any given timeframe as B.

Avida handles this with two different schedulers. The first one is a per-
fectly integrated scheduler, which comes as close as possible to portioning
out CPU cycles proportional to merit. Obviously, only whole time steps can
be used; therefore, perfect proportionality is not possible in general for small
timeframes. For timeframes long enough such that the granularity of individ-
ual time steps can be neglected, the difference between the number of cycles
given to an organism and the number of cycles the organism should receive
according to its merit is negligible.

The second scheduler is probabilistic. At each point in time, the next
organism to be selected is chosen at random, with a probability of being
chosen proportional to its merit. Thus, on average this scheduler is perfect,
but there are no guarantees.

In practice, the perfectly integrated scheduler is faster, but occasionally
can cause odd effects, because it is possible for the organisms to become
synchronized, particularly at low mutation rates where a single genotype can
represent a large portion of the population. The stochastic scheduler may be
preferred for projects where this effect might be a problem. By default, Avida
uses the perfectly integrated scheduler.

World Topologies and Birth Methods

The N cells of the Avida world can be assembled into different topologies
that affect how offspring organisms are placed and how organisms interact
(as described ahead). Currently, there are two world topologies: a 2D grid
with Moore neighborhood (each cell has 8 neighbors) and a fully connected
(sometimes called well-stirred or mass action) topology. In the latter, fully
connected topology, each cell is a neighbor to every other cell. New topologies
can easily be implemented by listing the neighbors associated with each cell
(though more work might need to be done in the user interface to properly
visualize the new topology).

When a new organism is about to be born, it will replace either the parent
cell or another cell from the neighborhood. The specifics of this placement
are set up by the experimenter. The two most commonly used methods are
replace random, which chooses randomly from the neighborhood, or replace
oldest, which picks the oldest organism from the neighborhood to replace (with
a preference for empty cells if any exist).

Fully connected topologies are used in analogy to experiments with mi-
crobes in well-stirred flasks or chemostats. These setups allow for exponential
growth of new genotypes with a competitive advantage, so that transitions in
the state of the population can happen rapidly. Local neighborhoods, on the
other hand, are more akin to a Petri dish, and the spatial separation between
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different organisms puts limits on growth rates and allows for a slightly more
diverse population [5].

In choosing which organism in a neighborhood to replace, a random place-
ment matches up well with the behavior of a chemostat, where a random
portion of the population is continuously drawn out to keep population size
constant. Experiments have shown [1], however, that evolution occurs more
rapidly when the oldest organism in a neighborhood is the first to be killed
off. In such cases, all organisms are given approximately the same chance to
prove their worth, whereas in random replacement, about half the organisms
are killed before they have the opportunity to produce a single offspring. In-
terestingly, when replace oldest is used in 2D neighborhoods, 40% of the time
it is the parent that is killed off. This observation makes sense, because the
parent is definitely old enough to have produced at least one offspring.

Note that in the default setup of Avida, the only way for an organism to
die is for it to be replaced by another organism being born. It is also possible
to enable an independent death method that will kill off an organism after it
has executed a specified number of instructions, which can be either a constant
or proportional to the organism’s genome length. In some cases a population
without any form of death turned on can lose all ability to self-replicate, but
persist since organisms have no way of being purged. This situation can lead
to confusing results for the research if the cause is not identified.

Environment and Resources

All organisms in Avida are provided with the ability to absorb a default re-
source that gives them their base merit. An Avida environment can, however,
contain other resources that the organisms can absorb to modify their merit.
The organisms absorb a resource by carrying out the corresponding compu-
tation or task.

An Avida environment is described by a set of resources and a set of
reactions that can be triggered to interact with those resources. A reaction
is defined by a computation that the organism must perform to trigger it,
a resource that is consumed by it, a merit effect on the organism (which
can be proportional to the amount of resource absorbed or available), and
a byproduct resource if one should be produced. Reactions can also have
restrictions associated with them that limit when a trigger will be successful.
For example, another reaction can be required to have been triggered first,
or a limit can be placed on the number of times an organism can trigger a
certain reaction.

A resource is described by an initial quantity (which can be infinite if a
resource should not be depletable), an inflow rate (the amount of that resource
that should come into the population per update), and an outflow rate (the
fraction of the resource that should be removed each update). If resources are
made to be depletable, then the more organisms trigger a reaction, the less of
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that resource is available for each of them. This setup allows multiple, diverse
subpopulations to stably coexist in an Avida world [4, 6].

The default Avida environment rewards nine boolean logic operations,
each associated with a nondepletable resource, but organisms can receive
only one reward per computation. Other prebuilt environments that come
with Avida include one with 78 different logic operations rewarded, one simi-
lar to the default nine-resource environment, but with the resources set up to
be depletable, with fixed inflow and outflow rates, and one with nine compu-
tations rewarded, and where only the resources associated with the simplest
computations have an inflow into the system, and those for more complex
operations are produced as byproducts, in sequence, from the reactions using
up resources associated to simpler computations.

An important aspect of Avida is that the environment does not care how a
computation is performed, only that the output of the organism being tested
is correct given the inputs it took in. As a consequence, the organisms find
a wide variety of ways of computing their outputs, some of which can be
surprising to a human observer, seeming to be almost inspired.

Even though organisms can carry out tasks and collect rewards at any
time in their gestation cycle, these rewards do not immediately affect the
speed at which their CPU runs. The CPU speed (merit) is set only once, at
the beginning of the gestation cycle, and then held constant until the organism
divides. At that point, both the organism and its offspring get a new merit,
which reflects the bonuses the organism collected during the gestation cycle
it just completed. In a sense, the organisms collect rewards that go to their
offspring rather than for themselves. The reason why we do not change an
organism’s merit during its gestation cycle is to level the playing field between
old and young organisms. If organisms were always born with a low initial CPU
speed, then they might never execute enough instructions to carry out tasks
in the first place. At the same time, mutants specialized in carrying out tasks
but not dividing could concentrate all CPU time on them, thus effectively
shutting down replication in the population. It can be shown that the average
fitness of a population in equilibrium is independent of whether organisms get
the bonuses directly or collect them for their offspring [40].

Organism Interactions

As explained above, populations in Avida have a firm cap on their size, which
makes space the fundamental resource that the organisms must compete for.
In the simplest Avida experiments, the only interaction between organisms is
that an organism is killed when another gives birth, in order to make room
for the offspring. In slightly more complex experiments, the organisms are
rewarded with a higher merit and hence a larger share of the CPU cycles
for performing tasks. Since only a fixed number of CPU cycles is given out
each update, the competition for them becomes a second level of indirect in-
teractions among the organisms. As the environment becomes more complex
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still, multiple resources take the place of fixed merit bonuses for perform-
ing tasks, and the organisms must now compete over each of these resources
independently. In the end, however, all these interactions boil down to the
indirect competition for space: More resources imply a higher merit, which in
turn grants the organisms a larger share of the CPU cycles, allowing them to
replicate more rapidly and claim more space for their genotype.

In most Avida experiments, indirect competition for space is the only
level of interaction we allow; organisms are not allowed to directly write to
or read from each other’s genomes, so that Tierra-style parasites cannot form
(although the configuration files do allow the experimenter to enable them).
The more typical way of allowing parasites in Avida is to enable the inject
command in the Avida instruction set. This command works similar to divide,
except that instead of replacing an organism in a target cell, the would-be
offspring is inserted into the memory of the organism occupying the target
cell; the specific position in memory to which it is placed is determined by the
template that follows the inject.

In Tierra, parasites can replicate more rapidly than nonparasites, but an
individual parasite poses no direct harm to the host whose code it uses. These
organisms could, therefore, be thought of more directly as cheaters in the
classic biological sense, as they effectively take advantage of the population
as a whole. In Avida, a parasite exists directly inside its host and makes use
of the CPU cycles that would otherwise belong to the host, thereby slowing
down the host’s replication rate. Depending on the type of parasite, it can
either take all of the host’s CPU cycles (thereby killing the host) and use
them for replicating and spreading the infection, or else spread more slowly
by using only a portion of the hosts CPU cycles (sickening it), but reducing
the probability of driving the hosts — and hence itself — into extinction.

In the future, we plan to implement two other forms of interactions. First,
we plan to implement sensors with which organisms can detect the presence
of resources, which would allow them to exchange chemical signals. Second,
we are considering more direct communication, whereby the organisms can
send numbers to each other, and possibly distribute computations among
themselves to solve environmental challenges more rapidly.

1.2.3 Test Environments

Often when examining populations in Avida, the user will need to know the
fitness or some other characteristic of an organism that has not yet gone
through a full gestation cycle during the course of the experiment. For this
reason, we have constructed a test environment for the organisms to be run
in, without affecting the rest of the population. This test environment will
run the organism for at least one generation and can be used either during a
run or as part of post-processing.

When an organism is loaded into a test environment, its instructions are
executed until it produces a viable offspring or until a timeout is reached.
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Unfortunately, it is not possible to guarantee identification of nonreplicative
organisms (this is known as the halting problem in computer science), so at
some point we must give up on any program we are testing and assume it to be
dead. If age-based death is turned on in the actual population, this becomes
a good limit for how long a CPU in the test environment should be run.

The fact that we want to determine if an organism is viable can also cause
some problems in a test environment. For example, we might determine that
an organism does produce an offspring but that this offspring is not identical
to itself. In this case, we take the next step of continuing to run the offspring
in the test environment, and if necessary its offspring until we find either a
self-replicator or a sustainable cycle. By default, we will only test three levels
of offspring before we assume the original organism to be nonviable. Such
cases happen very rarely, and not at all if implicit mutations are turned on.

Two final problems with the test environments include that they do not
properly reflect the levels of limited resources (resource levels can be difficult
to estimate, particularly if we are postprocessing) and that they do not handle
any special interactions with other organisms since only one is being tested
at a time. Both of these issues are currently being examined and we plan to
have a much improved test environment in the future. Test environments do,
however, work remarkably well in most circumstances.

In addition to reconstructing statistics about organisms as they existed in
the population, it is also possible to determine how an organism would have
fared in an alternate environment, or even to construct entirely new genomes
to determine how they perform. This last approach includes techniques such as
performing all single-point mutations on a genome and testing each result to
determine what its local fitness landscape looks like, or to artificially crossover
pairs of organisms to determine their viability. Test environments are most
commonly used in the postprocessing of Avida data, as described in the next
section.

1.3 Using Avida

The Avida software currently runs under all three major operating sys-
tems: Windows XP, Mac OS X, and Linux. The current version of Avida
(including both stable releases and development versions) is available at
http://sourceforge.net/projects/avida/.

Avida can be run either in an experimental mode, in which a population
evolves under the experimental regimme designed by the user, or in an analyze
mode in which the user can postprocess their data to a form more useful for
them. Both of these modes are explained ahead.

1.3.1 Performing Avida Experiments

Currently there are two main methods of running Avida — either with the
graphical user interface (GUI) or in primitive mode (which is faster, but the
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user must pre-script the complete experimental protocol). Researchers will
often use the GUI to get an intuitive feel of how an experiment works, but
then they will shift to the primitive mode when they are ready to perform
more exensive data collection.

The configuration of an Avida experiment requires either using the “Con-
figuration Wizard” in the GUI, or manual editing of five different initialization
files. The most important of these is the genesis file, which contains a list of
variables that control all of the basic settings of a run, including the popula-
tion size, the mutation rates, and the names of all of the other configuration
files to use. Next, we have the instruction set, which describes the specific
genetic language used in the experiment. Third is the ancestral organism that
the population should be seeded with. Fourth, we have the environment file
that describes which resources are available to the organisms and defines re-
actions by the tasks that trigger them, their value, the resource that they use,
and any byproducts that they produce. The final configuration file is events,
which is used to describe specific actions that should occur at designated time
points during the experiment, including most data collection and any direct
disruptions to the population. Each of these files is described in more detail
in the Avida documentation.

Once Avida has been properly installed, and the configuration files set up,
it can be started in primitve mode by going into the work/ directory and typ-
ing primitive on the command line (or else by clicking on the corresponding
icon). Some basic information will scroll by on the screen (specifically, current
update being processed, number of generations, average fitness, and current
population size). When the experiment has completed, the process will termi-
nate automatically, leaving a set of output files that describe the completed
experiment. Each output file begins with an index describing the contents of
that file.

Running the graphical version of Avida differs by platform but is well de-
scribed in the documentation that is contained within the appropriate version.
When Avida is started, it will give the option to use pre-existing configuration
files (which can be set up in the same way as for the primitive mode), or else
by running the configuration wizard, which will take the user step-by-step
through all of the choices necessary to specifying an experimental protocol.
The wizard can operate in two different modes, a basic mode, where only a
few simple questions need to be answered, or a more advanced mode that
provides access to all settings of Avida.

The first window that opens once Avida has started displays a view of
the whole population, as shown in Fig. 1.5. This screen provides a pull-down
menu that allows the user to choose what information should be displayed
about each organism, such as its genotype, its fitness, or its age. Several other
Avida viewers can also be launched from this screen. These viewers include
graphs of data being collected, an instruction viewer to demonstrate how
individual organisms function (as shown in Fig. 1.6), editors to control events
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A

B

Fig. 1.5. The grid viewer from a typical Avida experiment. (A) Fitness map. (B)
Genotype map.
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or the environment, or even additonal map viewers (if multiple aspects of the
population should be displayed at the same time).

Fig. 1.6. A viewer window that allows the user to focus on a single Avida organism
and monitor it as it executes its genome.

The graphical interface to Avida is currently under heavy development,
with many new visualization tools expected to be introduced in the near
future, as well as an extensive help and tutorial system, and an easy interface
to the analysis tools described in the next section.

1.3.2 Analyze Mode

Avida has an analysis-only mode (short analyze mode), which allows for pow-
erful postprocessing of data. Avida is brought into the analyze mode by the
command-line parameter “-a”. In the analyze model, Avida processes the an-
alyze file specified in the genesis file (“analyze.cfg” by default). The analyze
file contains a program written in a simple scripting language. The structure
of the program involves loading in genotypes in one or more batches, and then
either manipulating single batches, or doing comparisons between batches.

In the following paragraphs, we present a couple of example programs
that will illustrate the basics of the analyze scripting language. A full list of
commands available in analysis mode is given in the Avida documentation.
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Testing a Genome Sequence

The following program will load in a genome sequence, run it in a test envi-
ronment, and output the results of the tests in a couple of formats.

VERBOSE
LOAD_SEQUENCE rmzavcgmciqqptqpqcpctletncogcbeamqdtqcptipqfpg
RECALCULATE
DETAIL detail_test.dat fitness merit length viable sequence
TRACE
PRINT

The program starts off with the VERBOSE command, which causes Avida
to print to screen all details of what is going on during the execution of the
analyze script; the command is useful for debugging purposes. The program
then uses the LOAD SEQUENCE command to define a specific genome se-
quence in compressed format. (The compressed format is used by Avida in a
number of output files. The mapping from instructions to letters is determined
by the instruction set file and may change if the instruction set file is altered.)

The RECALCULATE command places the genome sequence into the test
environment and determines the organism’s fitness, merit, gestation time, and
so on. The DETAIL command that follows prints this information into the file
“detail test.dat”. (This filename is specified as the first argument of DETAIL.)
The TRACE and PRINT commands will then print individual files with data
on this genome, the first tracing the genome’s execution line by line, and
the second summarizing several test results and printing the genome line by
line. Since no directory was specified for these commands, “genebank/” is
assumed, and the filenames are “org-S1.trace” and “org-S1.gen”. If a genotype
has a name when it is loaded, then that name will be kept. Otherwise, it will
be assigned a name starting with “org-S1”, then “org-S2”, and so on. The
TRACE and PRINT commands add their own suffixes (“.trace” and “.gen”)
to the genome’s name to determine the filenames they will use.

Finding Lineages

The portion of an Avida run that we will often be most interested in is the
lineage from a genotype (typically the final dominant genotype) back to the
original ancestor. There are tools in the analyze mode to obtain this informa-
tion, if the necessary population and ancestral dumps have been written out
with the events detail pop and dump historic pop. The following program
demonstrates how to make use of these dump files.

FORRANGE i 100 199
SET d /home/charles/dev/Avida/runs/evo-neut/evo_neut_$i
PURGE_BATCH
LOAD_DETAIL_DUMP $d/detail_pop.100000



1 Avida 27

LOAD_DETAIL_DUMP $d/historic_dump.100000
FIND_LINEAGE num_cpus
RECALCULATE
DETAIL lineage.$i.html depth parent_dist html.sequence

END

The FORRANGE command runs the contents of the loop once for each
possible value in the range, setting the variable i to each of these values in
turn. Thus the first time through the loop, ‘i’ will be equal to the value 100,
then 101, 102, and so on, all the way up to 199. In this particular case, we
have 100 runs (numbered 100 through 199) we want to work with.

The first thing we do once we are inside the loop is to set the value of the
variable ‘d’ to be the name of the directory we are going to be working with.
Since this directory name is long, we do not want to have to type it every time
we need it. If we set it to the variable ‘d’, then all we need to do is to type
“$d” in the future. Note that in this case we are setting a variable to a string
instead of a number; that is fine, and Avida will figure out how to handle the
contents of the variable properly. The directory we are working with changes
each time the loop is executed, since the variable ‘i’ is part of the directory
name.

We then use the command PURGE BATCH to get rid of all geno-
types from the last execution of the loop (lest we are not accumulating
more and more genotypes in the current batch), and refill the batch by us-
ing LOAD DETAIL DUMP to load in all genotypes saved in the file “de-
tail pop.100000” within our chosen directory. A detail file contains all of the
genotypes that were currently alive in the population at the time the detail
file was printed, while a historic file (the next one loaded) contains all of the
genotypes that are ancestors of those that are still alive. The combination
of these two files gives us the lineages of the entire population back to the
original ancestor. Since we are only interested in a single lineage, we next run
the FIND LINEAGE command to pick out a single genotype, and discard ev-
erything else except for its lineage. In this case, we pick the genotype with the
highest abundance (i.e., the highest number of organisms, or virtual CPUs,
associated with it) at the time of output.

As before, the RECALCULATE command gets us any additional infor-
mation we may need about the genotypes, and then we print that information
to a file using the DETAIL command. The filenames that we are using this
time have the format “lineage.$i.html”, that is, they are all being written to
the current directory, with filenames that incorporate the run number. Also,
because the filename ends in the suffix “.html”, Avida prints the file in html
format, rather than in plain text. Note that the specific values that we choose
to print take advantage of the fact that we have a lineage (and hence have
measured things like the genetic distance to the parent) and are in html mode
(and thus can print the sequence using colors to specify where exactly muta-
tions occurred).
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These examples are only meant to present the reader with an idea of the
types of analyses available in this built-in scripting language. Many more are
possible, but a more exhaustive discussion of these possibilities is beyond the
scope of this chapter.

1.4 A Summary of Avida Research

Avida has been used in several dozen peer-reviewed scientific publications,
including some in Nature [20,21,43] and Science [4]. We describe a few of our
more interesting efforts ahead.

1.4.1 The Evolution of Complex Features

When Darwin first proposed his theory of evolution by natural selection, he
realized that it had a problem explaining the origins of the vertebrate eye [7].
Darwin noted that “In considering transitions of organs, it is so important
to bear in mind the probability of conversion from one function to another.”
That is, populations do not evolve complex new features de novo, but instead
modify existing, less complex features for use as building blocks of the new
feature. Darwin further hypothesized that “Different kinds of modification
would [...] serve for the same general purpose,” noting that just because any
one particular complex solution may be unlikely, there may be many other
possible solutions, and we only witness the single one lying on the path evolu-
tion took. As long as the aggregate probability of all solutions is high enough,
the individual probabilities of the possible solutions are almost irrelevant.

Substantial evidence now exists that supports Darwin’s general model for
the evolution of complexity (e.g., [8, 16, 25, 26, 44]), but it is still difficult
to provide a complete account of the origin of any complex feature due to
the extinction of the intermediate forms, imperfection of the fossil record, and
incomplete knowledge of the genetic and developmental mechanisms that pro-
duce such features. Digital evolution allowed us to surmount these difficulties
and track all genotypic and phenotypic changes during the evolution of a com-
plex trait with enough replication to obtain statistically powerful results [21].
We isolated the computation EQU (logical equals) as a complex trait, and
showed that at least 19 coordinated instructions are needed to perform this
task. We then performed an experiment that consisted of 100 independent
populations of digital organisms being evolved for approximately 17,000 gen-
erations. We evolved 50 of these populations in a control environment where
EQU was the only task rewarded; we evolved the other 50 in a more complex
environment where an assortment of 8 simpler tasks were rewarded as well,
to test the importance of intermediates in the evolution of a complex feature.

Results: In 23 of the 50 experiments in the complex environment, the
EQU task was evolved, whereas none of the 50 control populations evolved
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EQU, illustrating the critical importance of features of intermediate complex-
ity (P ≈ 4.3 × 10−9, Fisher’s exact test). Furthermore, all 23 implementations
of the complex trait were unique, with many quite distinct from each other in
their approach, indicating that, indeed, this trait had numerous solutions. This
observation is not surprising, since even the shortest of the implementations
found were extraordinarily unlikely (approximately 1 in 1027). We further an-
alyzed these results by tracing back the line of descent for each population to
find the critical mutation that first produced the complex trait. In each case,
these random mutations transformed a genotype unable to perform EQU into
one that could, and even though these mutations typically affected only 1 to
2 positions in the genome, a median of 28 instructions were required to per-
form this complex task — a change in any of these instruction would cause
the task to be lost, thus it was complex from the moment of its creation. It
is noteworthy to mention that in 20 of the 23 cases the critical mutations
would have been detrimental if EQU were not rewarded, and in three cases
the prior mutation was actively detrimental (causing the replication rate for
the organisms to drop by as much as half), yet turned out to be critical for the
evolution of EQU; when we reverted these seemingly detrimental mutations,
EQU was lost.

1.4.2 Survival of the Flattest

When organisms have to evolve under high mutation pressure, their evolution-
ary dynamics is substantially different from that of organisms evolving under
low mutation pressure, and some of the high-mutation-rate effects can appear
paradoxical at first glance. Most of population genetics theory has been devel-
oped under the assumption that mutation rates are fairly low, which is justified
for the majority of DNA-based organisms. However, RNA viruses, the large
class of viruses that cause diseases such as the common cold, influenza, HIV,
SARS, or Ebola, tend to suffer high mutation rates, up to 10−4 substitutions
per nucleotide and generation [12]. The theory describing the evolutionary
dynamics at high mutation rates is called quasispecies theory [11].

The main prediction for the evolutionary process at high mutation rates
is that selection acts on a cloud of mutants, rather than on individual se-
quences. We tested this hypothesis in Avida [43]. First, we let strains of digital
organisms evolve to both a high-mutation-rate and a low-mutation-rate en-
vironment. The rationale behind this initial adaptation was that strains that
evolved at a low mutation rate should adapt to ordinary individual-based se-
lection, whereas strains that evolved at a high mutation rate should adapt to
selection on mutant clouds, which means that these organisms should max-
imize the overall replication rate of their mutant clouds, rather than their
individual replication rates. This adaptation to maximized overall replication
rate under high mutation pressure takes place when organisms trade indi-
vidual fitness for mutational robustness, so that their individual replication
rate is reduced but in return the probability that mutations cause further
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reduction in the replication rate is also reduced [42]. Specifically, we took 40
strains of already evolved digital organisms, and let each evolve for an addi-
tional 1000 generations in both a low-mutation-rate and a high-mutation-rate
environment. As result, we ended up with 40 pairs of strains. The two strains
of each pair were genetically and phenotypically similar, apart from the fact
that one was adapted to a low and one to a high mutation rate. As expected,
we found that in the majority of cases the strains evolved at a high mutation
rate had a lower replication speed than the ones evolved at a low mutation
rate.

Next, we let the two types of strains compete with each other, in a setup
where both strains would suffer from the same mutation rate, which was
either low, intermediate, or high. Not surprisingly, at a low mutation rate
the strains adapted to that mutation rate consistently outcompeted the ones
adapted to a high mutation rate, since after all the former ones had the higher
replication rate (we excluded those cases in which the strain evolved at a low
mutation rate had a lower or almost equal fitness to the strain evolved at a high
mutation rate). However, without fail, the strain adapted to a high mutation
rate could win the competition if the mutation rate during the competition
was sufficiently high [43]. This result may sound surprising at first, but it has a
very simple explanation. At a high mutation rate (1 mutation per genome per
generation or higher), the majority of an organism’s offspring differ genetically
from their parent. Therefore, if the parent is genetically very brittle, so that
most of these mutants have a low replication rate or are even lethal, then the
overall replication rate of all the organism’s offspring will be fairly moderate,
even though the organism itself may produce offspring at a rapid pace. If a
different organism produces offspring at a slower pace, but is more robust
towards mutations, so that the majority of this organism’s offspring have a
replication rate similar to that of their parent, then the overall replication rate
of this organism’s offspring will be larger than the one of the first organism.
Hence, this organism will win the competition, even though it is the slower
replicator. We termed this effect the “survival of the flattest,” because at a
sufficiently high mutation rate a strain that is located on a low but flat fitness
peak can outcompete one that is located on a high but steep fitness peak.

1.4.3 Evolution of Digital Ecosystems

The experiments discussed above both used single-niche Avida populations,
but evolutionary design is more interesting (and more powerful) when we
consider ecosystems. The selective pressures that cause the formation and di-
versity of ecosystems are still poorly understood [36, 38]. In part, the lack of
progress is due to the difficulty of performing precise, replicated, and con-
trolled experiments on whole ecosystems [24]. To study simple ecosystems in
a laboratory microcosm (reviewed in [39]), biologists often use a chemostat,
which slowly pumps resource rich media into a flask containing bacteria, while
simultaneously draining the flask’s contents to keep the volume constant. Un-



1 Avida 31

fortunately, even in these simple model systems, ecosystems can evolve to
be more complex than is experimentally tractable, and understanding their
formation remains difficult [27, 28, 32].

We set up Avida experiments based on this chemostat model [6] wherein
9 resources flow into the population, and 1% of unused resources flow out.
We used populations with 2500 organisms, each of which absorbed a small
portion of an available resource whenever they performed the corresponding
task. If too many organisms focus on the same resource, it will no longer be
plentiful enough to encourage additional use.

Fig. 1.7. Visualizations of phylogenies from the evolution of (A) a single niche
population, and (B) a population with limited resources (and hence multiple niches).
The x-axis represents time, while the y-axis is depth in the phylogeny (distance from
the original ancestor). Intensity at each position indicates the number of organisms
alive at the corresponding point in time and depth in the tree.

Theory predicts that an environment with either a single resource or with
resources in unlimited quantities is capable of supporting only one species [37],
and this is exactly what we see in the standard Avida experiments. It is the
competition over multiple, limited resources that is believed to play a key role
in the structuring of communities [35, 39]. In 30 trials under the chemostat
regime in Avida, a variety of distinct community structures developed [6].
Some evolved nine stably coexisting specialists, one per resource, while oth-
ers had just a couple of generalists that divided the resources between them.
Others still mixed both generalists and specialists. In all cases, the ecosys-
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tems proved to be stable because they persisted after all mutations were shut
off in the system, and if any abundant phenotype were removed, it would
consistently reinvade.

Phylogeny visualizations provide a striking demonstration of the differ-
ences between populations that evolved in a single niche and those from
ecosystems, as displayed in Fig. 1.7. Single niche populations can have branch-
ing events that persist for a short time, but in the long term one species will
out compete the others, or simply drift to dominance if the fitness values
are truly identical. By contrast, in ecosystems with multiple resources, the
branches that correspond to speciation events persist.

We also studied the number of stably coexisting species as a function of
resource availability [4]. We varied the inflow rate of resources over six orders
of magnitude and found that multispecies communities evolved at intermedi-
ate resource abundance, but not at very high or very low resource abundance.
The reason for this observation is that if resources are too scarce, they can-
not provide much value to the organisms and base merit dominates, while if
resources are too abundant, then they are no longer a limiting factor, which
means that space becomes the only limit. In both cases the system reduces
down to only a single niche that the organisms can take advantage of.

1.5 Outlook

Digital organisms are a powerful research tool that has opened up methods
to experimentally study evolution in ways that have never before been pos-
sible. We have explained the capabilities of the Avida system and detailed
the methods by which researchers can make use of them. We must be careful,
however, not to be lured into the trap of thinking that because these systems
can be set up and examined so easily that any experiment will be possible.
There are definite limits on the questions that can be answered.

Using digital organisms, we cannot learn anything about physical struc-
tures evolved in the natural world, nor the specifics of an evolutionary event
in our own history; the questions we ask must be about how evolution works
in general, and how we can harness it. Even for the latter type of questions,
it is sometimes difficult to set up experiments in such a way that they give
meaningful results. We must always remember that we are working with an
arguably living system that will evolve to survive as best it can, not always in
the direction that we intend. Avida has become, in many ways, its own bug
tester. If we make a mistake, the organisms will exploit it. For example, we
originally had only 16-bit inputs for the organisms to process; they quickly
discovered that random guessing often took less time than actually performing
the computation. In this case, the organisms indeed found the most efficient
way to solve the problem we gave them, only that it wasn’t the problem we
had thought we were giving. This error happened to be easy to find and easy
to fix — now all inputs are 32 bits long — but not all “cheating” will be so
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simple to identify and prevent. When performing an Avida experiment, it is
always important that we step through the population and try to understand
how some of the organisms are functioning. More often than not they will
surprise us with the cleverness of the survival strategies that they are using.
And sometimes they will even make us step back to rethink our experiments.

Many possible future directions exist in the development of Avida. Ongoing
efforts include (among others) the implementation of a new CPU model that
is more powerful and realistic, an overhaul of the graphical user interface that
will include more visualization tools and will be designed so that it can easily
be used by those not familiar with the software, an expanded analyze mode
based on the scripting language Python, and the move from asexual to sexual
organisms. We hope for these additions to expand the user base of the software
as well as the range of experiments possible.

Finally, we have an Avida Educational Initiative underway that is focusing
on modifying the software so that it will be more conducive for use in a
classroom. Our initial goal is for it to be used in introductory college biology
courses to help elucidate simple evolutionary concepts. Eventually we plan to
both simplify it further for a high school setting and to create a bridge to the
research version of Avida so that it will be useful in more specialized biology
courses as well.
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Framsticks: A Platform for Modeling,
Simulating, and Evolving 3D Creatures

Maciej Komosinski

Life is one of the most complex phenomena known in our world. Researchers
construct various models of life, which serve diverse purposes and are applied
in a wide range of areas — from medicine to entertainment. A part of artifi-
cial life research focuses on designing three-dimensional models of life forms.
Obviously, such simulated creatures are appealing to the observers, because
the world we live in is three-dimensional. Thus we can easily understand be-
haviors demonstrated by virtual individuals, study behavior changes during
simulated evolution, analyze dependencies between groups of creatures, etc.
However, 3D models of life forms are not only attractive because of their re-
semblance of the real-world organisms. Simulating 3D agents has practical
implications: If the simulation is accurate enough, then real robots can be
built based on the simulation, as in [14]. Agents can be designed, tested, and
optimized in a virtual environment, and the best ones can be constructed as
real robots with embedded control systems. This way artificial intelligence
algorithms can be “embodied” in the 3D mechanical structures.

Perhaps the first best known simulation of three-dimensional life was
1994’s Karl Sims’ virtual creatures [17]. Being visually attractive, it demon-
strated a successful competitive coevolutionary process, complex control sys-
tems, and interesting (evolved) behaviors. However, this work did not become
available for users as documented software. A number of 3D simulation pack-
ages was developed later (see [18] for their review), but most of them either
are used for a specific application or experiment (and are not available as
general tools for users), or focus on simulation exclusively (without built-in
support of genetic encodings and evolutionary optimization).

Framsticks [10–12], a software platform described in this chapter, does
not address a single purpose or a single research problem. On the contrary,
it is built to support a wide range of experiments and to provide all of its
functionality to users, who can use this system in a variety of ways. The
significance of understanding is central for the development of Framsticks.
Although the system is a simplified model of reality, it is easily capable of
producing phenomena more complex than a human can comprehend [8]. Thus
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it is essential to provide automatic analysis and support tools. Intelligible
visualization is one of the most fundamental means for human understanding
of artificial life forms, and this feature is present in the software.

The Framsticks system is designed so that it does not introduce restrictions
concerning complexity and size of creatures. Therefore, neural networks can
have any topology and dimension, allowing for a range of complex behaviors,
some described in Section 4 of [8]. Avoiding limitations is important because
Framsticks is ultimately destined to experiments with open-ended evolution,
where interactions between creatures and environment are the sources of com-
petition, cooperation, communication, intelligence, etc.

Further sections of this chapter focus on the following issues: 2.1 — avail-
able Framsticks software; 2.2 – simulation (morphology, control system, envi-
ronment); 2.3 — general system framework, genotype-phenotype relationship,
simulation architecture and possible usage of the system; 2.4 — some tools
that the system provides to support research and education; 2.5 — sample
experiments that have already been performed, as well as some new ideas; 2.6
— entertaining Framsticks applications. Section 2.7 summarizes this chapter.

2.1 Available Software and Tools

Framsticks was first released in late 1996, but the first official releases became
available on the Internet in June 1997. There is a great difference between
versions 1.x and 2.x. Until 2000, the system had a great number of parameters,
but the experiment logic, visualization, neurons, etc. were hard-coded. In 2002,
starting with version 2.0, the scripting language FramScript was introduced,
which allows for flexible control of most parts of the software — on both a
high level (adjusting parameters) and low level (writing custom procedures).
Scripting is addressed in Section 2.3.2.

The first official release of the Framsticks Theater (a simple-interface, at-
tractive graphical application) took place in 2004, with unofficial releases avail-
able since 2002. The Framsticks family of programs includes

• Framsticks GUI (Graphical User Interface) — the most popular program,
where simulated creatures, genotypes, and the virtual world are presented
visually, and allow for user interaction (dragging creatures, online genotype
visualization, etc.).

• Framsticks CLI (Command-Line Interface) — a program where commands
are issued using text. Useful for long, time-consuming and/or well-defined
experiments, which can be performed automatically (batch processing) or
remotely. This program has no overheads of the GUI and can be compiled
for most operating systems.

• Framsticks Viewer — a simple program that displays creatures built from
genotypes that are specified by a user.
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• Framsticks Theater — a complete Framsticks simulator with a simple
menu and predefined actions (“shows”), described in more detail in Section
2.6.

• Framsticks Editor (FRED) — a simple graphical editor that allows users
to easily design creatures without the knowledge of genetic encodings.
Described in more detail in Section 2.6.

• Framsticks (network) Server and Framsticks (network) Clients — the
server is analogous to the Framsticks CLI, but commands (and their re-
sults) are sent through the network.� Two basic roles of clients are (1) the
GUI for the server, and (2) visualization of the virtual world simulated on
the server, as shown in Fig. 2.1. However, clients can use the server in a
number of ways, including distributed evolution, modeling of ecosystems
and migration, real-time interaction in mixed realities, and much more.
Many clients can connect to the same server at the same time, and clients
can exchange some information between themselves.

• Other helper programs, like brain optimizers, analyzers of experiment out-
put data, etc.

The above applications are in continuous development, with new releases com-
ing out periodically. Framsticks genotypes and experiment proposals can be
browsed, downloaded, and uploaded using the Internet database, Framsticks
Experimentation Center.

Framsticks documentation is available in many forms, including web site
information [12], Framsticks Manual contained in a single document, tutorials,
and the FramScript reference that describes objects and functions useful when
writing scripts.

2.2 Simulation

Simulation in Framsticks concerns the three-dimensional world and creatures.
All kinds of interaction between physical objects are considered: static and
dynamic friction, damping, action and reaction forces, energy losses after de-
formations, gravitation, and uplift pressure — buoyancy (in a water environ-
ment).

There is always a tradeoff between simulation accuracy and simulation
time. Fast simulation is needed to perform evolution; on the other hand, the
model should be as realistic (detailed) as possible to display realistic behaviors.
As we expect emergence of more and more sophisticated phenomena, the
evolution takes more time. Thus simulation needs to be faster, and therefore
less accurate. In order to make the simulation fast and to avoid computational

� The server(s) and client(s) can also be run on a single computer.
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Fig. 2.1. Two sample network clients: the GUI and the virtual world display.

complexity, some less important aspects, like collisions between parts of an
organism itself, were discarded in the native Framsticks simulator.��

Artificial creatures in Framsticks are built of body and brain. Body is
composed of material points (called parts) connected by elastic joints. Brain is
made from neurons (these are signal processing units, receptors, and effectors)
and neural connections. For a more detailed description of this model, refer
to the GDK at [19].

2.2.1 Body

The basic body element is a stick made of two flexibly joined parts (in the
native simulator, finite-element method is used for step-by-step simulation).
Parts and joints have some fundamental properties, like position, orientation,
weight, and friction, but there may also be other (custom) properties, like the
ability to assimilate energy, durability of joints in collisions, etc. Articulations

�� The power of contemporary computers suffices to use very accurate simulation
engines for evolutionary optimization processes [18]. The integration of such an
engine is planned for Framsticks version 3.0.
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exist between sticks where they share an endpoint; the articulations are unre-
stricted in all three degrees of freedom (bending in two planes plus twisting).
Figure 2.2 shows forces considered in the native Framsticks simulator.

gravity

ground
reaction

friction

damping

elastic
reaction
of joints

Fig. 2.2. Forces involved in the native Framsticks simulation.

2.2.2 Brain

Brain (the control system) is made of neurons and their connections. A neuron
may be a signal processing unit, but it may also interact with body as a
receptor (sensor) or effector (actuator). There are some predefined types of
neurons, for example:

• “N” — the standard Framsticks neuron, which is a generalized version
of the popular weighted-sum sigmoid transfer function neuron used com-
monly in AI. The three additionally introduced parameters influence speed
and tendency of changes of the inner neuron state, and the steepness of
the sigmoid transfer function. In a special case, when the three parameters
are assigned specific values, the characteristics of the “N” neuron become
identical to the popular, reactive AI neuron. In this case, neural output re-
flects instantly input signals. More information and sample neuronal runs
can be found in simulation details section at [12].

• “Sin” — a sinusoidal generator with frequency controlled by its inputs.
• “Rnd” — random noise generator.
• “Thr” — thresholding neuron.
• “Delay” — delaying neuron.
• “D” — differentiating neuron.

It is possible to easily add custom, user-designed neurons by using FramScript
— an example is shown in Section 2.3.2.
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The neural network can have any topology and complexity. Neurons can be
connected with each other in any way (some may be unconnected). Inputs can
be connected to outputs of another neuron (including sensors), while outputs
can be connected to inputs of another neuron (including effectors — muscles).
Sample control systems are shown in Fig. 2.3. Note that a single control system
may be composed of many unconnected or independent subsystems.

Fig. 2.3. Sample neural networks. Triangles are the standard signal-processing neu-
rons (“N”). Receptors can be seen as inputs (shown usually on the left side: gyro-
scope, touch, smell, constant signal). Controlled muscles (rotating, bending) are
usually on the right side. Note recurrent connections. Parallel connections are also
allowed.

2.2.3 Receptors and Effectors

Receptors and effectors are interacting between body and brain. They must be
connected to brain in order to be useful, but they also interact with creature’s
body and the world. The three basic Framsticks receptors (sensors) include
“G” for orientation in space (equilibrium sense, gyroscope), “T” for detection
of physical contact (touch), and “S” for detection of energy (smell) — see
Figs. 2.3 and 2.4.

The two basic Framsticks effectors are muscles: bending and rotating. Pos-
itive and negative changes of muscle control signal make the sticks move in
either direction, which is analogous to the natural systems of muscles, with
flexors and extensors. The strength of a muscle determines its effective ability
of movement and speed (acceleration). If energetic issues are considered in an
experiment, then a stronger muscle consumes more energy during its work.

A sample framstick equipped with basic receptors and effectors is shown
in Fig. 2.4. Other examples of receptors and effectors are energy level tester,
water detector, vector eye, length muscle, and thrust.
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touch

sense

muscle

smell

sense

equilibrium

sense

Fig. 2.4. Basic receptors (equilibrium, touch, smell) and effectors (muscles) in Fram-
sticks.

2.2.4 Environment

The world can be flat or built of smooth slopes, or blocks. It is possible to
adjust the water level, so that not only walking/running/jumping creatures,
but also the swimming ones, are simulated. The boundaries of the virtual
world can be one of three types:

• hard (surrounding wall: it is impossible to cross the boundary);
• wrap (crossing the boundary means teleportation to the other world edge);
• no boundaries (the world is infinite).

These options are useful in various kinds of experiments and performance
measurements.

2.3 Framework and Evolution

2.3.1 Genetics

The Framsticks system supports multiple genetic encodings (called also repre-
sentations or “genotype languages”) [13]. The system manipulates and trans-
forms genotype strings expressed in various representations and ultimately
decodes them into the internal representation used by the simulator to con-
struct a creature (phenotype). It means that one can describe a creature using
genomes expressed in different “languages.”

Any creature can be completely described using a low-level representa-
tion labeled f0, by listing all of its components and their properties. Other
higher-level encodings convert their representation into the corresponding f0
version (possibly through another intermediary representation), as shown in
Fig. 2.5. The reverse mapping into higher-level encodings is difficult to com-
pute, which is also true for biological phenotype encodings. As a consequence,
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in the general case it is not possible to convert a lower-level representation
into a higher-level one (or a higher-level one into another higher-level one).

f0

fTest

f4

f1

phenotype

fNew

Fig. 2.5. A graph showing genetic encodings (nodes) and their translation proce-
dures (arcs). The dashed arrow depicts an approximate translation. Multiple, alter-
native translation methods may exist, as shown for the translation from fNew to
f0.

Each encoding has its associated genetic operators (mutation, crossover,
and optional repair) and a translation procedure that allows users to compute
a phenotype from each genotype expressed in this encoding. A new encod-
ing can be added relatively easily, by implementing these components. The
Framsticks system is accompanied by the Genotype Development Kit (GDK),
which simplifies this process [19]. The most popular genetic encodings are
characterized ahead.

The direct low-level, or f0, encoding describes agents exactly as they are
represented in the simulator. It does not use any higher-level features to make
genotypes more compact or flexible. Its useful characteristics are that it has
a minimal decoding cost and that every possible creature can be described
using this encoding. Each f0 genotype consists of a list of descriptions of all
the elements a creature is composed of: parts, joints, neurons, and neural
connections.

The recurrent direct encoding (labeled f1 ) also describes all the parts
of the corresponding phenotype. Body properties are represented locally, so
that most of the properties (and neural network connections) are maintained
when a genotype section is moved to another place of the genotype. Control
elements (neurons, receptors) are described near the elements under their con-
trol (muscles, sticks). Only tree-like body structures can be represented in f1
(no cycles allowed). This encoding is relatively easy for humans to manipulate
and manually design creatures by editing their genotypes. For example, the
‘X’ char means a stick, parentheses are used to branch body structure, ‘r’ and
‘R’ letters are used to rotate the branching plane, etc.
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The developmental encoding (f4 ) is development-oriented, similar to the
encodings applied for evolving neural networks [5]. An interesting merit of
developmental encoding is that it can incorporate symmetry and modularity,
features commonly found in natural systems, yet difficult to formalize. f4 is
similar to f1, but codes are interpreted as commands by cells (sticks, neu-
rons, etc.). Cells can change their properties, and divide. Each cell maintains
its own pointer to the current command in the genetic code. After division,
cells can execute different codes, and thus differentiate themselves. The fi-
nal body (phenotype) is the result of a development process: It starts with
an undifferentiated ancestor cell and ends with a collection of interconnected
differentiated cells (sticks, neurons, and connections).

Each of the three described encodings and the corresponding genetic op-
erators has been carefully designed and tested, and each encoding was based
on numerous theoretical considerations. More detailed descriptions can be
found in [11]. Examples of simple genotypes and corresponding phenotypes
(creatures) are shown in Fig. 2.6.

Fig. 2.6. Left: example of the f1 genotype XXX(XX,X(X,X)). Right: example of the
f4 genotype with the repetition gene: rr<X>#5<,<X>RR< <llX>LX>LX> >X.

The procedure of translation of genotypes may provide additional infor-
mation regarding the relation of individual genes in the source and target
encodings. If this information is available, then it is possible to track the rela-
tionship between parts of a genotype (genes) and parts of the corresponding
creature (phenes). Details of this process and examples are shown in [13].
Figure 2.7 presents the way this information can be visualized and used both
ways.

In the Framsticks software, it is possible to select parts of the phenotype
and genotype to get an instant visual feedback and understand their relation-
ship — see Fig. 2.8. A user can move the cursor along the genotype to see
which phenotype parts are influenced by the genotype character under cur-
sor. Another option available is to modify the genotype by adding, deleting,
or editing its parts while the corresponding phenotype is instantly computed
and displayed. Framsticks can be used to illustrate the phenomena of polygeny
and pleiotropy and to perform direct experiments with artificial genetic en-
codings, increasing comprehension of the genotype-to-phenotype translation
process and properties of genetic encodings — including modularity, compres-
sion, redundancy, and many more.
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X(X, X(X,X(X,X)))RR X X X(X, X( ,X(X, )))RR

Fig. 2.7. A simple mapping between an f1 genotype and the corresponding phe-
notype. Left: user selected a part of the genotype, corresponding phenes are high-
lighted. Right: user highlighted some parts of the body, corresponding genes are
underlined.

Fig. 2.8. A sample genotype and the corresponding creature (body and brain).
Some genes are selected by a user, and the corresponding parts of body and brain
are highlighted. See also color plate.
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2.3.2 Scripting

The Framsticks system can interpret commands written in a simple language,
called FramScript. FramScript can be used for a range of tasks, from cus-
tom fitness functions, macros, and user-defined neurons, to user-defined ex-
periment definitions, creatures behaviors, events, and even 3D visualization
styles. Understanding FramScript allows users to exploit the full potential of
Framsticks, because scripts can control the Framsticks system.

The FramScript syntax and semantics are very similar to JAVA, C, C++,
PHP, etc. In FramScript,

• all variables are untyped and declared using var or global statements,
• functions are defined with the function statement,
• references can be used for existing objects,
• no structures and no pointers can be declared,
• there is the Vector object, which handles dynamic arrays,
• FramScript code can access Framsticks object fields as “Object.field”.

To demonstrate how scripting can be used, we will design a “noisy” neuron,
which generates occasional noise (random output). Otherwise it will pass the
weighted sum of inputs into its output. In neuron definitions, the neural output
can be controlled directly. We can read from neuron inputs, define any internal
function, and preserve the neural state using “private” neuron properties.
“Public” properties can be used to influence the neuron behavior — genetic
operators (mutation, crossing over) will by default operate on such properties.

For a neuron, two functions can be defined: the initialization function (init)
and the working function (go), which is executed in each simulation step. For
our noisy neuron, we do not need the initialization function — there are no
internal properties to initialize. However, the public “error rate” property will
be useful to control how much noise is generated. For each neuron, we first
have to define its name, long name, description, the number of preferred inputs
(any number in this case) and outputs (the noisy neuron provides meaningful
output signal):

class:
name:Nn
longname:Noisy neuron
description:occassionally generates a random value
prefinputs:-1
prefoutput:1

The error rate property (“e”) will be a floating-point number within the
range of 0.0 and 0.1:

prop:
id:e
name:Error rate
type:f 0.0 0.1
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Finally, we implement the working function, which uses the rnd01 function
of the Math object to obtain a random value in the range from 0.0 to 1.0:

function go()
{
if (Math.rnd01 < Fields.e)
Neuro.state = Neuro.weightedInputSum;

else
Neuro.state = (Math.rnd01 * 2) - 1.0;

}

We join these three fragments into a single file, name it “noisy.neuro”,
place it in the appropriate directory, run Framsticks, build a creature that
uses the noisy neuron with the error rate set to 0.1, and start the simulation
to see what is shown in Fig. 2.9. Now the FramScript source of the neuron
can be easily modified to extend its functionality and to exhibit more complex
behavior. The noisy neuron is ready to be used in neural networks, and even
in evolution, without any additional work.

Fig. 2.9. The noisy neuron defined by the script, connected to the sinus generator.
Random output values are generated with the rate of 0.1.

2.3.3 Experiment Definitions

A very important feature of Framsticks is that you may define custom rules
for the simulator. There are no predetermined laws, but a script called the
experiment definition. It is analogous to the neuron definition explained in
the previous section. The experiment definition script is more complex and
defines behavior of the Framsticks system in a few associated areas:
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• Creation of objects in the world. The script defines where, when, and how
much of which objects will be created. An object is an evolved organism,
food particle, or any other element of the world designed by a researcher.
Thus, depending on some specific script, food or obstacles might appear,
move and disappear, their location might depend on where creatures are,
etc.

• Objects interactions. Object collision/contact is an event, which may cause
some action defined by the script developer. For example, physical contact
may result in energy ingestion, pushing each other, destruction, or repro-
duction.

• Evolution. A steady-state (one-at-a-time) selection model, where a single
genotype is inserted into a gene pool one at a time, can be used. But a
standard (i.e., generational replacement) evolutionary algorithm approach
is also possible (a new gene pool replaces the whole old gene pool). Another
possibility is tournament competition for all pairs of genotypes. The script
can define many gene pools and many populations (generally called groups)
and perform independent evolutions under different conditions.

• Evaluation criteria. These are flexible and do not have to be as simple
as the performances supplied by the simulator. For example, fitness may
depend on time or energy required to fulfill some task, or degree of success
(distance from target, number of successful actions, etc.).

The script is built of “functions” assigned to system events, which include

• onExpDefLoad — occurs after experiment definition was loaded. This pro-
cedure should prepare the environment, create necessary gene pools and
populations, etc.

• onExpInit — occurs at the beginning of the experiment.
• onExpSave — occurs on save experiment data request.
• onExpLoad — occurs on load experiment data request. The script should

restore the system state saved by onExpSave.
• onStep — occurs in each simulation step.
• onBorn — occurs when a new organism is created in the world.
• onKill — occurs when a creature is removed from the world.
• onUpdate — occurs periodically, which is useful for performance evalua-

tion.
• on[X]Collision — occurs when an object of population [X] has touched

some other object.

Therefore, a user may define the behavior of the whole system by imple-
menting appropriate actions within these events. A single script (experiment
definition) may use parameters, which allows users to perform a whole bunch
(class) of diversified experiments. Available experiment definitions include

• standard — can be used to perform a range of common experiments. Pro-
vides one gene pool, one population for individuals, one “population” for
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food, steady-state evolutionary optimization, fitness as a weighted sum of
performance values, custom fitness formulas, fitness scaling, and roulette
or tournament selection.

• generational — a simple “genetic algorithm” experiment. Provides two
gene pools (previous and current generation), one population for individ-
uals, generational replacement of genotypes, roulette selection, and script-
defined fitness formula.

• reproduction — asexual reproduction in the world. Each creature with a
sufficient energy level produces an offspring, which is then put close to its
parent. Food is created at a constant rate and placed randomly.

• neuroanalysis — simulates all loaded creatures and computes average and
standard deviation of the output signal for each neuron in each creature.
After evaluation, a simple statistics report is printed. No evolution is per-
formed.

• standard-eval — evaluates loaded genotypes thoroughly one by one, and
produces a report of fitness averages, standard deviations, and average
evaluation times. No evolution is performed.

• standard-log — logs genetic and evaluation operations, producing a de-
tailed history of evolutionary process. Useful for various analyses.

• standard-tricks — serves as an example of a few advanced techniques:
Random force can be applied to parts of a living creature during its life
span, neuron property values can be used in the fitness function, and some
statistical data can be acquired from coordinates of simulated creature
parts.

• deathmatch — an educational tool intended for use in practical courses
in evolutionary computing, evolutionary robotics, and artificial life. Using
“education by competition,” it implements a tournament among teams
of creatures, as well as among teams of students. To win, a team has to
provide a creature that stays alive longer than creatures submitted by
other teams. To stay alive, creatures need energy, which can be collected
by touching energy resources, winning fights, avoiding fights, cooperation,
etc.

Other experiment definitions are reported in Section 2.5.4.

2.3.4 Illustrative Example (“Standard Experiment” Definition)

The file “standard.expdef” contains the full source for the standard experi-
ment definition script used to optimize creatures on a steady-state basis, with
fitness defined as a weighted sum of their performances. This script is quite
versatile and complex. Below its general concept is explained, with much sim-
plified actions assigned to events. This digest gives an idea of what components
constitute a complete experiment definition.
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onExpDefLoad:

• create a single gene pool named “Genotypes.”
• create two populations: “Creatures” and “Food.”

onExpInit:

• empty all gene pools and populations.
• place the initial genotype in “Genotypes.”

onStep:

• if too little food: create a new object in “Food.”
• if too few organisms: select a parent from “Genotypes”; mutate, crossover,

or copy it. Based on the resulting genotype, create an individual in “Crea-
tures.”

onBorn:

• move the new object into a randomly chosen place in the world.
• set its starting energy depending on the object’s type (creature or food).

onKill:

• if “Creatures” object died, save its performance in “Genotypes” (possibly
creating a new genotype). If there are too many genotypes in “Genotypes”,
remove one.

onFoodCollision:

• send a piece of energy from the “Food” object to the colliding “Creature”
object.

2.4 Advanced Tools for Research and Education

Many research works concern studies of evolutionary processes, their dynam-
ics and efficiency. Various methods and measures have been developed in order
to be able to analyze evolution, complexity, and interaction in the observed
systems. Other works try to understand behaviors of artificial creatures, re-
garding them as subjects of survey rather than “black boxes” with assigned
performance and fitness.

Artificial life systems, especially those applied to evolutionary robotics and
design [2,3,14], are quite complex, and it is difficult to understand behaviors
of artificial agents in detail. The only way is to observe them carefully and use
human intelligence to draw conclusions. Usually, the behavior of such agents
is nondeterministic, and their control systems are sophisticated, often coupled
with morphology and very strongly connected functionally [15].
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Therefore, for the purposes of studying behaviors and populations of in-
dividuals, one needs high-level, intelligent support tools [10]. It is not likely
that automatic tools will soon be able to produce understandable, nontrivial
explanations of sophisticated artificial agents. Nonetheless, their role and help
cannot be ignored. Even simple automatic support is of great relevance to a
human, which becomes obvious after spending hours investigating relatively
simple artificial creatures. In the future, some advanced analysis methods,
developed within artificial life methodology, may become useful for real-life
studies, biology, and medicine.

One of the purposes of the Framsticks system is to allow creating and
testing such tools and procedures, and to develop methodology needed for
their use. Realistic artificial life environments are the right place for such
research. On the other hand, education does not require automatic tools for
analysis. Rather it calls for techniques that make complex systems attractive
and easier to understand. Visualization of relations between genotypes and
creatures, as described in Section 2.3.1, is an example of such educational
instrument.

2.4.1 Brain Analysis

An (artificial) creature is composed of body and brain. Body can be easily
seen, and some statistical information is easy to obtain (the number of parts,
body size, weight, degree of consistency, etc.). Brains are much more diffi-
cult to present and comprehend. The Framsticks software provides a special
algorithm for laying out neural networks so that their structure can be ex-
posed. Without this visualization algorithm, a complex neural network looks
chaotic, but after the algorithm is applied, the brain structure is revealed —
see Fig. 2.3. Additionally, if a neuron that is embodied (located in body) is
selected, it is highlighted in both the body view and the brain view (Fig. 2.8).

To understand how the brain works, charts showing signal flow are helpful.
Users can open multiple views of a single brain and connect many “probes”
to neurons, as shown in Figs. 2.9 and 2.10. It is also possible to force states
of neurons using these probes so that parts of the brain can be turned off,
oscillation can be stopped, or the desired signal shape can be interactively
“drawn.” This way, muscles can be directly controlled while simulation is
running.

Some sensors reflect the state of the body. If body is moved, output values
of these neurons change (like, for example, equilibrium or touch sensors). This
is immediately seen in the neural probes. Figure 2.10 shows a creature under
such analysis.

A simple automatic tool for brain analysis is the experiment definition
named “neuroanalysis.” During simulation, it watches each neuron in each
creature and computes averages and standard deviations for all neural output
signals. The final report summarizes activity of brains and helps in location
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Fig. 2.10. A simulated creature with the control system under investigation. Four
neural probes can be seen, showing signals in different locations of the neural net-
work. See also color plate.

of inactive and redundant brain areas. It also gives clues on possible ways of
simplification of analyzed neural networks.

2.4.2 Clustering of Similar Individuals

Similarity is usually considered to be a simple property. However, automatic
measures of similarity can be extremely helpful in observation of regulari-
ties, groups of related individuals, etc. Similarity can be identified in many
ways, including aspects of morphology (body), brain, size, function, behavior,
performance, fitness, etc. When computed automatically, it can be useful in

• optimization, to introduce artificial niches by modification of fitness values
[4],

• studies of evolutionary processes and structures of populations of individ-
uals,

• studies of function/behavior of agents,
• reduction of the number of agents to a small subset of interesting, diverse,

unique individuals,
• inferring dendrograms (and hopefully, phylogenetic trees) based on dissim-

ilarities between organisms.
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For Framsticks, a heuristic method was constructed that is able to estimate
the degree of similarity of two individuals. This method treats body as a graph
(with parts as vertices and joints as edges) and then tries to match two body
structures based on the degrees of vertices as the main piece of information.
It can also take body geometry into account. For a more detailed description
of this method see [9]; a sample application is presented in Section 2.5.3.

2.4.3 History of Evolution

In real life, although we are able to trace genetic relationships within existing
creatures, we do not know exactly what happens during mutation and crossing
over of their genomes. Moreover, we cannot trace genetic relations in a longer
time scale and in high numbers of individuals.

In Framsticks, it is possible not only to remember all parent–child relation-
ships, but also to estimate genotype shares of related individuals (how many
genes have mutated or have been exchanged). This allows users to derive and
draw the real tree of evolution, as shown in Fig. 2.11. The vertical axis is time,
and the horizontal one reflects a local degree of genetic dissimilarity (between
a pair of individuals). Vertices in the tree are single individuals. This way
of visualizing evolution exposes milestones — genotypes with many descen-
dants. The overall characteristics of the evolutionary process (convergence,
high pressure, or random drift) can also be seen in such pictures.

2.4.4 Understanding Evolved Behaviors: Fuzzy Control

Traditional neural networks with many neurons and connections are hard to
understand. They are often presented as “black boxes,” successful but im-
possible to explain — and therefore not trustworthy for some applications.
But there is another paradigm used for control — the fuzzy control. It is
used in many domains of our life, including washing machines, video cameras,
ABS in cars, air condition, etc. It is also applied for controlling nonlinear,
fast-changing processes, where quick decisions are more important than exact
ones [20]. Fuzzy control is attractive because

• it allows for linguistic variables (like “drive fast,” where “fast” is a fuzzy
term).

• it is easier to understand by humans. The fuzzy rule “if X is Big and Y is
Small then Z is Medium” is much easier to understand than the crisp one
“if X is between 32.22 and 43.32 and Y is less than 5.2 then Z is 19.2.”

To evolve controllers whose work can be explained, fuzzy control has been
developed in Framsticks. Fuzzy control, similarly to neural networks, can also
cope with uncertainty of information — when the process is compound, de-
pends on random events or measurements are affected by errors. The fuzzy
approach can manage these problems by generalization of information.
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Fig. 2.11. The real tree of simulated evolution. Top: single ancestor and beginning
of time. Black lines represent mutations; white ones are crossovers.

Having the fuzzy neuron designed, and mutation and crossing over pro-
cedures provided, the “inverted pendulum” experiment was set up with two
goals in mind [6]. The first goal was to check the efficiency of evolution in
optimizing the desired fuzzy control system. The second goal was to check
whether the evolved fuzzy control systems can really explain behaviors in a
human-friendly way.

The base of the pendulum was composed of three joints (J0, J1, J2)
equipped with two actuators (bottom and top) working in two planes — see
Fig. 2.12. The top part of the pendulum was composed of four perpendicu-
lar sticks, each equipped with a single equilibrium sensor (G0, G1, G2, G3).
The sensors provided information for the control system, which controlled the
actuators. The sensors produced signals from the [−1, 1] range depending on
the spatial orientation of the joint they are located in.

The optimization task was to evolve a control system capable of keeping
the inverted pendulum from falling down for as long as possible. Evolved fuzzy
systems were compared to evolved neural networks in the same experiment,
and their quality was similar. Since optimization experiments considered only
behaviors, not the complexity of the control systems, the typical evolved fuzzy
systems employed many fuzzy sets and fuzzy rules. Before attempting to an-
alyze the control system, it was reasonable to try to simplify it. This was
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Fig. 2.12. The pendulum body structure (shown in a bent position).

achieved by performing an additional, short optimization process with dis-
abled genetic operators of adding fuzzy sets and fuzzy rules. Modifications
and deletions were allowed. Thus the complexity of the control system was
radically decreased without deteriorating its fitness.

Fuzzy systems considered in this experiment had four inputs and two out-
puts. Input signals s0, s1, s2, s3 come from four equilibrium sensors. Based
on their values, the fuzzy system sends two outputs signals for actuators:
bend bottom and bend top. Linguistic variables for inputs (upright, leveled,
and upside down) and outputs characterizing bending directions (right, none,
left) need to be defined to present the fuzzy system in a human-readable
form. After they are introduced, the best evolved fuzzy system consisting of
five rules can be rendered as

1. if (s2=leveled and s0=leveled) then (bend bottom=left and bend top=left)
2. if (s3=leveled and s1=upside down) then (bend top=left)
3. if (s1=upright) then (bend bottom=left and bend top=left)
4. if (s3=upside down) then (bend bottom=right and bend top=left)
5. if (s1=upside down) then (bend bottom=left and bend top=none)

The behavior of the inverted pendulum follows the above rules. The results
of this experiment show that evolution of both neural and fuzzy controllers
for active inverted pendulum leads to similar pendulum behaviors. However,
careful analysis of the evolved fuzzy knowledge confirms additional, explana-
tory value of the fuzzy controller. The evolved fuzzy rules, when referenced to
the pendulum structure, are plain and easily understandable by a human.

2.5 Research Experiments

2.5.1 Comparison of Genotype Encodings

There are a number of studies on the evolution of simulated creatures with
realistic physical behavior. In such systems, the use of a physical simulation
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layer implements a complex genotype–fitness relationship. Physical interac-
tions between body parts, the coupling between control and physical body,
and interactions during body development can all add a level of indirection
between the genotype and its fitness. The complexity of the genotype–fitness
relationship offers a potential for rich evolutionary dynamics.

The most important element of the genotype-to-fitness relationship is the
genotype-to-phenotype mapping, or genotype encoding. There is no obvious
simple way to encode a complex phenotype — which consists of a variable-size,
structured body and a matching control system — into a simpler genotype.
Moreover, an evolutionary algorithm can perform poorly when using a certain
genotype encoding, and better when using others, for reasons not yet immedi-
ately obvious. The employed genotype encoding can have a significant effect
on the performance of the evolution.

The Framsticks system has been used as the context of analysis of var-
ious genotype encodings. The performance of the three encodings described
in Section 2.3.1 was compared in three optimization tasks: passive and active
height, and velocity maximization [11]. The solutions produced by evolution
are considered to be successful for the given tasks in all three cases. How-
ever, there were some important differences in the degree of success. The f0
encoding performed worse than the two higher-level encodings. The most im-
portant differences between these encodings are that f0 has a minimal bias
and is unrestrictive, while the higher-level encodings (f1 and f4 ) restrict the
search space and introduce a strong bias toward structured phenotypes. These
results indicate that a more structured genotype encoding, with genetic op-
erators working on a higher level, is beneficial in the evolution of 3D agents.
The existence of a bias toward structured phenotypes can overcome the ap-
parent limitation that entire regions of the search space are not accessible for
the optimization search. This bias may be useful in some applications (en-
gineering and robotics, for example). The significant influence of encodings
can be clearly seen in the obtained creatures: Those with f0 encoding dis-
played neither order nor structure. The two encodings restricting morphology
to a tree produced more clear constructions, and for developmental encoding
segmentation and modularity can be observed (Fig. 2.13).

2.5.2 Automatic Optimization Versus Human Design

Designing agents by hand is a very complex process. In professional appli-
cations, it requires planning and extensive knowledge about how the control
system, sensors, and actuators work, as well as knowledge about the simulator.
Designing neural networks for control by hand is especially difficult and te-
dious. For this reason, agents built by humans have usually lower fitness than
agents produced by evolution. However, human creations are often interesting
qualitatively. Human designs bear such properties as explicit purpose, ele-
gance, simplicity (minimum of means), and often symmetry and modularity.
These features are opposed to evolutionary results, which are characterized
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Fig. 2.13. Representative agents for three distinct genetic encodings and height
maximization task.

by hidden purpose, complexity, implicit and very strong interdependencies
between parts, as well as redundancy and randomness [11].

The difficult process of designing neural networks can be circumvented
by a hybrid solution: Bodies can be hand-constructed, and control structures
evolved for it. This popular approach can yield interesting creatures [1, 8, 10,
12], often resembling in behavior creatures found in nature [7].

2.5.3 Clustering with Similarity Measure

The similarity measure outlined in Section 2.4.2 allowed users to perform a
number of experiments [9]. As stated earlier, the availability of automatic
similarity estimation can be very useful. A sample application of similarity
measure for clustering is presented here. A specific clustering method (called
UPGMA) is applied after similarity is computed for every pair of considered
individuals. Figure 2.14 shows the result of clustering of 10 individuals taken
from the height maximization experiments. The clustering tree is accompanied
by creature morphologies.
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Fig. 2.14. The clustering tree for 10 best individuals in the height maximization
task.

It can be seen that the three big organisms are in a single, distinct cluster.
They are similar in size, but different in structure, so the distance in-between
them is high. Moreover, the measure also captured functional similarity (hp 1,
3, 6, 9, 7) — all these agents have a single stick upwards and a similar base.
The agents hp 0 and hp 4 are of medium size, but certainly closer to the small
organisms group than to the big ones. They are also similar in structure; that
is why they constitute a separate cluster.

The similarity measure is very helpful for study and analysis of groups
of individuals. Manual work of classification of the agents shown in Fig. 2.14
yielded similar results, but it was a very mundane and time-consuming pro-
cess. It also lacked objectivism and accuracy, which are properties of the
automatic procedure.
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2.5.4 Other Experiments

Considering open architecture of the Framsticks system, many possibilities ex-
ist to define diverse genetic representations, experimental setups, interaction
rules, and environments (see Sections 2.3.2 and 2.3.3). Most obvious ideas in-
clude coevolution of individuals in populations, predator–prey relationships,
multiple gene pools and populations, and their specialization. Experiment
ideas related to biology include introducing geographical constraints, and then
investigating differences in clusters obtained after a period of time, or studying
two or more populations of highly different sizes. The latter, under geograph-
ical constraints, can be used to simulate and understand speciation.

A number of interesting experiments regarding evolutionary and neuro-
computational bases of the emergence of complex cognition forms, and a dis-
cussion about semantics of evolved neural networks, perception, and memory
is presented in [16]. Other experiments focus on evolution of sensory-motor co-
ordination system. For this purpose, an artificial eye sensor has been developed
in Framsticks. The basic experiment concerns evolution of the eye-muscles co-
ordination so that creatures are able to move to a particular location, where
a target object is seen in some specific (awarded) way. The decisions about
where to move are based solely on what can be perceived by the artificial
eye. Other experiments concern maze environments, space exploration and
location of targets based on various kinds of available sensory information.

In the virtual life lab at Utrecht University, Framsticks is used for experi-
ments related to evolutionary robotics, animal locomotion, distributed intel-
ligence, artificial ecosystems, biosemiotics, and sexual and natural selection.
Some experiments investigate the evolutionary origins and emergence of be-
havior patterns. In contrast to standard evolutionary computation, in which
selection criteria are imposed by the experimenter outside the evolving system
(“exogenous” or artificial selection), in these studies, as in nature, selection
emerges from within the system (“endogenous” or natural selection). Exper-
iments are designed to include the problems of survival and reproduction in
which creatures are born, survive (by eating food), reproduce (by colliding
with potential mates), and die (if their energy level is insufficient). Such ex-
perimental setup enables the investigation of environmental conditions under
which certain behaviors offer reproductive advantages. Natural selection in
Framsticks is, among others, used in the following experiments.

Predator–Prey

Coevolutionary processes in predator–prey systems are considered to result
in arms races that promote complexification. For such complexification to
emerge, the system must exhibit (semi)stable population dynamics. The pri-
mary goal of this experiment is to establish the conditions in which the sim-
ulated ecosystem is stable. Food, prey and predator creatures are modeled
in a small food chain and allowed to consume each other and reproduce (see
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Fig. 2.15. A snapshot of the predator–prey simulation. The two dark creatures are
predators, hunting down the lighter prey. Prey have evolved to smartly flee from
their predators.

Fig. 2.15). The resulting population dynamics are analyzed using an extended
Lotka–Volterra model. When the relations between the parameters in the bi-
ological model and the simulation are established, stable conditions can be
predicted which enables studies in long-term coevolutionary complexification.

Semiotics

Semiosis is the establishment of connections between a sign and the signified
via a situated interpretant. The segregation of the sign and the signified from
the environment is not given a priori to agents. A sign becomes a part of
an agent’s subjective environment only if it offers benefits in terms of sur-
vival and/or reproduction. In this experiment, the evolutionary emergence
of the relation between signs and signified is studied by putting a popula-
tion of creatures into an environment which contains many signs emitted by
— for example — toxic and nutritious food resources, or fertile and infertile
conspecifics. Through natural selection, the agents that have established be-
havioral relations between the signs and the signified are promoted. A sample
of such a relation is movement toward the sign (chemotaxis). In varieties of
this experiment, agents can leave trails of signs (e.g., pheromones) in the en-
vironment or evolve the ability to signal to each other by using symbols so
that the relation between the sign and the signified is arbitrary.

Sympatric Speciation

Usually, speciation occurs through geographical isolation, which disables gene
flow and promotes genetic drift. This kind of speciation is called allopatric.
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However, sympatric speciation also happens in populations that live in the
same geographical area. Reproducing this phenomenon is the goal of this ex-
periment. Sympatric speciation is hypothesized to occur if selection disrupts
gene flow, when intraspecific competition drives a part of the population to
adapt to another type of food. In the experiment, a single population is mod-
eled in which all agents are generally intermediate in consuming each of the
two types of food. Genetic drift to consuming one type of food occurs, since
this promotes survival and reproduction. With the population growing, in-
traspecific competition grows, and a part of the population may adapt to
consume the (previously unused) type of food. When sexual preferences are
evolved such that agents prefer to mate with agents that feed on the same
type of food, gene flow diminishes, which means that two species have evolved
from one initial population.

2.6 Education with Entertainment

Simulating evolution of three-dimensional agents is not a trivial task. On the
other hand, three-dimensional creatures are very attractive and appealing to
both young and older users, who spend much time enjoying the simulation.
Many users wish to design their own creatures, simulate them, improve, and
evaluate, but designing creatures is not very obvious when it takes place on the
genetic level. To simplify this process, the Framsticks graphical editor (FRED)
was released. It helps in building creatures similarly as CAD programs help in
creating 3D models. The user-friendly graphical interface (shown in Fig. 2.16),
drag-and-drop operations, and instant preview allow users to develop struc-
tures of their imagination. Designing neural networks lets users understand
the basic principles of control systems, their architecture, and applications.
The editor can also browse and download existing genotypes from the Internet
database.

Framsticks can be used to illustrate some basic phenomena, like genes and
genetics, mutation, evolution, user-driven evolution and artificial selection,
walking and swimming, artificial life simulation, virtual world interactions,
etc. However, the simulator has numerous options and parameters that make
it complicated for the first-time users to handle. Thus a predefined set of pa-
rameters and program behaviors was created for the purposes of presentation
of the aforementioned phenomena.

Most often, users of this demonstration program observe what is happening
in the virtual world, so the program was named the Framsticks Theater. It is
an easy-to-use application that includes a number of “shows,” and new shows
can be added by advanced users or developers using scripts (Section 2.3.2).
The shows already included have their script source files available. Each show
available in the theater has a few basic options to select (like the number of
running creatures, length, and difficulty for the “Race” show) . The list of
shows (see also Fig. 2.17) includes



2 Framsticks 63

Fig. 2.16. FRED: the user-friendly graphical editor of Framsticks.

• Biomorph — illustrates a user-driven evolution. Users select a creature and
double-click it to create its offspring. Eight creatures are mutated from the
one in the middle.

• Dance — effectors of all simulated creatures are forced to work syn-
chronously.

• Evolution — shows evolutionary optimization with user-selected fitness
criteria, 50 genotypes in the gene pool, and tournament selection.

• Mixed world — no evolution takes place, creatures are just simulated in a
mixed land-and-water environment.

• Mutation — presents a chain of subsequent mutants.
• Presentation — shows various walking and swimming methods of creatures

evolved or constructed by the Framsticks users.
• Race — creatures compete in a terrain race running to the finish line.
• Reproduction — illustrates spontaneous evolution. Each creature with a

sufficient energy level produces an offspring, which is then put close to its
parent. Food is created at a constant rate and placed randomly.

• Touch of life — creatures pass life from one to another by touching.

The Framsticks Theater can be run on standalone workstations as a show
(artistic installations, shops, fairs), as well as for education (e.g., in biology,
evolution, optimization, simulation, robotics), illustration, attractive graphi-
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cal background for music, advertisement, entertainment, screen-saving mode,
etc.

Fig. 2.17. Four Framsticks Theater shows: introduction, dance, biomorph, and
reproduction. See also color plate.

2.7 Summary

This chapter presents Framsticks, a general tool for modeling, simulation,
optimization, and evolution of three-dimensional creatures. Sections 2.4, 2.5,
and 2.6, demonstrate applications for research, education, and entertainment.
Framsticks is developed with a vision of combining these three aspects, to
make research and education — attractive, playing for fun — educationally
involving, and education — a demonstration and introduction to research.
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Although the Framsticks system is versatile and complex, it can be sim-
plified when some features are not needed. For example, control systems can
be neglected if only static structures are to be considered. Genetic encoding
may only allow for two-dimensional structures if 3D is not required. The sim-
ulation can be restricted to a specific type of a neuron. A local optimization
framework can be used if the task does not require evolutionary algorithms.
The experiment definition may be tailored for only one, specific purpose, e.g.,
to perform evaluation, analysis, or simulation without evolution.

Complexity is useless when it cannot be understood or applied. This is
why the Framsticks software tries to present information in a human-friendly
and clear way, helping to understand the phenomena of life. Framsticks is em-
ployed both in research experiments and in education. It is used by computer
scientists, biologists, roboticists, and other scientists, and also by students and
laypeople of various ages.
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Nerve Garden: Germinating Biological
Metaphors in Net-based Virtual Worlds

Bruce Damer, Karen Marcelo, Frank Revi, Todd Furmanski, Chris Laurel

Nerve Garden is a biologically inspired, multi-user, collaborative 3D virtual
world available to a wide Internet audience. The project combines a number of
methods and technologies, including L-systems, Java, cellular automata, and
VRML. Nerve Garden is a work in progress designed to provide a compelling
experience of a virtual terrarium that exhibits properties of growth, decay,
and energy transfer reminiscent of a simple ecosystem. The goals of the Nerve
Garden project are to create an online “collaborative A-Life laboratory” that
can be extended by a large number of users for purposes of education and
research.

3.1 History and Background of the Project

3.1.1 Artificial Life Meets the World Wide Web

During the summer of 1994, one of us (Damer) paid a visit to the Santa Fe
Institute for discussions with Chris Langton and his student team working on
the Swarm project. Two fortuitous things were happening during that visit,
SFI was installing the first Mosaic web browsers, and digital movies of Karl
Sims’ evolving “evolving virtual creatures” [13] were being viewed through
the web by amazed students (see Fig. 3.1 and view on the Internet in the
reference section at Sims). It was postulated then that the combination of the
emerging backbone of the Internet, a distributed simulation environment like
Swarm, and the compelling 3D visuals and underlying techniques of Sims’
creatures could be combined to produce something very compelling: online
virtual worlds in which thousands of users could collaboratively experiment
with biological paradigms.

One of the Contact Consortium’s special interest groups, called Biota.org
— The Digital Biology Project, was chartered in mid-1996 to develop virtual
worlds using techniques from the artificial life (ALife) field. Its first effort was
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Fig. 3.1. View of Karl Sims’ original evolving block creatures in competition.

Nerve Garden experienced as an art installation at the SIGGRAPH 97 con-
ference and made available online starting in August of 1997. Several hundred
visitors to the SIGGRAPH “Electric Garden” Nerve Garden installation used
L-systems and Java to germinate plant models into shared VRML (Virtual
Reality Modeling Language) island worlds hosted on the Internet. Biota.org is
now seeking support to develop a subsequent version of Nerve Garden, which
will embody more biological paradigms and, we hope, create an environment
capable of supporting education, research, and cross-pollination between tra-
ditional artificial life (ALife) subject areas and other fields.

3.1.2 Background: L-Systems

L-systems [10] have become a commonly used tool for many computer appli-
cations. Commercial 3D packages like Worldbuilder utilize L-systems to model
and simulate vegetation [15]. Instead of hand modeling potentially thousands
of trees, procedural generation offers a large amount of data compression and
an incredible amount of variance. No two trees in a forest may look alike, but
each could be identified as a pine or oak.

While L-systems have classically been used to describe plants, there have
been several cases in which the grammars and implementations have been used
for other ends. Karl Sims’ own virtual creatures used L-system like branching
structures. Limbs and sublimbs, much like arms and fingers on a human,
determined the basic structure of the evolved animals. One program, LMUSe,
converts L-system strings into MIDI format, transforming the systems into
musical compositions [14]. Instead of moving in world space and drawing to
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the screen, the program interprets the grammar as cues to change pitch or
transpose. Famous patterns like Koch’s Snowflake can not only be seen but
also heard.

L-systems have proven useful in modeling virtual cities [9]. Tasks from
generating street layouts to house and building appearances have been ac-
complished using L-systems in one way or another. The advantages of com-
pression and levels of detail apply just as well in a “built” environment as a
“grown” one. Buildings can show similarities, but nevertheless possess enough
variance to avoid unrealistic repetition. Architectural “styles” offer an ana-
log to biological “species” in this sense. The cities themselves can be seeded
like forests, and expand over time, implying a complex history of growth and
development. Local and global factors can be incorporated into such growth,
further adding to the complexity and believability of the city.

The ability to generate complex geometries from simple rules means that,
like Conway’s “Game of Life” [4], L-Systems can be manipulated with a few
simple parameters and permit children and adults alike to explore forms that
with ordinary artistic abilities, they would not be able to express. The motiva-
tion for Nerve Garden was to permit ordinary users of the Internet to engage
in this exploration using the familiar metaphors of landscapes featuring a
range of L-system derived plant forms.

3.2 Nerve Garden I: Inspiration, Architecture, and
Experience

3.2.1 Inspiration

Nerve Garden I (interface shown in Fig. 3.2) is a biologically inspired, shared
state 3D virtual world available to a wide audience through standard Internet
protocols running on all major hardware platforms. Nerve Garden was inspired
by the original work on ALife by Chris Langton [7], the digital ecosystem called
Tierra by Tom Ray [11], the evolving 3D virtual creatures of Karl Sims [13],
and the Telegarden developed at the University of Southern California [5].
Nerve Garden sources its models from the work on L-systems by Aristide
Lindenmayer, Przemyslaw Prusinkiewicz, and Radomir Mech [8, 10].

3.2.2 Architectural Elements

Nerve Garden I allowed users to operate a Java-based thin client, the Ger-
minator (see Fig. 3.3), to visually extrude 3D plant models generated from
L-systems. The 3D interface in the Java client provided an immediate 3D
experience of various L-system plant and even some arthropod forms (see
Fig. 3.4). Users employed a slider bar to extrude the models in real time and
a mutator to randomize select production rules in the L-systems and generate
variants on the plant models. After germinating several plants, the user would
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Fig. 3.2. Nerve Garden interface in web browser. See also color plate.

select one, name it, and submit it into a common VRML97 scenegraph called
the Seeder Garden.

The object passed to the Seeder Garden contained the VRML export from
the Germinator, the plant name, and other data. Another Java application,
called NerveServer, received this object and determined a free “plot” on an
island model in a VRML scenegraph (shown in Fig. 3.2). Each island had a set
number of plots and showed the user where his or her plant was assigned by
a red sphere operated through the VRML external authoring interface (EAI).
Cybergardeners would open the Seeder Garden, window where they would
then move the indicator sphere with their plant attached and place it into
the scene. Various scenegraph viewpoints were available to users, including a
moving viewpoint on the back of an animated model of a flying insect endlessly
touring the island (the bee and butterfly shown in Fig. 3.2). Users would often
spot their plant as the bee or butterfly made a close approach over the island.
Over 10 MB of sound, some of it also generated algorithmically, emanated
from different objects on the island added to the immersion of the experience.
For added effect, L-system-based fractal VRML lightening (with generated
thunder) occasionally streaked across the sky above the Seeder Garden islands.
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Fig. 3.3. Lace Germinator Java client interface.

NerveServer permitted multiple users to update and view the same island.
In addition, users could navigate the same space using standard VRML plug-
ins to web browsers on SGI workstations, PCs, or Macintosh computers from
various parts of the Internet. One problem was that the distributed L-system
clients could easily generate scenes with several hundred thousand polygons,
rendering them impossible to visit. We used 3D hardware acceleration, in-
cluding an SGI Onyx II Infinite Reality system and a PC running a 3D Labs
Permedia video acceleration card to permit a more complex environment to
be experienced by users. In 2004 and beyond, a whole new generation of 3D
chip sets on 32- and 64-bit platforms will enable highly complex 3D interactive
environments. There is an interesting parallel here to Ray’s work on Tierra,
where the energy of the system was proportional to the power of the CPU
serving the virtual machine inhabited by Tierran organisms. In many artificial
life systems, it is not important to have a compelling 3D interface. The ben-
efits to providing one for Nerve Garden are that it encouraged participation
and experimentation from a wide group of users.
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Fig. 3.4. Plant models generated by the Germinator.

3.2.3 Experience: What Was Learned

As a complex set of parts including a Java client, simple object distribution
system, a multi-user server, a rudimentary database, and a shared, persistent
VRML scenegraph, Nerve Garden functioned well under the pressures of a
diverse range of users on multiple hardware platforms. Users were able to
use the Germinator applet without our assistance to generate fairly complex,
unique, and aesthetically pleasing models. Users were all familiar with the
metaphor of gardens and many were eager to “visit their plant” again from
their home computers. Placing their plants in the VRML Seeder Gardens
was more challenging due to the difficulty of navigating in 3D using VRML
browsers. Younger users tended to be much more adept at using the 3D envi-
ronment. A photo of a user of the Nerve Garden installation at the Electric
Garden emerging technologies pavilion at SIGGRAPH 1997 in Los Angeles is
featured in Fig. 3.5.

While it was a successful user experience of a generative environment,
Nerve Garden I lacked the sophistication of a “true ALife system” like Tierra
[11] in that plant model objects did not reproduce or communicate between
virtual machines containing other gardens. In addition, unlike an adaptive
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Fig. 3.5. User at SIGGRAPH Nerve Garden Installation, August 1997.

L-system space such as the one described in [8], the plant models did not
interact with their neighbors or the environment. Lastly, there was no concept
of autonomous, self replicating objects within the environment. Nerve Garden
II will address some of these shortcomings and, we hope, contribute a powerful
tool for education and research in the ALife community.

Did Nerve Garden attain some of the goals we set for presenting an ALife-
inspired virtual world? The environment did provide a compelling space to
draw attention while also proving that an abstraction of a world, that of a
virtual forest of L-systems, could be transmitted in algorithmic form and then
generated on the client computer, achieving great compression and efficiency.
When combined with streaming and ecosystem controls, Nerve Garden II
could evolve into a powerful virtual world architecture testbed.

Visiting Nerve Garden I

Nerve Garden I can be visited using a suitable VRML97 compatible browser
running Java 1.1. Scenes like the ones in Fig. 3.6 can be experienced in real-
time rendered virtual islands that may be toured through the traveling “bee”
viewpoint. All of the islands and L-Systems made at SIGGRAPH 97 can be
viewed on the web (see References). The Biota special interest group and its
annual conferences are covered at http://www.biota.org.
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Fig. 3.6. Bee flight through a Nerve Garden island populated by user-generated
L-System plants. See also color plate.

3.3 A Next Evolutionary Step: Nerve Garden II

The Biota special interest group is seeking support for a subsequent version
of Nerve Garden. Our goals for Nerve Garden II are

• to develop a simple functioning ecosystem within the VRML scenegraph
to control polygon growth and evolve elements of the world through time
as partially described in [8],

• to integrate with a stronger database to permit garden cloning and inter-
garden communication permitting cross-pollination between islands,

• to embody a cellular automata engine that will support autonomous
growth and replication of plant models and introduce a class of virtual
herbivores (“polyvores”) that prey on the plants’ polygonal energy stores,
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• to stream world geometry through the transmission of generative algo-
rithms (such as the L-systems) rather than geometry, achieving great com-
pression, efficient use of bandwidth, and control of polygon explosion and
scene evolution on the client side.

Much of the above depends on the availability of a comprehensive scene-
graph and behavior control mechanism. In development over the past several
years, NervesTM is a simple but high-performance general-purpose cellular
automata engine written as both a C++ and Java kernel. Nerves is modeled
on the biological processes seen in animal nervous systems, and plant and
animal circulatory systems, vastly simplified into a token passing and storage
mechanism. Nerves and its associated language, NerveScript, allows users to
define a large number of pathways and collection pools supporting flows of
arbitrary tokens, token storage, token correlation, and filtering. Nerves bor-
rows many concepts from neural networks and directed graphs used in concert
with genetic and generative algorithms as reported by Ray [12], Sims [13], and
others.

Nerves components will underlie the Seeder Gardens providing functions
analogous to a drip irrigation system, defining a finite and therefore regula-
tory resource from which the plant models must draw for continued growth. In
addition, Nerves control paths will be generated as L-system models extrude,
providing wiring paths connected to the geometry and proximity sensors in the
model. This will permit interaction with the plant models. When pruning of
plant geometry occurs or growth stimulus becomes scarce, the transformation
of the plant models can be triggered. One step beyond this will be the intro-
duction of autonomous entities into the gardens, which we term “polyvores”,
that will seek to convert the “energy” represented by the polygons in the plant
models, into reproductive capacity. Polyvores will provide another source of
regulation in this simple ecosystem. Gardens will maintain their interactive
capacity, allowing users to enter, germinate plants, introduce polyvores, and
prune plants or cull polyvores. Gardens will also run as automatous systems,
maintaining polygon complexity within boundaries that allow users to enter
the environment.

spinalTap.nrv

DEF spinalCordSeg Bundle {

-spinalTapA-Swim-bodyMotion[4]-Complex;

-spinalTapB-Swim-bodyMotion[4]-Complex;

}

Fig. 3.7. Sample NerveScript coding language.

We expect to use Nerves to tie much of the preceding processes together.
Like VRML, Nerves is described by a set of public domain APIs and a pub-
lished language, NerveScript [2]. Figure 3.7 lists some typical NerveScript



76 Damer et al.

statements, which describe a two-chain neural pathway that might be used
as a spinal chord of a simple swimming fish. DEF defines a reusable object
spinalCordSeg consisting of input paths spinalTapA and spinalTapB, which
will only pass the token Swim into a four-stage filter called bodyMotion. All
generated tokens end up in Complex, another Nerve bundle, defined elsewhere.

Fig. 3.8. Nerves visualizer running within the NerveScript development environ-
ment.

Figure 3.8 shows the visualization of the running NerveScript code in
the NerveScript development environment. In the VRML setting, pathways
spinalTapA and B are fed by eventOut messages drawn out of the scenegraph
while the Nerve bundles generate eventIns back to VRML using the EAI.
Nerves is fully described at the web address referenced at the end of this
chapter.

3.4 The Role of ALife in Virtual Worlds on the Internet

3.4.1 Multi-User Online Worlds: A Rich Space for Biological
Metaphors

Multi-user “avatar”-enabled Internet-based virtual worlds have evolved from
relatively simple environments in the mid-1990s to multimillion-dollar mas-
sively multiplayer online role-playing games and simulations today [3]. There
is a large commercial and research-driven motivation to create richer environ-
ments to attract and keep users of these online spaces. Techniques from the
artificial life field, such as L-Systems, have become increasingly employed in
online virtual worlds in the following roles:

• to provide biologically inspired behaviors, including animated behaviors,
growth and decay of the environment, and generation and mutation of
nonplayer characters to draw users into these spaces, for purposes of en-
tertainment or learning about the living world,

• to power underlying architectures with biological metaphors.
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3.4.2 Using ALife to Draw Attention Span

The commercial success of nonnetworked CD-ROM games such as “Creatures”
from Cyberlife of Cambridge, UK, Petz from P.F. Magic of San Francisco,
and the ubiquitous Tomogatchi of Japan have been successful in capturing
the human imagination, attention span, and the pocketbook. For networked
gaming in environments such as EverQuestTM, The SimsTM, AmericasArmy,
Neverwinter’s NightTM, Second LifeTM, and Star Wars GalaxiesTM, the drive
for more lifelike animation, better nonplayer characters, and more rich and
changeable worlds inspires innovative efforts within many projects. The third
Biota conference held at San Jose State University in 1999 (see Biota refer-
ences) focused on the application of ALife to this new world.

3.4.3 Artifical Life Techniques Powering Better Virtual World
Architectures

Players soon tire of key-framed repeatable behavior sequences and yearn for
objects that seem to learn their moves through stimuli from the human play-
ers. Believable physics, noncanned motion, stimulus and response learning
drive developers to borrow from biology. Pets and gardens, perhaps our most
intimate biological companions in the physical world, would serve to improve
the quality of life in the virtual fold.

The key to delivery of better experiences to a variety of user platforms
on low-bandwidth connections is to understand that the visual representation
of a world and its underlying coding need to be separated. This separation
is a fundamental principle of living forms: The abstract coding, the DNA, is
vastly different than the resulting body. This phenotype/genotype separation
also has another powerful property: compression. The VRML 3D scenegraph
language simply defined a file format, a phenotype, which would be delivered
to a variety of different client computers (akin to ecosystems) without any
consideration of scaling, or adapting to the capabilities of those computers.
A biologically inspired virtual world would more effectively package itself in
some abstract representation, travel highly compressed along the relatively
thin pipes of the Internet, and then generate itself to a complexity appropriate
to the compute space in which it finds itself.

As the virtual environment unfolds from its abstraction, it can generate
useful controls, or lines of communication, which allow it to talk to processes
back on servers or to peers on the network. These lines of control can also
create new interfaces to the user, providing unique behaviors. One might imag-
ine users plucking fruit from virtual vines only to have those vines grow new
runners with fruit in different places. With nongenerative, or totally pheno-
typic models, such interaction would be difficult, if not impossible. As we saw
from the example of Nerve Garden earlier in this chapter, important scene-
graph management techniques such as polygon reduction or level of detail
and level of behavior scaling could also be accomplished by the introduction
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of ecosystem-styled metaphors. If we define the energy state of a virtual world
inversely to the computing resources it is consuming, as in a natural habitat, it
would be inevitable for any scenegraph or objects in it to evolve more efficient
representations.

3.5 Other Examples of L-System-based Virtual World
Construction and Considerations for the Future Use of
L-Systems

Chojo, depicted in Fig. 3.9, is a current mobile project developed by the
Integrated Media Systems Center and the Cinema Television’s Interactive
Media Department at USC. Chojo makes use of emergent L-system rules, but
uses the movements of human participants in the physical world as a primary
generative force [1]. Tracking users through GPS, Chojo maps movements,
path intersections, and user-defined “traits” and uses these data to generate
evolving shapes in a virtual space. A point in this virtual space can be viewed
from a corresponding physical space a viewer in front of an undergraduate
library might see a series of vine- and crystal-like structures covering the
building through his or her PDA.

Fig. 3.9. Visual output from USC’s Chojo.
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Exterior forces can continue to enhance ALife systems. Tropism, for in-
stance, can alter a branching pattern globally [6]. Forces like wind and gravity
change the way a tree grows, for instance. Flowers and leaves move to seek
sunlight. L-systems can accommodate such external forces, adding a further
life-like quality. Tropism could also be used in a more abstract sense, depend-
ing on the context of the L-system. For instance, variables like population
density could be integrated into an algorithm describing a city, or various
goals and wants of a virtual creature could ripple through its physical struc-
ture.

The recursive and parametric nature of L-systems and other emergent
algorithms means that a computer and handle and display varying degrees
of resolution and detail. Networked applications like Nerve Garden must take
into account computers of varying speeds and abilities. The ability to easily
generate variable complexity from a fairly simple set of equations or library
of shapes means that a world generated through these emergent methods can
be as simple or complex as the machine allows.

We hope that the scope of projects like Nerve Garden will continue to
expand not just in size but also in relationships. In the physical world, terrain
affects how plants grow in a given area, but the terrain itself can change
because of the presence of plants: A hillside without trees will be susceptible
to landslides and will erode from the wind. Animals migrate when their food
supply dwindles, due to either season or overpopulation.

Much of the emergent and complex nature of artificial and real life arises
from the interaction of fairly simple rules. The algorithmic principles underly-
ing this complexity are often hard to divine in nature, yet casting biologically
suggestive rule-bases (such as L-Systems) in software and observing the results
can prove challenging, entertaining, and informative.
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GenePool: Exploring the Interaction Between
Natural Selection and Sexual Selection

Jeffrey Ventrella

GenePool is an artificial life simulation designed to bring some basic principles
of evolution to light in an entertaining and instructive way. Most significant is
the aspect of sexual selection — where mate choice is a factor in the evolution
of morphology and motor control in physically based animated organisms.
We see in the examples of deer antlers, peacock tails, and fish coloration a
magnificent world of variation that makes the study of animals fascinating for
us — aesthetically–driven humans that we are. But aesthetics is in the eye of
the beholder. And sometimes aesthetics can run counter to the rules of basic
survival. GenePool was designed to explore this topic.

4.1 History

In 1996, an animated artificial life simulation, called Darwin Pond, was de-
signed, and a paper was published describing the simulation [13]. In Darwin
Pond, hundreds of physically based organisms achieve locomotion via geneti-
cally based motor control and morphology. The ability to have more offspring
is a direct outcome of two factors: (1) better ability to swim to within a crit-
ical distance to a chosen mate, and (2) the ability to attract other organisms
who want to mate.

Because Darwin Pond was developed at a computer game company
(Rocket Science Games, Inc.), it included a significant interactive component.
Rocket Science did not survive as a company, and after much effort, Darwin
Pond was released from the corporate and legal complexities of the software
games world, and it was published for free at [15], where it has remained.

GenePool was developed as a derivation of Darwin Pond. Although it has
fewer interactive aspects, it extends Darwin Pond in terms of the simulation by
emphasizing the effects of sexual selection on morphology and behavior. The
term “swimbot” was chosen to describe the organisms in GenePool, because
of their robot-like mechanical appearance and the fact that they evolve into
virtual swimming machines. A subsequent paper [14] discusses this work.
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4.2 Background

Chaos theory and fractals popularized the notion that the complexity we ap-
preciate in nature can often be described with a small number of parameters
or rules. The key is iteration — the repeated application of those rules over
time. The genetic algorithm (GA) [4, 5] mimics an aspect of nature’s way
through the iterative application of the principles of Darwinism over many
populations. The GA has been used for generating adaptive behavior in simu-
lated organisms, such as locomotion [7,10,12]. These explorations have shown
how artificial evolution can be used to solve certain design problems that are
too complex or multidimensional for humans to solve. Animal locomotion is
an appropriate problem for this technique — it came about through evolution
after all.

4.2.1 Dawkins’ Call

The classic GA, however, does not model the asynchronous nature of popu-
lation evolution. This limitation is what motivated further exploration into
building a more realistic Darwinian model for evolving locomotion. Richard
Dawkins had expressed a wish for more naturalistic models in artificial life [2],
whereby the dynamics of genetic evolution are not constrained to the lock-step
generation updating used in the classic GA, but rather are asynchronous and
autonomous, and where the definition of “fitness” is not arbitrary. Darwin
Pond was an attempt to answer this call.

4.2.2 Physics, in Various Forms

Many artificial life simulations explore the adaptation of organisms or popula-
tions within an environment — which can be quite abstract. These simulations
are less concerned with the accuracy and verisimilitude of physical modeling
as with the nature of the organisms’ adaptation that takes place within, and
in accordance with, the environment. Tierra [8] is a compelling and life-like
artificial life simulation that has no physics — at least not in the Newtonian
sense. In contrast, Sims’ Blockies [10] uses a sophisticated 3D physical model
— but here again, the main emphasis is the way in which the population
adapts to accomplish a goal — and in this case the realism of the physical
environment allows their adaptive solutions to be appropriately complex, as
well as familiar to our own goal-oriented behaviors.

GenePool uses an abbreviated physical model, implemented in 2D. This
simplification of mechanics is meant to strike a balance between having real-
istic enough physics to allow sufficient complexity of morphology and motor
control, yet at the same time being computationally lean so it can animate
hundreds of organisms in real time on average desktop computers, and thus
allow detailed visualization and interaction.
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4.2.3 Sexual Selection

Autonomous mating naturally brings us to the question of mate choice, which
is what GenePool addresses. Could a simulation be built that demonstrates
the effects of sexual selection that run counter to the need for energy efficient
locomotion? In other words, can a simulation show an inherent conflict be-
tween the forces of natural selection and the forces of sexual selection? If so,
what similarities to the natural world might emerge? GenePool implements a
number of possible “attractiveness criteria” allowing interactive exploration
of sexual selection forces on the evolution of swimbots. Thus, the primary
scientific inquiry that GenePool hopes to shed light on is the interactions be-
tween natural selection and sexual selection, especially in regards to energy
efficiency.

4.3 Description of the Software

GenePool is modeled as a continuous two-dimensional square area constrained
by four boundaries. These boundaries do not wrap — as in a torus topology.
GenePool uses simulation time rather than clock time. Time cannot be run
backwards due to the nature of the forward dynamics affecting the positions
and orientations of the swimbots. Within this continuous field are two kinds
of entities: swimbots and food bits.

4.3.1 Initialization

At the start of a simulation run, 200 swimbots are initialized with random gene
values (these genes are explained ahead). They are accompanied by a number
of food bits, which serve as packets of energy for swimbots to consume. The
total energy in the environment is stored in swimbots and food bits (the
number of food bits being typically over 1000, depending on the total energy
setting). Both swimbots and food bits are distributed randomly in a disk
region, as shown in Fig. 4.1.

This disk region allows sufficient density of swimbots and food bits to give
the few slightly more fit swimbots a chance to get to food and or mates before
running out of energy, thus giving evolution a jump-start. Sometimes, as luck
would have it, all the swimbots die off after a while. But in most cases, small
clusters of swimbots appear in a few locations in the disk region — groups
of genetically related swimbots, or “gene pools” — and eventually one gene
pool takes over the whole environment.

Figure 4.2 shows a close-up view of a group of swimbots to show variation
in an unevolved population. Food bits can be seen scattered around.
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Fig. 4.1. Initial distribution of 200 swimbots and food bits.

4.3.2 Food Bit Behavior

Food bits replicate by periodically sending imaginary spores out, which appear
nearby. Thus, the food bits occupying the initial disk region begin to spread,
as swimbots consume them.

4.3.3 Swimbots

Swimbots are made of parts, ranging in number from 2 to 10. Parts are rigidly
connected from end to end and rotate off each other in pendulum fashion,
using sine functions. Parts come in six colors (red, orange, yellow, green, blue,
and violet). Figure 4.3 shows a swimbot that has six parts.

Genes for morphology determine the length, thickness, color, and “resting
angle” of each part. (The resting angle of a part is relative to the angle of the
part to which it is attached.) Genes for motor control determine the phases and
amplitudes of the sine functions, per part. Figure 4.4 shows how three unique
sine waves, determined by six genes, combine to create a unique periodic
swimming motion in the whole body.

Frequency of sine-wave motions is constant among all the parts, but can
vary among swimbots according to another gene.
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Fig. 4.2. Swimbots.

Fig. 4.3. An example swimbot with six parts.
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Fig. 4.4. A schematic showing variations in amplitude and phase among body part
angular motions.

Within the simulation environment, swimbots have position and orienta-
tion, translational velocity, and rotational velocity. They can transform their
positions and orientations autonomously by way of the articulated motions
of their parts. When a part moves perpendicular to its axis, it has a greater
effect on swimbot position and orientation than if the part moves parallel to
its axis. Compare to a canoe paddle: Setting the paddle in the water with its
plane perpendicular to its motion forces the paddler (and thus the canoe) in
the opposite direction of the sweep. Thrusting the paddle in the water in the
direction of its axis has little effect.

4.3.4 Locomotion Is Required for Mating

With as many as 10 body parts, each having many possible lengths and widths,
attached in many possible ways, and rotating back and forth with various pos-
sible phases and amplitudes, the phenotype space is very large. The majority
of swimbots at the beginning of a simulation are bound to be poor swimmers
and never reach their destinations of food bits or mates before dying. Those
few who are lucky enough to be initialized with genes allowing their motions
to propel them in the direction of their goal are the ones who will be able
to mate and thereby pass on their more fit genetic building blocks into the
future.

4.3.5 Special Body Parts

Swimbots have no heads, torsos, or explicitly defined limbs with special func-
tions. There is one special exception to this rule: There is one part (the root
part) that has a genital at one end and a mouth at the other end. These
two locations correspond to the two goals in a swimbot’s life and are used in
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computing the distance from the genitals of potential mates, and food bits,
respectively.

Mouths and genitals are visualized using a vector attached to these loca-
tions and aimed in the direction of the swimbot’s goal. When a swimbot is
pursuing food, the mouth vector is shown and a green dot appears at the end
of it. When the swimbot is pursuing a mate, the genital vector is shown and
a white dot appears at the end of it. The length of these vectors is important
for the detection of swimbots coming to within proximity of a goal — it vi-
sualizes the radius of critical contact. Figure 4.5 shows a circle and a white
line superimposed on a swimbot pursuing a food bit to emphasize the mouth
vector and to indicate the radius.

Fig. 4.5. The mouth vector and a circle showing the critical distance for eating a
food bit.

4.3.6 Swimbot Mental States

Swimbots have four continuous mental states: (1) looking for a mate; (2)
pursuing a chosen mate; (3) looking for a food bit; and (4) pursuing a chosen
food bit, as illustrated in Fig. 4.6. The acts of eating and mating are brief —
they are instantaneous states.

4.3.7 Energy Flow

Energy is stored in three locations, (1) in swimbots, (2) in food bits, and (3)
in the ambient fluid of the pool as a whole. New food bits take energy from the
pool and appear randomly in the pool within the vicinity of other food bits.
Swimbots get their energy from these food bits. Swimbots expend energy by
moving their parts — that energy is dissipated back into the pool (Fig. 4.7).

“Efficient” swimmers expend less energy while covering larger distances
and more rapidly converging on a goal. These swimbots spend more time
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Fig. 4.6. Swimbot mental states.

Fig. 4.7. Energy flow in GenePool.

pursuing mates and less time pursuing food. When a swimbot’s energy dips
below a specific threshold (the hunger level), the swimbot becomes hungry
and looks for a food bit to pursue. If the swimbot’s energy reaches zero, it
dies. If a swimbot has succeeded in reaching a food bit, that swimbot’s energy
goes up — if its energy level is high enough (above hunger threshold), it begins
to look for a mate. A successful that which produces an offspring causes the
energy level of each parent swimbot to decrease by 50% — that energy is
given to the offspring.

4.3.8 Turning

Each swimbot has an innate orientation, or heading, determined by the axis of
its main body part. While pursuing a goal, the direction from the swimbot to
its goal is compared to its orientation at every step, as illustrated in Fig. 4.8.

The size and sign of the resulting angle are used to modify the phases and
amplitudes of all the part motions. Genetic factors determine the amounts that
these phases and amplitudes are modified, per part. No explicit definition of
turning is provided — the solutions are those of a blind watchmaker. Turning
solutions are among the more complex emergent behaviors in swimbots and
are difficult to describe objectively.
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Fig. 4.8. Swimbot orientation compared to goal direction modifies genetically de-
termined turning mechanisms.

4.3.9 Perceiving and Choosing Mates

When a swimbot’s mental state switches to looking for a mate, it scans all
the swimbots within a specific radius (its “view horizon”) at one instant, with
a “snapshot.” It then chooses the one that most satisfied the attractiveness
criterion (see the list of attractiveness criteria ahead). Each attractiveness
criterion has an associated algorithm, which is used to measure a particular
phenotypic feature in the body of each swimbot scanned. The swimbot with
the greatest value is the one chosen. This design was meant to enable the
phenomenon of runaway sexual selection, whereby the population will try to
maximize its attractiveness, even at the expense of overall efficiency.

As an example, if the attractiveness criterion is “big,” then to determine
attractiveness in a potential mate, the areas of all its parts are added up to
determine the total body area. This is one of the more straightforward algo-
rithms. Attractiveness criteria having to do with motion and body pose (such
as “hyper,” or “straight”) are more involved — they refer to the instantaneous
velocities of the parts, or to the pose the body happens to be in during the
snapshot. Presumably, a swimbot may appear uncharacteristically attractive
during the snapshot only because of the particular configuration or motions
of its body parts at that time. But these misinterpretations of attractiveness
would be rare and small, due to the fact that many swimbots are evaluated
per snapshot — the attractiveness gradient is fairly robust, especially over
evolutionary time.

4.3.10 Pseudo-FlatLand

Although swimbots occupy a 2D plane, perception is not modeled as occurring
in this imaginary space, as in the entities of Flatland [1]. This kind of visual
modeling would be ambiguous at any rate. Instead, swimbots are assumed to
have the ability to perceive the body structures of other swimbots as if looking
down upon the picture-plane. This is admittedly an abstraction. A true 3D
simulation would allow more realistic visual modeling and consequently more
interesting emergent behaviors in terms of range of mate selection criteria.
But for the purposes of the basic experiment in GenePool, this is sufficient.
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4.3.11 Mating and Birth

When two swimbots mate (i.e., at least one of them is pursuing the other,
and the distance between their genitals is less than the length of the genital
vector), one offspring appears in between them, which inherits genetic building
blocks from both parents. Crossover and mutation operators are used.

4.4 Usage

Although the animated computer graphics aspect of GenePool is not critical
to the simulation, it is always running, so that the user can explore vari-
ous aspects of the simulation at any time. Overlaid on top of the animated
simulation view are various menu options. These include the following.

4.4.1 Pool Menu

The Pool menu allows the user to save and load pool files, or start a new
“Primordial Pool” from scratch.

4.4.2 Love Menu

The Love menu allows the user to set the attractiveness criteria. For instance,
if the user sets the attractiveness criteria to “long,” then from that point
forth all swimbots will tend to choose swimbots as mates which have longer
bodies (at the point in time in which the swimbot scans for attractive swim-
bots). There are 10 attractiveness criteria: 5 primary attributes, each with an
opposing attribute, as shown:

Similar Color Opposite Color
Big Small
Hyper Still
Long Short
Straight Crooked

4.4.3 Stats Menu

The Stats menu brings up a graph that shows food population vs. swimbot
population in a time-series graph. In mature populations, familiar oscillations
of predator-prey populations can be observed.

4.4.4 Info Menu

This is the help page for GenePool.
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4.4.5 Affecting Views

An important aspect of GenePool is the Microscope, a tool for controlling the
view, as seen in Fig. 4.1 at the lower right. The microscope has left, right, up,
and down translation controls, and zoom in/out. In addition to this, it has
the following special settings:

• Whole Pool: The microscope backs up to view the entire pool.
• Auto-tracking: In auto-tracking mode, the view shifts around according to

the positions of swimbots, so as always to keep some kind of activity in
view.

• View Selected Swimbot: When the user selects a swimbot with the mouse
cursor, that swimbot becomes the selected swimbot. This microscope set-
ting keeps the selected swimbot within view at all times.

4.4.6 Ways to Use GenePool

GenePool can be used in three ways:

1. As reference material for continuing artificial life research: Some references
of GenePool in artificial life research include [9].

2. As a children’s software toy: GenePool/Darwin Pond can captivate young-
sters. Children have been observed exploring and manipulating swimbots
from many minutes to nearly an hour. This is an indication that young
children have an opportunity to catch a glimpse of the complex world of
evolutionary dynamics, while at the same time having some fun. An ulti-
mate goal in developing entertaining artificial life simulations is that it will
help prepare children’s minds for the kinds of environmental, ecological,
and social problems we face today — understanding complex dynamical
systems is important to the future stewards of the Earth.

3. As an introduction to evolution for science students: A handful of high
school and college teachers have expressed interest in GenePool and Dar-
win Pond as tools for learning about evolution, and have included them
in their courses.

4.4.7 A Sample User Session

This is what is recommended as a suggested user session, in the INFO page
of GenePool:

How to use GenePool:

1. Start up a primordial pool from the “Pool” menu.
2. Select the attractiveness criterion from the “Love” menu.
3. Explore mate choice behavior by using the microscope (controls at lower

right).
4. Go away.



92 Ventrella

5. Come back after a while and notice what has evolved.
6. If you like what you see, save the pool in one of four files, as specified in

the “Pool” menu.

4.4.8 Mini-Dramas

While global dynamics are going on, one can witness on local scales events such
as two swimbots racing to reach a common food bit, a swimbot dying from
starvation, or a swimbot chasing another swimbot it has chosen as a mate,
who is chasing yet another swimbot that it has chosen as a mate. Emergent
behavior occurs on the local scale as well as the global scale. One can choose
among the following Mini-Dramas:

• Most Loved: shows the swimbot who has produced the most offspring (as
pursued)

• Best at Mating: shows the swimbot who has produced the most offspring
(as pursuer)

• Biggest Eater: shows the swimbot who has eaten the most food bits
• Mutual Love: shows two swimbots pursuing each other as mates (if found)
• Love Triangle: shows three swimbots in a circular loop of mate pursuit (if

found)
• Competition for food: shows group of swimbots pursuing a common food

bit (if found).

4.4.9 Anthropomorphizing

A special setting of the simulation can be run in which all the swimbots are
initialized with genes for morphology set to roughly resemble human forms.
Motor control, however, is randomized, to allow differential swimming abil-
ity at the start of the simulation. Watching these anthropomorphized figures
struggle to swim can be amusing, as we project our own bodies onto them.
Figure 4.9 shows a screenshot of two such swimbots immediately after they
have mated (offspring appear small and white between the parents and grow
to full size within a few seconds). Both swimbots are pursuing the food bit at
top right.

These human-like forms generally do not persist over evolutionary time,
usually giving way to simpler body types. Often, the vestiges of a human-like
ancestor can be detected.

4.5 Discoveries

4.5.1 Polymorphism?

In specific simulation runs, an attraction criterion was chosen which was in-
tentionally in conflict with normal pressures for efficient swimming: attraction



4 GenePool 93

Fig. 4.9. Swimbots with morphological genes initialized to resemble a human-like
figure.

was set to “still” (i.e., swimbots exhibiting the least amount of motion become
the most attractive). The prediction was that this would cause mass extinc-
tion. But many populations actually thrived, converging on a distinct bifurca-
tion among body types, with the majority being small and nearly motionless,
and a small minority being similar with the exception of having whip-like
tails enabling them to swim rapidly. These rapid swimbots (the “breeders”)
are largely responsible for propagating the genes throughout the population,
while the majority of swimbots simply lie around being attractive (the “sit-
ters”). The breeders expend more energy and eat more food bits, while the
sitters eat very little and expend very little energy.

A number of simulation runs with the same attractiveness criterion have
converged on similar results. Figure 4.10 shows one of the breeders (top center)
among some sitters.

An hypothesis is as follows: These populations had discovered a way to
take advantage of a mutation at a specific locus of the genotype that accounts
for this phenotypic difference — possibly a few genes are involved. This bifur-
cation of the phenotype may be an expression of the inherent conflict between
swimming efficiency and attractiveness, which, in this case, are at odds. Natu-
ral selection pressures exploit this mutation for the sake of propagation, while
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Fig. 4.10. A “breeder” (top center) among a majority of “sitters.”

sexual selection keeps the majority of the population in a generally stable
state of motionlessness.

4.5.2 Celebrating Diversity

One of the attractiveness criteria is “similar color.” When this is turned on,
swimbots will choose mates whose bodies contain the closest spectrum of
colors to their own. One experiment was to encourage interracial mating by
adding a new attractiveness criterion called “opposite color” — as shown
above. Not surprisingly, when this is turned on, the population converges on
a perpetual state of psychedelic diversity.

4.6 Future Development

Three main enhancements to GenePool are planned, as described here.

4.6.1 Recursive Embryology

The current mapping of genotype to phenotype is without structure in terms of
topological arrangement of parts, part proportions, and motor control among
parts. Thus, there is no innate tendency toward segmentation, symmetry, or
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regular limb-branching. This was intentional in the original scheme, so as to
remove any bias and to focus only on emergent behaviors. But this lack of
structure may inhibit certain creative solutions. In the works is a new recur-
sive scheme for embryology such that fewer genes are required to determine
morphology and motor control, and forms of symmetry and segmentation can
emerge.

4.6.2 Parental Investment and Gender

The polymorphism-like behavior described above suggests further exploration.
Females typically invest more energy and/or time toward birthing and rais-
ing offspring, most specifically in terms of investment in gametes. Without
specifying gender difference explicitly, new attributes could be added to the
swimbot genotype/phenotype causing them to have differences in parental in-
vestment (i.e., fraction of energy given to offspring in the event of mating —
currently it is set to 50% per parent — an arbitrary ratio indeed). This gene
might evolve in correlation with emergent behaviors such as rate of energy
burn, attractiveness, and perhaps other, unforeseen behaviors.

4.6.3 Environmental Variation

One reason GenePool converges so quickly is that the environment is simple
and undifferentiated. Having the food bits move according to fluid flows, or
according to their own evolvable traits, would make for a more dynamic fitness
landscape. Also, more complex barriers to genetic flow would help (besides
the “Great Wall” tool — a line the user can place as a barrier to encourage
localized isolated gene populations).

4.7 Similar Simulations

A number of Alife software simulations share common features with GenePool:

• Framsticks [3]: far exceeds GenePool in functionality and physical simu-
lation, including features for many variations of 3D simulation and user-
manipulation. Like GenePool, Framsticks creatures consist of jointed body
parts which rotate against each other.

• SodaPlay [11]: demonstrates great variety of form and motion using 2D
graphics, in an entertaining format. SodaPlay uses a more “molecular”
style of physics modeling, base on spring forces, to affect the positions
and orientations of potentially large-scale spring structures having semi-
coherent positions and orientations.

• LifeDrop [6]: shows intriguing biomorphs breeding in an ethereal setting,
with ways to interactively change the view. Like GenePool, LifeDrop shows
multiple biomorphs interacting at once.
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Sodarace: Adventures in Artificial Life

Peter W. McOwan and Edward J. Burton

Much like life, the Sodarace project (www.sodarace.net) defies easy descrip-
tion [1]. Originally developed as an online Olympics pitching human against
machine intelligence, the project has flourished to incorporate an impressive
range of science- and arts-based activities. Sodarace uses creative play as a
bridge to foster dialogue and shared awareness between two very different au-
diences: a broad public of learners, both in and out of school, and the artificial
intelligence and artificial life research communities. The Sodarace project is
an extension of the Sodaconstructor software, an online construction kit com-
prising masses, springs, and muscles, providing tools for open-ended discovery
and exploration. Though the mechanics are simple, the forms created often
have a very life-like appearance and gait, and as such are frequently anthro-
pomorphized by users.

5.1 Introduction: The Sodarace Project

Sodarace comprises a flexible asynchronous environment for races between vir-
tual robots, either built by the public with the Sodaconstructor interface and
learning support from the Sodarace community forums, or created by artificial
intelligences using an equivalent Sodarace Application Programming Interface
(API) developed specifically for Sodarace; see Fig. 5.1. These intuitive tools
combined with an active user forum and the provocative Humans vs. Machines
narrative have proved to be both popular, educational, and fun [1].

Sodarace: The Beginnings

Officially, the Sodaconstructor was released in March of 2000. It started 10
years earlier with a simple version, programmed in Basic, and developed by
Burton, which was later updated to Java when he joined the team of dig-
ital artists at Soda Creative Ltd. in London. The applet was placed online
as an element of the Play section content on Soda web site, where over a
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Fig. 5.1. The Sodarace software architecture.



5 Sodarace 99

short period of time its clear design, high-quality interactivity, and addictive
open-ended problem-solving play made it extremely popular. Sodaconstructor
exploded across the Internet through e-mails, newsgroup postings, and other
such informal “word-of-mouth” advertising. By the end of the month there
were one million constructors using the applet each week.

In September of 2000, the applet was redeveloped in order to allow Soda-
constructions to be saved, and from this the Sodazoo was developed, where
creations could be sent and the best archived for all to see and learn from.
It was at this stage that the educational merit of the project and its natural
symbiosis with artificial life research began to crystallize, as a number of re-
search groups around the world contacted Soda interested in exploring this
application of the software.

In April 2002 the Sodarace project was launched, supported by funds from
the UK Engineering and Physical Sciences Research Council (EPSRC). Core
to Sodarace’s construction, and subsequent development were the Sodarace
community forums, where constructors and artificial intelligence researchers
could interact and get involved in developing the specifications for the new
software. This proved an extremely worthwhile experience for those involved,
as it gave a transparent view into the development of a major software project
while also ensuring that user requirements were met. The first human vs.
machine races occurred in December 2003. It took the form of a race over flat
terrain with simple wheel-like creations, named amoebas by the community.
The artificial intelligence technique of genetic algorithms was used to optimize
the parameters of the wheel to cover the racetrack in a competitive time. For
the record, the humans won the first race, but only just!

5.2 Scientific Background

5.2.1 Sodaconstructor: The Physics Engine of Sodarace

Sodarace is based on the popular Sodaconstructor software [1], which allows
the simulation of structures comprised of a linked set of node masses and
interconnecting springs, simulated using a simple implementation of New-
tonian and Hook’s law mechanics. To provide movement constructors may
select springs to drive in simple harmonic motion (SHM); these are called
“muscles.” The interface also provides an intuitive graphical representation
of the phase relations of the driven muscle elements through a moving sine
wave. The muscles are mapped to appropriate positions on the wave gener-
ator to fix their relative oscillation phases; see Fig. 5.2. By connecting both
static and appropriately phased SHM driven elements together, it is possible
to create a whole menagerie of lively perambulating creations. The amplitude,
initial wave phase offset, and speed of the driving sinusoidal wave may also
be controlled.
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Fig. 5.2. The “muscle” wave generator.

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>

<!DOCTYPE sodaconstructor>

<model>

<comment></comment>

<container width="651" height="422"/>

<environment gravity="0.3" friction="0.05" springyness="0.2"/>

<collisions surface_friction="0.1" surface_reflection="-0.75"/>

<wave amplitude="0.5" phase="0.0" speed="0.001"/>

<settings gravitydirection="down" wavedirection="forward"

autoreverse="on"/>

<nodes>

<mass id="m0" x="254.0" y="291.0" vx="0.0" vy="0.0"/>

<mass id="m1" x="332.0" y="194.0" vx="0.0" vy="0.0"/>

<mass id="m2" x="259.0" y="157.0" vx="0.0" vy="0.0"/>

</nodes>

<links>

<spring a="m0" b="m1" restlength="124.0"/>

<muscle a="m1" b="m2" restlength="82.0" amplitude="0.5"

phase="0.5"/>

</links>

</model>

Fig. 5.3. An example of the structure of an XML file.



5 Sodarace 101

5.2.2 Sodarace Environmental Variables

To enable terrain construction, Sodarace includes elements inspired by the
PIVOT (Proximity Information from VOronoi Techniques) collision detection
algorithm [2]. In effect, these Sodarace ‘bar springs’ do not allow other struc-
tures to pass through them. They can be used to construct terrain that models
can walk over; by default, these collisions are “sticky,” meaning they lose en-
ergy to friction, this can be changed to “slippery” for friction-free collisions.
The racers and terrain data are held in the form of XML files (Fig. 5.3) which
allows the manual editing of components but also allows the computer gener-
ation of these files. This is the essential element to allow artificial intelligence
to enter the races.

The environmental variables that can be set globally are length and height
of the environment, gravity (both strength and direction up/down), spring
damping friction, and spring constant. For the terrain there are two parame-
ters, the surface friction and the surface reflectance, which are related to the
portion of velocity parallel to the surface, and perpendicular to the surface,
respectively, which is lost in a collision.

The Sodarace application (Fig. 5.1), receives terrains and contestants from
a “modeller,” which could be either the Sodaconstructor application or an
artificial intelligence. The Sodarace application adjudicates the race and can
export the results, including terrain and contestant(s) as an XML file, which
you may upload to the Sodarace League Forum for others to download and
add their contestants to. The software also provides timing information to
allow adjudication of the races, but also acts as feedback for fitness functions
for the artificial intelligence-based racers.

5.2.3 Previous Work

Sodarace makes no attempt to simulate more than 2D physical interactions
between the mass, spring, and muscle racers and the terrain. It is within
this world that both artificial intelligence and humans compete and evolve.
However, as will be discussed later, these constraints do not significantly hin-
der user creativity. An obvious related artificial life project is Framsticks [3],
which allows the study of evolution capabilities of three-dimensional crea-
tures in simplified Earth-like conditions. The creatures in this case also have
in addition to genotype representations of their physical body, sensory, neural
network, and effectors.

Karl Sims’ earlier work in visualising simulated block creatures performing
evolved behaviors was also an inspiration for the Sodarace project [4,5]. Sims’
research project involving simulated Darwinian evolutions, using genetic algo-
rithms, to develop again 3D virtual block creatures. An initial random popu-
lation of several hundred creatures is created, and each creature is then tested
for its ability to perform a given task, such the ability to swim in a simulated
water environment. The fittest creatures for the task are then passed into the
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next generation and mutations applied to produce a new population. The new
creatures are again tested, and through the mutation process some may be
conferred with improvements on their parents’ abilities. As this iterative cycle
of variation and selection continues, creatures with more and more successful
niche behaviors can emerge.

Sodarace builds on these previous works but reduces the dimensionality
and complexity of the simulation in an effort to increase interaction. In addi-
tion, the central driving presence of the discussion forums provides both an
evolving archive of human and artificial intelligence design activity and educa-
tional support. Interestingly we also see the evolution of specialist descriptive
vocabulary within the community, for example, the “Pandora’s” structures
discussed in Sec. 5.4.6.

5.3 Software for Artificial Life in Sodarace

There have been to date a number of approaches to developing artificial
creatures to compete in the Sodaraces. The accessibility of the XML im-
port/export format, plus timing information from the race itself naturally al-
lows the application of optimization algorithms such as genetic algorithms [6,7]
and simulated annealing [8] to the task of building better racers.

5.3.1 Approaches to Optimization

There have been two approaches so far exploited in the races; the first is to use
a previously human designed racer, and to apply an optimization algorithm
to improve on human design. The second approach is the more traditional
breeding from scratch.” In keeping with the educational remit of the project,
both approaches have been discussed in the forums, and the software used
made available. It is interesting to note how the audience reacted to the issues
raised by simply using an algorithm to optimize a previous human-designed
racer, that we specifically chose Daintywalker, a well-beloved early creation of
Burton that had in effect become the Sodarace mascot. The initial feeling in
the forum was that this was somehow “cheating.” However, on later reflection
the general consensus was that nature and human creativity frequently work
by modifying and improving on earlier designs, which in turn led to some deep
discussions on evolution.

Fig. 5.4. An optimized racer beats the original human engineered version.
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5.3.2 Simulated Annealing and Daintywalker

Using Daintywalker the method of optimization by simulated annealing [8]
was explored; see Fig. 5.4. Daintywalker was randomly modified, then raced
and the new version retained if it improves performance, but we also allow
non-improving modification to survive with a probability that decreases over
time. The rate of this decrease is determined by the cooling schedule, a term
in keeping with the thermodynamic metaphor on which this heuristic opti-
mization algorithm is based. With some appropriate assumptions about the
cooling schedule, this algorithm will converge in probability to a global opti-
mum. This was not, however, necessary in our application; we just wanted a
racer to beat the competition.

5.3.3 Genetic Algorithms and the Amoeba

A similar modification to a previous design, this time an ‘amoeba’, was under-
taken early on in the project to introduce the community to genetic algorithm
(GA) optimization. An amoeba is a term coined by the forum for a wheel-like
structure that is easy to build and races well over many types of terrain as
featured in Fig. 5.1. Using a simple generic GA approach random amoebas,
constrained using a basic template design, were created and raced. The fittest
then bred forward with parents to the next generation. Using this method we
could in effect breed amoebas to the required performance level. The intuitive
nature of the GA approach, combined with the freely available source code,
facilitated a number of community members developing their own genetically
enhanced amoeba racers.

5.3.4 Genetic Algorithms from Scratch; the Wodka Way

Wodka, an Austrian AI group, has created a program that generates robots
from scratch instead of optimizing existing robots. Wodka uses a genetic al-
gorithm that generates a random set of muscles, masses, and springs, forming
multiple Sodarace creatures. These creatures are then loaded and raced, and
those that finish quickest breed, and their fastest offspring breed, and so on.
Initially they started off as simple segmented sticks that bounced across the
screen (Fig. 5.5). However, later the best creatures start to develop structure
and look as if they have powered ‘flippers’ in the front. This software was made
open source and has been used by others in the community to experiment with
digital evolution.

5.4 Usage

5.4.1 Interactions in Sodarace: The Evolution of the Forums

It’s fair to say that there is no typical usage or user for Sodarace; the range
and diversity of usage are among the great strengths of the ‘tools not rules’
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Fig. 5.5. Optimization of racers from “scratch.”

philosophy. The following section highlights some of the fascinating stories
that have evolved through the project. The Sodarace forums realize the audi-
ence’s own potential to create, contribute, and share significant ideas and to
interact with the artificial intelligence and artificial life research communities.
To date, highlights have included the spontaneous emergence among users of
peer-to-peer learning, mentoring, an embryonic scientific research process of
hypothesis, experiment, theory development and subsequent racers’ exploita-
tion of developed technologies, and a surprisingly seamless integration of cre-
ative and technical dialogues. There has also been a spontaneous expansion
of community learning on the subject of artificial intelligence programming,
with tutorial web sites and open source code to allow interested users to con-
struct and experiment with their own AI systems. The distinctions between
AI researcher and community members are blurring.

5.4.2 Forum Involvement in Scientific Research Projects

Karl Sims’ work on evolved virtual creatures [4, 5] was identified as one of
the main inspirations behind Sodarace. Karl Sims studied computer graph-
ics at the MIT Media Lab, and Life Sciences as an undergraduate at MIT.
He currently leads GenArts, Inc. in Cambridge, Massachusetts, which cre-
ates special effects software for the motion picture industry. The forum raised
questions put to Karl in the first Sodarace interview. The interview was wide
ranging, discussing his career and inspirations, technical issues in the devel-
opment of artificial intelligence, and possible future applications of AI. See
http://sodarace.net/sims/index.jsp. It is expected that a number of sub-
sequent interviews with notable researchers will be undertaken, particularly
in response to community demands.

5.4.3 Community Development of Peer-to-Peer Learning Web
Sites

Independent superuser sites have been created by model-making masters
within the community. With step-by-step tutorials for beginners and expert
engineering tips, they prove an invaluable resource for the model-making com-
munity and support peer-to-peer learning. Of particular interest was the spon-
taneous emergence of peer review of tutorials and other learning materials by
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accepted ‘Sodarace experts’ to merit inclusion on these sites. A links page was
developed on the main Sodarace site to catalogue these valuable resources.

5.4.4 Programming Support Web Sites

The XML model format enabled computer programs to generate models using
algorithms instead of using manual construction. Programs written by com-
munity members include AmoebaMatic, which its creator claims “takes the
strain out of making amoebas,” while the Sodagenerator web site includes a
suite of web applications that create turbines, worms, and flexloops, a range
of engineering structures devised and defined by the forum and used in devel-
oping racing creatures, see Fig. 5.6. Web sites with learning resources and the
source code for developing artificial intelligence have also started to appear
to promulgate a much wider appreciation understanding and take-up of these
key research methodologies.

Fig. 5.6. A flex loop and a worm creature algorithmically designed.

5.4.5 Experimental Investigation into the Physics of Sodarace

One of the community members undertook a detailed study of the physi-
cal principles behind the Sodaconstructor environment simulation. The user
called Jeckyll, collaborating with Lectvay, one of the forum’s most respected
members, applied mathematical analysis supported with an extensive set of
constructed experiments to hypothesize and prove the physics of Sodacon-
structor in remarkable detail. This thesis was then published along with the
supporting experiments in an online “digital laboratory,” which can be ac-
cessed at one of the most impressive fan web sites, sodaplaycentral.com. The
paper and the experimental approach are widely cited; for example, a new
user asks in regard to the Sodaconstructor interface

“What does it actually do when you move the dots onto either side
of the centre line? Sorry I’m a noob” [Note: a noob is a new user].
A mentor in the forum swiftly responds, “A great way to figure this
kind of stuff out is to do little “experiments” — that’s a trick I learned
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from Jeckyll’s paper on www.sodaplaycentral.com. Go to the “soda
Math” section and look at the Laboratory.”

5.4.6 The Pandora’s Box: An Example of the Spontaneous
Development of Scientific Method

A deceptively simple yet mind-bending model was created. As community
members collaborated to study its mysterious properties, hypothesize about
how it works, and construct experiments to prove their theories, we witnessed
a remarkable and spontaneous microcosm of scientific method emerge.

• The Initial Discovery— A user in the forum writes
Have you ever made something and then just sat and stared at the
screen and said “Hummmm...” Just mess with it for a little bit.

• The Experiments — A short time later another user posts
Think I figured out this phenomena. Step1: in Sodaconstructor,
value of spring force has relation with only extension of the spring
proportional maybe, and does not have any relation with the length
at rest. See this these are a variety length of springs. left-side one
is a zero-length spring, 2nd one is 1-pixel-length, 3rd is 2-pixel,
and so on. Besides, they are located as the free masses line up
horizontally, try drag G value up slowly. Then, you will see all of
them are elongated similarly, and not related to their length at
rest. Step2: think about a rectangular with diagonal lines. as we
see in step1, the pulling force of spring is related to its extension.
Now, let’s assume that the force is proportional to extension. so, for
example, if the ratio of two side lines = 2 : 3, the forces acting on the
springs = 2 : 3 also. so, the direction of the resultant of these two
vectors overlaps the diagonal line. the resultant of these two vectors
and the expanding force acting on the diagonal line are completely
on a straight line and the direction of the force is opposite. So, the
length of these lines come to settle in a fixed value. This happens
only the shape is rectangle and the side springs are zero-length.

• The Pandora’s Calculus: Engineering Formalism and Commer-
cial Exploitation — The development of an empirical understanding
and experimental validation of the by then named “Pandora” effect was
followed by a formalization into the Pandora’s Calculus,

I wanted to share something I figured out in case people wanted to
learn a new technique. Basically I came up with a Pandora Calculus
that is similar to the way Tension Spring Calculus works. It allows
you to: 1. Create Pandoras to fit any specific size you need. 2. Create
multiple Pandoras on the same base. 3. Embed any Pandora on a
tension spring. This means that Pandoras can be used like hubless
bearings to mount rotors or turbines on, and who knows what else.
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This technique is now widely used in the community to develop numerous
virtual motors to drive Sodaracers. Another user develops “motors” for
use in others racers and writes

So far i found out that motor 4 is just 2 RAM’s connected in the
middle with some crossbeams..but because of the fact that the
crossbeams get compressed they make the 2 RAM’s much stur-
dier..and better..1 and 3 look mesmerizing. but aren’t really sta-
ble...but ill work on that.. PLZ DONT JUST READ OVER THIS....
I WOULD REALLY LIKE TO WORK WITH SOME OF THE
GREAT CONSTRUCTORS...TO IMPROVE MOTORS

5.4.7 Interdisciplinary Interaction: Art & Music Meet Science and
Engineering in Sodarace

Sodarace also raises awareness of the important interactions between science,
design and engineering, and the arts. Using Sodasound, an option that at-
taches sounds to the motion of masses and springs, members of the forum
created creature motion to produce specific sound patterns, musical art pieces,
and their own virtual musical instruments. Members of this specialist commu-
nity invented ingenious ways to tune the mechanical structures; for example,
the “bell-gate” system shown in Fig. 5.7, where the wave generator is now used
to drive musical “muscles” to produce a predefined tune. For over 10 years
artist Theo Jansen has been building incredibly engineered walking construc-
tions on the beaches of Holland that feed on the wind [9]. It looks uncannily as
if some of the most complex Sodaconstructor models have left the screen and
become real. In the forum the artist agreed to discuss his work and explain
the mechanisms by which his creations move. A teacher commented in the
forum, “I am also an art teacher who tries to convince colleagues of the cross-
curricular potential of sodaplay. I really want to bring interactive media into
the art-classroom — even if only to showcase it as an example of emergent
creative culture.”

5.4.8 Sodarace in Schools

The Sodarace project is widely used in schools around the world. Forum users
often mention the education benefit that they find over a number of science
and technology curricula. Here are some representative samples taken from
the forums; there are many more:

One 15-year-old student wrote, “I presented Sodaconstructor to my
class today, my intentions to give them enough skill to make a dain-
tywalker [Note: this is a type of racer]. It was extremely difficult to
keep everyone focused on creating and not playing around with the
sample model, which is very entertaining, I have to admit. I actually
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Fig. 5.7. A musical structure.

started teaching them on a blackboard first, not with how the con-
cepts are put into action but the basic concepts themselves — like how
an amoeba [Note: another type of racer] shifts its weight forward, or
how a leg requires elliptical motion. Some of these aren’t so obvious,
I soon found out. PS: So hats off to all the teachers. Now that I know
what it feels like to be one you guys have my utmost respect.”

“I found out about sodaplay at school, from a friend. At the moment,
I am using it to help me survive Physics, particularly waves.”

“I am a High School student. I use sodaplay for geometry classes.
It is easier to understand the properties of shapes and how different
support loads can be dispersed. I enjoy working with the program and
it helped me achieve an above average grade for the class.”

“My whole 8th grade class has been using sodaplay. They all love it.
We have learned ton of physics, I did a project for my physics class on
your Sodaconstructor. I recreated Galileo’s “Leaning Tower of Pisa”
experiment and made a simple pendulum.”

The discussion forums is also supporting a growing teachers’ user com-
munity to develop allowing a peer-to-peer interchange of teaching ideas and
materials. Younger users not yet competent or confident enough to develop
racers themselves still have an active voice in the community, often creating
animated artworks or cartoons, designing terrain racetrack as challenges to
others, or undertaking to build interactive ‘games’. All these projects require
the user to covertly develop an understanding of simple physical processes
and principles of the Sodarace world.
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Fig. 5.8. Experiments with Sodaconstructor. A virtual structure and its real-world
counterpart.
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5.5 Experiments with Sodarace

One of the significant findings during both human- and machine-generated
racer construction is the ability to effectively exploit the limitations of the
simulator physics to solve particular problems. Examples abound of crea-
tures exploiting so-called ‘holes’ in the simulation to allow creations to fly or
crawl along the underside of surfaces. This ability to capitalize on particular
simulation-world niches has produced a rich range of unexpected behaviors.

Another study of particular interest was the Berta’s Tower [10], see
Fig. 5.8, conducted at the University of Wisconsin–Madison Center for Ed-
ucation. Using the theory of pedagogical praxis [11], which argues that pro-
fessional practices are useful models for technology-supported school learning
environments, the researchers designed and implemented workshops for mid-
dle school students based on the professional practices of engineers. During
the experiment, the participants engaged in a series of engineering design
challenges on Sodarace as a pathway for learning concepts in physics. The
students demonstrated a statistically significant gain in understanding about
the concept of center of mass and a high level of interest and engagement
when using the tool [12]. The data further suggest that the short, rapid iter-
ations of the engineering design-build-test cycle on Sodarace simultaneously
increased their motivation and understanding. The study offers an example of
how the use of Sodarace in a rich activity system promotes scientific learning,
and thus provides a potential new vision for physics education.

5.6 Summary: The Future of Sodarace

The vibrant community forums of Sodarace, central to its creation and suc-
cess, show no signs of running out of new and creative ideas, and new software
specifically aimed at engaging younger constructors, called Moovl, in is devel-
opment. Sodarace has proved a very successful collaboration between science
and design and has allowed access for many into the world of artificial life
research. The introduction and evolution of the forums, providing the educa-
tional backbone and knowledge archive of the venture, guarantee the project
will continue to grow in popularity over the years as the interplay between
learning communities of human and artificial intelligence users mature. The
tools Sodarace provides mean races and racers will evolve, the forums expand,
and we can expect many more surprises from this powerful combination of sci-
ence, peer-to-peer learning, and creative interactive play.
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Escaping the Accidents of History: An
Overview of Artificial Life Modeling with

Repast

Michael J. North and Charles M. Macal

Artificial life focuses on synthesizing forms and functions that appear alive.
Artificial life allows scientific studies of biological systems outside the currently
observable accidents of history. Agent-based modeling and simulation are used
to create computational laboratories that replicate real or potential behaviors
of actual or possible complex adaptive systems. Agent-based modeling thus
provides a natural framework in which to perform artificial life experiments.
The free and open source Recursive Porous Agent Simulation Toolkit (Repast)
is one of several advanced agent-based modeling toolkits currently available.
Repast seeks to support the development of extremely flexible models of liv-
ing social agents, but is not limited to modeling living social entities alone.
The Repast system is described in detail, and artificial life software models
constructed with Repast are reviewed.

6.1 Introduction

Artificial life focuses on synthesizing “life-like behaviors from scratch in com-
puters, machines, molecules, and other alternative media” [29]. Artificial
life expands the “horizons of empirical research in biology beyond the ter-
ritory currently circumscribed by life-as-we-know-it” to provide “access to
the domain of life-as-it-could-be” [29]. Agent-based modeling and simulation
(ABMS) are used to create computational laboratories that replicate real or
potential behaviors of actual or possible complex adaptive systems (CAS).
The goal of agent modeling is to allow experimentation with simulated com-
plex systems. To achieve this, agent-based modeling uses sets of agents and
frameworks for simulating the agents’ decisions and interactions. Agent mod-
els can show how complex adaptive systems can evolve through time in a way
that is difficult to predict from knowledge of the behaviors of the individ-
ual agents alone. Agent-based modeling thus provides a natural framework
in which to perform artificial life experiments. The free and open source Re-
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cursive Porous Agent Simulation Toolkit (Repast) is one of several advanced
agent-based modeling toolkits that are currently available.

6.1.1 Artificial Life

The discipline of artificial life studies the synthesis of forms and functions that
appear alive. Artificial life allows scientific studies of biological systems outside
the currently observable accidents of history. According to Langton [29]:

Biology is the scientific study of life — in principle, anyway. In
practice, biology is the scientific study of life on Earth based on
carbon-chain chemistry. There is nothing in its charter that restricts
biology to carbon-based life; it is simply that this is the only kind of
life that has been available to study. Thus, theoretical biology has long
faced the fundamental obstacle that it is impossible to derive general
principles from single examples.

Without other examples, it is difficult to distinguish essential prop-
erties of life — properties that would be shared by any living system —
from properties that may be incidental to life in principle, but which
happen to be universal to life on Earth due solely to a combination of
local historical accident and common genetic descent.

In order to derive general theories about life, we need an ensemble
of instances to generalize over. Since it is quite unlikely that alien
life forms will present themselves to us for study in the near future,
our only option is to try to create alternative life-forms ourselves —
artificial life — literally “life made by Man rather than by Nature.”

Langton’s description of artificial life indicates the depth but belies the
age of the disciple. According to Di Paolo [12]:

To say that artificial life is a young discipline in name only is to
exaggerate, but it would be mistaken to think that its goals are new.
The marriage of synthetic scientific aims with computational tech-
niques makes artificial life a product of the last fifteen years, but its
motivations have much deeper roots in cybernetics, theoretical biol-
ogy, and the age-old drive to comprehend the mysteries of life and
mind. Little wonder that a good part of the work in this field has
been one of rediscovery and renewal of hard questions. Other disci-
plines have sidestepped such questions, often for very valid reasons, or
have put them out of the focus of everyday research; yet these ques-
tions are particularly amenable to be treated with novel techniques
such as computational modeling and other synthetic methodologies.
What is an organism? What is cognition? Where do purposes come
from?
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6.1.2 Agent-based Modeling for Artificial Life

Agent-based modeling and simulation are used to create computational labo-
ratories that replicate selected real or potential behaviors of actual or possible
complex adaptive systems. A complex adaptive system is made up of agents
that interact, mutate, replicate and die while adapting to a changing environ-
ment. Holland has identified the three properties and four mechanisms that
are common to all complex adaptive systems [22]:

1. The nonlinearity property occurs when components or agents exchange
resources or information in ways that are not simply additive. An example
is a photosynthetic cell agent that returns one calorie of energy when one
calorie is requested, two calories of energy when two calories are requested,
and three calories of energy when ten calories are requested.

2. The diversity property is observed when agents or groups of agents dif-
ferentiate from one another over time. An example is the evolutionary
emergence of new species.

3. The aggregation property occurs when a group of agents is treated as a
single agent at a higher level. An example is the ants in an ant colony.

4. The flows mechanism involves exchange of resources or information be-
tween agents such that the resources or information can be repeatedly
forwarded from agent to agent. An example is the flow of energy between
agents in an ecosystem.

5. The tagging mechanism involves the presence of identifiable flags that let
agents identify the traits of other agents. An example is the use of formal
titles such as “Dr.” in a social system.

6. The internal models mechanism involves formal, informal, or implicit rep-
resentations of the world embedded within agents. An example is a preda-
tor’s evolving view of the directions prey are likely to flee during pursuit.

7. The building blocks mechanism is used when an agent participates in more
than one kind of interaction. An example is a predator agent that can also
be prey for larger predators.

Of course, these properties and mechanisms are interrelated. For example,
with aggregation, many agents can act as one. With building blocks, one agent
in some sense can act as many. Agent-based models normally incorporate some
or all of the properties and mechanisms of complex adaptive systems.

The goal of agent modeling is to allow experimentation with simulated
complex systems. To achieve this, agent-based modeling uses sets of agents
and frameworks for simulating the agent’s decisions and interactions. Agent
models can show how complex adaptive systems can evolve through time
in a way that is difficult to predict from knowledge of the behaviors of the
individual agents alone. Agent modeling focuses on individual behavior. The
agent rules are often based on theories of the individual such as Rational
Individual Behavior, Bounded Rationality, or Satisficing [42]. Based on these
simple types of rules, agent models can be used to study how patterns emerge.
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Agent modeling may reveal behavioral patterns at the macro or system level
that are not obvious from an examination of the underlying agent rules alone
— these patterns are called emergent behavior. Agent-based modeling and
simulation thus provide a natural framework in which to perform artificial life
experiments.�

Agent-based modeling and simulation are closely related to the field of
Multi-agent Systems (MAS). Both fields concentrate on the creation of com-
putational complex adaptive systems. However, agent simulation models the
real or potential behaviors of complex adaptive systems while MAS often fo-
cuses on applications of artificial intelligence to robotic systems, interactive
systems, and proxy systems.

6.1.3 Chapter Organization

This chapter provides an overview of the Repast agent modeling toolkit from
the perspective of artificial life. This chapter is organized into four parts.
The introduction describes artificial life and agent-based modeling and sim-
ulation. The second section discusses the Repast agent modeling toolkit’s
development ecosystem and underlying concepts. The third section reviews
a series of Repast artificial life models of artificial evolution and ecosystems;
artificial societies; and artificial biological systems. The final section presents
a summary and conclusions.

6.2 REPAST

The Recursive Porous Agent Simulation Toolkit (Repast) is one of sev-
eral agent modeling toolkits available. Repast borrows many concepts from
the Swarm agent-based modeling toolkit [44]. Repast is differentiated from
Swarm in several respects. First, Repast is available in pure Java and pure
Mcirosoft.Net forms, while Swarm is a mixture of Objective-C and Java. Sec-
ond, Swarm is distributed under the GNU General Public License (GPL),
which requires developers to make the source code for their entire model
available to anyone who obtains a legitimate copy of the model’s binary code.
Repast is distributed under a variation of the Berkeley Software Distribution
(BSD) license that does not require model source code to be released. Third,
Repast provides an integrated set of libraries for neural networks, genetic al-
gorithms, social network modeling, and other topics. For reviews of Swarm,
Repast, and other agent-modeling toolkits, see the survey by Serenko and
Detlor, the survey by Gilbert and Bankes, and the toolkit review by Tobias

� ABMS, agent-based modeling (ABM), agent-based simulation (ABS), and indi-
vidual modeling (IBM) are all synonymous. ABMS is used here since ABM can
be confused with antiballistic missile, ABS can be confused with antilock brakes,
and IBM can be confused with International Business Machines Corporation.
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and Hofmann [20,43,45]. In particular, Tobias and Hofmann performed a re-
view of 16 agent modeling toolkits and found that “we can conclude with
great certainty that according to the available information, Repast is at the
moment the most suitable simulation framework for the applied modeling of
social interventions based on theories and data” [45].

Repast is a free open source toolkit that was originally developed by Sal-
lach, Collier, Howe, North, and others [10]. Repast was created at the Univer-
sity of Chicago. Subsequently, it has been maintained by organizations such
as Argonne National Laboratory. Repast is now managed by the nonprofit
volunteer Repast Organization for Architecture and Design (ROAD). ROAD
is lead by a board of directors that includes members from a wide range of
government, academic, and industrial organizations. The Repast system, in-
cluding the source code, is available directly from the web [41].

Repast seeks to support the development of extremely flexible models of
living social agents, but is not limited to modeling living social entities alone.
From the ROAD home page [41]:

Our goal with Repast is to move beyond the representation of
agents as discrete, self-contained entities in favor of a view of social
actors as permeable, interleaved, and mutually defining; with cascad-
ing and recombinant motives. . . We intend to support the modeling
of belief systems, agents, organizations, and institutions as recursive
social constructions.

6.2.1 The Repast Development Ecosystem

At its heart, Repast toolkit version 3.0 can be thought of as a specification
for agent-based modeling services or functions. There are three concrete im-
plementations of this conceptual specification. Naturally, all of these versions
have the same core services that constitute the Repast system. The imple-
mentations differ in their underlying platform and model development lan-
guages. The three implementations are Repast for Java (RepastJ), Repast for
the Microsoft.Net framework (Repast.Net), and Repast for Python Scripting
(RepastPy). RepastJ is the reference implementation that defines the core
services. The fourth version of Repast, namely Repast for Oz/Mozart (Repas-
tOz), is an experimental system that partially implements the Repast con-
ceptual specification while adding advanced new features [33, 47]. In general,
it is recommended that basic models be written in Python using RepastPy
due to its visual interface and that advanced models be written in Java with
RepastJ or in C# with Repast.Net. An example Repast model user interface
is shown in Fig. 6.1.

Repast 3.0 has a variety of features, including the following:

• Repast includes a variety of agent templates and examples. However, the
toolkit gives users complete flexibility as to how they specify the properties
and behaviors of agents.
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Fig. 6.1. A Repast model user interface. See also color plate.

• Repast is fully object-oriented.
• Repast includes a fully concurrent discrete event scheduler. This scheduler

supports both sequential and parallel discrete event operations.
• Repast offers built-in simulation results logging and graphing tools.
• Repast has an automated Monte Carlo simulation framework.
• Repast provides a range of two-dimensional agent environments and visu-

alizations.
• Repast allows users to dynamically access and modify agent properties,

agent behavioral equations, and model properties at run time.
• Repast includes libraries for genetic algorithms, neural networks, random

number generation, and specialized mathematics.
• Repast includes built-in systems dynamics modeling.
• Repast has social network modeling support tools.
• Repast has integrated geographical information systems (GIS) support.
• Repast is fully implemented in a variety of languages, including Java and

C#.
• Repast models can be developed in many languages including Java, C#,

Managed C++, Visual Basic.Net, Managed Lisp, Managed Prolog, and
Python scripting.
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• Repast is available on virtually all modern computing platforms, includ-
ing Windows, Mac OS, and Linux. The platform support includes both
personal computers and large-scale scientific computing clusters.

Repast’s features directly support the implementation of models with Hol-
land’s three properties and four mechanisms [22]:

1. Repast allows nonlinearity in agents since their behaviors are completely
designed by users. Repast’s systems dynamics, genetic algorithms, neural
networks, random number generation, and social networks libraries make
this process easy.

2. Repast supports diversity by giving users complete control over the way
their agents are defined and initialized. Again, the Repast libraries simplify
the specification of diversity.

3. Repast allows the aggregation property by allowing users to specify and
maintain groups of agents.

4. Repast supports the flows mechanism with features such as its systems
dynamics tools and social network library.

5. Repast provides for the tagging mechanism by allowing agents to present
arbitrary markers.

6. Repast makes the internal models mechanism available through both its
flexible definition of agents and its many behavioral libraries.

7. Repast supports the building blocks mechanism through its object-oriented
polymorphism.

Repast for Python Scripting (RepastPy) enables visual model construc-
tion with agent behaviors defined in Python [31]. RepastPy models can be
automatically converted to RepastJ models using RepastPy’s export option.

RepastPy users work with the interface shown in upper left-hand window
of Fig. 6.2 to add the components to their models. RepastPy users then employ
Python to script the behaviors of their agents, as shown in lower right-hand
window of Fig. 6.2.

The components in the example model are shown on the left-hand side
of the upper window of Fig. 6.2. These components include the simulation
environment specification, the model specification (“Schelling GIS”), the ZIP
code region agent specification (“ZipRegion”), and the residential agent spec-
ification (“Resident”). Properties for the model specification such as the “Ac-
tions,” “Display Name,” and “Master Schedule” are shown on the right-hand
side of the upper window in the figure. The Actions “Edit” button is used to
access the Python scripting for the agent behaviors.

The Python scripting window for the example model is shown in the lower
window of Fig. 6.2. The agent properties (“Variables”), the agent behavior
libraries (“Java Imports”), and behavior code (“Source”) can be seen in this
window.

There is a special version of RepastPy known as the Agent Analyst that is
an extension to the ESRI ArcGIS geographical information systems platform.
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Fig. 6.2. The RepastPy interface.

ESRI ArcGIS is the leading commercial geographical information system, with
well over one million users. Agent Analyst is a fully integrated ArcGIS Model
Tool. This means that Agent Analyst has drag-and-drop integration with Ar-
cGIS. Agent Analyst users can create RepastPy models from within ArcGIS
with a few mouse clicks. Figure 6.1 shows the SLUDGE Geographical Informa-
tion System (SluGIS) Agent Analyst model running within ArcGIS. SluGIS
is described in the section on artificial societies.

RepastJ is written entirely in Java [18]. An example RepastJ model, Hex-
abugs, is shown in Fig. 6.3. The Hexabugs model is discussed in the section
on artificial biological systems. Since RepastJ is pure Java, any development
environment that supports Java can be used. The free and open source Eclipse
development environment is recommended [13]. Eclipse provides a variety of
powerful editing and development features, including code authoring wizards,
automatic code restructuring tools, design analysis tools, Unified Modeling
Language (UML) tools, extensible markup language (XML) tools, and inte-
gration with version control systems. Figure 6.4 shows part of the RepastJ
AgentCell model in Eclipse. The AgentCell modules are shown in the upper
left “Package Explorer” tab. The cell agent component is highlighted in this
tab. Part of the cell agent code is shown in the upper middle “Cell.java” tab.
Some of the cell agent properties and methods can be seen in the “Outline”
tab on the far right. Part of the cell agent documentation is shown in the
button right tab. Additionally, a code module dependency graph can be seen
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Fig. 6.3. The RepastJ Hexabugs Model.

Fig. 6.4. RepastJ in the Eclipse Development Environment. See also color plate.
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in the lower left “Dependency Graph View” tab. This graph shows the con-
nections between some of the main Agent Cell modules. The AgentCell model
is detailed in the section on artificial biological systems.

Both RepastJ and RepastPy models can be developed and executed on
nearly any modern computing platform. This is particularly beneficial for
artificial life researchers since models can be constructed on readily available
workstations and then executed on large-scale clusters without changing code.
An example of this will be provided along with the description of the AgentCell
model.

6.3 RepastJ in the Eclipse Development Environment

Repast for the Microsoft.Net framework (Repast.Net) is written entirely in
C# [1]. An example Repast.Net named Rocket Bugs is shown in Fig. 6.5. The
Rocket Bugs model is a Cartesian elaboration of the Hexabugs model in which
some of the agents herd the other agents in the system.

Fig. 6.5. Repast.Net Rocket Bugs model.
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Fig. 6.6. Repast.Net in Microsoft Visual Studio.Net.

Some of the code for this model is displayed in the Visual Studio Environ-
ment in Fig. 6.6. It can be seen in the three windows on the left in the figure
that the Rocket Bugs simulation uses a combination of Managed C++, C#,
and Visual Basic.Net, all in a single seamless model. Additionally, note in the
lower right that Repast.Net comes with a full set of specialized Visual Studio
templates. These templates automate the initial creation of both Repast.Net
models and model components such as agents.

All three versions of Repast are designed to work well with other software
development tools. For example, all three versions are integrated with geo-
graphical information systems such as the RepastPy Agent Analyst example
shown in Fig. 6.1. However, since RepastJ is the most widely used version
of Repast, the integration examples will focus on Java. See ROAD for many
other examples [41].

RepastJ easily permits aspect-oriented software development. Aspects im-
plement cross-cutting concerns that allow software idioms repeated through-
out a model to be factored to reduce redundancy [14]. See Walker, Banias-
sad, and Murphy for a discussion of the use of Aspects for software develop-
ment [48].

RepastJ includes its own built-in logging facilities but also works with
the high-performance Log4j system and also with the National Center for
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Supercomputing Applications’ (NCSA) Hierarchical Data Format 5 (HDF5)
data storage system [21, 34]. The use of Log4j, among other logging tools, in
conjunction with AspectJ is discussed briefly by Cloyer et al. [9].

RepastJ unit testing is performed with JUnit as outlined in Beck and
Gamma [3]. Unit testing allows software to be tested on an incremental mod-
ular level. The combination of these and other tools with RepastJ allows
sophisticated models to be constructed reliably and efficiently.

6.3.1 Repast Concepts

The Repast system has two layers. The core layer runs general-purpose sim-
ulation code written in Java or C#. This component handles most of the
behind the scenes details. Repast users do not normally need to work with
this layer directly. The external layer runs user-specific simulation code writ-
ten in Java, C#, Python, Managed C++, Managed Lisp, Managed Prolog,
Visual Basic.Net, or other languages. This component handles most of the
center stage work. Repast users regularly work with this layer.

The Repast system has four fundamental components, as shown in Fig. 6.7.
The components are the simulation engine, the input/output (I/O) system,
the user interface, and the support libraries. Each of these components is im-
plemented in the core layer and is accessed by the user in the external layer.
A Unified Modeling Language (UML) diagram showing the relationships be-
tween these components is presented in Fig. 6.8. Information on UML notation
can be found in Booch [6].

The Repast simulation engine is responsible for executing simulations. The
Repast engine has four main parts, namely the scheduler, the model, the con-
troller, and the agents. The relationship between these components is indi-
cated in Figs. 6.7 and 6.8 and is discussed later in this section.

The Repast scheduler is a full-featured discrete event scheduler. Simula-
tions proceed by popping events or “actions” as they are called in Repast, off
an event queue and executing them. These actions are such things as “move
all agents one cell to the left,” “form a link with your neighbor’s neighbor,” or
“update the display window.” The model developer determines the order in
which these actions execute relative to each other using ticks. As such, each
tick acts as a temporal index for the execution of actions. For example, if
event X is scheduled for tick 3, event Y for tick 4, and event Z for tick 5, then
event Y will execute after event X and before event Z. Actions scheduled for
execution at the same tick will be executed with a simulated concurrency. In
this way, the progression of time in a simulation can be seen as an increase in
the tick count.

The Repast scheduler includes full support for concurrent task execution.
Tasks become concurrent when actions are given both a starting time and
duration. When durations are specified, actions that can be started in the
background are run concurrently. Actions with nonzero durations will run
concurrently with other actions with compatible tick counts as well as block
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Fig. 6.7. Repast overview diagram.

the execution of other actions with higher tick counts until the current action
is completed. For example, consider a process that contains some long-running
and complicated behavior that can be started at time (t) with results needed
at (t + 5). Imagine that there are actions that can be run concurrently over
time (t) to (t + 5). This behavior can modeled as an action with a five-tick
duration. In terms of implementation, this action will run in its own thread
that is amenable to being run on a separate processor or even on another
computer. This allows the natural introduction of complex concurrent and
parallel task execution into Repast simulations. Since durations are optional,
modelers can begin by creating sequential simulations and then introduce
concurrency as needed.

Repast schedulers are themselves actions that can be recursively nested
following the composite design pattern [19]. This allows a Repast action to be
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Fig. 6.8. Core Repast UML diagram.

as complex as needed for a given application. It even allows advanced multi-
scale simulations to be constructed by combining existing models such that
the full schedules of lower-level models run as simple actions in higher-level
models.

Repast models contain the definition of the simulation to be run by the
scheduler. Repast models include the list of agents to be executed, the simu-
lation initialization instructions, and the user interface specification.

Repast controllers connect models and schedulers. They activate the se-
lected model and then manage the interactions between the user or batch
execution system and the model.

Repast agents are created by users from components within Repast. A
variety of options are available including geographically situated agents and
network-aware agents. Agents receive data from and provide results to the
Repast I/O system.

The Repast I/O system allows agents to be created based on input prop-
erties. It also can store data from both agents and overall models. Repast
includes a set of results loggers that support a range of storage formats.

The Repast user interface supports the display of model results and al-
lows user to interact with running models. Repast user interface examples
are shown in Figs. 6.1, 6.3, 6.5, 6.9, 6.10, and 6.11. Model user interfaces can
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Fig. 6.9. Padgett, Lee, and Collier’s RepastJ Hypercycle model.

include graphical outputs or maps of the agent states as well as interactive
probes that allow users to view and modify agent states. An agent map is
shown in the lower left of Fig. 6.3, and an agent probe is shown in the upper
left. Users have full control over what is available through both maps and
probes.

The Repast support libraries include a variety of tools for both mathe-
matics and modeling. The mathematics support includes a range of random
distribution generators and statistical aggregation tools [30]. The modeling
support includes genetic algorithm and neural network tools among other
features [24, 49].

6.3.2 Using Repast

As previously mentioned, Repast is distributed under a variation of the BSD
license [41]. This license states that Repast can be used for virtually any
purpose without fees and without a requirement to release propriety model
source code. See ROAD for details [41]. This license allows Repast to be freely
used in education, research, and entertainment by nonprofit, government, and
commercial organizations.

Many educational institutions are now using or have used Repast for either
education or research. These institutions include the University of Chicago,
the University of Michigan, Iowa State University, the Swiss Federal Institute
of Technology Zurich, the Illinois Institute of Technology, and Harvard Uni-
versity. In particular, the University of Chicago is the birthplace of Repast.
The educational uses generally focus on providing students with a labora-
tory environment for experiments with complex systems and for instructing
students on agent-based modeling concepts. The research work includes the
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development of models in a variety of domains and as well as model theo-
retic studies. Several of the models are discussed in the following sections.
The model theoretic work mostly involves additions to and extensions of the
Repast framework itself. This list of educational institutions using Repast is
rapidly growing.

A significant number of U.S. federal government agencies and other orga-
nizations are using or have used Repast. These organizations include the U.S.
Department of Energy, the U.S. Joint Chiefs of Staff, the U.S. Navy, and the
U.S. Department of Homeland Security. These users have Repast models that
focus on a range of mission-critical applications such as infrastructure security
and network communications planning.

Several commercial organizations are working with Repast. These organi-
zations include software developers such as ESRI and other private organi-
zations. These corporations are using Repast for several purposes, including
planning and commercial software enhancement.

6.4 Repast Artficial Life Models

Repast has been used for a variety of artificial life applications. There are a
large number of applications in areas that range from traditional artificial life
modeling to social systems simulation. Selected example areas include the use
of Repast for modeling artificial ecosystems, for modeling multiscale biological
systems, and for modeling artificial societies.

6.4.1 Artificial Evolution and Ecosystems

There are a variety of pressing reasons to model evolution and ecosystems.
According to Wilke and Adami [50]:

Historically, evolutionary biology has generally been an observa-
tional and theoretical science. The experimental verification of evolu-
tionary mechanisms is a challenging undertaking for several reasons:
most organisms have comparatively long generation times; there are
difficulties in determining important parameters, such as mutation
rates or fitness values; and the large variances inherent in evolution
lead to poor statistical significance in averages.

Padgett, Lee, and Collier’s Hypercycle model uses Repast in combination
with analytic methods to investigate autocatalytic co-evolution of complex
interconnected production and consumption systems [35]. The Hypercycle
model has been used to study the emergence of economic production and con-
sumption in adaptive systems [35]. The long-term goal is to model selected
critical features found in real production and consumption systems such as
Renaissance Florence [36]. The model is shown in Fig. 6.9.

The Hypercycle model has three components [35]:
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1. Products are used and exchanged throughout the Hypercycle world.
2. Rules transform products into other products.
3. Agents use rules to convert products into other products.

The Hypercycle world is a two-dimensional torus with a Moore tessella-
tion. A Moore tessellation creates a Cartesian grid such that each vertex has
exactly eight neighbors. One agent resides at each vertex. This agent can ex-
change products with its eight neighbors or release a product to the outside
environment.

Rules and products are initially seeded throughout the Hypercycle world
on a random basis. At each time step, agents examine their rules to determine
if they can transform any of their products to another product with one of their
rules. If so, they do this. The new product is then forwarded to a randomly
selected agent among the agent’s eight neighbors. Any products that cannot
be transformed are ejected to the outside world.

In the Hypercycle model, rules reproduce and die under a carrying-capacity
constraint. Rules that are used to transform a product that is in turn trans-
formed by a second rule are considered successful rules. These successful rules
are allowed to reproduce. The carrying-capacity constraint requires the total
number of rules to remain constant. Therefore, rules that reproduce do so at
the expense of other randomly selected rules. The randomly selected rules are
killed and removed from the world. Eventually, the accumulating deaths cause
some agents to run out of rules. Agents that exhaust their rules die and drop
out of the Hypercycle world.

Kampis and Gulyas are applying Repast to investigate evolutionary emer-
gence [25–27]. They are using Repast to study “how is it possible to produce
sustained evolution in an artificial system” [26]. They state that [27]

We developed an agent-based simulation model using the Repast
package. Organisms are agents that selectively feed, reproduce and
die, based on their phenotypic properties described in variable length
records. As adaptation progresses, new property sets extend the
records, and as a result, selection can spontaneously switch between
the defining properties of an interaction. The aim is to develop func-
tionally disjoint subpopulations specialized for the use of different
property sets. The first results have recently been reported, show-
ing the possibility of progressive evolution productive of new selection
effects, as an illustration for the causal principles of embodiment.

Riolo at the University of Michigan is currently working on replicating
Holland’s Echo system, along with extensions to it [23, 40]. The goals are
to implement “the Holland Echo system in Repast, use it to replicate the
experiments of Bedau et al. on whether open-ended evolution is occurring in
Echo and explore how changes to the basic system affect its ability to support
open-ended evolution (e.g., as defined by Bedau et al.’s measures)” [4, 40].
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Fig. 6.10. Sugarscape in RepastJ.

6.4.2 Artificial Societies

Repast is used for a range of artificial society simulations. Repast comes with
a partial implementation of Epstein and Axtel’s Sugarscape model as shown
in Fig. 6.10 [16]. Sugarscape was originally implemented using the Ascape
ABMS toolkit [38]. In Sugarscape, “fundamental social structures and group
behaviors emerge from the interaction of individual agents operating on ar-
tificial environments under rules that place only bounded demands on each
agent’s information and computational capacity” [16].

Sugarscape is a complex model populated by simple agents. The agents live
in a simple toroidal world that is covered with varying amounts of sugar cane
that grows at varying rates. The agents have several traits including a sugar
metabolism, speed, vision, wealth in the form of accumulated sugar, and other
factors. The agents live according to simple rules that cause them to collect the
sugar at their location, burn some of their accumulated sugar, and then move
to the area within their vision that has the highest sugar level. If two agents
with enough wealth inhabit the same location, then they can reproduce. The
new agent is born with a mixture of its parents’ traits and is given some of
its parents’ wealth. Various versions of the model include externalities such
as pollution, simple social identities, social networks, combat, and credit and
disease propagation. Sugarscape has been successful in reproducing a variety
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of social outcomes such as skewed wealth distributions, as can be seen in
Fig. 6.10.

Axelrod is using Repast to investigate consumer choice. Some of his other
work on adaptive organizational responses is also conceptually related to this
research effort [2]. The agents are consumers and the agent environments are
markets. The agents seek to maximize their own welfare given the available
choices.

Picker of the University of Chicago Law School has used Repast to investi-
gate the endogenous emergence of social norms and the resulting reification of
selected norms as law [39]. The agents in his Endogenous Neighborhoods and
Norms (ENN) model are individual people. The agent’s environment is the
forum for interaction. The agents adopt or change norms based on the relative
success they experience using those social norms. Success is itself dependent
on the level of adoption of the underlying norms.

Cederman is using Repast to study state formation and nationalist move-
ments [8]. In his Repast models, each agent represents a nation. Nations can
form alliances with other nations. Nations can also attempt to invade and de-
feat neighboring states in combat. The agent’s environment is a grid covered
with variable amounts of resources.

Dibble is using Repast to investigate the spatial effects of technologies and
human settlement patterns [11]. Her agents are individual people that can
transmit a variety of things around their environment including diseases, re-
sources, and information. The agent environments are generally “small-world”
graphs consisting of regular rings modified with small numbers of randomly
connected edges [51].

Parker is using Repast to study land use and land-use change [37]. Parker
and Najlis’ Simulated Land Use Dependent on Edge Effect Externalities
(SLUDGE) and related SluGIS models simulate the usage of individual parcels
of land in abstract or real geographies. The simulated land uses change over
time based on the natural traits of the parcel itself such as size and acces-
sibility; the current usage of the land surrounding each parcel; and either
endogenous or exogenous resource demands. The SluGIS model is shown in
Fig. 6.1.

Brantingham is applying Repast to investigate stone tool assembly by
ancient peoples [7]:

Stone tool assemblage variability is considered a reliable proxy
measure of adaptive variability. Raw material richness, transport dis-
tances, and the character of transported technologies are thought to
signal (1) variation in raw material selectivity based on material qual-
ity and abundance, (2) optimization of time and energy costs asso-
ciated with procurement of stone from spatially dispersed sources,
(3) planning depth that weaves raw material procurement forays into
foraging activities, and (4) risk minimization that sees materials trans-
ported in quantities and forms that are energetically economical and
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least likely to fail. This paper dispenses with assumptions that raw
material type and abundance play any role in the organization of mo-
bility and raw material procurement strategies. Rather, a behaviorally
neutral agent-based model is developed involving a forager engaged in
a random walk within a uniform environment. Raw material procure-
ment in the model is dependent only upon random encounters with
stone sources and the amount of available space in the mobile toolkit.

Brantingham reports that the Repast model “richness-sample size re-
lationships, frequencies of raw material transfers as a function of distance
from source, and both quantity-distance and reduction intensity-distance re-
lationships are qualitatively similar to commonly observed archaeological pat-
terns” [7]. This success has lead Brantingham to interesting findings including
the “possibility that Paleolithic behavioral adaptations were sometimes not
responsive to differences between stone raw material types in the ways implied
by current archaeological theory” [7].

6.4.3 Artificial Biological Systems

Repast is being applied to study a range of artificial biological systems. The
Repast system itself includes the simple Hexabugs model shown in Fig. 6.3
[41]. The Hexabugs model has agents that release individually varying levels of
heat into a diffusion space. Each agent has a unique temperature preference.
Over time, the agents move toward areas with temperatures closer to their
own ideal temperature. Simple adjustments in preferences and heat output
can lead to the emergence of either clustering (Fig. 6.11, left) or forward
moving fronts of agents (Fig. 6.11, right). In the figure, the agent locations
are represented by highlighted points.

The clusters are roughly stable over time, while the running fronts move
forward from top to bottom in Fig. 6.11.

Fig. 6.11. The RepastJ Hexabugs model with clustering (left) and fronts (right).
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Folcik and Orosz of the Department of Surgery at the Ohio State Uni-
versity College of Medicine and Public Health are using Repast to model the
antiviral response of human immune systems [17]. They state that

The immune system is a prime example of a complex adaptive sys-
tem, with individual cells that follow rules for behavior based upon de-
tection of signals and contacts with other cells in the environment. We
have created a simulation of a human anti-viral immune response using
the Repast software framework. The agent-based simulation includes
three windows that represent a generic tissue site with parenchyma
that becomes infected with virus, a lymph node site with cells that can
become activated to fight the viral infection, and the peripheral blood
that carries the responding immune cells and antibodies back to the
site of infection. The simulation uses seven agent types and twenty sig-
nals to represent Parenchymal Cells, B-Cells, T-Cells, Macrophages,
Dendritic Cells, Natural Killer Cells and the virus, and pro- and anti-
inflammatory cytokines, chemokines, and antibodies that such cells
use to communicate with each other. The numbers of agents present
as well as the quantity and types of signals present depend upon rules
for proliferation and the release of cytokines that the agent types fol-
low. Individual agents have various states, migrate from one window
to another and live or die as the rules for their behavior dictate.

Folcik and Orosz are using their model to “explore formative patterns of
agent behavior that develop within a complex adaptive system, to evaluate
how information is used for decision making as responses evolve, and to de-
velop methods of generating and evaluating simulator data that can be used
to identify the strengths and weaknesses of clinical and experimental tools
that are currently in use” [17].

North and Macal are using RepastJ to model bacteria chemotaxis in Es-
cherichia coli (E. coli) on multiple simultaneous scales [15]. Chemotaxis is
the biological process of moving toward or away from specific chemicals or
classes of chemicals [5]. Bacterial chemotaxis in E. coli is one of the best-
characterized examples of biological information processing [28]. In bacte-
rial chemotaxis, information outside cells is converted into usable information
within cells via signal transduction networks. Signal transduction networks
allow cells to respond and to adapt to environmental changes. These signal
transduction networks are scientifically important since they exhibit the key
properties found in most complex biological systems. As part of the multiscale
modeling architecture, the AgentCell simulation uses the Stochism model to
represent chemical reactions at the molecular level [32].

The AgentCell model simulates the chemistry of bacterial chemical re-
ceptors, the effects of receptor signaling on cellular motion and the resulting
consequences of cellular motion on population distributions. AgentCell mod-
els the relationship between intracellular processes in individual E. coli cells
and the behavior of a cellular population. Each AgentCell bacterium is an
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independent agent equipped with its own chemotaxis network, motors, and
flagella.

Fig. 6.12. Bacterial structure (top left), bacterial motility (bottom left), and pop-
ulation response to a stimulus (right).

The swimming cells are propelled in three dimensions by their flagella, as
shown on the top left of Fig. 6.12. When most of the flagella rotate counter-
clockwise, the flagella form a bundle and the bacterium runs forward smoothly;
when motors rotate clockwise, the bacterium tumbles erratically, as shown on
the bottom left of Fig. 6.12. Tumbling randomizes the cell trajectory. Control-
ling the amount of tumbling allows bacterial populations to perform chemo-
taxis by individually swimming toward attractants or away from repellents,
as shown on the right side of Fig. 6.12.

The AgentCell model was developed on individual personal computers
under both Microsoft Windows and Linux. AgentCell was then moved to
Argonne’s 350 node Argonne “Jazz” Linux computing cluster without sub-
stantial modifications. A total of 2,000 cells were simulated for 120,000 time
steps each. The simulations took a period of 60 hours on the Jazz cluster.
Each time step represented 10 milliseconds. During the time this work was
performed, the Argonne Jazz cluster was among the top 250 most powerful
computing clusters in the world [46].

The AgentCell model was validated by simulating the collective chemotac-
tic behavior of more than 1000 E. coli bacteria as they moved along a linear
gradient of attractant and in an environment without attractants. At regu-
lar time intervals the position and orientation of all the cells were recorded.
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Within each cell, the state of the motors, flagella, receptors and the activity
of the proteins involved in the chemotaxis network were also recorded. The
simulation was found to reproduce the important statistical features observed
in single E. coli cells as reported by Korobkova et al. [15, 28].

An example trajectory of an individual cell is shown in Fig. 6.13.
The trajectories of a small population of 25 cells are shown in Fig. 6.14.

Fig. 6.13. The simulated trajectory of one bacteria.



138 North and Macal

Fig. 6.14. The simulated trajectories of 25 bacteria. See also color plate.

6.5 Conclusions

Artificial life focuses on synthesizing “life-like behaviors from scratch in com-
puters, machines, molecules, and other alternative media” [29]. Artificial life
expands the “horizons of empirical research in biology beyond the territory
currently circumscribed by life-as-we-know-it” to provide “access to the do-
main of life-as-it-could-be” [29]. Agent-based modeling and simulation are
used to create computational laboratories that replicate selected real or po-
tential behaviors of actual or possible complex adaptive systems. Agent-based
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models can be used to escape the accident of history in the form of “life-as-
we-know-it” by revealing alterative forms of “life-as-it-could-be.”

Repast is a free and open source agent modeling toolkit. Repast’s features
directly support the implementation of models with Holland’s three properties
and four mechanisms of complex adaptive system [22]. As such, Repast is a
natural framework in which to perform artificial life experiments.

Repast toolkit version 3.0 can be thought of as a specification for agent-
based modeling services or functions. There are three concrete implemen-
tations of this conceptual specification, namely Repast for Java (RepastJ),
Repast for the Microsoft.Net framework (Repast.Net), and Repast for Python
Scripting (RepastPy). The fourth version of Repast, namely Repast for
Oz/Mozart (RepastOz), is an experimental system that partially implements
the Repast conceptual specification while adding advanced new features.
Repast 3.0 has a variety of features including full object orientation; a concur-
rent discrete event scheduler; built-in simulation results logging and graphing
tools; an automated Monte Carlo framework; two-dimensional agent environ-
ments and visualizations; dynamically accessible agent and model properties;
libraries for genetic algorithms, neural networks, and specialized mathemat-
ics; built-in systems dynamics modeling; social network modeling support;
and integrated geographical information systems support.

Repast is fully implemented in a variety of languages including Java and
C#. Repast models can be developing in many languages including Java,
C#, Managed C++, Visual Baisc.Net, Managed Lisp, Managed Prolog, and
Python scripting. Repast is available on virtually all modern computing plat-
forms, including Windows, Mac OS, and Linux. The platform support includes
both personal computers and large-scale scientific computing clusters.

Repast has many academic, government, and industry users. These users
are involved in a variety of application areas, including educational, research,
and commercial uses. In particular, there are many examples in which Repast
has been used extensively for artificial life applications in topical areas such as
artificial evolution and ecosystems; artificial societies; and artificial biological
systems.
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EINSTein: A Multiagent-based Model of
Combat

Andrew Ilachinski

Artificial life techniques — specifically, multiagent-based models and evolution-
ary learning algorithms — provide a powerful new approach to understand-
ing some of the fundamental processes of war. This paper introduces a simple
artificial-like “toy model” of combat called EINSTein. EINSTein is designed to
illustrate how certain aspects of land combat can be viewed as self-organized,
emergent phenomena resulting from the dynamical web of interactions among
notional combatants. EINSTein’s bottom-up, synthesist approach to the mod-
eling of combat stands in stark contrast to the more traditional top-down, or
reductionist, approach taken by conventional military models, and represents
a step toward developing a complex systems theoretic toolbox for identifying,
exploring, and possibly exploiting self-organized, emergent collective patterns
of behavior on the real battlefield. A description of the model is provided,
along with examples of emergent spatial patterns and behaviors.

7.1 Background

“War is...not the action of a living force upon lifeless mass...but always the col-
lision of two living forces.” — Carl von Clausewitz, Prussian Military Strate-
gist (1780–1831)

In 1914, F. W. Lanchester introduced a set of coupled ordinary differen-
tial equations — now commonly called the Lanchester equations (LEs) — as
models of attrition in modern warfare [1]. In the simplest case of directed fire,
for example, the LEs embody the intuitive idea that one side’s attrition rate
is proportional to the opposing side’s size:{

dR
dt = −αBB(t), R(0) = R0,
dB
dt = −αRR(t), B(0) = B0,

(7.1)

where R0 and B0 are the initial red and blue force levels, respectively, and αR

and αB represent the effective firing rates at which one unit of strength on
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one side causes attrition on the other side’s forces. The closed-form solution
of these equations is given in terms of hyperbolic functions as

{
R(t) = R0 cosh

(
t
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αBαR

) − B0
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)
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)
,

(7.2)

and satisfies the simple “square-law” state equation:

αR

[
R2

0 − R(t)2
]

= αB

[
B2

0 − B(t)2
]
. (7.3)

Similar ideas were proposed around that time by Chase [2] and Osipov
[3]. These equations are formally equivalent to the Lotka–Volterra equations
used for modeling the dynamics of interacting predator–prey populations [4].
Despite their relative simplicity, the LEs have since served as the fundamental
mathematical models upon which most modern theories of combat attrition
are based and are to this day embedded in many “state-of-the art” military
models of combat. Taylor [5] provides a thorough mathematical discussion.

On the one hand, there is much to like about the LEs, since they are very
intuitive and therefore easy to apply, and provide relatively simple closed-
form solutions. On the other hand, as is typically the case in the more general
setting of nonlinear dynamical system theory, knowing the “exact” solution
to a simplified problem does not necessarily imply that one has gained a deep
insight into the problem. Moreover, almost all attempts to correlate LE-based
models with historical combat data have proven inconclusive, a result that is
in no small part due to the paucity of data. Most data consist only of initial
force levels and casualties, and typically for one side only. Moreover, the actual
number of casualties is usually uncertain because the definition of “casualty”
varies (killed, killed + wounded, killed + missing, etc.).

Two noteworthy battles for which detailed daily attrition data and daily
force levels do exist are the battle of Iwo Jima in World War II and Inchon-
Seoul campaign in the Korean War. While the battle of Iwo Jima is frequently
cited as evidence for the efficacy of the classic LEs, the conditions under which
it was fought were very close to the ideal list of assumptions under which the
LEs themselves are derived. A detailed analysis of the Inchon-Seoul campaign
has also proved inconclusive [6]. Weiss [7], Fain [8], Richardson [9], and others
analyze attrition in battles fought from 200 B.C. to World War II.

While the LEs may be relevant for the kind of static trench warfare and
artillery duels that characterized most of World War I, they lack the spatial
degrees of freedom to realistically model modern combat. They are certainly
too simple to adequately represent the more modern vision of combat, which
depends on small, highly trained, well-armed autonomous teams working in
concert, continually adapting to changing conditions and environments. The
fundamental problem is that the LEs idealize combat much in the same way
as Newton’s laws idealize physics.

The two most significant drawbacks to using LEs to model land combat
are that (1) they are unable to account for any spatial variation of forces
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(no link is established, for example, between movement and attrition), and
(2) they do not incorporate the human factor in combat (i.e., the uniquely
individual, often imperfect, psychology and decision-making capability of the
human soldier.) While there have been many extensions to and generalizations
of the LEs over the years, all designed to minimize the deficiencies inherent in
their original formulation (including reformulations as stochastic differential
equations and partial differential equations), most existing models remain
essentially Lanchesterian in nature, the driving factor being force-on-force
attrition.

7.2 Land Combat as a Complex Adaptive System

To address all of these shortcomings, the Center for Naval Analyses and the
Office of Naval Research are exploring developments in coplex adaptive sys-
tems theory — particularly the set of agent-based models and simulation tools
developed in the artificial life community — as a means of understanding land
warfare in a fundamentally different way.

Military conflicts, particularly land combat, possess the key characteristics
of complex adaptive systems (CASs) [10–13]: Combat forces are composed of a
large number of nonlinearly interacting parts and are organized in a command
and control hierarchy; local action, which often appears disordered, induces
long-range order (i.e., combat is self-organized); military conflicts, by their
nature, proceed far from equilibrium; military forces, in order to survive, must
continually adapt to a changing combat environment; and there is no master
“voice” that dictates the actions of each and every combatant (i.e., battlefield
action effectively proceeds according to a decentralized control).

A number of recent papers discuss the fundamental role that nonlinearity
plays in combat. See, for example, Beckerman [14], Beyerchen [15], Hedgepeth
[16], Ilachinski [17, 18], Miller and Sulcoski [19], Saperstein [20], and Tagarev
and Nicholls [21]. The general approach of the EINSTein project is to extend
these largely conceptual and general links that have been drawn between
properties of land warfare and properties of complex systems into a set of
practical connections and analytical research tools.

7.3 Agent-based Modeling and Simulation

Models based on differential equations homogenize the properties of entire
populations and ignore the spatial component altogether. Partial differential
equations — by introducing a physical space to account for movement —
fare somewhat better, but still treat the agent population as a continuum. In
contrast, agent-based models (ABMs) consist of a discrete heterogeneous set of
spatially distributed individual agents, each of which has its own characteristic
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properties and rules of behavior. These properties can also change as agents
evolve in time.

ABMs of CASs are becoming an increasingly popular exploratory tool
in the artificial life community and are predicated on the basic idea that
the (often complicated) global behavior of a real system derives, collectively,
from simpler, low-level interactions among its constituent agents [22]. Insights
about the real-world system that an ABM is designed to model can then
be gained by looking at the emergent structures induced by the interactions
taking place within the simulation, as well as the feedback that these patterns
might have on the rules governing the individual agents’ behavior.� Agent-
based simulations engender a significant shift in the kinds of questions that
are asked of the real system being simulated. For example, where traditional
models ask, effectively, “How can I characterize the system’s top-level behavior
with a few (equally top-level) variables?” ABMs instead ask, “What low-level
rules and what kinds of heterogeneous, autonomous agents do I need to have
in order to synthesize the system’s observed high-level behavior?”

Perhaps the most important benefit of using an agent-based simulation
to gain insight into why a system behaves the way it does — whether that
system is a collection of traders on the stock market floor, neurons in a brain,
or soldiers on the battlefield — is that once the simulation is used to generate
the desired behavior, the researcher has immediate and simultaneous access to
both the top-level (i.e., generated) behavior of the system and a low-level de-
scription of the system’s underlying dynamics. Because they take an actively
generative, or synthesist, approach to understanding a system, from the bot-
tom up, ABMs are thus a powerful methodological tool for not just describing
behaviors but also explaining why specific behaviors occur. While an analyt-
ical solution may provide an accurate description of a phenomenon, it is only
with an agent-based simulation that one can fine-tune one’s understanding of
the precise set of conditions under which certain behaviors emerge.

In the context of modeling combat, agent-based simulations represent a
fundamental shift from focusing on simple force-on-force attrition calcula-
tions to considering how complex, high-level properties and behaviors of com-
bat emerge out of (sometimes coevolving) low-level rules of behaviors and
interactions. The final outcome of a battle — as defined, say, by measur-
ing the surviving force strengths — takes second stage to exploring how two
forces might coevolve as a series of firefights and skirmishes unfold. ABMs
are designed to allow the user to explore the evolving patterns of macroscopic
behavior that result from the collective interactions of individual agents, as

� Two excellent recent texts on agent-based modeling, as applied to a variety of
disciplines, are by Ferber [23] and Weiss [24]. Collections of papers focusing on
systems that involve aspects of “human reasoning” are by Gilbert and Troitzsch
[25], Gilbert and Conte [26], and Conte, et al. [27]. More recently, ABMs have been
applied successfully to traffic pattern analysis [28] and social evolution [29,30].
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well as the feedback that these patterns might have on the rules governing
the individual agents’ behavior.

7.4 EINSTein

EINSTein (Enhanced ISAAC Neural Simulation Tool) is an adaptive ABM
of combat, and is an outgrowth of a more far-reaching project to develop a
complexity-based fundamental theory of warfare [31]. EINSTein builds upon
and extends an earlier proof-of-concept, DOS-based combat simulator called
ISAAC (Irreducible Semi-Autonomous Adaptive Combat), which was devel-
oped for the US Marines Corps [33]. All approved-for-public-release docu-
ments, project reports and summaries, tutorials, sample runs, and an auto-
install program for Windows-based PCs may be downloaded from http:
//www.cna.org/isaac/. Details of the EINSTein toolkit are provided in [34].

EINSTein represents one of the first systematic attempts, within the mil-
itary operations research community, to simulate combat — on a small to
medium scale — by using autonomous agents to model individual behaviors
and personalities rather than specific weapons. Because agents are all en-
dowed with a rudimentary form of “intelligence,” they can respond to a very
large class of changing conditions as they evolve during battle. Because of the
relative simplicity of the underlying dynamical rules, EINSTein can rapidly
provide outcomes for a wide spectrum of tunable parameter values defining
specific scenarios, and can thus be used to effectively map out the space of
possible behaviors.

Fundamentally, EINSTein addresses the basic question: “To what extent
is land combat a self-organized emergent phenomenon?” Or, more precisely,
“What are the conditions under which high-level patterns (such as penetra-
tion, flanking maneuvers, attack, etc.) emerge from a given set of low-lying dy-
namical primitive actions (move forward, move backward, approach/retreat-
from enemy, etc.).” As such, EINSTein’s intended use is not as a full system-
level model of combat but as an interactive toolbox — or “conceptual play-
ground” — in which to explore high-level emergent behaviors arising from
various low-level (i.e., individual combatant and squad-level) interaction rules.
The idea behind developing this toolbox is emphatically not to model in de-
tail a specific piece of hardware (an M16 rifle or M101 105mm howitzer, for
example). Instead, the idea is to explore the middle ground between — at one
extreme — highly realistic models that provide little insight into basic pro-
cesses and — at the other extreme — ultra minimalist models that strip away
all but the simplest dynamical variables and leave out the most interesting
real behavior, that is, to explore the fundamental dynamical tradeoffs among
a large number of notional variables.

The underlying dynamics is patterned after mobile cellular automata rules
[35] and are somewhat reminiscent of Braitenberg’s vehicles [36]. Mobile cel-
lular automata have been used before to model predator–prey interactions in
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natural ecologies [37]. They have also been applied to combat modeling [38],
but in a much more limited fashion than the one used by EINSTein.

7.4.1 Features

EINSTein’s major features include

• Dialog-driven I/O, using a Windows GUI front-end
• Object-oriented C++ source code base
• Integrated natural terrain maps and terrain-based adaptive decision dy-

namics
• Context-dependent and user-defined agent behaviors
• Multiple squads, with intersquad communication links
• Local and global command-agent dynamics
• Genetic algorithm toolkit to tailor agent rules to desired force-level behav-

iors
• Data collection and multidimensional visualization tools
• Mission fitness-landscape profilers
• Over 250 user-programmable functions on the source code level

Figure 7.1 provides a screenshot of a typical run-session in EINSTein.
The screenshot contains three active windows: main battlefield view (which
includes passable and impassable terrain elements); trace view (which shows
color coded territorial occupancy), and combat view (which provides a gray-
scaled filter of combat intensity). All views are simultaneously updated during
a run. Toward the right-hand side of the screenshot appear two data dialogs
that summarize red and blue agent parameter values. Appearing on the lower
left side and along the bottom of the figure are time-series graphs of red
and blue center-of-mass coordinates (as measured from the red flag) and the
average number of agents within red and blue agent’s sensor ranges, and a
dialog that allows the user to define communication relays among individual
squads.

7.4.2 Source Code

EINSTein is written and compiled using Microsoft’s Visual C++�� and makes
use of Pinnacle Publishing Inc.’s Graphics Server��� for displaying time-series
plots and 3D fitness-landscapes. EINSTein consists of roughly 100K lines of
object-oriented source code.

The source code is divided into three basic parts: (1) the combat engine
(parts of which are summarized below); (2) the graphical user interface (GUI);

�� Microsoft Visual C++, Version 6.0: http://msdn.microsoft.com/developer/
��� Graphics Server is a commercial plug-in, licensed from Pinnacle Publishing, Inc.:

http://www.graphicsserver.com
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Fig. 7.1. Screenshot of EINSTein’s graphical user interface (GUI) front-end.

and (3) the data-collection/data-visualization functions. These parts are essen-
tially machine (i.e., CPU and/or operating system) independent and may be
compiled separately. EINSTein’s source code base is thus highly portable and
is relatively easy to modify to suit particular problems and interests. For ex-
ample, an EINSTein-based combat environment may be developed as a stand-
alone program on a CPU platform other than the original MS Windows target
machine used for EINSTein’s original development. Any developer/analyst in-
terested in porting EINSTein over to some other machine and/or operating
system is tasked only with providing his own machine-specific GUI as a “wrap-
around” to the stand-alone combat and data-visualization engines (that may
be provided as DLLs). Moreover, it is very easy to add, delete, and/or change
the existing source code, including making complicated changes that signifi-
cantly alter how agents decide their moves.

At the heart of EINSTein lies the combat engine (discussed ahead). The
combat engine processes all run-time, combat-related logical decisions and is
the core script upon which multiple time-series data collection, fitness land-
scape sweeps over the agents’ parameter space, and genetic algorithm searches
all depend.
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7.4.3 Design Philosophy

“Things should be as simple as possible, but not simpler.” — Albert Einstein

EINSTein’s design is predicated upon two guiding principles: (1) to keep
all dynamical components and rules as simple as possible (with a view toward
optimizing the trade-off between run time and realism), and (2) to treat all
forms of information (and the way in which all information is processed locally
by agents) in a contextually consistent manner. The meaning of this second
principle will become clear in the exposition below.

Simplicity

The first guiding principle is to keep things simple. Specifically, EINSTein
is designed to make it as intuitive as possible for the user to program spe-
cific agent behaviors. This is done by deliberately keeping the set of combat
and movement rules small and by defining those rules as simply as possible.
Thus, the power projection rule is essentially “target and fire upon any enemy
agent within a threshold fire range” rather than some other, more complicated
(albeit, possibly more physically realistic) prescription. The idea is to quali-
tatively probe the behavioral consequences of the interaction among a large
number of notional variables, not to provide an explicit detailed model of the
minutiae of real-world combat.

Consistency

The second guiding principle is keep things consistent. All dynamical decisions
— whether they are made by individual agents, by local or global commanders,
or by the user (when scripting a scenario’s objectives) — consist of bound-
edly rational (i.e., locally optimal) penalty assessments. Actions are based on
an agent’s personality (see ahead), which consists of numerical weights that
attach greater or lesser degrees of relative importance to each factor relevant
to selecting a particular move in a given local context (from the point of view
of a given agent). It is in this sense that all forms of information, on various
levels, are treated on a consistent basis.

The decisions taking place on different levels of the simulation all follow
the same general template of probing and responding to the environment.
Each decision consists of a personality-mediated “answer” to the following
three basic questions:

• What are my immediate and long-term goals?
• What do I currently know about my local environment?
• What must I do to attain my goals?
As we shall see in detail ahead, at the most primitive level, each agent

cares only about “moving toward” or “moving away from” all other agents
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and/or his own and the enemy’s flag. An agent’s personality prescribes the
relative weight assigned to each of these immediate “goals.” On the other
hand, a global commander must weigh such features as overall force strength,
casualty rate, rate of advance, and so on in order to attain certain long-
term goals. Local and supreme commanders have their own unique concerns.
While the actual decisions are different in each case and on each information
level — for example, an individual agent’s decision to “stay put” in order
to survive is quite different and uses a different form of information, from a
global commander’s drive to “get to the enemy flag as quickly as possible” —
the general manner in which these decisions are made is the same.

7.4.4 Program Flow

A typical sequence of programming steps during an interactive run consists
of multiple loops through the following basic steps:

1. Initialize battlefield and agent distribution parameters.
2. Initialize time-step counter.
3. Adjudicate combat.
4. Refresh battlefield graphics display.
5. Find context-dependent personality weight vector for each red and blue

agent.
6. Compute local penalty function to determine best move.
7. Move agents to their newly selected position (or leave them where they

are).
8. Refresh graphics display and loop through steps 3 – 7.

The most important parts of this skeletal structure are the adjudication
of combat, the adaptation of personality weights, and the decision-making
process that each agent goes through in choosing its next move. Before de-
scribing the details of what each of these steps involves, we must first discuss
how each agent partitions its local information. During interactive runs (i.e.,
whenever the fitness-landscape profiler and genetic algorithm breeder batch
modes are both inactive), the user can pause the simulation at any time to
make on-the-fly changes to any, or all, agent parameters (including adding
or subtracting “playing” agents) and then resume the run with the changed
values.

7.5 Combat Engine

7.5.1 Agents

The basic element of EINSTein is an agent, which loosely represents a primi-
tive combat unit (infantryman, tank, transport vehicle, etc.) that is equipped
with the following characteristics:
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• Doctrine: a default local-rule set specifying how to act in a generic envi-
ronment

• Mission: goals directing behavior
• Situational awareness: sensors generating an internal map of environment
• Adaptability: an internal mechanism to alter behavior and/or rules

Each agent exists in one of three states: alive, injured, or killed. Injured
agents can (but are not required to) have different personalities and offen-
sive/defensive characteristics from when they were alive. For example, the
user can specify that injured agents are able to move half as far, and shoot
half as accurately, as their “alive” counterparts. Up to 10 distinct groups (or
“squads”) of personalities, of varying sizes, can be defined. The user can also
specify how agents from one squad react to agents from other squads.

Each agent has associated with it a set of ranges (sensor range, fire range,
communications range, etc.), within which it senses and assimilates various
forms of local information, and a personality, which determines the general
manner in which it responds to its environment. A global rule set determines
combat attrition, reconstitution, and (in future versions) reinforcement. EIN-
STein also contains both local and global commanders, each with their own
command radii, and obeying an evolving command and control (C2) hierarchy
of rules.

7.5.2 Battlefield

The putative combat battlefield is represented by a two-dimensional lattice of
discrete sites. Each site of the lattice may be occupied by one of two kinds of
agents: red or blue. The initial state consists of user-specified formations of
red and blue agents positioned anywhere within the battlefield. Formations
may include squad-specific bounding rectangles or may be completely random.
Red and blue flags are also typically (but not always) positioned in diagonally
opposite corners. A typical goal, for both red and blue agents, is to reach the
enemy’s flag.

EINSTein includes an option to add terrain elements. Terrain can be either
impassable or passable. If passable, the user can also tune an agent’s behavior
to a particular terrain type. For example, if an agent is positioned within
“heavy brush,” its movement range and visibility (from other nearby agents)
may be curtailed.

7.5.3 Agent Personalities

Each agent is equipped with a user-specified personality — or internal value
system — nominally defined by a six-component personality weight vector,
w = (w1, w2, . . . w6), where −1 ≤ wi ≤ 1 and Σi|wi| = 1. The components of
w specify how an individual agent responds to specific kinds of local informa-
tion within its sensor range.
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The personality weight vector may be health-dependent. That is, walive

need not, in general, be equal to winjured. The components of w can also be
negative, in which case they signify a propensity for moving away from, rather
than toward, a given entity.

7.5.4 Penalty Function

An agent’s personality weight vector is used to rank each possible move accord-
ing to a penalty function. The simplest penalty function effectively measures
the total distance that the agent will be from other agents (including both
friendly and enemy agents) and from its own and enemy flags, weighing each
component distance by the appropriate component of the personality weight
vector, w. An agent moves to the position that incurs the least penalty. That
is, an agent’s move is the one that best satisfies its personality-driven desire
to “move closer to” or “farther away from” other agents in given states and
either of the two flags. The general form of the penalty function is given by
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where Bxy is the (x, y) coordinate of battlefield B; AF , IF , AE, and IE
represent, respectively, the sets of alive friends, injured friends, alive enemies,
and injured enemies within the given agent’s sensor range, rS ; wi are the
components of the personality weight vector;

√
2rS is a scale factor; NX is

the total number of elements of type X within the given agent’s sensor range
(for example, NF is the number of alive friends within range rS); DA,B is
the distance between elements A and B; FF and EF denote the friendly and
enemy flags, respectively; and represent distances computed using the given
agent’s new (candidate move) position and old (current) position, respectively.

A penalty is computed for each possible move. That is, for each of the
N = (2rm + 1)2 possible sites to which an agent can “step” in one time step:
Z1(Bx,y), Z2(Bx+1,y), Z3(Bx−1,y) . . ., ZN (Bx+n,y+n). The actual move is the
one that incurs the least penalty. If there is a set of moves (consisting of
more than one possible move) all of whose penalties are within εPenalty ≥ 0 of
the minimal penalty, an agent randomly selects the actual move among the
candidate moves making up that set. Users can also define paths near which
agents must try to stay while maneuvering toward their ultimate goal.

The penalty function shown above includes only a few relative-proximity-
based weights. In practice, the penalty function is more complicated, and in-
corporates more terms, though its basic form is the same. Additional terms can
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include the propensity for maintaining the minimum distance from friendly
or enemy agents, staying near a designated patrol area, the cost of traversing
terrain, desire for finding local cover (from fire) and/or concealment (from
enemy sensors), and combat intensity (see Table 7.1).

Table 7.1. A Partial List of EINSTein’s Primitive Weight Set.

Weight Meaning = Relative Weight for...

wAF ...moving toward/away-from alive friendly agents
wIF ...moving toward/away-from injured friendly agents
wAE ...moving toward/away-from alive enemy agents
wIE ...moving toward/away-from injured enemy agents
wFF ...moving toward/away-from friendly flag
wEF ...moving toward/away-from enemy flag
wBB ...moving toward/away-from the boundary of battlefield
warea ...staying near some (squad-specific) area
wsquad ...maintaining formation with own squad-mates

wfire−team ...maintaining formation with own fireteam-mates
Sij ... how agents from squad Si react to agents from squad Sj

SS′
ij ... how agents from squad Si react to agents from enemy squad Sj

wLC ...moving toward/away-from local commander
wobeyLC ...obeying orders issued by local commander
wterrain ...moving toward/away-from terrain elements

wenemy−fire ...moving toward/away-from enemy agents that have fired on agent

7.5.5 Meta-Rules

An agent’s personality may be augmented by a set of meta-rules that tell
it how to alter its default personality according to dynamic environmental
contexts. A typical meta-rule consists of altering a few of the components of
an agent’s personality vector according to a set of associated local threshold
constraints. The three simplest meta-rule classes effectively define the local
conditions under which an agent is allowed to advance toward enemy flag
(class 1), cluster with friendly forces (class 2), and engage the enemy in combat
(class 3).

For example, a class-1 meta-rule prevents an agent from advancing toward
the enemy flag unless it is locally surrounded by a threshold number of friendly
agents; i.e., it is a notional indicator of local combat support. A class-2 meta-
rule can be used to prevent an agent from moving toward friendly agents once
it is surrounded by a threshold number. Finally, a class-3 meta-rule can be
used to fix the local conditions under which an agent is allowed to move toward
or away from possibly engaging an enemy agent in combat. Specifically, an
agent is allowed to engage an enemy if and only if the difference between
friendly and enemy force strengths locally exceeds a given threshold.
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Other meta-rule classes include retreat, pursuit, support, and hold position.
A global rule set determines combat attrition (see ahead), communication, re-
constitution, and (in future versions) reinforcement. EINSTein also contains
both local and global commanders, each of which is equipped with its own
unique command-personality and area of responsibility, and obeys an evolv-
ing command and control hierarchy of rules. Table 7.2 summarizes some of
EINSTein’s meta-rules.†

Table 7.2. A Partial List of EINSTein’s Meta-Rule Set.

Meta-rule Description

wAF ...moving toward/away-from alive friendly agents
Advance Advance to enemy flag if the number of friends ≥ τAdvance

Cluster Stop seeking friends if number of friends ≥ τCluster

Combat Engage enemy if the Nfriends - Nenemies ≥ ∆Combat

Hold Hold current position
Pursuit-I Temporarily turn off pursuit of enemy agents
Pursuit-II Temporarily turn exclusive pursuit on
Retreat Retreat toward own flag

Run Away Run away, fast, from enemy agents
Support-I Provide support for nearby injured
Support-II Seek support from nearby friends

Min-D Friend Maintain minimum distance from all friendly agents
Min-D Enemy Maintain minimum distance from all enemy agents
Min-D Flag Maintain minimum distance from all friendly agents

Min-D Terrain Maintain minimum distance from terrain
Min-D Area Maintain minimum distance from a fixed area on battlefield

7.5.6 Combat

During the combat phase of an iteration step for the whole system, each agent
X (on either side) is given an opportunity to fire at all enemy agents Yi that
are within a fire range rF of X ’s position. If an agent is shot by an enemy
agent, its current state is degraded either from alive to injured or from injured
to dead. Once killed, an agent is permanently removed from the battlefield.
The probability that a given Yi is shot is fixed by user-specified, single-shot
probabilities. Weapons are assigned to individual agents and are either point-
to-point (i.e., rifles) or area destruction (i.e., grenades).

† Note that threshold constraints (τAdvance,τCluster, and ∆Combat) are explicitly de-
fined only for the first three meta-rules. These meta-rules are used in the sample
runs discussed ahead. In fact, each of the meta-rules appearing in Table 7.2 has
one or more threshold constraints associated with it, and the set also requires ad-
ditional logic to dynamically resolve ambiguities as they arise during the course
of a run. Details are in [31].
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By default, all enemy agents within a given agent’s fire range are targeted
for a possible hit. However, the user has the option of limiting the number of
enemy targets that can be engaged simultaneously. If this option is selected,
and the number of enemy agents within an agent’s fire-range exceeds a user-
defined threshold number (say N), then N agents are randomly chosen among
the agents in this set. Grenades include additional targeting logic (to maximize
expected inflicted damage on the enemy).

This basic combat logic may be enhanced by three additional functions:
(1) defense, which adds a notional ability to agents to be able to withstand a
greater number of “hits” before having their state degraded; (2) reconstitution,
which adds a provision for previously injured agents to be reconstituted to
their alive state; and (3) fratricide (“friendly fire”), which adds an element of
realism by making it possible to inadvertently hit friendly forces.

7.5.7 Run Modes

EINSTein can be run in three basic modes (see EINSTein’s User’s Guide [31]):
• Interactive mode, in which the combat engine is run interactively using

a fixed set of rules. This mode, which allows the user to make on-the-fly
changes to the values of any (or all) parameters defining a given run,
is particularly well suited for playing simple “What if?” scenarios. The
interactive mode also makes it easy to search for interesting emergent
behavior.

• Data-collection mode, in which the user can (1) generate time series of
various changing quantities describing the step-by-step evolution of a bat-
tle and (2) keep track of certain measures of how well mission objectives
are met at a battle’s conclusion. Additionally, the user can generate be-
havioral profiles on two-dimensional slices of EINSTein’s N-dimensional
parameter space.

• Genetic algorithm “breeder” mode, in which a genetic algorithm is used
to breed an agent force that is optimally suited for performing a specific
mission against a fixed enemy force. This mode is designed to suggest
ways in which ABMs may eventually be used to evolve real-world tactics
and strategies.

7.6 Sample Patterns and Behavior

EINSTein possesses a large repertoire of emergent behaviors: forward ad-
vance, frontal attack, local clustering, penetration, retreat, attack posturing,
containment, flanking maneuvers, “Guerrilla-like” assaults, among many oth-
ers. Moreover, behaviors frequently arise that appear to involve some form
of intelligent division of red and blue forces to deal with local firestorms and
skirmishes, particularly those forces whose personalities have been bred (via a
genetic algorithm) to perform a specific mission. It is important to point out
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that such behaviors are not hard-wired but are rather an emergent property
of a decentralized, but dynamically interdependent, swarm of agents.

Figure 7.2 shows screen captures of spatial patterns resulting from 16 dif-
ferent rules and illustrates the diversity of behaviors that emerges out of a
relatively simple set of rules. (Note that the sample patterns shown here are
for clashing red and blue forces consisting of a single squad. Multisquad sce-
narios, in which agents belonging to different squads obey different rules, and
interact with one another according to an additional layer of micro-rules, often
result in considerably more complicated emergent behaviors.) An important
long-term goal is for EINSTein to be flexible enough to serve as a general tool
(that transcends the specific notional combat environment to which it is obvi-
ously tailored) for exploring the still very poorly understood mapping between
micro-rules and emergent macro-behaviors in complex adaptive systems.

Fig. 7.2. A sampling of emergent spatial patterns of opposing agents obeying EIN-
STein’s micro-rules. Each of the 16 squares represents a different rule and contains
a single snapshot of a typical run.
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7.6.1 Qualitative Classes of Behavior

Simulations run for many different scenarios and initial conditions suggest that
EINSTein’s collective behavior generally falls into one of six broad qualitative
classes (labeled, suggestively, according to different kinds of fluid flow):

• Laminar flow, which typically consists of one (or, at most, a few) well-
defined “linear” battlefronts. This class is so named because it is visually
suggestive of laminar fluid flow of two fluids, and is reminiscent of static
trench warfare in World War I. Laminar rules can actually be divided
into two types of behaviors, characterized according to a system’s overall
stability (i.e., according to whether the system is stable, or not stable,
to initial conditions).

• Viscous flow, in which the unfolding battle typically consists of a single
tight cluster (or, at most, a few clusters) of interpenetrating red and blue
agents.

• Dispersive flow, in which — as soon as red and blue agents maneuver
within view of the opposing side’s forces — the battle unfolds as a single,
explosive, dispersion of forces. Dispersive systems exhibit little, if any, of
the “front-like” linear structures that form for laminar-flow rules.

• Turbulent flow, in which combat consists of either spatially distributed,
but otherwise confined and/or clustered individual combat zones, or a
series of close-to space-filling local firestorms. In either case, there is
almost always a significant degree of local maneuvering.

• Autopoeitic Flow in which agents self-organize into persistent dissipative
structures. These formations typically maintain their integrity for long
times (on the scale of individual agents entering and leaving the struc-
ture) and undergo “higher level” maneuvering, including longitudinal
motion and rotation.‡

• Swarming, in which agents self-organize into nested swarms of attacking
and/or defending forces.

We should be quick to point out that this taxonomy is neither complete nor
well defined, in a mathematical sense. Because of the qualitative distinctions
among classes, there is considerable overlap among them. Moreover, a given
scenario, as it unfolds in time, usually consists of several phases of behavior
during which one class predominates at one time and other classes at other
times. Indeed, for such cases, which occur frequently, it is of considerable
interest to understand the nature of the transition between distinct behavioral
phases. For example, the initial stages of a scenario may unfold in typically
laminar fashion and suddenly transition over into a turbulent phase.

A finer distinction among these six classes can be made on the basis of
a more refined statistical analysis of emergent behavior. There is strong ev-

‡ Autopoiesis refers to dynamical systems that are simultaneously self-creating and
self-maintaining. It was introduced as an explanatory mechanism within biology
by Maturana and Varela [39].
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idence to suggest, for example, that while attrition rates for certain classes
of rules display smooth Gaussian statistics, other classes (overlapping with
viscous flow and turbulent flow rules) display interesting fractal power-law
scaling behaviors [40]. Insofar as the “box-counting” fractal dimension [41] is
useful for describing the degree of agent clustering on the battlefield, it can
also be used as a simple discriminant between laminar and turbulent classes
of behavior. Measuring temporal correlations in the time series of various sta-
tistical quantities describing combat is also useful in this regard. The case
studies presented here are selected mainly to highlight the qualitative behav-
ioral classes described previously.

7.6.2 Lanchesterian Combat

On the simplest level, EINSTein is an interactive, exploratory tool that allows
users to take conceptual excursions away from Lanchesterian oversimplifica-
tions of real combat. It is therefore of interest to first define a Lanchesterian
scenario within EINSTein that can subsequently be used as a test bed to which
the outcomes of other, non-Lanchesterian, scenarios can be compared. The set
of simulation parameters that are appropriate for simulating a maneuverless,
Lanchester-like combat scenario in EINSTein includes a red/blue movement
range of rm = 0 (so that the position of all agents is fixed) and a red/ blue
sensor range that is large enough so that all agents have all enemy agents
within their view (for the example below, rS = 40).

Figure 7.3 shows several snapshots of a typical run. Initial conditions con-
sist of 100 red and 100 blue agents (in a tightly packed block formation, with
block-centers 15 units distant on a 60-by-60 battlefield) and a red/blue single-
shot probability of hit Phit = 0.005. Note that the outcome of the battle is a
function of the initial sizes of red and blue forces and Phit alone, and does not
depend on maneuver or any other agent, squad, or force characteristics.

Fig. 7.3. Screenshots of a typical run using an EINSTein rule-set that approximates
LE-like combat.

While the Lanchester scenario shown here is highly unrealistic, of course,
it is important to remember that most conventional military models (even
those that include some form of maneuvering) adjudicate combat by effectively
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sweeping over a series of similarly idealized maneuver-less skirmishes until
one side, or both sides, of the conflict decide to withdraw after sustaining a
threshold number of casualties. Most models are still almost entirely attrition-
driven. The only substantive role that play maneuver and adaptability is in
getting the individual combatants into position to fight.

A typical signature of such Lanchesterian-like combat scenarios is a linear
dependence of the mean attrition rate — defined as the average number of
combatants lost, 〈α〉, during some specified time interval, ∆τ = t− t0 — on
the single-shot kill (or, in our case here, single-shot hit) probability, Pss:

〈α〉 =
〈

∆n

∆τ

〉
=

〈
n(t0 + t) − n(t0)

∆τ

〉
=

N∑
i=1

Pss(i) = NPss, (7.5)

where N is the total number of agents, n(t) is the number of agents at time t,
Pss(i) is the single-shot hit probability of the ith agent, and we have assumed,
for the final expression on the right, that Pss(i) = Pss for all i.

What happens if agents are allowed to maneuver? If the maneuver is in any
sense “intelligent” — i.e., if agents react reasonably intelligently to changing
levels of combat intensity as a battle unfolds — intuitively we should not ex-
pect the same linear dependence between 〈α〉 and Pss to hold. In the extreme
case of infinitely timid combatants that run away at the slightest provocation,
no fighting at all will occur. In the case where one side applies sophisticated
targeting algorithms to maximize enemy casualties but minimize friendly ca-
sualties, we might expect a marked increase in that force’s relative fighting
ability.

Lauren [40] has used EINSTein (and other ABMs of combat; see [42])
to identify some significant differences between agent-based attrition statis-
tics and results derived from stochastic LE-based models. For example, he
has found evidence to suggest that the intensity of battles obeys a fractal
power-law dependence on frequency, and displays other traits characteristic
of high-dimensional chaotic systems, such as fat-tailed probability distribu-
tions and intermittency. Specifically, the attrition rate appears to depend on
the cube root of the kill probability, which stands in marked contrast to results
obtained for stochastic variants of LE-based models, in which, typically, the
attrition rate scales linearly with an increase in kill probability.§ If the ABM
more accurately represents real combat processes, a 1/3 power-law scaling

§ The key observation is that the attrition rate generally depends not just on Pss

(as in eq. 7.5), but on both Pss and the fractal dimension, DF , representing the
spatial distribution of agents. To derive eq. 7.5, for Lanchesterian combat, one
assumes that one side’s attrition rate is proportional to the opposing side’s size
(and nothing else); in the general case, one must assume that the attrition rate
also depends on the probability that an agent actually “sees” an enemy (or cluster
of enemy agents) in a given period of time. The likelihood of this happening, in
turn, may be expressed in terms of DF . See [34,42] for details.
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implies that a relatively “weak” force, with a small kill probability, may ac-
tually constitute a much more potent force than a simple LE-based approach
suggests. The potency of the force comes from its ability to maneuver (which
is never explicitly modeled by LE-based approaches) and to selectively con-
centrate firepower on the enemy while maneuvering. This deceptively simple
result has an important consequence for peacekeeping activities in the Third
World, where a strong, modern force may (and often, does) significantly under-
estimate the ability of ostensibly poorly trained and/or poorly armed militia
to inflict damage.

The appearance of fractal power-law scaling in EINSTein (and other agent-
based combat models) is particularly interesting in light of the fact that it
has been observed before in real combat [43]. While it has been previously
argued, on intuitive grounds, that this must be due to the dynamical coupling
between local information processing and maneuver — features that are com-
pletely ignored by Lanchesterian models — no generative “explanation” for
why fractal power-law scaling appears in combat has heretofore existed. It is
therefore tempting to speculate that there are phases of real combat that are
poised at self-organized critical states (see, for example, [44, 45]).

7.6.3 A Step Away from Lanchester

With an eye toward exploring non-Lanchesterian scenarios, consider an ex-
ample that includes both simple maneuver and terrain. Figure 7.4 shows the
initial state, consisting of 12 red and 12 blue agents positioned near their re-
spective “flags” (in the lower left and upper right corners, respectively). The
red agents are arrayed along a berm (i.e., a permeable terrain element, which
appears green in the figure), whose dynamical effect is to reduce their visi-
bility to the approaching blue enemy agents to 15% of the nominal value. As
blue agents approach the red flag, red agents remain fixed at their positions
(simulating a notional “hunkered-down” condition). The red and blue weapon
characteristics (probability of hit and range) are equal.

Runs typically proceed as follows. Because of the stealth afforded the dug-
in red agents by the berm, red agents are targeted and engaged with a much
lower probability than the approaching blue force. The attrition of the at-
tacking force (blue) is significantly higher than the attrition of the defending
force (red). When the attackers are able to survive (with some of their force
intact) — on some particular run of the scenario — it is because they are
able to maneuver out of range (which occurs when the force strength drops
below the combat effective threshold of 50% and attempts to withdraw) and
red is unable to pursue. (As an aside, EINSTein’s ability to prescribe retreat
conditions adds a certain realism to the model. Faced with mounting attrition,
real squads fall back and regroup.)

The red force usually remains at full strength after the engagement (the
probability of zero red casualties is about 80%). This result is intuitively satis-
fying, since, historically (all other factors being equal), defending forces have
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Fig. 7.4. Initial state for simple non-Lanchesterian scenario; see text for details.

the advantage over an attacking force traversing open ground. An obvious
question to ask is, “How large must the blue force be in order to overcome
the advantage of the red’s terrain?” Figure 7.5 plots the fraction of the ini-
tial forces that remain at the end of the engagement (150 steps) versus the
attacker-to-defender force-size ratio (the lines are simple fits to the data to
guide the eye). In the runs used to generate this graph, the size of the blue
force ranges from 12 to 40 agents, while the red force remains at 12. Note
that the red and blue survival curves merge at roughly a 2.8 : 1 ratio; which is
interesting in light of the well-known “rule of thumb” that attackers require
a 3:1 force ratio against a defended position [46].

Fig. 7.5. Impact of attacker-to-defender force ratio on survival for the simple non-
Lanchesterian scenario shown in the previous figure. The red and blue survival curves
merge at about a 2.8 : 1 ratio, which compares favorably to the well-known “rule of
thumb” that attackers require a 3:1 force ratio against a defended position [46].
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7.6.4 Swarming Forces

One of the first detailed studies of swarming, as a major theme in military
history, was recently conducted by Sean Edwards, as part of the Swarming
and the Future of Conflict project at RAND [47]. Edwards’ report focuses
on 10 carefully selected historical examples of swarming, includes a series of
important lessons-learned distilled from these examples about the advantages
and disadvantages of swarming, and provides some examples of successful
countermeasures that have been used against swarming in the past.

Edwards notes that swarming consists of four overlapping stages: (1) lo-
cation, (2) convergence, (3) attack, and (4) dispersion. Moreover, swarming
forces must be capable of a sustainable pulsing; i.e., networks of swarming
agents must be able to come together rapidly and stealthily on a target, then
redisperse and finally recombine for a new pulse:

The swarm concept is built on the principles of complexity theory, and it as-
sumes that blue units have to operate autonomously and adaptively according
to the overall mission statement....It is important that swarm units converge
and attack simultaneously. Each individual swarm unit is vulnerable on its
own, but if it is united in a concerted effort with other friendly units, overall
lethality can be multiplied, because the phenomenon of the swarm effect is
greater than the sum of its parts. Individual units or incompletely assembled
groups are vulnerable to defeat in detail against the larger enemy force with
its superior fire-power and mass.

The report notes that swarming scenarios have already played a role in
certain high-level war-gaming exercises, such as at the Dominating Maneuver
Game, held at the U.S. Army War College in 1997. Edwards concludes his
survey by speculating about the feasibility of a future “swarming doctrine,”
that would consist of small, distributed, highly maneuverable units converging
rapidly on specific targets.

Because of its decentralized rule-base and rich space of behavioral primi-
tives, EINSTein is an ideal test bed with which to explore the nature of battle-
field swarming and the efficacy of swarm-like tactics. Typically, but not always,
one side appears to swarm the other when there is a significant mismatch in
firepower, total force strength, and/or maneuvering ability. (Swarming also oc-
casionally emerges as a useful “tactic” to use against certain opponents when
EINSTein’s built-in genetic algorithm is tasked with finding optimal attack
strategies.) While it is common to find swarm-like behavior for personalities
that include large cluster meta-rule thresholds, τCluster (which increases the
likelihood that agents will remain in close proximity to friendly agents), the
most interesting “self-organized” examples of swarming are those for which
τCluster is, at most, a few agents.

Table 7.3 lists some of the parameter values defining four representative
swarm scenarios (I–IV). In scenario I, blue attacks red; in scenario II, blue
defends. Blue agents are more aggressive than red in all four scenarios (as de-
fined by the values of their respective combat meta-rule thresholds, ∆Combat).
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Note that, in scenarios II and III, defending blue agents are able to communi-
cate with other blue agents that are within a range rC = 25 of their position.
Figure 7.6 show snapshots of typical runs using parameters for scenarios I–IV,
respectively.

Table 7.3. Agent Parameter Values for Scenarios I–IV Shown in Fig. 7.6.

I I II II III III IV IV

Force Red Blue Red Blue Red Blue Red Blue
Size 150 225 90 125 25 100 200 200
rS 5 5 5 10 3 7 3 7
rF 3 3 3 7 2 5 2 5
rM 1 1 1 2 1 1 1 1
wAF 25 10 10 0 5 0 5 0
wAE 25 50 40 99 40 5 40 5
wIF 75 0 10 0 5 0 5 0
wIE 25 99 40 99 90 50 90 50
wFF 0 0 0 0 0 0 0 0
wEF 75 25 50 0 0 0 0 0

τAdvance 5 1 3 N/A N/A N/A N/A N/A
τCluster 15 3 3 12 5 5 5 5
∆Combat 5 -7 0 -15 -5 -10 -5 -10
Comms no no no yes, rC = 25 no yes, rC = 25 no no

7.6.5 Non-Monotonicity

For a fixed set of force characteristics, number, type, and lethality of weapon
systems, and tactics, one might intuitively expect that as one side’s capability
is unilaterally enhanced — say, by increasing sensor range or its ability to
maneuver — the other side’s ability to perform its mission ought to be com-
mensurately diminished. In other words, our expectations are that mission
success scales monotonically with force capability.

In fact, non-monotonicities abound in both real-world behavior and sim-
ulations. With respect to models and simulations, of course, one must always
be on guard against the possibility that non-monotonic scaling is an artifact
of the code and therefore does not represent real processes. As pointed out
by a RAND study that addressed this issue [48], “a combat model with a
single decision based on the state of the battle...can produce non-monotonic
behavior in the outcomes of the model and chaotic behavior in its underlying
dynamics.”

Figure 7.7 shows an instructive example of genuinely non-monotonic be-
havior; genuine in the sense that the non-monotonicity emerges directly out
of the primitive rule set. The three rows in Fig. 7.7 contain snapshots of three
separate runs in which red’s sensor range is systematically increased in in-
crements of two: rS,red = 5 for the top sequence; rS,red = 7 for the middle
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Fig. 7.6. Sample runs of swarm scenarios I–IV. See Table 7.3 for parameter values.

sequence; rS,red = 9 for the bottom sequence. Blue’s sensor range, rS,blue,
remains fixed at rS,blue = 5 throughout all three runs. The values of other
pertinent red and blue agent parameters are given in Table 7.4.

Table 7.4. Agent Parameter Values for Non-monotonic Run Appearing in Fig. 7.7.

N rS rF rM w = (wAF, wAE, wIF, wIE, wFF, wEF) τAdv τClus ∆Combat

Red 100 5,7,9 4 1 wRed = (10, 90, 10, 50, 0, 99) 2 4 -4
Blue 50 5 4 1 wBlue = (10, 90, 10, 50, 0, 99) 2 4 0

In each of the runs, there are 100 red and 50 blue agents. Red is also
the more the aggressive force. Blue engage red in combat if the number of
friendly and enemy agents is locally about even, while red will fight blue even
if outnumbered by four enemy combatants. Both sides have the same fire
range (rF = 4), and the same single-shot probability (Phit = 0.005) and can
simultaneously engage the same maximum of three enemy targets. (Note that
the flags for this run are near the middle of the left and right edges of the
notional battlefield rather than at the corners.)

The top row of Fig. 7.7 shows screenshots of a run in which red’s sensor
range is equal to blue’s. Here the red force easily penetrates the blue defense
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Fig. 7.7. An example of non-monotonic behavior. The three rows contain snapshots
of three separate runs in which red’s sensor range is increased in increments of two
(from rS,red = 5 on the top row, to rS,red = 9 on the bottom). Blue’s sensor range is
fixed at rS,blue = 5 throughout. Comparing the bottom row to the top two rows, we
see that increasing red’s sensor appears to have a detrimental effect on red’s overall
ability to penetrate blue’s defense.

as it moves toward the blue flag. During red’s advance, a number of agents are
“stripped” away from the main red-blue cluster in the center as they respond
to the presence of nearby blue agents. The snapshots in the middle row of
Fig. 7.7 show that when red’s sensor range is two units greater than blue’s,
red is not only able to mass almost its entire force on the blue flag (by t = 90
— not shown — blue’s flag is completely enveloped by red forces), but also to
defend its own flag from all blue forces as well. In this instance, the red force
knows enough about, and can respond quickly enough to, enemy action such
that it is able to march into enemy territory effectively unhindered by enemy
forces and “scoop up” blue agents as they are encountered.

What happens as red’s sensor range is increased still further? One might
intuitively guess that red can only do at least as well, certainly no worse
— i.e., that red’s mission performance scales monotonically with the amount
of information that each red agent is allowed to have about the engagement.
However, as the snapshots for bottom row of Fig. 7.7 reveal, when red’s sensor
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range is increased to rS,red = 9 — so that all red agents are locally aware of
more information — red, as a force, turns in an objectively weaker mission
performance than on the preceding runs. “Weaker” here meaning that red is
less effective in (1) establishing a presence near the blue flag, and (2) defending
blue’s advance toward the red flag.

The nonmonotonic behavior is immediately obvious from Fig. 7.8, which
shows a 3D fitness landscape for mission objective = maximize number of
red agents near blue flag (where “near” is defined as anywhere within 10
battlefield-units). The landscape sweeps over rS,red (= 1, 2, . . . , 16) and red
combat meta-rule threshold ∆Combat (= −15,−14, . . . ,+15). Higher-valued
fitness values translate to mean better performance.

Fig. 7.8. Fitness landscape for mission = maximize number of red agents near blue
flag, as a function of combat aggressiveness (∆Combat) and red sensor range (rS,red).
Higher-valued fitness values translate to mean better performance. Note that (this
particular fitness measure) does not scale monotonically with sensor range.

This example illustrates that when the resources and personalities of both
sides remain fixed in a conflict, how well side X does over side Y does not nec-
essarily scale monotonically with X ’s sensor capability. As one side is forced
to assimilate more and more information (with increasing sensor range), there
will inevitably come a point where the available resources will be spread too
thin and the overall fighting ability will therefore be curtailed. Agent-based
models such as EINSTein are well suited for providing insights into more op-
erationally significant questions such as, “How must X’s resources and/or
tactics (i.e., personality) be altered in order to ensure at least the same level
of mission performance?”
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7.7 Genetic Algorithm Breeding

One of EINSTein’s most powerful built-in features is a genetic algorithm
“breeder” run-mode. Genetic algorithms (GAs) are a class of heuristic search
methods and computational models of adaptation and evolution based on nat-
ural selection. In nature, the search for beneficial adaptations to a continually
changing environment (i.e., evolution) is fostered by the cumulative evolu-
tionary knowledge that each species possesses of its forebears. This knowl-
edge, which is encoded in the chromosomes of each member of a species, is
passed on from one generation to the next by a mating process in which the
chromosomes of “parents” produce “offspring” chromosomes. GAs mimic and
exploit the genetic dynamics underlying natural evolution to search for opti-
mal solutions of general combinatorial optimization problems. They have been
applied to the traveling salesman problem, VLSI circuit layout, gas pipeline
control, the parametric design of aircraft, neural net architecture, models of
international security, and strategy formulation [49].

Figure 7.9 illustrates how GAs are used in EINSTein. Chromosomes define
individual agents. Genes encode the components of the personality weight
vector, sensor range, fire range, meta-rule thresholds, etc. The initial GA
population consists of a set of randomly generated chromosomes. The fitness
function represents a user-specified mission “fitness” (see ahead). The target
of the GA search is, by default, the red force. The parameter values defining
the blue force — once they are defined at the start of a search — are held
fixed.

7.7.1 Search Space

EINSTein uses up to 80 genes to conduct a GA search; the actual number
depends on the particular region of the parameter space the user wishes to
explore. Some genes are integer-valued (such as the agent-to-agent commu-
nication links), while others are real-valued. All appropriate translations to
integer values and/or binary toggles (on/off ) are performed automatically
by the program. Typically, each gene encodes the value of a basic parameter
defining the red force. For example, g1 encodes red’s sensor range when an
agent is in the alive state, g3 encodes red’s alive-state fire range, and so on.
Some special genes encode the sign (+ or −) of an associated parametric gene.
Thus, the actual value of each of the components of red’s personality weight
vector, for example, is actually encoded by two genes ; one gene specifying the
component’s absolute value, and the other gene its sign.

EINSTein’s GA can conduct its search over five spaces:
• Single-squad personality: GA searches over the personality-space defining

a single squad.
• Multiple-squad personality: GA searches over the personality-space defin-

ing multiple squads. The number of squads and the size of each squad
remain fixed throughout this GA run mode.
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Fig. 7.9. Schematic of EINSTein’s GA. The blue force and mission fitness are both
fixed by the user. The GA encodes components of the agents’ personality weight
vector, sensor range, fire range, meta-rule thresholds, etc. and breeds the “best” red
force using populations of N red force “candidate” solutions; see text for details.

• Squad composition: GA searches over squad composition space. The per-
sonality parameters defining squads 1 through 10 are fixed according to
the values defined in the default input data file used to start the inter-
active run. The GA searches over the space defined by the number of
squads (1–10) and size of each squad (constrained by the total number
of agents as defined by the data file).

• Inter-squad communications connectivity: GA searches over the zero-one
entries defining the communications matrix. The number of squads and
the number of agents per squad are kept fixed at the values defined in
the default input data file used to start the interactive run.

• Inter-squad weight connectivity: GA searches over (real-valued) entries
defining the squad interconnectivity matrix. The number of squads and
the number of agents per squad are kept fixed at the values defined in
the default input data file.

7.7.2 Mission Fitness

The mission fitness (MF) is a measure of how well agents perform a user-
defined mission. Typical missions are “Get to blue flag as quickly as possible,”
“Minimize red casualties,” and “Maximize the ratio of blue to red casualties,”
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or some combination of these. MFs are always defined from red’s perspective.
The user assigns weights (0 ≤ wi ≤ 1)¶ to represent the relative degree
of importance of each mission fitness primitive, mi (see Table 7.5). While
the mission primitives are relatively few in number and simple, they can be
combined to define more complicated multi-objective functions.

Table 7.5. EINSTein’s GA Mission Fitness Primitives.

Weight Primitive Description

w1 m1 Minimize time to goal
w2 m2 Minimize friendly casualties
w3 m3 Maximize enemy casualties
w4 m4 Maximize friendly-to-enemy survival ratio
w5 m5 Minimize friendly center-of-mass distance to enemy flag
w6 m6 Maximize enemy center-of-mass distance to friendly flag
w7 m7 Maximize Nfriends within distance D of enemy flag
w8 m8 Minimize Nenemy within distance D of friendly flag
w9 m9 Minimize number of friendly fratricide hits
w10 m10 Maximize number of enemy fratricide hits
w11 m11 Maximize friendly territorial possession
w12 m12 Minimize enemy territorial possession

The mission fitness function, M , used by the GA, is a weighted sum of
mission primitives: M =

∑
i mi. (It is left up to the user to ensure that mission

objectives are both logically consistent and amenable to a “solution.”) Future
versions of EINSTein will include a richer set of mission fitness primitives,
including: locate and kill enemy squad leaders, stay close to friends, stay away
from enemies, have combat efficiency (as measured by cumulative number of
hits on enemy), clear specified area of enemy agents, occupy area for specified
period of time, take the enemy flag under specific conditions (for example, the
user is asked to specify the number of agents that must occupy a given area
around the enemy flag for a given length of time), among others.

7.7.3 EINSTein’s GA Recipe

The GA uses EINSTein’s agent-movement/combat engine to conduct its
searches. In pseudocode, the main components of EINSTein GA recipe are
as follows:

for generation=1,Gmax

for personality=1,Pmax

decode chromosome
for initial condition IC=1 toICmax

¶ Mission fitness weights must not be confused with the personality weights; Agent
Personalities discussed earlier.
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run combat engine
calculate fitness (for given IC)

next initial condition
calculate mission fitness

next personality
find the best personality
select survivors from population
perform (single-point) crossover operation
perform mutation operation
update progress/status

next generation

write best personality to file

In words, the GA uses a randomized pool of chromosomes to define an
initial generation of red personalities. For each red personality, and for each
of the ICmax initial spatial configurations of red and blue forces, the program
then runs EINSTein’s combat engine to determine the mission fitness. After
looping through all personalities and initial conditions, the GA first sorts
and ranks the personalities according to their mission fitness values, then
selects some to be eliminated from the pool and others to breed. The GA
then performs the basic operations of crossover and mutation. Finally, after
a new generation of red personalities has been defined, the entire process
is repeated until either the user interrupts the evolution or the maximum
generation number has been reached (see Fig. 7.9).

7.7.4 Sample GA Breeding Experiment #1

Consider the following mission (as stated from the red force’s point-of-view):
“Keep blue agents as far away from the red flag as possible, for as long as
possible (up to a maximum 100 iteration steps).” That is, set all GA mission
weights to zero, except for w6 = w8 = 1/2; see Table 7.5). This means that
the mission fitness M will be close to its maximal value one only if red is
able to keep all blue agents pinned near their own flag (at a point farthest
from the red flag) for the entire duration of the run, and M will be near
its minimal value zero if red allows blue agents to advance completely un-
hindered toward the red flag. Combat unfolds on a 40-by-40 battlefield, with
35 agents per side. The GA is run using a pool of 50 red personalities for
50 generations, and each personality is averaged over 25 initial spatial con-
figurations. Blue agents are each assigned (a fixed) personality weight vector
wBlue = (wAF, wIF, wAE, wIE, wFF, wEF) = (0, 10, 0, 10, 0, 90).

Figure 7.10 shows a typical learning curve, where “Best” refers to the
fitness of the highest-ranking candidate solution and “Average” refers to the
average fitness among all candidate solutions per generation. The GA run
described here (using a 1 GHz Pentium IV PC) each requires roughly an hour
to complete.
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Fig. 7.10. Typical GA learning curve for GA breeding experiment discussed in text.

Screenshots from a typical run using the highest-ranked red personality
(as sampled from “solution” pool representing generation 30) that the GA
is able to find for this mission are shown along the top row of Fig. 7.11.
They show that red is very successful at keeping blue forces away from its
own flag; the closest that red permits blue agents from approaching the red
flag — during the entire allotted run time of 100 iteration steps — is some
point roughly near midfield. In words, the “tactic” here seems to be — from
red’s perspective — “fight all enemy agents within sensor range, and move
toward the enemy flag slowly enough to drive the enemy along.” Note that this
emergent tactic is also fairly robust, in the sense that if the battle is initialized
with a different spatial disposition of red and blue forces (while keeping all
personality parameters fixed), red performs this particular mission about as
well, on average, as evidenced by these screenshots.

Screenshots from a typical run using the second-highest ranking red per-
sonality are shown along the second row of Fig. 7.11. These show a slightly less
successful, but nonetheless innovative, alternative tactic. Initially, red agents
move away from their own goal to meet the advancing blue forces, just as
in the first case (at t = 25). Once combat ensues, however, any red agents
that find themselves locally isolated now “double back” toward their own flag
(positioned in the lower left corner of the battlefield) to regroup with other
remaining friendly agents. The red force thus, effectively, forms an impromptu
secondary defense against possible blue leakers. Because a few blue agents do
manage to fight their way near the red flag at later times (at least in the par-
ticular run these screenshots have been taken from; see snapshot for t = 90),
the red agent parameter values underlying this emergent tactic are not as
highly ranked as the parameter values underlying the run shown in the top
row.

The series of screenshots appearing in the third row of Fig. 7.11 show the
emergent tactic used by the highest-ranked red personality found by the GA
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Fig. 7.11. Screenshots from several sample runs of GA breeding experiment #1.
The top row shows a run using the highest-ranked red agents after 50 generations.
The second row shows the second-highest ranked red force. The third row shows
how the red force adapts to a more aggressive blue force. Finally, the fourth row
shows an example of how a suboptimal red force performs. It represents a pool of
agents occupying an early portion (generation 10) of the GA’s learning curve.
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after the blue force is made more aggressive. For this case, prior to initializing
the GA search, blue’s personality weight-vector components for moving to-
ward red (i.e., wAE = w3, and wIE = w4) are first increased by 50%. We see
that EINSTein’s GA discovers an entirely different (and more effective) tactic
to use. Here, the red force quickly spreads out to cover as much territory as
possible and individual agents attack the enemy as soon as they come within
view. As red agents’ local territorial coverage is thinned — either through
attrition or gradual advance toward the blue flag — other red agents (namely,
agents that had previously been positioned near the periphery of the battle-
field) move closer to the center of the battlefield, thus filling emerging voids.
This tactic succeeds in preventing any blue agents from reaching the red flag
and also manages to push most of the surviving blue force back toward its
own flag (near the top right corner of the battlefield)! As is true of the other
cases in this experiment, this tactic is also fairly robust and is not a strong
function of the initial spatial disposition of red and blue forces.

The last row of plots in Fig. 7.11 contains snapshots from a run using
interim red agent parameter values, before the GA has had a chance to eval-
uate a large number of candidate solutions. This example illustrates how an
obviously suboptimal pool of agents behaves differently from their optimized
counterparts. The mission parameters and blue-force agent personalities are
the same as in the case represented by the screenshots in the third row. We
see that, initially at least, there does not seem to be much difference in the
optimal and suboptimal behaviors; red agents quickly disperse outward to
cover a large area. However, because the GA has not yet had the time to
fine-tune all of red’s genes, the red force is in this instance unable to prevent
blue agents from penetrating deeply into its territory. The defensive tactic,
however it may be characterized, is obviously ineffective.

7.7.5 Sample GA Breeding Experiment #2

Consider a scenario in which the blue force is tasked with defending its flag
against a smaller attacking red force. We use the GA to find a red force that
is able to penetrate the blue defense. Table 7.6 lists some pertinent parameter
values defining the two forces. The middle row of the table (i.e., red trial
values) lists baseline red force parameter values (as defined by us, not the
GA) used to test the scenario. The bottom row (i.e., GA-bred values) lists
the GA bred red force “solution.” Notice that, in both cases, the number of
agents is the same and is fixed (with blue outnumbering red, 100 to 50 in all
runs). (All baseline red-trial alive and injured parameter values are equal.)

Figure 7.12 shows screenshots from a typical run using the red-trial values.
Red agents attack, unsuccessfully, in a tight cluster. The larger blue force
(whose agents initially move about randomly around their starting position
until a red agent comes within their sensor range) dispels the red force rather
easily (within the 30 time steps shown here).



7 EINSTein 175

Table 7.6. Agent Parameter Values for GA Sample Run Appearing in Fig. 7.12
and 7.13.

Blue Red Trial Red GA bred
Agents Agents Alive Agents Injured Agents

NAgents 100 50 50 50
rS 5 5 8 5
rF 3 3 8 5
rM 2 2 2 2
wAF 0 10 3 -22
wAE 100 40 40 95
wIF 0 10 46 -86
wIE 100 40 38 -14
wFF 0 0 -70 14
wEF 0 25 65 31

τAdvance N/A 3 3 1
τCluster 5 10 13 17
∆Combat -20 0 -19 +20

Fig. 7.12. Trial red attacking force (consisting of typical parameter values that
are not explicitly tuned for performing any specific mission). Red performance is
used simply as a reference for interpreting the output of the sample GA breeding
experiment discussed in the text.

The GA-bred parameters listed along the bottom row in Table 7.6 define
the highest-ranked red force that EINSTein’s GA is able to find (after 30
generations) with respect to performing the mission = “maximize the number
of red agents able to penetrate within a distance d = 7 units of the blue flag
within 40 time steps.” A population size of 75 was used (i.e., each generation
of the GA search consists of 75 red force candidate “solutions”) and mission
fitness, for a given candidate solution, is averaged over 10 initial configurations
of red and blue forces. The fitness equals one if a candidate solution performs
the specified mission in the best possible manner (i.e., if the red force sustains
zero casualties and all agents remain within d = 7 of the blue flag starting
from the minimal possible time at which they move to within that distance of
the flag, for all 10 initial states) and equals zero if a candidate solution fails
to place a single red agent within d = 7 of the blue flag for all 10 initial states
(within the mission time limit). Figure 7.13 shows screenshots from a typical
run using the GA-bred red force values. (The arrows are included as visual
aids and simply trace the motion of the red agent clusters.) Comparing this
sequence of steps to those in the trial run shown in Fig. 7.12, it is obvious that
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the respective “attack strategies” in the two cases are very different. Indeed,
the GA has found just the right mix of agent-agent proximity weights and
meta-rules to define a red force that effectively exploits a relative weakness in
the randomly maneuvering blue defenders. The emergent “tactic” is to sep-
arate into two roughly equal-sized units, regroup beyond enemy sensor range,
and then simultaneously strike, as a pincer, into the heart of the defending
enemy cluster.

Fig. 7.13. Screenshots from a typical run using the GA-bred red force for the sample
GA breeding experiment discussed in the text. Red agents are defined by GA-bred
parameter values that are the highest ranked (after 30 generations) with respect
to performing the mission = “maximize the number of red agents able to penetrate
within a distance d=7 units of the blue flag within 40 time steps.”

Fig. 7.14. A comparison between the average number of red agents that approach
within a distance d = 7 of the blue flag for (a) trial and (b) GA-bred red forces. We
see that the GA-bred red force typically performs this mission an order of magnitude
more successfully than the trial force.

Apart from the anecdotal evidence supplied by screenshots of this particu-
lar run, the efficacy of this simple GA-bred tactic is illustrated by comparing
graphs of the number of agents near the blue flag (averaged over 50 runs)
as a function of time for the red-trial and GA-bred cases. Figure 7.14 shows
that whereas fewer than three red-trial agents, on average, penetrate close
to the blue flag (Fig. 7.14a), almost 80% of the entire GA-bred red force is
able to do so (Fig. 7.14b); and begins penetrating at an earlier time. Other
(well-performing) tactics are possible, of course. A representative sampling is
generally provided by looking at the behaviors of some of the higher-ranking
red forces remaining at the end of a GA search. It is interesting to run a
series of GA runs to systematically probe how red forces “adapt” to different
blue personalities. What one observes, typically, is that as the behavior of
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the blue agents changes, various — often dramatically different — GA-bred
red personalities emerge to exploit any new weaknesses in the blue’s defensive
posture.

7.8 Discussion

The musical notes are only five in number,
but their melodies are so numerous that one cannot hear them all.

The primary colors are only five in number,
but their combinations are so infinite that one cannot visualize them all.

In battle there are only the normal and extraordinary forces,
but their combinations are limitless; none can comprehend them all.

— Sun Tzu, The Art of War

The high-level, or poetic, description of EINSTein owes much to the sugges-
tive metaphors appearing in the quote from The Art of War. In the same way
as, for Sun Tzu, rainbows and melodies are all natural outcomes of combining
primary colors and musical notes, EINSTein may be viewed as an “engine”
that converts a primitive grammar — i.e., a grammar composed of the ba-
sic notes and colors of combat — into the limitless patterns and possibilities
of war. The researcher chooses and/or tunes primitive, low-level agents and
rules; and EINSTein provides the dynamic arena within which these rules in-
teract and spawn high-level patterns and behaviors. On a more practical level,
EINSTein was developed with these three important goals in mind:

1. To demonstrate the efficacy of agent-based simulation alternatives to more
traditional Lanchester-equation-based models of combat [5].

2. To be used as a general prototype artificial life model/toolkit that can
be used as a testbed for exploring self-organized emergent behavior in
complex adaptive systems.

3. To provide the military operations research community with an easy-to-
use, intuitive agent-based combat-simulation laboratory that — by re-
specting both the principles of real-world combat and the dynamics of
complex adaptive systems — may lead researchers one step closer to a
fundamental theory of combat.

To better appreciate how each of these motivations has contributed to
EINSTein’s (still evolving) architecture, consider the conceptual map of its
design, as illustrated schematically in Fig. 7.15. Self-organized patterns emerge
out of a set of primitive local rules of combat, both on the individual agent
level — via interactions among internal motivations (on the Phenotype-I level,
which appears as the middle level in Fig. 7.15) — and squad and force levels
(labeled Phenotype-II in Fig. 7.15, and which appears as the top-most level
in the figure) — via mutual interactions among many agents in a changing
environment.
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Fig. 7.15. A hierarchy of conceptual levels that illustrate EINSTein’s core design.

Of course, a deeper understanding of phenomena governing behaviors on
the top-most level can only be achieved by developing a suite of appropriate
pattern recognition tools (the need for which is indicated symbolically at the
top of Fig. 7.15). Although a number of interesting, and highly suggestive,
high-level patterns have already been discovered, much still remains to be
done. Consider, for example, the frequent appearance of various power-law
scalings and fractal dimensions describing space-time patterns and attrition
rates ( [34, 40]). The existence of power-law scalings, in particular, strongly
suggests that a self-organized, critical-like dynamical mechanism might govern
turbulent-like phases of combat. But the data collection and analysis necessary
to rigorously establish the nature of these findings (as well as to establish a
mathematically precise set of conditions under which power-law scalings either
do or do not occur) has only just started.

One of the directions in which EINSTein’s design is moving (some de-
tails of which are described in the next section) is toward a fully developed
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ontological architecture that assigns specific meaning to the symbolic relation-
ship between environment and action. The hope is to be able to explore the
complementary problem of reverse behavior engineering; i.e., the problem of
finding an appropriate set of primitives (properties and rules) that lead either
to empirically observed, or desired, macroscopic patterns of combat (or, in
Fig. 7.15, of finding ways of going from either phenotype level I or II to the
genotype level).

7.8.1 Other Features and Future Enhancements

Since (as of this writing) EINSTein is still being actively developed, the version
of the program described in this paper necessarily represents an incomplete
snapshot of an evolving toolkit. Many capabilities — both existing (such as
agent↔agent communications and terrain-modeling features) and/or in the
design stage (such as endowing agents with both a memory of, and a facility
to learn from, their past actions) — have not been discussed. Most of the
planned enhancements are natural extensions of EINSTein’s current capabili-
ties; future versions are generally shifting toward a more robust, multilayered
agent-logic architecture that can more gracefully scale the full spectrum of
behaviors from large agent-swarms to intelligent behaviors on the squad and
single-agent levels. Loosely speaking, this shift of emphasis represents a shift
away from describing the mutual interactions among many simple agents to
describing interactions among a relatively few, but complex agents (which are
also endowed with a richer internal structure and dynamics). Where early
versions have focused on the complexity of emergent behaviors on the system
level, more recent work adds the ability to explore emergent behaviors on the
individual agent level as well. Details are discussed in [34].

Almost all of the features described in this paper were well in place before
EINSTein’s first version release (v1.0); many additional features and capabil-
ities have been added since then. For example, among the major additions to
version 1.1 of the program were (1) an enhanced weapons class (that allows
users to essentially design their own weapons, with arbitrary properties and
lethality characteristics), (2) intelligent pathfinding (that uses a priority-queue
variant of Dijkstra’s optimal path algorithm [50]), and (3) waypoint scripting
(that can be used to “guide” agents along desired paths). Collectively, these
three enhancements make it possible to design scenarios that are considerably
more realistic than the pedagogical examples cited in this paper.

Version 1.3 of EINSTein introduced two other important enhancements:
(1) trigger-state-based action-selection logic, and (2) an adaptive weapon-
targeting logic. Trigger states generalize EINSTein’s meta-rules by allowing
users to associate arbitrary conditions (that can be defined by using one or
a combination of two or three environmental features) with agent behaviors;
i.e., specific behaviors may be “triggered” by specific conditions. Meta-rules
have always allowed agents to tailor their behavior to simple contexts — the
∆Combat meta-rule, for example, defines the conditions under which agents
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either engage (or do not engage) the enemy — but also constrain the user
to making basic either/or decisions (and limit an agent’s context-specific be-
havior modification to changing a single component of its default personality
weight vector). EINSTein’s newer trigger-state logic is vastly more flexible
and allows essentially arbitrary modifications of an agent’s behavior to be
made contingent upon arbitrary environmental conditions. Aside from obvi-
ously adding a great deal of realism to scenarios, the new logic also allows
analysts to more deeply explore interactions between agent personalities and
their dynamic environment. For example, one can easily design (using only
EINSTein’s GUI) a robust fire suppressed state in which agents react intelli-
gently to strong local enemy fire by, say, ceasing their own fire on the enemy
and advance toward the enemy flag, dropping “to the ground,” becoming tem-
porarily immobile, in order to reduce visibility, and disabling communications
with squad mates. It is impossible to construct such “mutated” behaviors by
using EINSTein’s meta-rules alone.

EINSTein’s most recently added weapon-targeting logic effectively pro-
vides an entirely new dimension to an agent’s default “personality” (that
adjudicates only movement) by endowing agents with an intelligent target-
ing capability. With it, agents can discriminate among possible targets by
weighing the relative potential benefit of firing at the given coordinate on
the battlefield. Agents may consider factors such as the damage likely to be
inflicted on friends and enemies near the target coordinate, and the value or
threat that specific enemy agents represent. Agents use a “targeting” penalty
function (evaluated for each of the possible targeting strategies they may use
in a given context) that is an analog of the movement penalty function defined
in Eq. (7.4).

7.8.2 Why Are Agent-based Models of Combat Useful?

The most important immediate payoff to using EINSTein is the radically
new way at looking at fundamental issues. However, agent-based models are
best used to enhance understanding, not as prediction engines. Specifically,
EINSTein is being designed to help researchers...

• Understand how all of the different elements of combat fit together in
an overall combat phase space: “Are there regions that are ‘sensitive’ to
small perturbations, and, if so, might there be a way to exploit this in
combat (as in selectively driving an opponent into more sensitive regions
of phase space)?”

• Assess the value of information: “How can I exploit what I know the
enemy does not know about me?”

• Explore trade-offs between centralized and decentralized command-and-
control (C2) structures: “Are some C2 topologies more conducive to in-
formation flow and attainment of mission objectives than others?” “What
do emergent forms of a self-organized C2 topology look like?”
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• Provide a natural arena in which to explore consequences of various qual-
itative characteristics of combat (unit cohesion, morale, leadership, etc.).

• Explore emergent properties and/or other “novel” behaviors arising from
low-level rules (even combat doctrine if it is well encoded): “Are there
universal patterns of combat behavior?”

• Provide clues about how near-real-time tactical decision aids may even-
tually be developed using evolutionary programming techniques.

• Address questions such as “How do two sides of a conflict coevolve with
one another?” and “Can one side exploit what it knows of this coevolu-
tionary process to compel the other side to remain out of equilibrium?”

Command and Control

EINSTein contains embedded code that hard-wires in a specific set of com-
mand and control (C2) functions (i.e., both contain a hierarchy of local and
global commanders), so that it can be used to explore the dynamics of a given
C2 structure. However, a more compelling question is, “What is the best C2
topology for dealing with a specific threat, or set of threats?” One can imagine
using a genetic algorithm, or some other heuristic tool to aid in exploring po-
tentially very large fitness landscapes, to search for alternative C2 structures.
What forms should local and global command take, and what is the optimal
communications matrix among individual combatants, squads, and their local
and global commanders?

Pattern Recognition

An even deeper issue has to do with identifying the primitive forms of in-
formation relevant on the battlefield. Traditionally, the role of the combat
operations research analyst has been to assimilate, and provide useful in-
sights from, certain conventional streams of battlefield data: attrition rate,
posture profiles, available and depleted resources, logistics, rate of reinforce-
ment, FEBA location, morale, etc. While all of these measures are obviously
important, and will remain so, having an ABM of combat permits one to
ask the following deeper question: “Are there any other forms of primitive
information — perhaps derived from measures commonly used to describe the
behavior of nonlinear and complex dynamical systems — that might provide
a more thorough understanding of the fundamental dynamical processes of
combat?” We have already mentioned, for example, that evidence suggests
that the intensity of battles — both in the real world and in agent-based
models of combat — obeys a fractal power-law dependence on frequency. and
displays other traits characteristic of high-dimensional chaotic systems. Are
there other, similar but heretofore unexamined, measures that may provide
insight into the dynamics of real world combat?
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“What If?” Experimentation

The strength of agent-based models lies not just in their providing a po-
tentially powerful new general approach to computer simulation, but also in
their infallible ability to prod researchers into asking a host of interesting new
questions. This is particularly apparent when EINSTein is run interactively,
with its provision for making quick “on-the-fly” changes to various dynamical
parameters. Observations immediately lead to a series of “What if?” spec-
ulations, which in turn lead to further explorations and further questions.
Rather than focusing on a single scenario, and estimating the values of simple
attrition-based measures of single outcomes (“Who won?”), users of agent-
based simulations of combat typically walk away from an interactive session
with an enhanced intuition of what the overall combat fitness landscape looks
like. Users are also given an opportunity to construct a context for understand-
ing their own conjectures about dynamical combat behavior. The agent-based
simulation is therefore a medium in which questions and insights continually
feed off one another.

Universal Grammar of Combat?

The last decade has witnessed the development of an entirely new and pow-
erful modeling and simulation paradigm based on the distributed intelligence
of swarms of autonomous, but mutually interacting, agents. First applied to
natural systems such as ecologies and insect colonies, later to population dy-
namics and artificial intelligence, and then to social, economic, and cultural
evolution, this paradigm has recently finally entered the mainstream con-
sciousness of military operations research.

What lies at the heart of an artificial life approach to simulating combat, is
the hope of discovering a fundamental relationship between the set of higher-
level emergent processes (penetration, flanking maneuvers, containment, etc.)
and the set of low-level primitive actions (movement, communication, firing at
an enemy, etc.). Wolfram [51] has conjectured that the macro-level emergent
behavior of all cellular automata rules falls into one of only four universality
classes, despite the huge number of possible local rules. While EINSTein’s
rules are obviously more complicated than those of their elementary cellular
automata brethren, it is nonetheless tempting to speculate about whether
there exists — and, if so, what the properties are, of — a universal grammar
of combat.

Final Comment

Despite the fact that many of the ideas and tools for studying artificial life
systems, not to mention military engagements, are still in their infancy, and
the success of multiagent-based modeling depends strongly on developing and
nurturing a closeknit but interdisciplinary research community, I am convinced
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that the role they will play in helping us understand the fundamental processes
of warfare will eventually far exceed that of any other mathematical tools
heretofore brought to bear on this problem.

As for the present time — following the tragic events of September 11, 2001
— it is hard to overemphasize the critical need for developing new complex
systems theory inspired analytical tools and models for understanding the
dynamics of the powerful new adversary that has entered our daily conscious-
ness: the terrorist network. If ever there was a time for complexity theory to
come into its own within the military operations research community — much
in the same way as mathematical search theory did in World War II when the
need arose for finding and employing novel strategies to search for German
U-boats [52] — that time is now.
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StarLogo: A Programmable Complex Systems
Modeling Environment for Students and

Teachers

Andrew Begel and Eric Klopfer

StarLogo is a computer modeling tool that empowers students to understand
the world through the design and creation of complex systems models. Star-
Logo enables students to program software creatures to interact with one
another and their environment, and study the emergent patterns from these
interactions. Building an easy-to-understand, yet powerful tool for students
required a great deal of thought about the design of the programming lan-
guage, environment, and its implementation. The salient features are Star-
Logo’s great degree of transparency (the capability to see how a simulation
is built), its support to let students create their own models (not just use
models built by others), its efficient implementation (supporting simulations
with thousands of independently executing creatures on desktop computers),
and its flexible and simple user interface (which enables students to interact
dynamically with their simulation during model testing and validation). The
resulting platform provides a uniquely accessible tool that enables students
to become full-fledged practitioners of modeling. In addition, we describe the
powerful insights and deep scientific understanding that students have devel-
oped through the use of StarLogo.

8.1 Background

In the past 20 years a paradigm shift has been taking place in scientific re-
search. A new approach to scientific inquiry has emerged that seeks to un-
derstand the intricacies of complex adaptive systems (CAS) by transcending
separate disciplines and augmenting traditional experimental methods with
the use of sophisticated tools for computer modeling. A growing group of sci-
entists is adopting this approach to understand a range of such systems as
varied as the human immune system and the global economy.

Scientists now have more powerful theories and tools for explaining and
predicting the behavior of self-organizing, emergent systems, ranging from
natural selection and adaptation in local ecologies [15] to economic supply
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chains [14]. These and many other subjects studied by complexity scientists
are introduced to students in middle and high schools. Teachers do not typi-
cally teach these subjects as complex systems, but rather as systems that be-
have more mechanistically. Consequently, students frequently have difficulty
understanding the complex dynamics of such systems. For example, most
teachers present the topic of ideal gases in physics class as a set of equations
to be memorized. Instead, a teacher could present ideal gases as a particu-
lar example of a complex system and study it from the point of view of the
interactions between gas molecules. Additionally, students tend to hold per-
sistent misconceptions of how complex, adaptive systems work and develop
incomplete models of these systems [18]. Moreover, students rarely have the
opportunity to understand how to link multiple models together to construct
and test alternative representations of situations, something scientists typi-
cally do when using models [3].

Using simulations in the classroom can have many advantages. Not only
do they allow students to explore systems as coherent bodies of knowledge
instead of a disjoint collection of facts, but simulations allow them to explore
systems at temporal and spatial scales that are not normally accessible to
them in the classroom. Students can examine topics from molecular inter-
actions to the evolution of new species which are difficult or impossible to
explore experimentally without the aid of computers. Computer simulations
in the classroom can be a pervasive glue that brings together experimental
experiences to allow students to construct their own understandings of sys-
tems.

In this paper, we describe an approach to modeling, implemented using
the StarLogo development environment, that makes it possible for students to
study, hypothesize, construct, test, and evaluate their own models of complex
systems. First, we show how StarLogo’s approach to modeling is different
than more traditional modeling environments. Then, we propose criteria that
we believe to be important in designing such a modeling environment for
students. Next, we introduce the StarLogo platform by way of an example
model and describe StarLogo’s major actors: the turtles, the patches, and
the observer. Viewed from a purely technological perspective, StarLogo has
evolved over the past 10 years from its origins running on a massively parallel
supercomputer to one that runs on desktop computers of the kind found
commonly in schools today. We describe, in a slightly more technical fashion,
how StarLogo is structured internally as well as discuss key design decisions
that distinguish StarLogo from a professional modeling environment to one
that is especially suited for students learning to model. We then talk about
our approach to bring StarLogo to schools through workshops utilizing our
new book, Adventures in Modeling. Finally, we tell some anecdotal stories
about our students and their models from past workshops we have given, and
then conclude.
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Fig. 8.1. A model built in Model-It that shows the impact of disease, pollution,
and radiation on a the numbers of rabbits in a population (courtesy of Model-It).

8.2 Approaches to Modeling

Science has long relied on the use of scientific models based on ordinary dif-
ferential equations (ODE) that can be solved (in simple cases) without com-
puters. These models describe how aggregate quantities change in a system,
where a variable in the model might be the size of a population or the pro-
portion of individuals infected by a disease. The mathematics required for
these models is advanced, but several commonly used modeling programs like
Model-It 8.1 [16], Stella [10], and MatLab [6] have graphical interfaces that
make them easy to construct. These programs have become very popular in
the classroom as well as the laboratory. The user places a block on the screen
for each quantity and draws arrows between the blocks to represent changes in
those quantities. While this interface does not remove the need for the user to
learn math, it lowers the barrier for entry. However, the abstraction required
to model these systems at an aggregate level is a difficult process for many
people, which often limits the utility of this modeling approach.

Additionally, many of the systems studied in the classroom are more
amenable to simulation using agent-based modeling. Rather than tracking
aggregate properties like population size, agent-based models track individual
organisms, each of which can have its own traits. For instance, to simulate how
birds flock, one might make a number of birds and have each bird modify its
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flight behavior based on its position relative to the other birds. A simple rule
for the individual’s behavior (stay a certain distance away from the nearest
neighbor) might lead to a complex aggregate behavior (flocking) without the
aggregate behavior being explicitly specified anywhere in the model. These
emergent phenomena, where complex macro-behaviors arise from the interac-
tions of simple micro-behaviors, are prevalent in many systems and are often
difficult to understand without special tools.

8.3 Additional Design Criteria

In designing an appropriate modeling tool for use in the K–12 classroom, we
needed to consider several design criteria. One criterion is the foundation on
agent-based as opposed to aggregate-based modeling. This approach is not
only more amenable to the kinds of models that we would like to study in the
classroom, but it is also readily adopted by novice modelers.

The next criterion is to create a modeling environment that is a “transpar-
ent box.” Many of the simulations that have been used in classrooms to date
are purchased for the purpose of exploring a specific topic such as Mendelian
genetics or ideal gases. Modeling software has been shown to be particularly
successful in supporting learning around sophisticated concepts often thought
to be too difficult for students to grasp [12,17]. This software allows students
to explore systems, but they are “black box” models that do not allow the
students to see the underlying models. The process of creating models — as
opposed to simply using models built by someone else — not only fosters
model-building skills but also helps to develop a greater understanding of the
concepts embedded in the model [9, 11, 17]. When learners build their own
models, they can decide what topic they want to study and how they want to
study it. As learners’ investigations proceed, they can determine the aspects
of the system on which they want to focus, and refine their models as their
understanding of the system grows. Perhaps most importantly, building mod-
els helps learners develop a sound understanding of both how a system works
and why it works that way. For example, to build a model of a cart rolling
down an inclined plane in the population Interactive Physics program, a stu-
dent could drag a cart and a board onto the screen and indicate the forces
that act about each object. In doing so, the student assumes the existence of
an unseen model that incorporates mass, friction, gravity, etc. that calculates
acceleration of the cart. It would be a much different experience to allow the
student to construct the underlying model herself and have that act on the
objects that she created.

We also considered the level of detail that we felt would be appropriate in
student-built models. All too often, students want to create extremely intricate
models that exhaustively describe systems. But it is difficult to learn from
these “systems models” [13]. It is more valuable for students to design and
create more generalized “idea models” that abstract away as much about a
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Fig. 8.2. Turtles move around on a grid of patches.

system as possible and boil it down to the most salient element. The ability
to make these abstractions and generalize scientific principles is central to the
idea of modeling. For example, a group of students might want to create a
model of a stream behind their school, showing each species of insect, fish,
and plant in the stream. Building such a model is not only an extremely large
and intricate task, but the resulting model would be extremely sensitive to
the vast number of parameters. Instead, the students should be encouraged to
build a model of a more generalized system that includes perhaps one animal
and one plant species. The right software should support the building of such
“idea models.”

Based on these criteria and our approach to modeling, we created a com-
puter modeling environment, named StarLogo, that we describe in the next
section.

8.4 The StarLogo Platform

To enable students to build their own CAS models, we developed StarLogo,
a programming language and environment specifically designed to support
simulation design, construction, and testing [8]. While there have been several
versions of StarLogo on different platforms through the years (detailed ahead),
they have each striven to meet the design goals described above and provide
a program language and development platform that is accessible to students
of a broad age range. Each version of StarLogo has shared many common
language features and an underlying metaphor that describes the StarLogo
world in terms of three entities — turtles, patches, and an observer. “Turtles”
is our term for all entities that move. On other platforms these might be
called “agents.” But StarLogo’s lineage brings with it the turtles that defined
Logo, along with much of that language as well. While we call them “turtles”
generically, they might be rabbits, atoms, or cars in any particular model.
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Fig. 8.3. This figure shows the time evolution of the termites project. At the be-
ginning (a), all termites and wood chips are randomly scattered over the patches.
As the termites pick up and drop the wood chips (b), the number of piles begins
to decrease (c). Small piles shrink (d) and eventually disappear (e). If we run this
further, all of the wood chips will end up in one pile.

The turtles walk around on top of a grid composed of patches. If you think
of the grid as a large checkerboard, each square on the checkerboard is a patch
(and the turtles would be the checkers moving over the board: see Fig. 8.2).
The turtles can interact with the patches by responding to their features, or
even modifying their features. One way for turtles to modify the patches is
by using the pen that each turtle carries to draw on the patches. The patches
are also able to run their own instructions, through which they can modify
themselves or the turtles that are standing on them.

Finally, there is a single observer that watches over the entire grid. Con-
tinuing with the checkers metaphor, the observer might be thought of as a
person playing (solitaire) checkers on this checkerboard filled with the tur-
tles and patches. The observer takes care of certain operations like clearing
the whole board, creating new turtles, and keeping track of time that either
cannot be done by individual turtles, or are easier to conduct through the
observer.

8.4.1 Termites Example

To familiarize readers with StarLogo, we present a small StarLogo project
about termites. This project is inspired by the behavior of termites gathering
wood chips into piles. The termites follow a set of simple rules. Each termite
wanders randomly. If it bumps into a wood chip, it picks the chip up and
continues to wander around. When it bumps into another wood chip, it finds
a nearby empty space and puts its wood chip down. We show a run of this
simulation in Fig. 8.3.

We look at the StarLogo source code to get a feel for what the language
feels like. The following is the setup procedure for termites.

to setup
clearall
if (random 100) > 80 [setpatchcolor yellow]
create-turtles 200
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ask-turtles
[ setcolor red
setxy random (screen-edge * 2)

random (screen-edge * 2) ]
end

To begin, we kill all of the turtles and set the patch colors to black. Then,
on each patch, we throw a random 100-sided die. If it exceeds a threshold, we
set the patch’s color to yellow (i.e., we give it a wood chip). We then create
200 turtles (termites), ask them to color themselves red, and scatter them
around the screen.

to go
search-for-chip
find-new-pile
find-empty-spot

end

The go procedure is the main loop. First, a termite looks for a wood chip
and picks it up. Then it wanders until it finds another wood chip in a pile and
finds a place to put it down.

to search-for-chip
if patchcolor = yellow

[ stamp black jump 20 stop ]
wiggle
search-for-chip

end

In search-for-chip, a termite wanders around, wiggling, until it is standing
on a yellow patch. That means there is a wood chip there. It picks up the
wood chip and jumps 20 turtle steps away.

to wiggle
forward 1
right random 50
left random 50

end

A termite wiggles by moving forward one turtle step, then turning right
and left a random number of degrees.

to find-new-pile
if patchcolor = yellow [ stop ]
wiggle
find-new-pile

end
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The termite then wiggles around until it finds a pile to put down the wood
chip.

to find-empty-spot
if patchcolor = black

[ stamp yellow get-away stop ]
setheading random 360
forward 1
find-empty-spot

end

A termite does not want to put a wood chip down on top of another one,
so it moves forward in a random direction until it finds an empty patch. Once
it finds that spot, it stamps the patch to make it yellow (giving it the wood
chip), and then jumps away to look for new wood chips.

to get-away
setheading random 360
jump 20
if patchcolor = black [ stop ]
get-away

end

To get away, a termite keeps jumping 20 steps in random directions until
it lands on a spot without any wood chips. Then it starts the cycle over again,
looking for another wood chip to pick up.

One interesting thing to notice about this model — over time, the number
of piles of wood chips decreases. Why? There’s certainly nothing obviously
programmed into the model to make this happen. But, inevitably, when the
simulation is finished, the termites will be left with one pile. How does this
happen? First, ask yourself how a pile can disappear. A pile disappears when
termites carry away all of the chips. Can a new pile be formed? No, there is no
way to start a new pile by a deliberate termite action, since termites only put
their wood chips next to other wood chips. This behavior will only increase an
existing pile’s size; it will not create a new separate pile. In fact, the only way
to create a “new” pile is to take away enough wood chips to split an existing
pile into two. However, this is quite rare except when a pile gets very small.
So, overall, the number of piles must decrease until there is only one left. This
is known as an emergent property of the model — an aggregate behavior that
is unexpected given the simple rules programmed into the model.

Next, we will begin the discussion of how StarLogo works internally. This
discussion will be more technical than the rest of this article, but will reveal
some interesting design tradeoffs that are visible directly to the user and affect
the fidelity of the models that can be built.
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8.5 StarLogo Design Through the Ages

Building an agent-based modeling environment like StarLogo is not a trivial
task. It involves balancing the pedagogical needs of students with the efficiency
requirements of running thousands of agents at the same time. In this section,
we will give a little flavor of what actually runs under the hood to make
StarLogo go.

There are three main pieces of work: the design of the StarLogo virtual
machine (which has changed over time as the technology has improved); the
process scheduler, which determines the order in which turtle, patch, and
observer operations run; and the turtle, patch and observer data structures
(which form the core data of the StarLogo runtime system).

8.5.1 The StarLogo Virtual Machine

StarLogo has more going on in parallel than most other computer environ-
ments. Several thousand turtles move about on a grid of over 10,000 patches,
each one independently executing code. Our first implementation of this sys-
tem was on an actual parallel computer called the Connection Machine. With
16,384 physical processors, each running at 8 MHz, we could devote one pro-
cessor to each turtle and have plenty to spare. This gave us plenty of paral-
lelism, but the machine’s bulk and extreme cost made it all but inaccessible
to schoolchildren.

To solve this problem, we brought StarLogo to the Apple Macintosh in
1994. Our challenge was to bring our parallel environment to the moder-
ately underpowered, single-processor, desktop computers that were common
in schools at the time (our target platform at the time was a Mac IIfx, with
only a single 25 MHz processor and 16 MB of RAM). A single processor would
have to be made to emulate thousands of “virtual processors.”

How does a computer run more than one thing at a time? Instead of trying
to run all programs at the same time (which is impossible on a computer with
only one processor), we run a single program by itself for a short amount of
time and then switch to the next one. Each program is deceived into thinking
it is the only program running on the processor. Most operating systems such
as Windows, UNIX, or MacOS are designed to run tens or hundreds of these
programs (called processes) at a time, each one getting one little slice of the
processor’s time (usually around 16 milliseconds per slice). Since they are
switching so fast, the user perceives everything on the computer as running in
parallel. StarLogo’s needs require that a processor be able to switch between
tens of thousands of processes at a time, which is beyond the capabilities
supported by any operating system.

To achieve the desired performance, we created a virtual machine — a
simulation of one computer within another — to run the StarLogo program-
ming language. Within this machine (written in extremely low-level machine
language for performance), we implemented a large number of turtle, patch,
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and observer commands and created an extremely lightweight multiprocessing
system to run all its processes.

The StarLogo virtual machine is very similar to the one developed for the
Cricket [7], a project run by the Lifelong Kindergarten Group at the MIT
Media Laboratory. A Cricket is a tiny computer powered by a 9-volt battery
that can control two motors and receive information from two sensors. Crickets
are equipped with an infrared communication system that allows them to
communicate with each other. Powered by a Microchip PIC processor, the
virtual machine in Cricket Logo holds about 1000 words of instruction memory
and only a few dozen words of RAM. Even though a modern desktop computer
is much more powerful than a PIC microcontroller, we can justify using a
similar virtual machine for both the Cricket and StarLogo. Even though the
desktop computer is much faster than the PIC, the PIC only has to run one
process, while the desktop computer has to run thousands. Similar memory
constraints hold as well.

For several years after the initial Macintosh version of StarLogo, we re-
ceived requests by an increasing number of users who wished to see StarLogo
on a Windows PC. Around this time (1995), the Java programming language
was introduced by Sun Microsystems, Inc., so we decided to take the opportu-
nity and rewrite StarLogo in this new cross-platform language. Designing it in
the same way as our Macintosh version, we were able to directly port over all
of the code for StarLogo’s virtual machine into Java fairly quickly, and within
three days of programming, we had a first implementation of a turtle world
running. Gradually, over a period of a few years, we recreated the rest of the
StarLogo experience in the Java realm. This is the version now available at
our web site: http://education.mit.edu/starlogo.

8.5.2 The Anatomy of a Virtual Machine

What exactly is a virtual machine? A virtual machine is a computer program
that simulates the behavior of a physical processor. An example of a com-
mercial virtual machine is Virtual PC for MacOS, which simulates an Intel
Pentium processor on a Macintosh computer. Simulations of commercial pro-
cessors make up a small number of the kinds of virtual machines available,
however. Designers take advantage of the inherent flexibility of software to
create virtual machines that simulate processors never before found in the
market. The StarLogo virtual machine is this kind of virtual machine; it sim-
ulates a Logo processor.

Logo is a programming language invented in the 1960s by Wallace Feurzig
and Seymour Papert. A variant of the Lisp programming language, Logo was
designed to be easy to learn and use by children. It also tends to be easy
to implement using a virtual Logo processor (a piece of software that our
group at MIT has created numerous times for almost every project we un-
dertake). StarLogo’s Logo processor contains two types of commands: Logo
language operations, and StarLogo primitive commands. Ten commands are
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used for implementing Logo; these handle procedure invocation and returns
and manage data and instruction lists. The other 300 primitives provide sup-
port for moving the turtle around on the screen, communicating among the
turtles, patches, and observer, observing and modifying the turtle’s environ-
ment, reading and writing turtle, patch, and observer state, and user variables,
and executing mathematics and control functions.

All modern machines (including simulated processors such as the one we
built) execute in similar fashion. A user begins by starting a program (often
by double-clicking on an icon). The operating system loads the program’s code
into memory, creates a new process to store the program’s execution state,
and jumps to the program’s starting point. The processor loads the program’s
instructions, one by one, into its execution unit. After each instruction runs,
the processor increments its instruction pointer (which points to the next
instruction to be executed) and continues. After some amount of time, a timer
goes off and signals to the processor that the current process has been running
for too long. The process scheduler captures the run-time state of the current
process, stores it, finds another process that is ready to execute, and swaps it
in. This swap is known as a context switch. The process scheduler is responsible
for performing context switches, as well as for determining the order of the
processes that get to execute.

The StarLogo virtual machine adds three more pieces to this generic pro-
cessor: the turtles, the patches, and the observer. Each of these entities is
an object in memory. Turtles are made up of turtle state (the coordinates of
the turtle on the screen, its id number, its color, heading, breed, shape, pen
state (up or down), visibility (shown or hidden), and a timer), bookkeeping
data (a pointer to the patch the turtle is currently standing on, a set of “un-
derme” and “overme” pointers to keep track of turtles stack on top of one
another, a pointer to the partner turtle used when this turtle is communicat-
ing with another one, and a true-false variable that indicates when this turtle
is alive (useful for generating proper error conditions)), and a collection of
user-defined variables (in StarLogo terminology, turtles-own variables).

A patch is like a turtle in structure, but contains less information. Patch
state consists of the patch’s coordinates on the screen, a patch color, and a
pointer to the first turtle standing on the patch. Patches contain less book-
keeping data as well, only requiring a pointer to a partner turtle used when the
patch is communicating with a turtle. Finally, patches also contain a collection
of user-defined variables called patches-own variables.

The observer contains only a collection of user-defined variables called
globals.

8.5.3 The Process Scheduler and Its Processes

An important part of the design of StarLogo is the process scheduler. As we
discussed above, the scheduler controls the order of execution of the processes
that are running. It also controls how long a process gets to run before being
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swapped out for another. Both of these tasks are controlled by a carefully
chosen policy. We will discuss the rationale for our particular choices ahead.

Recall that StarLogo is intended to run the turtle and patch processes
fast enough to appear to be running in parallel. In order to maintain the
fiction of parallelism with a single physical processor, we must context-switch
rapidly among all the processes that all turtles, patches, and the observer
are executing. There are two forms of context-switching that we could choose
from. We could support preemptive multiprocessing, in which a timer goes
off every few milliseconds and causes the virtual machine to context-switch,
or we could choose cooperative multiprocessing, and only context-switch at
carefully chosen points in the program.

We chose the latter for several reasons, but the most important is that
under the former (preemptive multiprocessing), synchronization issues would
become unnecessarily exposed to the user. For instance, the following common
StarLogo idiom would not work as expected:

if count-turtles-here > 1
[mate-with one-of-turtles-here]

A turtle is looking for another with whom to mate. It looks on the current
patch to see if there is any other turtle there. If there is, it mates with it by
asking for its turtle id and calling a user-defined procedure mate-with. Under
preemptive multiprocessing, it is possible for the virtual machine to context-
switch between the condition count-turtles-here > 1 and the consequent
of the if statement, mate-with one-of-turtles-here; if this happens, in one glance
the first turtle might see the other one on its patch, but in the next, the other
turtle may have moved before the first turtle has had to a chance to mate
with it!

To avoid this kind of problem, we only allow context switches at “safe”
times such as the end of each command. A command, in Logo, is what we
call a primitive operation or user function that does not return a value (e.g.,
setcolor blue, forward 10). In contrast, a reporter is a primitive or user
function that does return a value (e.g., 3, 5 + 7, color-of 5). In our coop-
eratively multiprocessing virtual machine, we elect to context-switch between
commands, but not after reporters. This gives the if statement above a guar-
antee of atomicity (meaning that the two statements must execute together
without any context switching in between). The reporter in the predicate is
guaranteed still to be true when the first command in the consequent executes.
This policy also enables the fairly common idiom of fetch and update (e.g.,
setfoo foo + 1) to work without user-supplied synchronization, as well.

Several primitives interact with context switches. One in particular is the
forward command. When a turtle wants to move in the direction of its current
heading, it calls forward with a number of turtle steps. If we implemented
this by context switching after each turtle went forward the full number of
turtle steps, we would see (if we slowed the computer down) individual turtles
scooting, one by one, to their final locations. We wish to maintain an illusion of
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realistic-looking parallelism, so we want to see all of the turtles move forward
one step at a time. To do this, we context-switch in the middle of the forward
primitive after the turtle has taken one step. We jump back to the middle of
the forward primitive when the turtle is rescheduled. Context switching on
this granularity gives us the nice-looking parallel behavior we want.

StarLogo has two scheduling policies that can be selected by the user. The
scheduling policies influence the order of process execution during each once-
through. A once-through is one complete iteration of all of the processes — a
unit of execution in our scheduler, where we are sure that we have given each
process one unit of time to execute. Between consecutive once-throughs, the
particular scheduling policy chosen may affect the order of process execution
without accidentally starving any particular processes of a chance to run. The
first scheduling policy executes each process in-order as it appears in the
scheduler. This policy gives reasonable user-visible behavior in many cases;
however, it sometimes introduces artifacts into a user’s program.

For example, consider a rope made up of individual turtles spread across
the screen. If we jiggle one of the turtles, it should exert a spring force on
its two neighbors. If we force the leftmost turtle to move up and down in a
sine wave, it will send a sine wave down the right side of the rope. To make
this happen, each turtle computes its change in velocity as a function of its
distance from its two neighbors, and then moves. If we run this spring force
process for each turtle, and the turtles execute it from left to right across the
screen, the first turtle to move is the one directly to the right of the sine wave
turtle. This turtle’s motion propagates to the right and the sine wave appears
to travel to the right across the turtles. Consider what would happen if the
spring force process instead executed from right to left. The rightmost turtle
will not move, because its left neighbor has not moved. Its left neighbor will
not move either. In fact, no turtle will move until we execute the spring force
function for the turtle directly to the right of the sine wave turtle. The next
iteration repeats this nonmotion except where the wave has propagated to
the right by one turtle. This kind of artifact can be completely unexpected
but occurs because the turtle processes are executing in series, rather than in
parallel.

To eliminate this artifact, we support a randomized scheduling policy.
Before each once-through, we randomize the order of all processes in the
scheduler. This produces somewhat more disconcerting appearing behavior
(a more jagged motion when you see a line of turtles do something), but it
removes order-dependent artifacts and more accurately simulates parallelism
in most models.

8.5.4 The StarLogo Interface

The implementation of the StarLogo virtual machine is critical to its opera-
tion. But to most users, these details are transparent, allowing them to take
on the modeling challenge at hand. Instead, what most users experience is
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Fig. 8.4. The StarLogo 2.0 user interface for the Termites project. There are two
user-created buttons: setup runs the user’s setup procedure, and go is a forever
button that execute the main loop of the model. There are two sliders that enable
a user of the model to control the initial number of termites created as well as the
density of the wood chips in the environment.

a user-friendly graphical environment that simultaneously facilitates the cre-
ation of models and an accompanying user interface. A user of a model is
presented with a screen that displays the running model along with the inter-
face elements that control it (Fig. 8.4).

All user interface elements are placed on the screen by merely clicking on
the appropriate tool and then on a blank space in the StarLogo window. The
creator of the model can then specify the instructions or values associated with
that user interface element. There are several types of user interface elements
in StarLogo, including tools for input, output, and help. The primary user
interface elements in StarLogo are buttons and sliders.

Buttons control the execution of procedures. For example, in the termites
model there is a button that controls the setup procedures, which creates the
initial distribution of termites and wood. (A button behaves similarly to an
icon in Windows or MacOS. When it is pushed, StarLogo creates one process
for every turtle that exists and starts to execute the instructions in the virtual
machine.) The termites model also contains a go button that executes the
instructions for the termites to move around and pick up wood. This button
is different than the setup button in that once it is pressed down it stays
down until it is pressed again. This kind of button, known as a forever button
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and represented by the two looping arrows, causes the turtles to continuously
follow the prescribed instructions, until the user pops the button using the
mouse. (When the user pops a button, it causes the StarLogo process scheduler
to find the processes associated with the button, and remove them from the
running process list.)

Sliders allow the user to control global variables in the model. The sliders
might affect the model at setup time (e.g., by controlling the initial distribu-
tion of termites and wood) or dynamically at run time (e.g., by changing the
probability that a termite picks up wood when it sees it). The slider values are
changed by clicking and dragging on the slider to manipulate the designated
variable. For example, in the termites model the user can specify the number
of initial termites or the density of wood.

The ability to design and implement a simple user interface makes the
StarLogo modeling experience highly interactive. In addition to buttons and
sliders, modelers can place monitors that provide continuously updated nu-
meric output, labels and legends that assist in the operation and interpretation
of the model, and graphs that give visual feedback from the models. Together
these tools allow developers to rapidly create useful models.

8.6 Learning to Model Through Adventures in Modeling

Using computer simulations of complex adaptive systems as a platform, we
have crafted an introduction to scientific modeling [4, 5]. We have found that
these tools can enable students to become full-fledged practitioners of mod-
eling [1]. Students design scientific models and then go on to investigate and
explore those same models. The use of these tools allows nonexperts to act as
scientists, creating and exploring models of phenomena in the world around
them, evaluating and critiquing those models, refining and validating their
own mental models, and improving their understandings [1].

The StarLogo Workshops are designed to introduce participants to the
computational and cognitive aspects of modeling complex, dynamic systems.
During these workshops, participants work together to design, build, and ana-
lyze agent-based computer models. Participants engage in an iterative process
of model creation and scientific investigation as they explore important sci-
entific principles and processes. We design the workshops to foster a playful,
cooperative, creative spirit, while at the same time providing adequate struc-
ture for learning how to build models. To accomplish this balance between
structure and exploration, we organize the workshops around a set of open-
ended StarLogo design challenges on the computer and a series of off-computer
activities in which participants enact and analyze a simulation.

Each challenge is a problem statement that is meant to guide participants’
explorations and get their creative juices flowing. For example, one challenge
asks participants to build a model in which creatures change their environment
and subsequently react to those changes. In response to this challenge, one
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might create a model of a beaver, altering its environment by cutting down
trees to build a dam, or termites chewing on a log to create passageways. Every
challenge includes sample projects, which teachers are encouraged to explore.
The challenges and accompanying sample projects facilitate model design and
construction, build familiarity with the StarLogo environment, and introduce
the principles of complex systems.

Though “on-screen” computer modeling is one focus of our workshops,
“off-screen” activities provide another way to connect abstract notions of sci-
entific systems to personal experience [1]. These activities allow participants
to think about concepts like exponential growth, local versus global informa-
tion, and group decision-making from a personal perspective. For instance, in
one activity, participants “fly” around a parking lot trying to form cohesive
“bird flocks” without the assistance of a leader.

Recently, we have captured the essentials of our workshops in the book Ad-
ventures in Modeling: Exploring Complex, Dynamic Systems with StarLogo [2]
published by Teachers College Press. This book brings the design challenges
and supporting activities to students and educators everywhere. Adventures
in Modeling includes a series of 10 StarLogo design challenges, and a comple-
mentary set of ten participatory activities. Additionally, we provide guidelines
for educators in facilitating the challenges and activities, for integrating them
into a variety of classes, and for mapping them to state curriculum standards.
As a package, it provides a flexible but well-defined pathway for teachers to
follow.

8.7 Lessons Learned

It is difficult to appreciate the many ways that people use and learn from
StarLogo without seeing it in action. In the following section we relate several
stories of how we have observed people use and learn from StarLogo. Each of
the stories highlights aspects of our software and our approach to modeling
that we have found to be unique and enlightening.

8.7.1 Fire

Often science classes dictate the explorations that students undertake during
their laboratories. Typically these “experiments” follow a prescribed set of in-
structions outlined in a cookbook fashion. These experiences leave little room
for the students to inject any of their own personal interests or fascinations
into the experiments. Not surprisingly, students often lose interest in these
experiments and lose sight of the real scientific method as they search for the
“right” answer to the experiment.

One of the powers of StarLogo is that it allows students to conduct explo-
rations of systems that are interesting to them. Students can explore systems
that are personally interesting. This brings the flexibility of a science fair to
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Fig. 8.5. A student-generated model of a forest fire. The different color trees have
variable flammability. The dark gray trees in the middle are burning, and the lighter
gray trees are already burned.

the classroom, but removes the constraints of the size, location, time scale, or
cost of the system that the student wants to explore. A student could easily
explore the interactions of protons and electrons in an atom, or the evolution
of a trait over hundreds of generations — systems that normally could not be
explored in a classroom.

During the summer of 2000 forest fires raged across New Mexico, causing
extensive damage across thousands of acres and making national news head-
lines. At that time a student summer school was taking place in Santa Fe,
New Mexico. One group of three ninth-grade girls was intrigued by the forest
fires that summer. There were often small forest fires in that area at that
time of year, but what made them so bad this time? They decided to create
a model of forest fires to explore this phenomenon.

The model that they created initially included many factors. After some
exploration they narrowed down the factors of interest to wind, rain, and
density of trees. They made sliders that controlled each of these factors and
recorded the number of trees burned, number of trees alive, and time to extin-
guishing of fire for several combinations of these parameters. In the end they
were able to develop an understanding of each of the factors in isolation, as
well as in combination such as high density of trees, low rain, and high winds.
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Fig. 8.6. A StarLogo slider (top) is clicked on to change the maximum value from
50 to 1000.

8.7.2 But This One Goes to 1000

One of the most important design features of StarLogo is that all aspects
of the models and modeling environment are open to user inspection and
manipulation. While the designer of a model might set parameters or specify
particular behaviors, this information is always accessible to the user and can
be changed.

Recently, a fifth-grade class that was beginning to learn StarLogo by play-
ing with a sample project from the Adventures in Modeling book. The model
included many buttons and sliders that controlled the movement and creation
of turtles. One boy was fiddling with the slider that controlled the numbers
of turtles that were on the screen, which, by default, ranged from 1 to 50. At
some point, he double-clicked on the slider to see what it would do. He was
then presented with a dialog box that controlled the minimum and maximum
values for that slider. Being a fifth-grade boy, he immediately replaced the
seemingly small value of 50 turtles with a new maximum of 1000 turtles. He
tried out the new value and quickly proclaimed his finding as “cool” since the
new patterns were much different than the old ones with 50 turtles.

While this innovation was interesting, it might have taken quite some
time for others in the room to make similar changes if each one of them
had to independently discover this same mechanism. But the accessibility
of StarLogo, and the social atmosphere that it facilitates in the classroom,
permits and encourages the sharing of information. Within minutes of the
boy’s discovery of the way to change the slider, nearly half the class had
changed their sliders in a similar way. Of course, this being a fifth-grade class
the idea never jumped the boy–girl divide, and until they were forced to share,
the girls were left out of the loop.
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Fig. 8.7. Two students working exploring a StarLogo model. A student makes a
discovery (left) and shares it with his neighbor (right).

Fig. 8.8. The Rabbits and Grass model showing the oscillations in predator–prey
populations over time. The rabbits (red) increase as grass disappears (green is plen-
tiful). The rabbits soon deplete their resources, and die off, allowing the grass to
return. The return in food is followed closely by a return of rabbits.

8.7.3 The Evolution of Rabbits and Grass

StarLogo models have an advantage over off-the-shelf simulations when it
comes to integrating them into the curriculum. Unlike typical purchased sim-
ulations that are closed off from being changed by the user, StarLogo models
can be customized to fit the unique needs of each classroom. One good exam-
ple of this customization started with our Rabbits and Grass project that has
long been a part of StarLogo. In Rabbits and Grass the rabbits (represented
by red turtles) move around randomly on the screen, using up small amounts
of energy as they move, but gaining energy as they eat grass (green patches)
when they encounter it. If the rabbits gain enough energy, they can reproduce
(by binary fission), but if they lose all of their energy, they will die. These
rules lead to the classic predator–prey oscillations that are characteristic of
the Lotka–Volterra equations often studied in beginning calculus.
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Fig. 8.9. The speciation model, showing the two populations of rabbits and grass
divided by an impassable white barrier. The two populations can be given the same,
or different selection pressures, and students can observe how long it takes to create
a new “species.”

Some time ago, Noah, a biology teacher who was in one of the Adventures
in Modeling workshops, was tinkering around with the Rabbits and Grass
model and decided to make a small change. Instead of the rabbits, all being
red when they were created, they were randomly assigned a color. When the
modified model ran for a couple of oscillations, quickly there were only one
or two colors of rabbits left. After searching through the code for a possible
bug that would lead to this behavior, Noah realized that this was indeed
not a bug, but a feature of his new model. The predator–prey model was
now a model of genetic drift. As the rabbit population got very small on the
downside of the population oscillations, there would only be a few rabbits
left. Those remaining rabbits would found the next generation of rabbits that
would reproduce rapidly when the food became more plentiful. The offspring
of these rabbits would be the same colors as they were, leading to a population
in the next generation with limited colors.

Noah said that the students in his class rarely understand this bottleneck
effect after reading it in their texts. But there are no traditional laboratories
that can help the students explore this and related phenomena first-hand.
So Noah set out to build an entire suite of Rabbits and Grass models for
teaching ecology and evolution to his students. He built models with sexual
and asexual reproduction, selection, mutation and genetic drift; and his model
that put it all together was a model of speciation. In the speciation model,
students can apply different selection pressures to a population of rabbits
that is split due to an earthquake that isolates the two populations. These
principles are difficult to teach to high school students, perhaps because the
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time scales are so long. As students experience evolutionary phenomena in
real time through these models, Noah says that his students are developing a
much deeper understanding of the concepts, and enjoying themselves in the
process. In fact, a neighboring biology class complained that Noah’s class was
having too much fun.

8.7.4 The Tides Are Turning

In another of our recent Adventures in Modeling workshops, two of the partic-
ipants were interested in exploring the patterns in formation of tidal sandbars.
This phenomenon is difficult to study in nature because of the large temporal
and spatial scales required. Most modeling tools are not applicable to this
purpose either, because this process is intensely visual. So these participants
were excited to be able to have an opportunity to explore this phenomenon.

The modelers started their project by borrowing a landscape generation
procedure from another project. This gave them the capability to create un-
derwater terrains with some existing variation in sand height. From there
they set out to implement wave action. They represented waves by a line that
swept from left to right on the screen, moving some of the underlying sand
to adjacent patches. After exploring this version for some time, they weren’t
satisfied with the scale at which they saw the sandbars changing. So they de-
cided to add another feature that they thought might be important — tides.
Tides were implemented by rising and falling water tables that caused un-
derlying larger-scale changes in the sand and also interacted with the waves
as they moved across the water. The resulting model produced some striking
visualizations of tidal and wave movement of sandbars.

8.8 Conclusion

StarLogo provides many unique benefits to students when used in the class-
room. It can change the way that kids view both science and technology as
well as the relationship between the two. By empowering kids to “take over the
technology,” StarLogo allows students to become creators, not just consumers
of technology. It also helps students develop a deep understanding of scientific
concepts as they design, build, and explore models of systems in which they
are personally invested. Further, StarLogo provides an opportunity to engage
students in what we deem “the real scientific method,” the messy process of
iteratively designing experiments, learning about systems, and subsequently
modifying experiments.

While StarLogo has met with much success in many classrooms, there are
still a lot of students left to reach. But we, too, are engaged in an iterative
process of model building, where the StarLogo world is our model. As we learn
from our own experiments in the classroom use of StarLogo, we modify the
tool to better meet the needs of our audience. This means providing greater
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accessibility and applicability through the development of new tools and tech-
niques. This spring, we once again enter the design phase for “StarLogo: The
Next Generation” and will begin constructing the software and developing
new workshops later on this year.
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On the Evolution of Sonic Ecosystems

Jon McCormack

This chapter describes a novel type of artistic artificial life software environ-
ment. Agents that have the ability to make and listen to sound populate a
synthetic world. An evolvable, rule-based classifier system drives agent be-
havior. Agents compete for limited resources in a virtual environment that
is influenced by the presence and movement of people observing the system.
Electronic sensors create a link between the real and virtual spaces, virtual
agents evolve implicitly to try to maintain the interest of the human audience,
whose presence provides them with life-sustaining food.

9.1 Introduction

One thing that foreigners, computers and poets have in common
is that they make unexpected linguistic associations.
Jasia Reichardt [25]

Music and art are undoubtedly fundamental qualities that help define the
human condition. While many different discourses contribute to our under-
standing of art making and art interpretation, two implicit themes connect all
artworks. The first is the act of creation. Even the most abstract or conceptual
artworks cannot escape the fact that, as ideas, objects, or configurations, they
must be made. Secondly, the importance of novelty, either perceived or real,
is a fundamental driving force behind any creative impetus or gesture. Artists
do not seek to create works that are identical to their previous creations or
the previous work of others.

Artificial life (AL) methodologies can play an important role in developing
new modes of artistic enquiry and musical composition. For artists, AL can
offer new methodologies for the creative arts. For the first time in the history
of art, AL suggests that, in theory at least, it may be possible to create
artificial organisms that develop their own autonomous creative practices —
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to paraphrase the terminology of Langton [16], life-as-it-could-be creating art-
as-it-could-be.

In addition, AL has important contributions to make in our understanding
of genuine novelty,� often referred to under the generalized term emergence
[6, 11, 20].

9.1.1 Artificial Life Art

Techniques from cybernetics and artificial life have found numerous appli-
cations in the creative arts. General contemporary overviews can be found
in [2, 3, 31, 38], for example.

Cybernetics has a rich and often overlooked history in terms of comput-
ing and the arts. The seminal ICA exhibition Cybernetic Serendipity, held in
London in the summer of 1968, was one of the first major exhibitions to look
at connections between creativity and technology [24]. Even the title suggests
notions of novelty and discovery, a key theme for many works and critics
in the decades that have followed the exhibition. Interestingly, the curators
shunned distinctions between art and science and instead focused on ideas
and methodologies that connected the two.

One particularly relevant concept from cybernetics is that of open-ended
behavior, what Ashby referred to as Descartes dictum: how can a designer
build a device that outperforms the designer’s specifications [1]. Cyberneticist
Gordon Pask built an “ear” that developed, not through direct design, but
by establishing certain electrochemical processes whereby the ear formed and
developed in response to external stimuli [7].

The goal of the work described here is to create an open-ended artis-
tic system that is reactive to its environment. In order to address this goal,
two important problems were explored during the design and development of
the work. First, how we can create a virtual AL world that evolves toward
some subjective criteria of the audience experiencing it, without the audience
needing to explicitly perform fitness selection. Second, how the relationship
between real and virtual spaces can be realised in a way that integrates those
spaces phenomenologically. The resultant artwork developed by the author is
known as Eden.

� The concept of novelty is a vexed one with many different interpretations in
the literature and could easily occupy an entire chapter in itself. Some authors
argue that novelty and emergence have no relation [22] whereas others see them
as fundamentally the same [6]. In the sense the term is used in this chapter,
novelty suggests that which has never existed before, hence the issues surrounding
novelty are connected with determinism [11]. For art, almost every new artwork
is in some sense novel, however, we may at least be able to apply criteria that
suggest a degree of novelty, such as descriptive causality and explainable causality.
Moreover, in an AL sense, we require not only the artwork to be novel, but the
behavior of the virtual agents to be novel as well.
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In terms of software, Eden is an AL environment that operates over a
cellular lattice, inhabited by agents who have, among other capabilities, the
ability to make and “listen” to sound. Agents use an internal, evolvable, rule-
based system to control their behavior in the world. The virtual environment
that the agents inhabit develops in response to the presence and movement
of people experiencing the system as an artwork.

This software system will be described more fully in Sections 9.2 and 9.3
of the chapter. Interaction with the work is detailed in Section 9.4, with a
summary of results and brief conclusion in Sections 9.5 and 9.6.

9.1.2 Related Work

The software system described in this chapter, draws its technical inspiration
from John Holland’s Echo [15], particularly in the use of classifier systems
for the internal decision-making system of agents. Many others have used
evolutionary systems as a basis for musical composition, but in the main for
compositional simulation [32, 37], rather than as a new form of creative tool
for the artist and audience.

The Living Melodies system [9] uses a genetic programming framework to
evolve an ecosystem of musical creatures that communicate using sound. Liv-
ing Melodies assumes that all agents have an innate “listening pleasure” that
encourages them to make noise to increase their survival chances. The system
described in this paper, Eden, contains no such inducement, beyond the fact
that some sonic communication strategies that creatures discover should of-
fer a survival or mating advantage. This results in the observation that only
some instances of evolution in Eden result in the use of sonic communication,
whereas in Living Melodies, every instance evolves sonic communication. Liv-
ing Melodies restricts its focus to music composition, whereas Eden is both a
sonic and visual experience.

9.2 Eden: An Artificial Life Artwork

Eden is a “reactive” artificial life artwork developed by the author. The art-
work is typically experienced in an art gallery setting, but in contrast to
more traditional artworks is designed as an experiential environment, whereby
viewers participation and activity within the physical space have important
consequences over the development of the virtual environment.

The artwork is exhibited as an installation and experienced by any num-
ber of users simultaneously. It consists of multiple screens, video projectors,
audio speakers, infrared distance sensors, computers, and custom electronic
systems. Figure 9.1 shows a floor plan and simulated visualization of the work.
As shown in this figure, physically the work consists of two semitransparent
screens suspended from the ceiling of the exhibition space. The screens are
positioned at 90o to each other, forming an X shape when viewed in plan. The
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Fig. 9.1. Floor plan of Eden (top) showing the layout screens, speakers, projectors,
and sensors. The active sensor area is shown in red. The image (bottom) is a sim-
ulation of the work running in a typical gallery environment, illustrating the effect
of using transparent screens to visualize the work.
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ambient lighting is minimal; making the screens and the light they reflect and
transmit the predominant source of visual interest in the space. The screens’
transparency enables them to be viewed from either side and creates a lay-
ered visual effect that merges the real and virtual boundaries. Multichannel
audio is provided by a number of speakers placed on the periphery of the main
screen area.

In addition to this audio-visual infrastructure, a series of infrared range
sensors are placed around the screen area. The purpose of these sensors is
to measure the position and movement of people experiencing the work. The
sensors themselves are not visible to the audience. They function as an en-
vironmental stimulus for the virtual agents’ world and ultimately contribute
to selective pressures that aim to encourage a symbiotic relationship between
people experiencing the work and the agents populating the virtual world.
The role of the sensors and their effect on the development of the virtual
environment portrayed in the work are detailed in Section 9.4.

9.3 Agents and Environments

This section gives technical details on the major software components of the
system, with particular emphasis on the mechanisms that facilitate develop-
ment of sonic agents within the system. Further details, particularly the payoff
and bidding processes for rule selection, may be found in [18].

9.3.1 The Eden World

The environment projected onto the screens is known as the Eden world. In
implementation terms, the world consists of a two-dimensional cellular lattice
that develops using a global, discrete, time-step model — a popular AL model
based on the theory of cellular automata [8, 34]. Each cell in the lattice may
be populated by one of the following entities:

• Rock: inert matter that is impervious to other entities and opaque to sound
and light. Rock is placed in cells at initialization time using a variation of
the diffusion limited aggregation (DLA) model [39]. Rocks provide refuge
and contribute to more interesting spatial environmental behavior of the
agents.

• Biomass: a food source for evolving entities in the world. Biomass grows
in yearly�� cycles based on a simple feedback model, similar to that of
Daisyworld [35]. Radiant energy (in “infinite” supply) drives the growth
of biomass. The amount of radiant energy falling on a particular cell is
dependent on a number of factors, including the local absorption rate of

�� An Eden year lasts 600 Eden days, but passes by in about 10 minutes of real
time.
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the biomass and global seasonal variation. Probabilistic parameters can be
specified at initialization time to control these rates and variations. The
efficiency at which the biomass converts radiant energy into more biomass
is also dependent on the presence of people in the real space of the artwork.
This dependency is detailed in Section 9.4.

• Sonic agents: mobile agents with an internal, evolvable performance sys-
tem. Agents get energy by eating biomass or by killing and eating other
agents. More than one agent may occupy a single cell. Since these agents
are the most complex and interesting entity in the world, they are de-
scribed in detail in Section 9.3.2.

A real-time visualization of the world produces images that are projected
onto the screens, as illustrated in Fig. 9.1 (in this case there are two worlds,
each running on a separate computer, but connected as a single logical world
running over two computers). The visualization process is described more fully
in Section 9.3.3. The sound the agents make as they move about the world is
played with approximate spatial correspondence by a series of loudspeakers.

9.3.2 Agent Implementation

Sonic agents are the principal evolving entity in the world. Essentially, the
agent system uses classifiers similar to that of Holland’s Echo system [15].
An agent consists of a set of sensors, a rule-based performance system, and a
set of actuators. This configuration is illustrated in Fig. 9.2. Sensors provide
measurement of the environment and internal introspection of an individual
agent’s status. The performance system relates input messages from the sen-
sors to desired actions. The actuators are used to show intent to carry out
actions in the world. The success or failure of an intended action will be de-
pendent on the physical constraints in operation at the time and place the
intent is instigated. Actuators and actions are detailed later in this section.

At initialization of the world, a number of agents are seeded into the
population. Each agent maintains a collection of internal data. These data
includes:

• Current age, an integer measured in time steps since birth. Agents live up
to 100 years and cannot mate in their first year of life.

• Health index: an integer value indicating the overall health of the agent.
A value of 100 indicates perfect health; if the health index falls to 0, the
agent dies. An agent can lose health via a sustained negative energy level
differential (explained ahead); by bumping into solid objects, such as rocks;
or by being hit by other agents. In addition, the loss in health from being
hit by another agent depends on both its mass and health index.

• Energy level: a measure of the amount of energy the agent currently has.
Agents gain energy by eating biomass or other agents. Energy is expended
attempting to perform actions (regardless of their success); a small quan-
tity of energy is expended even if no action is performed at a given time
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Fig. 9.2. Shows a section of the Eden cellular lattice in visual form (left). To
emphasize the lattice structure, grid lines have been layered over the image. The
image shows rocks (solid), biomass (outline), and an agent (circle). The diagram
(right) shows the agent’s internal schematic structure, consisting of a number of
sensors, a performance system that evolves, and a set of actuators.

step. If an agent’s energy level falls to zero, the agent dies and its body is
converted to new biomass in the cell in which it died.

• Mass : an agent’s mass is linearly proportional to its energy level, plus an
initial “birth mass” that is normally distributed over the population.

Sensors

Sensors provide a way for an agent to measure itself and its environment [23].
Sensor data are presented as bit strings constructed from local environmental
conditions and from the internal data structures held by the agent. Sensor
data are updated once every time step. An agent can use a range of sensor
types, but the sensors themselves do not undergo any evolution and are fixed
in function, sensitivity, and morphology. It is up to an individual agent’s
performance system to make use of a particular sensor, so sensor data will
only be used in the long term if they provide useful information that assists
the agent’s survival or mating prospects. Sensor use does not incur any cost
to the agent.

Sensor information available to an agent consists of

• A simple local vision system that detects the “color” of objects on facing
and neighboring cells (the range is limited to a single cell). Rocks, biomass,
and agents all have different “colors”, which enables an agent to distinguish
between them.
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• A sensor to detect the local cell nutritional value. Cells that contain
biomass or dead agents have a high nutritional value, rocks do not.

• A sound sensor that detects sound pressure levels over a range of frequency
bands. Sound can be detected over a much larger spatial range than vision
and also with greater fidelity.

• An introspection of pain. Pain corresponds to a negative health index
differential and would usually indicate attack by another agent or that the
agent is bumping into rocks.

• An introspection of the current energy level.

Actuators

Actuators are used to signal an agent’s intent to carry out an action in the
world. The physical laws of the world will determine whether the intended
action can be carried out or not. For example the agent may intend to “walk
forward one cell”, but if that cell contains a rock, the action will not be
possible. Furthermore, all actions cost energy, the amount dependent on the
type of action and its context (e.g., attempting to walk into a rock will cost
more energy than walking into an empty cell).

As with the sensors, the number and function of actuators are fixed and
do not change as the performance system evolves. Actions will only be used
in the long term if they benefit the agent. Analysis of actions used by agents
who are successful in surviving shows that not all agents make use of the full
set of actuators.

Actions an agent may perform consist of

• Move forward in the current direction.
• Turn left or right.
• Hit whatever else is in the cell occupied by the agent. Hitting another

agent reduces that agent’s health level using a nonlinear combination of
the mass, health, and energy level of the agent performing the hit. Hitting
other objects or being hit will cause pain and a loss of health.

• Mate with whatever is currently occupying the current cell. Obviously, this
is only useful if another agent is in the same cell. In addition, mating is
only possible if the age of both agents is greater than one year.

• Eat whatever is currently occupying the current cell. Agent’s can only eat
biomass, or dead agents (which turn into biomass shortly after death).

• Sing: make a sound that can be heard by other agents. Sound is detailed
more fully in Section 9.3.4.

Performing an action costs energy, so agents quickly learn not to perform
certain actions without benefit. For example, attempting to eat when your
nutritional sensor is not activated has a cost but no benefit. Attempting to
move into a rock has a cost greater than moving into an empty cell.
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Agents may also choose not to perform any action at a given time step
(a “do nothing” action), but even this costs energy (although less than any
other action).

Performance System

The performance system connects an agent’s sensors to its actuators (Fig. 9.2).
It is based on the classification system of [15]. Sensory data arrive from the
sensors in the form of a message, a binary string of fixed length.��� Mes-
sages are placed in an active message table, a first-in, first-out (FIFO) list of
messages currently undergoing processing. Each agent maintains a collection
of rules, stored in a database or rule table. Rules consist of three compo-
nents: a condition string, an output message, and a credit. Condition strings
are composed from an alphabet of three possible symbols: {1,0,#}. At each
time step, the message at the head of the active message table is processed
by checking for a match with the condition string of each rule in the rule
table. A 1 or 0 in the condition string matches the corresponding value in
the message at the same index. A # matches either symbol (0 or 1). So for
example, the message 10010111 is matched by any of the condition strings
10010111, 10010##1, ########. The condition string #######0,
however, would not match.

Rules whose condition strings match the current message bid for their
output message (also a bit string of the same length as sensor messages) to
be placed in the active message table. This bid is achieved by calculating the
rule’s strength. Strength is the product of the rule’s credit (detailed shortly)
and its specificity. Specificity is a unit normalized value, inversely proportional
to the total number of # symbols in the condition string. So for example, a
condition string consisting entirely of # symbols has a specificity of 0; a string
with 75% # symbols has a specificity of 0.25; and so on.

For each rule that matches the current message under consideration, its
strength is calculated. The rule with the highest strength is selected and then
places its output message into the active message table. If more than one
rule has the highest strength, then a uniform random selection is made from
the winning rules. The selected rule places its output message into the active
message table. Most output messages are action messages,† i.e., they trigger
an actuator. Action messages are removed from the table once they have been
translated into actuator instructions.

The process outlined in this section is illustrated in Fig. 9.3.

��� Currently a message length of 32 bits is used, but the actual length does not
concern the processes described. Larger message lengths allow more bandwidth
in sensor messages, but require more storage.

† Action messages are distinguished from other messages by a marker bit in the
string being set — all other message types are guaranteed not to set this bit.
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RULE
MATCHING RULESACTIVE MESSAGE TABLE

condition string output message

output message
(of selected rule)

credit specificity strength

1 0 0 1 0 1 1 1 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

1 0 0 1 100

1 0 0 1 0 # # 1 0 0 0 0 0 0 1 0 1 0 0 0.75  75

1 # # # # # # 1 0 1 0 0 0 0 0 0 2 0 0 0.25  50

1 0 0 1 0 1 1 1
0 0 1 0 1 0 1 1
1 0 0 0 0 0 0 1
0 1 1 0 1 1 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 1 0 1
    .
    .
    .

current
message selected rule

Fig. 9.3. The rule matching and bidding process. The top message from the active
message table is selected and becomes the current message. Rules whose condition
string matches the current message have a strength calculated as the product of
their credit and specificity. The rule with the highest strength then becomes the
selected rule and its output message is added to the active message table. The
current message is then discarded and the process repeats. Some messages are action
messages and trigger actions.

Credits and Payoffs

Each rule maintains a credit, essentially a measure of how useful this particu-
lar rule has been in the past. Rules begin with a default credit value and earn
or lose credit based on how useful the rule is in assisting the agent to live and
mate in the world. As described earlier in this section, agents maintain an
energy level and health index. The differentials of these quantities are moni-
tored, and when they reach a certain threshold, a credit payoff is performed.
The credit payoff rewards or punishes rules that have been used since the last
payoff (held in a separate list), by altering their credit according to frequency
of use and the magnitude of the change in energy since the last payoff. Further
details regarding this process may be found in [18].

The credit payoff system enables rules that, over time, assist in increasing
health and energy to be rewarded; those that decrease health and energy will
decrease in credit. The rationale being, that the next time rules have a chance
to bid, if they have been useful in the past, they’ll probably be useful in the
current situation.

The number of time steps between successive payoffs will be dependent on
how quickly or slowly the agent’s health is changing. For example, if a creature
is being attacked and losing health quickly, payoffs will be more frequent. The
rules involved in letting the agent get hit will also decrease in credit quickly
(hopefully soon being outbid by other rules that may prove more successful if
the agent is to survive).

Maintaining a list of rules that have been used since the previous payoff
allows rules that indirectly increase health to receive appropriate credit. For
example, while the rule to “eat when you find food” is a good one, you may
need to walk around and look for food first to find it. The rules for walking
and turning, although they decrease health in the short term, may result in
finding food. This increases health in the longer term. Overall, if such rules are
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helpful in increasing health, their credit will increase. A rule whose strength
falls to zero will be automatically removed from the agent’s rule table, since
it is on longer able to bid to be used.

As specified in Section 9.3.2, a rule’s strength is the product of its credit
and specificity. This is necessary, since rules that are more specific will be
used less often as they match fewer messages. Rules that are more specific
will have less chance to receive credit payoffs but still may be useful. When
two or more rules with the same credit match a message, the more specific
rule will have greater strength and thus will be selected over the more general
one.

Agent Evolution

The credit payoff system allows rules that have contributed to the agent’s
survival to be used more often. However, this will only select the best rules
from the currently available set. The problem remains as to how the agent
can discover better rules than those it currently uses.

Genetic algorithms follow a Darwinian metaphor in that they operate as a
search method over the phase space of possible phenotypes in a given system
— searching over the fitness landscape for individuals of higher fitness [12,21].
In the Eden system, a rule functions as the genetic unit of selection and
new rules are brought into an agent’s genome via the standard operations of
crossover and mutation (see the references for explanations of these terms).

Recall from Section 9.3.2 that mating is a possible action an agent can
perform. If two agents successfully mate, they produce a new agent whose
rule table is a combination of the parents’ tables. A proportion of rules from
each parent is selected, based on the strength of the rules — the rules of
highest strength from each parent being selected. These selected rules undergo
crossover and mutation operations, as per the schema system of Holland [14]
resulting in the creation of new rules. Mutation rates vary according to the
behavior of people experiencing the artwork in the exhibition space.

Since rules of highest strength are selected from each parent, and those
rules may have been discovered during the parents’ lifetime, the evolutionary
process is Lamarckian [4]. This design decision was used to allow more rapid
adaptation to changing environmental conditions — a necessary feature if
the agents’ in the artificial ecosystem are to adapt to the behavior of people
experiencing the work in real time.

9.3.3 Image

Representation of the entities of Eden is achieved using tiling patterns, loosely
based on Islamic ornamental patterns [13]. Only the representation of biomass
will be considered here. The visual representation of the biomass is based on
a 16-tile set. A tile is chosen for a particular cell based on the neighbor rela-
tionships of adjacent cells. For the purposes of tile selection, tiles are selected
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based on the binary occupancy condition of the cell’s neighbors, considering
only cells of the same type. For the 16-tile set, only immediate orthogonal cells
are considered — thus there are 16 possible configurations of neighboring cells.
Fig. 9.4 shows the individual tiles and the neighbor relation necessary for the
tile to be used. The resultant images formed by a grid of cells (illustrated in
Fig. 9.5) form a continuous mass of substance, as opposed to squares contain-
ing individual entities. These minimalist geometric textures suggest abstract
landscapes rather than the iconic or literal individual representations that
are common in many artificial life simulations. This design decision forms an
integral aesthetic component of the work.

0000
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10101001

00100001 0101 0111

1100

0110

11101011 1101

0011

1111

NESW

Fig. 9.4. Cellular tiling set for Eden’s biomass. Each cell considers the four im-
mediate neighboring cells (north, south, east, and west). The neighboring relations
determine the image used for each cell. A function returns the bit pattern represent-
ing the neighborhood state for the cell and the tile is selected based on the supplied
index. Four bits are required, each representing the four directions. The bits are
encoded NESW (from MSB to LSB). The symbols above each cell pattern shown
here illustrate the bit pattern and corresponding neighborhood relationships.

9.3.4 Sound

One of the key elements of Eden is the ability of agents to create and listen to
sound. A large proportion of sensor bandwidth is devoted to sound, allowing
orthogonal sensing of both frequency and sound pressure (volume). Some ba-
sic physical modeling is performed on sound pressure levels. However, many
physical sound propagation aspects are simplified in the interests of efficiency.

Sound Generation

Actuator messages requesting sound generation need to be converted into
a generated sound. As described in Section 9.3.2, actuator messages are
bit strings. A portion of the string encodes the sound generation command
(“sing”), the remainder the sound generation data (energy levels over a range
of frequency bands). The current implementation has three distinct frequency



9 Sonic Ecosystems 223

Fig. 9.5. This figure illustrates the visualization of the Eden world, showing rocks
(solid shapes), biomass (outline shapes), and agents (circular elements).

sing command sing data

actuator message

sound produced

frequency

vo
lu

m
e

L M H

Fig. 9.6. The “sing” actuator message contains two parts. The first is the command
requesting the agent to perform a sing operation; the remainder contains the sing
data: volume levels for three distinct frequency bands. Using three bits per frequency
band results in 29, or 512 distinct sounds. See also color plate.
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bands, each occupying one third of the total of the sound generation data for
the “sing” actuator message (see Fig. 9.6).

When an agent “sings” the spectral signature determined by the sing data
in the actuator message is registered for the current time step. In addition,
the same signature is used to drive a sonification process, so that people in the
exhibition space can hear sounds that correspond to the “singing” activities
of the agents. To drive this sonification process, the three frequency bands are
assigned labels L, M and H corresponding to low, medium, and high pitched
sounds (for example, the majority of spectral energy in the 100, 1000 and
10,000 Hz regions, respectively). When an agent makes a sound, the corre-
sponding selection from a precomputed library of sounds is triggered and sent
to the audio subsystem. The audio subsystem does basic sound spatialization
using the four-channel audio system that is part of the artwork. Sounds are
spatialized according to the position of the agent making the sound on the
screen. Thus, as an agent making sound moves across the screen, that sound
will appear to move with the agent to human observers. The audio subsystem
allows many agents to be making sound simultaneously.

Sound Reception

Agents have a significant amount of sensor bandwidth devoted to sound recep-
tion. An agent’s sound reception area is a forward-facing conical pattern that,
like the sound generation, is sensitive across three separate frequency bands
(see Fig. 9.7). Each band has the same propagation and reception pattern,
i.e., there are no frequency-dependent differences in the modeling.

At each time step, the conical reception area for each agent is checked for
any other agent that is singing within that area. A simple physical model [27]
controls the propagation of sound through the environment.‡ Sounds arriving
at the agent’s cell are summed on a per-frequency basis and the resultant
sensor message instantiated.

9.4 Interaction

The Eden system has a unique relationship between the physical and virtual
components of the system. As shown in Fig. 9.1, a series of infrared sensors§

are placed around the screens in the exhibition space. These sensors measure
‡ When sound propagates in a medium such as air at standard temperature and

pressure, the perceptual mechanism for loudness behaves in an exponential way, as
it does for humans. The relationship between distance and perceived levels is L =
20 log10(P/Po), where L is the sound pressure level in decibels (dB), Po a reference
pressure corresponding roughly to the threshold of hearing in humans [26].

§ The use of the term “sensors” here referrers to physical devices and should not
be confused with the sensors described in Section 9.3.2, which are virtual (i.e.,
simulated).
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listening agent

range of 
listening sensor

singing agents

world lattice

Fig. 9.7. The reception area of an agent. The listening agent will hear agents who
are making sound within the blue area only. A simple physical model controls the
perceptual volume levels for the agent.

distance. Each sensor has a range of approximately 150 cm. Data collected
from individual sensors are digitized in a data collection subsystem that is then
used to infer the presence and movement of people in the space. These data
are used to drive environmental parameters in the virtual simulation. Before
discussing the details of the mappings between sensor data and the simulated
environment, we will present a background discussion on the rationale for such
mappings.

9.4.1 The Problem of Aesthetic Evolution

Typically, genetic algorithms evolve toward finding maxima in fitness, where
fitness is some criterion that can be evaluated for each phenotype of the pop-
ulation. Many systems define an explicit fitness function that can be machine
evaluated for every phenotype at each generation [21].

Aesthetic evolution or aesthetic selection is a popular technique that re-
places the machine-evaluated fitness function with the subjective criteria of
the human operator. Aesthetic evolution was first used by Dawkins [10] in his
“Blind Watchmaker” software to evolve two-dimensional, insect-like shapes.
Aesthetic selection has been used to successfully evolve images [28, 29], dy-
namic systems [30], morphogenic forms [17, 33], even musical patterns and
structures [5]. Regardless of the system or form being evolved, aesthetic se-
lection relies on the user to explicitly select the highest fitness phenotypes at
each generation. Users typically evolve to some subjective criteria — often
described as “beautiful”, “strange” or “interesting” — criteria that prove dif-
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ficult to quantify or express in a machine representable form (hence the use
of the technique in the first place).

However, aesthetic evolution has two significant problems:

• The number of phenotypes that can be evaluated at each generation is
limited by both screen area (in the case of visual representation) and the
ability of people to perform subjective comparisons on large numbers of
objects (simultaneously comparing 16 different phenotypes is relatively
easy; comparing 10,000 would be significantly more difficult).

• The subjective comparison process, even for a small number of pheno-
types, is slow and forms a bottleneck in the evolutionary process. Human
users may take hours to evaluate many successive generations that in an
automated system could be performed in a matter of seconds.

What we would like is a system that combines the ability to subjectively
evolve toward phenotypes that people find “interesting” without the bottle-
neck and selection problems inherent in traditional aesthetic evolution.

9.4.2 Eden as a Reactive System

The solution to the problem described in the previous section is to map the
presence and motion data of people experiencing the artwork to the envi-
ronmental parameters of the virtual environment. Thus, the virtual world in
which sonic agents live and evolve is dependent not only on the simulated
qualities discussed so far, but also on the presence (or absence) of people
experiencing the work and their behavior within the exhibition space.

Eden has no explicit fitness function. Agents continue to be part of the sys-
tem based on how well they can survive and mate in the current environment.
If certain selection pressures are applied, such as food becoming scarce, only
those agents who can adapt and find food will prosper. By driving environ-
mental conditions from the presence and movement of people in the exhibition
space, agents must implicitly adapt to an environment that includes aspects
of the world outside the simulation.

In the current system, the following mappings are used:

• Presence in the real environment maps to biomass growth rates. The pres-
ence of people around the screen area affects the rate of biomass growth
in that local area of the Eden world. Areas with no people correspond to
a barren environment — little biomass will grow without the presence of
people in the real environment.

• Movement in the real environment maps to genotype mutation rates. The
greater the movement of people in the space, the higher the mutation rate
for rule evolution (see Section 9.3.2).

These mappings are based on certain assumptions. First, people will gen-
erally spend time experiencing something only if it interests them. In the
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context of experiencing an artwork, people generally may spend a short time
evaluating their interest in an artwork, but after a short time, if it no longer
interests them, they will leave. There may be other reasons for leaving, but in
general the duration of stay will have some relation to how “interesting” the
experience is.

Agents require food to survive. If people are in the real environment, then
food will grow at a more rapid rate. An agent who is making “interesting”
noises, for instance, would have a better chance of keeping a person’s atten-
tion than one who is not. Moreover, an agent making a progression of sounds,
rather than a just a single, repeating sound, is likely to hold a person’s atten-
tion even longer. Agents who encourage and hold a person’s attention in the
space implicitly give the environment a more plentiful food supply.

The movement of people in the space mapping to mutation rates is based
on the assumption that people will move over an area looking for something
that interests them and, when they find it, will stay relatively still and observe
it. Hence, the movement of people within the real space serves to inject “noise”
into the genome of agents who are close to the source of movement. Higher
mutation rates result in more variation of rules.¶ If an agent or group of agents
are holding the viewer’s attention, then less rule discovery is needed in the
current environment, whereas if people are continually moving, looking for
something “interesting”, this will aid in the generation of new rules.

Further details on the dynamics of this component of the system can be
found in [19].

9.5 Results

At the time of this writing, a number of exhibitions of the work have been
completed. Images from an exhibition of the work are shown in Fig. 9.8. A
typical exhibition may last several weeks, giving plenty of opportunity for
the agent evolutionary system to take into account the behavior of people
experiencing the work. Certain factors have a marked effect on this behavior
and need to be compensated for. For example, when the gallery is closed,
there will be no people in the space anyway.‖

Analysis of the rules agents use show that sound is used to assist in mating
as would be expected [36] and with the influence of people, sound is used in
other ways as well. Once the environmental pressures from audience behavior
are incorporated into the system, the generation of sound shows a marked
increase and analysis of the rules discovered shows that making sound is not
only used for mating purposes.
¶ Most child rules that mutate will not be “better” than the parent rule, but in

general, the use of mutation does provide the possibility for the system to discover
rules that would not be possible by crossover alone.

‖ Without compensation for gallery opening hours, the entire population dies out
each night!
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Fig. 9.8. Images of Eden in operation. See also color plate.

9.6 Conclusion

This chapter has described a novel evolutionary system, where agents make
use of sound to assist in survival. While the main impetus and methodologies
are based around the development of an artistic system, it is hoped that some
of the ideas presented here may be of interest to those interested in artificial
life from other perspectives or with different agendas and applications.

In summary, a system has been produced that attempts to integrate the
open-ended nature of synthetic evolutionary systems into a reactive virtual
space. The approach used here has been to measure components of the real
environment, incorporating them into that of the virtual one, thus enabling
a symbiotic relationship between virtual agents and the artwork’s audience,
without need for explicit selection of phenotypes that engage in “interesting”
behavior.

Further information, including sample sound recordings and video docu-
mentation of the work, is available online at http://www.csse.monash.edu.
au/~jonmc/projects/eden.html.
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Exploring Cellular Automata with MCell

Mirek Wojtowicz

Cellular automata (CA) are dynamical systems that are discrete in space
and time, operate on a uniform, regular grid, and are characterized by local
interactions. Each point in a regular spatial grid, called a cell, can have any
one of a finite number of states. The states of the cells in the grid are updated
according to a local rule — the state of a cell at a given time depends only
on its own state and the states of its nearby neighbors at the previous time
step. All cells on the grid are updated synchronously [3].

Cellular automata were conceptualized by John von Neumann [1] and
Stanislaw Marcin Ulam [2] in the 1940s. von Neumann was mainly interested
in self-reproducing automata, while Ulam liked to invent pattern games using
a computer at Los Alamos. CA were next studied by several other scientists,
but they got very popular thanks to John Horton Conway, who in 1970 de-
fined and with his students explored the famous Conway’s Game of Life, and
Martin Gardner, who published the game in Mathematical Games column in
Scientific American the same year.

The articles in the Mathematical Games column were a direct inspiration
for programming MCell.

10.1 What Is MCell?

MCell (Mirek’s Cellebration) [4] is a free, 32-bit Windows application al-
lowing active exploration of a wide range of one-dimensional (1D) and two-
dimensional (2D) cellular automata. Starting with version 4.20, MCell became
open source and is distributed under the GNU General Public License (GPL).

MCell has not been programmed by a scientist, but rather by a program-
mer, amazed by the beauty and richness of CA, unpredictable evolution of
chaotic states, and precision of designed patters. Because of this, MCell dif-
fers from programs like DDLab where the stress has been put on analyses
of the dynamics. MCell focuses on visual exploration. It offers a number of
easy-to-use tools for browsing patterns, changing neighborhoods’ parameters
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and rules, zooming and panning the animation, or designing new patterns.
Furthermore, an open interface made it possible to add research instruments
with successful application of the program in scientific experiments with CA.

10.1.1 Program Interface

MCell is a native Windows application and as such can be comfortably han-
dled using the mouse. Experienced users will also find keyboard shortcuts to
virtually all functions, including the board panning and zooming. Figure 10.1
presents the main window of the program, with an experiment running within.

Fig. 10.1. MCell’s user interface.

The most often accessed functions are available from a set of toolbars
that can be freely placed, can be docked to any program window edge, or
can remain floating. All program functions are available from the main menu.
Nearly each menu option has a corresponding keyboard shortcut assigned. The
program package contains a large number of sample patterns for all rules, so
high priority has been set for comfortable browsing and loading the patterns.
Most of the operations on files can be accomplished using the File Manager
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— a vertical panel placed to the left of the main area. The status bar shows
the most important information about the program and experiment state, like
the cycle number, count of alive cells, active rules family and the rule name,
focused cell coordinates and state, and the universe details.

10.1.2 Some History

The first version of MCell was designed in 1999 as a very simple program al-
lowing users to play with Conway’s Game of Life on a 100×100-cell board, but
it quickly started to evolve. The author spent much time exploring available
Internet resources and expanding the program to cover more general CA. The
program soon became known, and the CA community started to contribute
to the resources collected in the package. A milestone in MCell’s development
was meeting with David Griffeath [5], who selected the program as a tool for
his studies on new 1D CA — Traffic and Aggregation-Fragmentation. This
motivated further development of MCell and resulted in a number of new
generalisations, features, and scientific tools. Soon Rudy Rucker [6] found
MCell to be a good candidate for carrying over his older experiments imple-
mented in CelLab, thus initiating the development of external DLLs in MCell.
External DLLs were the feature that allowed users to run even a wider range
of CA in MCell, including nondeterministic experiments. There were many
more people who had significant influence on today’s shape of the program.
Among them were John Elliott, Tim Tyler, George Maydwell, Johan Bontes,
and others, too many to list all of them here. But one more fact needs men-
tioning: In 2002 MCell was used by Stephen Wolfram’s team when working
on “A New Kind of Science” [7].

10.1.3 Other Popular CA Simulators

There exist many other CA simulators, available for various platforms. Some
of them are listed below.

• “CelLab” by Rudy Rucker and John Walker [13] (DOS, Windows)
• “Cellsprings” by John Elliott [14] (Java)
• “Cellular” by J. Dana Eckart [15] (Unix, Windows)
• “Collidoscope” and “SARCASim” by George Maydwell [16] (Windows)
• “Discrete Dynamics Lab” by Andy Wuensche [17] (DOS, Unix, Linux,

Solaris)
• “Life32” by Johan Bontes [18] (Windows)
• “StarLogo” [19] (Java)
• “Tim Tyler’s CA simulators” collection [20] (Java)
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10.2 Description of the Software

MCell is capable of running CA on a board up to 50,000×5,000-cell large.
Cells can take up to 256 distinct states. Experiments can be run in Moore,
von Neumann, hexagonal, extended Moore or von Neumann (with range up to
10) and Margolus cell neighborhoods. The universe can be optionally toroidal
(wrapped at edges). MCell supports both deterministic and nondeterministic
rules.

The current version of MCell (4.31) contains 340 built-in cellular automata
rules, organized in 15 families [8]. Families do not organize rules by their
behavior, but rather by the way the rules are being defined using the program’s
user interface. Families also reflect important fundamental types of cellular
automata, like 1D binary, cyclic, or Larger than Life. Nearly every family can
define CA rules falling into all four general Wolframs classes. MCell allows
defining new rules either by parameterizing existing families, or by writing
custom evaluators using high-level languages like C or Pascal.

10.2.1 Areas of Application

MCell has several areas of application. Based on user feedback, the program
is most often used in education, research, art, patterns design, rules exploring,
and entertainment.

MCell contains a huge built-in library of classic CA rules and patterns,
useful in education. Some user-interface and output features (like dynamic
zoom, adjustable cells shape, customizable grid, single-step and slow motion)
were especially designed to make the program comfortable for being used
during presentations. Open OLE automation interface made it possible to
prepare fully automatic presentations using any tool offering scripting, like MS
Word. Self-contained and documented experiment files can be easily collected
from students or exchanged.

Researchers use the built-in analyzing tools, like density statistics, popula-
tion log, transitions, correlations, or joint correlations. Open OLE automation
interface and external DLLs make it possible to construct new measurement
tools. Comfortable input/output functions allow users to quickly rerun exper-
iments with changed conditions.

Artists capture beautiful images of running experiments and enrich them
by applying custom color palettes.

Pattern designers use many graphics editor-like tools, allowing for the
designing and manipulating of patterns: free-hand drawing, lines, rectangles,
ovals, filling, block copy and move, copy & paste, or unlimited undo and redo.
Period checker and ships detector tools make it easier to find objects with
long periods. Thanks to the text format used for storage, designed patterns
can be published on Usenet or exchanged in e-mails.

Rules explorers experiment with existing families of CA and/or develop
custom DLLs to implement new rules. The Rules setup dialog window allows
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to fine-tune parameters of all built-in CA rules and apply them to running
experiments to see the results. The “Random parameters” function allows
users to find new, interesting rules using the coin-tossing method. Although
not many explorers admit it, the function has proved to be useful.

MCell also serves well the entertainment purpose. Watching the evolu-
tion of patterns of many rules is delightful (and addictive; the author still
remembers long hours spent just watching the StarWars rule evolution) and
doesn’t need any CA background. Thanks to complying to Windows software
interface standards, even nonexperienced users can easily browse the provided
ready-to-run experiments.

10.2.2 Supported Cellular Automata Rules

The currently supported families of CA rules are 1D binary CA, 1D totalistic
CA, cyclic CA, general binary, generations, larger than life, life, Margolus,
von Neumann binary, rules tables, special rules, user DLLs (with weighted
generations subfamily), vote for life, and weighted life. MCell defines a com-
pact textual notation of rules for each family in order to be able to save
self-contained pattern files. Such pattern files define the layout and state of
living cells, the rule, universe size, and optional experiment parameters. Full
details of the families’ notation can be found in the corresponding sections
of [8].

A brief discussion on all families of rules follows.

1D Totalistic CA

Type: 1D, totalistic, or outer totalistic with optional decay.
This family allows exploring a wide range of 1D totalistic CA. The neigh-

borhoods can be specified in a range of 1–10, allowing up to 21 cells to be
considered. One can specify independently the necessary totals of alive neigh-
bors for cells to survive and to be born, in a similar to “Life” S,B manner.
It is also possible to specify if the center cell should be taken into account or
ignored. No references to 1D totalistic CA have been found on the Internet.
The family design and nearly all included rules come from the author. Rules
supported by the 1D totalistic CA family fall into all four Wolframs classes
and are of exceptional beauty.

Notation: [R]ange, [C]ount of states, [M]idle cell activity, [S]urvival, [B]irth
Example: R3,C0,M1,S3,S6,S7,B0,B1 (Champagne)

1D Binary CA

Type: 1D, binary, with optional decay.
1D binary CA are probably one of the most explored cellular automata.

Some rules of this family, like the famous chaotic rule 110, appeared in many
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Fig. 10.2. Sample rules from the 1D totalistic CA family.

publications. The neighborhood in 1D binary CA family can be defined in
a range of 1 to 4, allowing up to nine cells to be considered. Rules specify
the state of new cells for each possible configuration of existing cells found
in the defined neighborhood. MCell’s extension of this classical family is the
possibility to define optional decay states.

Notation: [R]ange, [W]olfram’s hexadecimal code, [H] optional count of
states

Example: R2,W9D041AC8 (Solitons F)

Fig. 10.3. Sample rules from the 1D binary CA family.

Cyclic CA

Type: 2D, cyclic totalistic, in extended Moore and von Neumann neighbor-
hood.
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Cyclic cellular automata (CCA) exhibit complex self-organization by it-
eration of an extremely simple update rule. A specified number of colors are
arranged cyclically in a “color wheel.” Each color can only advance to the
next, the last cycling to 0. At each update a cell’s color advances by 1 if
there are at least threshold cells of the next color within its neighbor set of
size Range in extended Moore or von Neumann neighborhood. These simple
dynamics exhibit complex self-organization starting from randomness. This
class of CA was discovered and explored by David Griffeath [5]. The family
also supports the simpler Greenberg-Hastings model, where only cells in state
0 must have the “threshold” count of neighboring 1’s to advance to the next
state, all other cells advance automatically.

Notation: [R]ange / [T]reshold / [C]ount of states / [N]eighborhood type
/ [GH]optional Greenberg–Hastings model

Example: R2/T4/C5/NM/GH (GH Macaroni)

Fig. 10.4. Sample rules from the cyclic CA family.

General Binary

Type: 2D, binary, in Moore and von Neumann neighborhood, with optional
decay.

General binary family allows defining a wide range of rules in both Moore
and von Neumann neighborhood. In contrast to totalistic CA, general binary
rules distinguish not only the count of neighboring cells, but also their location,
thus allowing for defining anisotropic (configuration-specific) rules.

Notation: [C]ount of states / [N]eighborhood type / [S]urvival (com-
pressed) / [B]irth (compressed)

Example: C0, NN, S3babbabbabba3b, B7ab3aba3b (Banks)
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Fig. 10.5. Sample rules from the general binary family.

Generations

Type: 2D, outer totalistic with decay, in Moore and von Neumann neighbor-
hood.

Generations is perhaps the most beautiful family of rules in MCell. The
family rules are very close to those from Life, with one addition: the cells’
history. Cells that would simply die in “Life” are only getting older in Gen-
erations. They cannot give birth to new cells, but they occupy the space of
the lattice, thus changing the rules radically. The author defined the family
as a generalization of several existing rules extending the Game of Life —
BelZhab, Brian’s Brain, Frogs, RainZha, Sticks, and Swirl. Today the family
contains over 40 interesting rules. A special option in the Rules setup dia-
log box (see Fig. 10.22) allows specifying many Generations rules using Rudy
Rucker’s popular NLUKY format.

Notation: Survival / Birth / Count of states
Example: 345/2/4

Larger than Life

Type: 2D, totalistic or outer totalistic with or without decay, in extended
neighborhood.

This family extends Conway’s Game of Life to larger neighborhoods given
by Range and one of two available neighborhoods. A birth occurs at x if the
population within its neighborhood (x included or not) lies in the interval
[BMin, BMax]. Site x stays occupied if the count is in [SMin, SMax]. Thus
Conway’s Game is range 1 Box with values [3,3], [3,4], respectively. Addition-
ally, the history known from the Generations family can be defined.

Notation: [R]ange, [C]ount of states, [M]idle cell, [S]urvival, [B]irth, [N]eigh-
borhood type

Example: R4,C0,M1,S41..81, B41..81,NM (Majority)
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Fig. 10.6. Sample rules from the generations family. See also color plate.

Fig. 10.7. Sample rules from the Larger than Life family. See also color plate.
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Life

Type: 2D, outer totalistic, in Moore neighborhood.
Life rules family allows defining the widest-known 2-bit outer totalistic

cellular automata, including the mythical Conway’s Game of Life.
Notation: Survival / Birth
Example: 23/3 (Conway’s Game of Life)

Fig. 10.8. Sample rules from the Life family.

Margolus

Type: 2D, binary, in Margolus neighborhood.
Margolus neighborhood CA family uses the simplest partitioning scheme

where the lattice is divided in isolated blocks of size 2×2. Each block moves
down and to the right with the next generation, and then moves back. Margo-
lus neighborhood rules define transitions applied to cells found in 2×2 blocks.
This simple partitioning scheme turned out to be very useful for modeling
physical systems. Another important property of the Margolus neighborhood
is that it allows for very easy creation of reversible rules.

Notation: Mx,Dn1;n2;n3;..;n16, where M is family subtype and D is tran-
sitions of all 16 possible neighborhood configurations

Example: MS,D0;8;4;3;2;5;9;7;1;6;10;11;12;13;14;15 (BBM, Billiard Ball
Machine)

Neumann Binary

Type: 2D, binary, in von Neumann neighborhood.
Neumann binary family of rules allows defining binary (configuration-

specific) rules in von Neumann neighborhood. MCell’s implementation allows
defining rules with up to four states of cells.
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Fig. 10.9. Sample rules from the Margolus family.

Notation: Count of states, transition table
Example: 201101001100101101001011001101001

Fig. 10.10. Sample rules from the von Neumann binary family.

Rules Tables

Type: 2D, totalistic or outer totalistic rules table, in Moore neighborhood.
Rules tables family allows users to define totalistic rules by creating special

transitions tables. Rules tables remove all limits from totalistic rules, allowing
users to define any rules, where states of cells can advance, but can also jump,
forward and backward. The idea of the rules table is simple. It describes what
new state should get the cell having state S, providing it has N firing neighbors.

Notation: [N]eighborhood type, [M]idle cell activity, [F]irst bitplane firing,
[T]able

Example: 1,0,1,0,0,0,1,0,0,0,0,0,0,2,2,1,1,2,2,2,2,2,0,2,2,2,1,2,2,2,2,2 (Histo-
rical Life)
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Fig. 10.11. Sample rules from the Rules tables family.

Special Rules

Type: depends on the rule.
The special rules family contains nonstandard rules that cannot fit into

any other family and cannot be programmed as external DLLs due to violation
of syntax or MCell principles. One of these special rules is “Traffic CA” by
David Griffeath and Larry Gray [5]. It’s a probabilistic 1D rule that cannot be
programmed as an external DLL because it can modify two cells when certain
neighborhood conditions are met.

Traffic CA notation: TRCA, acceleration, braking, congested, driving
Example: TRCA,0.11,0.05,0.1,0.1,0.2,0.2 (TRCA)

Fig. 10.12. Sample rules from the Special rules family.

User DLLs

Type: 1D and 2D, any neighborhood supported in MCell.
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User DLLs family allows MCell users to program rules otherwise impossi-
ble to specify in the program. External DLLs can be programmed using any
language and compiler producing 32-bit Windows standard DLL files. For
detailed instructions of programming user DLLs, refer to [9]. Starting with
version 4.20 of MCell, it is also possible to program user DLLs that define
new parameterized families of rules. One such family, Weighted Generations,
is described in Section 10.2.2.

Notation: DLL name, optional parameters specific to the DLL
Example: WeightedGen,C6,SW0;2;1;1;1;1, PW1;1;1;1;1;1;1;1, RS4;5, RB5

Fig. 10.13. Sample rules from the User DLLs family. See also color plate.

Vote for Life

Type: 2D, totalistic, in Moore neighborhood.
The Vote for Life family is by far the simplest family of rules in MCell. Its

rules specify only how many alive neighbors (including the cell itself) must
exist for the cell to be “on.” Since cells consider their own state, the total
number of neighbors can be 9 (not 8 as in “Life” rules). Every rule in this
family can be also represented in the “Life” syntax. For example, Vote 46789
is equivalent to Life S35678/B4678.

Notation: states
Example: 46789 (Vote 4/5)
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Fig. 10.14. Sample rules from the Vote for Life family.

Weighted Generations

Type: 2D, totalistic or outer totalistic parameterization with optional decay,
in Moore, von Neumann, and hexagonal neighborhood.

The Weighted Generations family, defined and explored in 2001 by Brian
Prentice, is a natural extension of the Generations family. The extension sim-
ply permits any state to contribute to the neighbor’s count using weights
associated with each state. If a weight is n, and the corresponding state oc-
curs m times in a cells neighborhood then the neighbor count is incremented
by n × m. If a state’s weight is 0, then that state does not contribute to the
neighbor count. Position weights identical to those used in the Weighted Life
family are also supported.

The Weighted Generations family is implemented as a configurable user
DLL, supported by MCell starting with version 4.20. The rule setup is con-
trolled by DLL’s own custom dialog box.

Notation: [C]ount of states, [SW]weights of states 0..C-1, [PW]position
weights, [RS]survivals, [RB]births

Example: WeightedGen,C4,SW0;2;0;1,PW1;1;1;1;1;1;1;1, RS6;7;8;9;10;11,
RB4 (WG Rule004)

Fig. 10.15. Sample rules from the Weighted Generations family.
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Weighted Life

Type: 2D, totalistic or outer totalistic parameterization with optional decay,
in Moore, von Neumann and hexagonal neighborhood.

Weighted Life allows users to apply different weights to particular neigh-
bors, including the cell itself. The weight of neighbors can be set within a
range of −256 to 256. When calculating the count of neighbors, the sum of
weights of alive neighbors is taken into account. The sum should be within a
range of −2048 to 2048. Another extension of Weighted Life is the History,
known already from the Generations family.

Weighted Life is one of the more complex families of rules in MCell. The
rules of many other families (Life, Generations, Vote for Life, General binary)
can be realized in it. For example, in order to realize Life rules, it’s enough
to assign 1 to all neighbors, 0 to the center cell and to switch off the history.
One can also define hexagonal rules by defining NE and SW neighbors as 0.

Notation: NW, NN, NE, WW, EE, SW, SS, SE, ME-weights, HI-states,
RS-survival, RB-birth

Example: NW0, NN1, NE0, WW1, ME0, EE1, SW0, SS1, SE0, HI7, RS2,
RB1, RB2, RB3 (Cyclish)

10.2.3 Cellular Automata Patterns

One of the goals when programming MCell was to create a standard syntax
for exchanging cellular automata patterns between different programs and
operating systems. A text format has been selected as it is most portable, and
patterns can even be embedded into e-mail and posted on newsgroups and
forums. Several popular formats for storing Conway’s Life patterns (LIFE1.05,
LIFE1.06, RLE, XLife, ProLife, dbLife) already existed; however, none was
suitable for storing patterns of general cellular automata. Finally, the RLE
format was selected as a base and was next extended into MCL format [10].

The following listing shows the contents of a simple file defining a pattern
for the Worms rule:

#MCell 4.00
#GAME Generations
#RULE 3467/25/6
#SPEED 20
#BOARD 300x300
#WRAP 1
#D
#D The universe of Worms.
#D
#D Discovered by Mirek Wojtowicz
#D 1999.04.08



248 Wojtowicz

Fig. 10.16. Sample rules from the Weighted Life family.

#L ..DE.DED$.CE.E.DD$BDBABBC$.CACCEC$.A.BD.B$..B3C$3.3A
#L $..4A$3.AA31$8.AA$7.4A$7.3A$7.3CB$6.B.DB.A$6.CECCAC$
#L 6.CBBABDB$5.DD.E.EC$5.DED.ED

The above listing contains only the very basic elements of a pattern file.
Full MCL format supports many more keywords and advanced features [10].

A large collection of patterns for supported rules has been collected. Many
people have focused on particular rules and created amazing and beautiful
patterns. The author has spent a lot of time browsing all available resources
and recreating patterns stored on BBS and FTP servers, mentioned on Usenet,
or embedded into older DOS-based software packages. The full collection is
available in the MCell package. All readers are kindly requested to submit
their collections and references to unsupported cellular automata resources.
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10.2.4 Interesting Rules and Experiments

The full package of MCell contains a huge collection of more than 1700 CA
patterns, illustrating over 30 years of research on CA rules. Many patterns
were constructed with great accuracy by their authors to show special features
of particular CA rules. To encourage the reader to browse the collection,
several experiments are presented here.

Conway’s Life

This is the CA rule that has started it all. It was defined in 1970 by the
mathematician J. H. Conway, who was searching for a cellular automaton to
be on the boundary between unbounded growth and decay into dullness. The
rules are really simple:

• If a dead cell has 3 living neighbors, it will become alive in the next
generation.

• If an alive cell has 2 or 3 living neighbors, it survives; otherwise, it dies in
the next generation.

It was proven that Conway’s Life CA chaotic behavior is unpredictable and it
could be used to build a universal Turing machine and even a universal con-
structor. The contrast between the simplicity of this rule and the complexity
of the behavior it produces is a constant source of wonder, which is reflected in
patterns designed by enthusiasts from all over the world. The patterns contain
ships (moving objects), oscillators, guns, reflectors, breeders, and even much
more complicated structures, like the binary adder shown in Fig. 10.17.

Fig. 10.17. Conway’s Life rule — binary adder.
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The presented binary adder was designed by David Buckingham in 1975
and next optimized by Mark Niemec. On the pattern two glider streams enter
the lower right, representing the binary numbers 1110 and 0011. The sum,
10001, appears from the middle right side after about 1000 generations. The
gliders go in and come out backward — that is, 1’s place first. That way, the
numbers to be added can be arbitrarily large.

WireWorld Rule

WireWorld is one of the oldest and well-explored cellular automata rules. The
automaton was designed by Brian Silverman and was included in his program
PHANTOM FISH TANK in 1987. A. K. Dewdney publicized WireWorld in his
“Computer Recreations” column (Scientific American, January 1990). Cells
in WireWorld have one of four possible states: background (0), electron head
(1), electron tail (2), and wire (3). The rules for updating cells are

• Background (0) always remains background.
• Electron head (1) always changes to electron tail.
• Electron tail (2) always changes to wire.
• Wire (3) changes to electron head if one or two of its neighbors are electron

heads.

These simple rules allow fairly complicated logic circuits to be constructed.
The fascinating pattern presented in Fig. 10.18 comes from a “Cellular” pack-
age by Dr. J. Dana Eckart [15]. MCell is equipped in a large number of Wire-
World patterns.

Fig. 10.18. WireWorld rule — sample circuit.
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Cyclic Cellular Automata

The next experiment (Fig. 10.19) was created using the cyclic CA rule by
David Griffeath [5] and illustrates a complex self-organization. Starting from
a uniform random distribution over 14 colors, droplets of color waves nucleate
fairly quickly. Soon virtually all of the initial “debris” are overrun by the
droplets. As the last vestiges of debris are eliminated, vortices emerge from
the disordered wave fronts, creating diamond-shaped spirals. By about time
300 the array is completely covered with periodic spirals, out of phase with
one another, and not all of minimal period 14. Typically it takes much longer
for the period 14 spiral cores to displace their feebler competitors.

Fig. 10.19. Cyclic cellular automata — complex self-organization.

Rug

The last experiment presented here, Rug (Fig. 10.20), falls into the “beauty”
category. It was defined by Rudy Rucker [6]. Rug rules are averaging rules
using the full range of 256 possible states. To update itself in a Rug rule,
every cell takes four steps:

1. Every cell calculates the sum of its eight nearest neighbors’ states.
2. Every cell calculates the average neighbor state by dividing the sum by

eight and throwing out any remainder.
3. Every cell computes its new state by adding an increment (usually the

increment is 1) to the average neighbor state.
4. As a final step, new state is taken modulo 256.

The image presented in Fig. 10.20 was created from a single cell seed.
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Fig. 10.20. Rug rule — beautiful kaleidoscopic images.

10.3 Program Usage

The program usage is rather intuitive and shouldn’t pose significant difficulties
to even nonexperienced users of MS Windows. After automatic installation
the program can be conveniently launched from the created desktop icon or
from Menu Start. For easy browsing of pattern files the program registers the
.MCL extension in the system, thus allowing users to open patterns directly
from the Windows Explorer, Web pages, or e-mails.

All program commands are available from the main menu. Most often used
options are also available directly from toolbars, keyboard shortcuts, and local
menus opened with the right mouse button click.

10.3.1 Browsing Cellular Automata Patterns

Browsing collected cellular automata patterns is probably the most popular
and enjoyable application of MCell, so much effort has been put into making
it easy and comfortable.

Most input/output operations on pattern files can be realized using the
built-in File Manager — the vertical panel to the left of the program window.
The main function of the File Manager is opening patterns. Right-clicking on
any pattern file in the files panel will reveal additional functions — append-
ing patterns to the active one, viewing pattern descriptions, extracting rule
definitions only, getting only the cell’s configuration without changing the ac-
tive rule, and many more. In general, local menus opened with the right-click
over the objects offer many object-related functions. Additionally, files can
be loaded using the standard Open dialog, can be dropped from the Win-
dows Explorer, can be pasted from the Clipboard or can be even opened from
Internet locations.
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The program offers many view manipulation functions. In addition to stan-
dard zooming and panning, it is also possible to fit the universe to the current
window size or activate the auto-fit feature that will fit the world into the
screen so that one can see the entire world to the maximum zoom possible
during the whole experiment.

10.3.2 Designing Cellular Automata Patterns

MCell is also a comfortable pattern editor that offers drawing tools similar
to those known from the graphical programs: a freehand pen, an eraser, tools
for drawing line sections, circles, squares and rectangles, or the fill tool. Rect-
angular portions of patterns can be marked and freely manipulated: moved,
replicated, rotated, mirrored, inverted, frozen, or copied to the Clipboard. The
color palette allows fast active-state switching.

One very important feature for pattern designers is Undo. Undo can take
snapshots of the experiments at specified times (either in terms of seconds, or
generations), after specified events took place, or manually. The Undo stack
can be viewed and can be undone to a certain point instantly. One can decide
what events (from 13 predefined) can cause the Undo stack to auto-expand.
Undone snapshots do not disappear — they can be restored with the Redo
button or from the snapshots list. A snapshot is always taken of Generation
0, enabling the user to “Replay” the whole pattern repeatedly. The count of
stored Undo snapshots is limited by memory.

Before saving, designed patterns can be provided with comprehensive de-
scriptions telling, for example, the purpose of the experiment or how it should
be performed. A pattern’s descriptions can be viewed using the MCell’s File
Manager without opening the pattern.

Initial patterns are essential to exploring CA rules. Some rules (for ex-
ample, Conway’s Life) show most interesting results only when applied to
carefully designed patterns. Other rules (for example, StarWars) produce fas-
cinating output also when applied to random patterns. The built-in, fully
configurable Seeding dialog box offers many ways of initializing the universe
or its portions with random or designed patterns. Selected randomizing /
seeding parameters can be saved with any name and later restored with one
click. The dialog box offers many sophisticated area / coloring / density /
mode selections and statistical (Bernoulli) and exact seeding, as shown in
Fig. 10.21.

10.3.3 Exploring Cellular Automata Rules

One of the key features of MCell is exploring existing and designing new
CA rules. The collected library of rules is briefly described in Section 10.2.2.
Existing rules can easily be activated either by selecting them directly from
the lists available on the status bar (Fig. 10.1) and in the Rules setup dialog
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Fig. 10.21. Seeding dialog box.

box (Fig. 10.22), or simply by loading pattern files, which also contain full
rules definitions.

The Rules setup dialog box (Fig. 10.22) is a central point for designers of
rules. The dialog box is nonmodal and offers access to the main MCell window
without closing it, which allows for easy exploring of the existing rules and
testing of the new rules.

The exact layout of the Rules setup dialog box depends on the selected
family. Figure 10.22 shows the dialog with the “Hexrule b2o” rule of the
“Weighted Life” family active. For rules in this family one can define the
count of states (also known as cell size), “weights” of all eight neighbors and
of the center cell, the survival and births totals. Regardless of the active rules
family, a text version of the currently active rule is shown. Rules can be defined
either by changing their parameters using available widgets (which update the
text version), or by modifying the text version (which updates the widget’s
state). This way, rules can even be copied and pasted into the text box.

Patterns explorers often use the “Random rule” function. It does not select
from available rules, but rather allows creating new rules for the active family
using random parameters. A great number of really impressive rules have been
discovered this way.

Additional to the rule and universe parameters, the program offers several
possibilities for adding subtle disturbances to the running experiments, han-
dled by a Diversities dialog box. The Diversities dialog box allows users to
enable/disable any combination of four available disturbances: Noise (adding
random alive cells), Black hole (a square area of the lattice with permanent
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Fig. 10.22. Rules customization dialog box.

state 0), SuperNova (a square area of the lattice with permanent state 1),
and an Input stream (a sequence of cells that will be injected at a specified
location). It is possible to save the state of diversities with the pattern files.

10.3.4 Program Configuration

The program is highly configurable, from the user interface to cell shapes and
colors, board parameters, open/save functionality, or Undo settings. Separate
settings dialog tabs allow associating common CA files extensions with the
program. One can also decide how and what to save with the pattern. A
screenshot of the color customization screen is shown in Fig. 10.23.

10.3.5 Analyses

MCell is equipped with a number of tools performing basic analytical examina-
tions. The simplest tool, Period checker, allows for an easy and fast detection
of oscillators and ships and, when found, measures their periods and speeds.
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Fig. 10.23. color customization screen.

The Period checker allows users to run experiments with full speed, without
updating the view of the pattern.

In some experiments the number of cells in each state is more important
than the actual pattern. Figure 10.24 illustrates the basic density statistics
window. The dialog box shows the states distribution of the current pattern,
and some statistical information, like the board size, current count of cells,
and maximum count of cells in the current run of the pattern. The statistics
window can stay open and be automatically updated while the pattern is
running.

Another option allows users to create a population log that saves statis-
tics on the states as the CA updates. This text file can be easily imported
into applications like Microsoft Excel (using semicolons as data delimiter).
Figure 10.25 illustrates the dynamics of the 2-cell seeding of the StarWars
rule.

More advanced analyses can be performed with two other tools — Tran-
sitions and Correlations. The Transitions tool performs a calculation on how
often the given site (x, y) changes the state from state c1 to state c2. Up to
nine transitions can be tracked simultaneously. The (pair spatial) Joint Cor-
relations tool measures the proportion of times t that cell (x1, y1) takes on
the value c1 AND cell (x2, y2) takes on the value c2. The Centered (normal-
ized) Correlations tool performs a slightly more complicated calculation that
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Fig. 10.24. Density statistics.

Fig. 10.25. Sample population graph.
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indicates positive, negative, or 0 correlations. As in Joint Correlations one
computes the AND proportion above. But then one subtracts the product:
“proportion of times (x1, y1) takes on the value c1” × “proportion of times
(x2, y2) takes on the value c2.” For instance, if the pair of sites takes on the
ordered pair of values (1, 2) 5% of the time, the first site is a 1 25% of the time,
and the second site is a 2 20% of the time, then this normalized correlation
is 0. The Correlations dialog allows performing both analyses simultaneously.
It also allows users to measure up to nine different correlations at the same
time.

If the built-in analytical tools are not sufficient, new ones can be created
that will communicate with the program using the OLE Automation interface.

10.4 Extending MCell

MCell is an open CA platform offering programmers and power users many
possibilities for extending the program capabilities. It’s possible to write your
own rules overcoming MCell limitations, create utilities automating often per-
formed tasks, program analyzing plugins, demo shells, and many others. Fi-
nally, the source code (Delphi 7) of the program is available, which allows
users to extend the program in virtually unlimited directions.

10.4.1 Programming User Rules

User rules are programmed as standalone DLLs that are dynamically loaded
by MCell at run time. One can compile them using any Windows 32-bit com-
piler supporting stdcall (or pascal) method of passing parameters. Provided
examples show programming user DLLs in Microsoft Visual C 6.0, Borland
Delphi 4.0/5.0, and in Borland C++ Builder 3.0/4.0. Despite many efforts,
we didn’t succeed yet with programming compatible DLLs with Visual Basic.
One should, however, have no such problems with other compilers capable of
creating DLLs.

The user DLLs mechanism is very powerful. It is even possible to program
interactive rules that read parameters from disk files or prompt the user for
input. The whole user DLLs specification is available at [9], as well as step-by-
step procedures for creating simple DLLs in many programming environments.
The MCell package contains full sources of 25 user DLLs.

10.4.2 Extending the MCell Interface

The automation interface implemented in MCell makes it possible for external
applications to control MCell through its exposed methods and properties.
Almost every 32-bit programming language can be used to write applications
controlling MCell. The most popular ones are Visual Basic, Visual C++,
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Borland Delphi, Borland C++ Builder, or even Microsoft Word and Excel
(through macros).

MCell exposes nine objects (theApplication, theUniverse, theWindow, theP-
alette, theSelection, theSeeding, theUndo, theTransitions, theCorrelations),
each with many properties and methods. For a full documentation of MCell’s
Automation interface and samples, refer to [12].

The following simple example shows an MS Word Basic macro, which
starts MCell, creates a new pattern, activates the Game of Life rule, draws 60
cells in a line, and runs the created pattern.

Dim objUni As Object
Dim objWin As Object
Public Sub RunLineOfCells()
’create Automation objects, start MCell
Set objUni = CreateObject("MCell.theUniverse")
Set objWin = CreateObject("MCell.theWindow")
’prepare an empty universe
objUni.Clear
’activate the Conway’s Game of Life rule
objUni.Game = "Life"
objUni.Rule = "23/3"
’add 60 cells in a line
Dim i As Integer
For i = 0 To 59
Call objUni.SetCell(i, 0, 1)

Next i
’redisplay the board
objWin.Refresh
’run
objUni.Run

End Sub

10.4.3 Going Java

As a companion to Windows MCell, a Java applet has been developed [11]
that allows the running of nearly all rules supported by MCell under the
control of other operating systems. The applet is programmed in a very basic
version of Java, AWT 1.1, and has been confirmed to run under all versions of
Windows, and under Linux and Macintosh using browsers supporting AWT
1.1. The applet handles all rules from 13 CA families and is equipped with
over 1500 patterns. Although not as rich in features as MCell, MJCell also
allows users to experiment with new patterns and rules.

Figure 10.26 shows the main screen of the MJCell applet.
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Fig. 10.26. MJCell’s main screen.

10.5 Summary

After five years of development MCell has become a mature software allowing
active exploration of a wide range of CA. It has not only brought satisfaction
to the author, but has also allowed users to perform many scientific exper-
iments, has been a source of enjoyment for many people, and has become
popular among students all over the world. The last category of users may
not necessarily share my enthusiasm about MCell since I receive lots of des-
perate e-mails asking me for help with their school assignments.

MCell isn’t perfect, however, and will never be finished. Still in 2004 a new
version was released that removes some universe restrictions, thus allowing for
even more experiments to be run. The program is in use in many countries,
often using languages other than English, so full localization of the program
is planned. Some volunteers have also started porting the program to Linux.
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Discrete Dynamics Lab:
Tools for Investigating Cellular Automata and

Discrete Dynamical Networks

Andrew Wuensche

Networks of sparsely interconnected elements with discrete values and updat-
ing in parallel are central to a wide range of natural and artificial phenomena
drawn from many areas of science; from physics to biology to cognition; to
social and economic organization; to parallel computation and artificial life;
to complex systems in general.

“Decision-making” networks like this are applied as idealized models in
the study of complexity and emergence, and in the behavior of networks
in general, including biomolecular networks such as neural and genetic net-
works [3,4,6,10,12]. The networks themselves have intrinsic interest as mathe-
matical, physical, dynamical, and computational systems with a large body of
literature devoted to their study [1, 7, 8]. Because the dynamics is difficult to
describe by classical mathematics, computer simulation is required, and there
is a need for simulation software for nonexperts in programming to model
networks in their particular fields.

Discrete Dynamics Lab (DDLab) is able to construct these networks
(Fig. 11.1) and investigate many aspects of their dynamical behavior. DD-
Lab is interactive graphics software, widely used in research and education,
for studying cellular automata (CA), random Boolean networks (RBN) [4],
and discrete dynamical networks in general (DDN), where the “Boolean” at-
tribute is extended to multivalue. There are currently versions of DDLab for
Mac, Linux, Unix, Irix, and DOS. The source code is written in C. It may be
made available on request, subject to various conditions.

As well as generating space-time patterns in one, two, or three dimensions,
DDLab is able to construct attractor basins, graphs that link network states
according to their transitions (Fig. 11.2), analogous to Poincaré’s “phase por-
trait” that provided powerful insights in continuous dynamics. A key insight
is that the dynamics on the networks converges, thus fall into a number of
basins of attraction. This is the network’s memory, its ability to hierarchically
categorize its patterns of activation (state-space), as a function of the precise
network architecture [10].
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Fig. 11.1. Hypothetical networks of interacting elements (size n=100) with an
approximate power-law distribution of connections, both inputs (k) and outputs,
are represented by directed links (with arrows). Nodes are scaled according to k and
average k � 2.2. Left: A fully connected network. Right: A network made up of five
weakly interlinked n=20 subnetworks or modules.

Fig. 11.2. The basin of attraction field of a binary (value range v=2) Cellular
automaton (CA), k=3, n=14, rule 193, with equivalent basins suppressed.

Relating this to space-time patterns in CA, high convergence implies order,
low convergence implies disorder or chaos [8]. The most interesting emergent
structures occur at the transition, sometimes called the “edge of chaos” [5,13].

DDLab has recently been generalized for multivalue logic. Up to eight
values (or colors) are now possible, instead of just Boolean logic (two values
— 0,1). Of course, with just two values selected, DDLab behaves as before [15].
Multivalues open up new possibilities for dynamical behavior and modeling.

Another major update is an option to constrain DDLab to run forward-
only, to generate space-time patterns for various types of totalistic rules, re-
ducing memory load by cutting out all basin of attraction functions. This
allows larger neighborhoods (max-k=25, instead of 13). In 2D the neighbor-
hoods are predefined to make hexagonal as well square lattices. Many inter-
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esting cellular automaton rules with “life”-like and other complex dynamics
can be found in totalistic multivalue rule-space, in 3D as well as 2D [16].

DDLab is an applications program, it does not require writing code. Net-
work parameters and the graphics presentation can be flexibly set, reviewed
and altered interactively, including changes on-the-fly. There are built-in tools
for constructing and manipulating networks. A wide variety of measures, data,
analysis, and statistics are available. For small networks, it is possible to
compute and draw basins of attraction, and measure their convergence and
stability to perturbation. For larger networks, basins of attraction can be in-
vestigated statistically. This chapter provides some general background and
gives the flavor of DDLab with a range of examples; the figures shown were all
produced within DDLab. The operating manual [14] describes all of DDLab’s
many functions and includes a “quick start” chapter. DDLab is available at
www.ddlab.org and www.cogs.susx.ac.uk/users/andywu/ddlab.html.

DDLab remains free shareware for personal, noncommercial, users. Any
other users, including commercial users, companies, government agencies, re-
search or educational institutions, must register and pay a license fee (see
www.ddlab.org/ddinc.html).

11.1 Basins of Attraction
Figure 11.4 provides a summary of the idea of state-space and basins of at-
traction in discrete dynamical networks, sometimes called decision-making
networks. The dynamics depends on the connections and update logic of each
element, which “decides” its next value based on the values of the few ele-
ments that provide its inputs, which might include self-input. The result is a
complex web of feedback making the dynamics difficult to treat analytically,
despite the simplicity of the underlying network. In fact, although the dy-
namics is deterministic, the future is in general unpredictable. Understanding
these systems relies chiefly on computer simulation.

11.2 Discrete Dynamical Networks
Acronym glossary:

• CA: Cellular automata: nearest-neighbor wiring and a homogeneous rule.
• RBN: random Boolean networks: random wiring and heterogeneous rules, pos-

sibly heterogeneous neighborhoods k.
• DDN: discrete dynamical networks: including RBN, but allowing a value range

v ≥ 2. CA and RBN are special cases of DDN.

A discrete dynamical network in DDLab can be imagined as a software
simulation of a collection of light bulbs that transmit information to each
other about their color state (on/off for binary), and change color according
to the arriving signals. More abstractly, the network is made up of elements or
“cells,” connected to each other by directed links or “wires,” where a wire has
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1 2 3 P J V% S%
1: 94 6 . 5 100 61.8 94.0
2: 12 44 4 3 60 28.6 73.3
3: 15 3 22 2 40 9.6 55.0

Fig. 11.3. The basin of attraction field of one of the n=20 subnetworks shown in
detail in Fig. 11.1. The binary rules were assigned at random. State-space (size 220 �
1.05 million) is partitioned into three basins of attraction. The attractor states are
shown as 5×4-bit patterns. The table, and diagram lower right, show the probability
of jumping between basins due to one-bit perturbations of their attractor states. P
= attractor period, J = possible jumps (P × n), V% is the basin “volume” as a
percentage of state-space, and S% is the percentage of self-jumps for each basin.
All three basins are relatively stable because S > V . The lower right diagram, the
“attractor jump-graph,” shows the same data graphically; node size reflects basin
volume, link thickness percentage jumps, arrows the direction, and the short stubs
self-jumps.

an input and output terminal. A cell takes on a value (or color) and transmits
this value down its output wires. Its value is updated as a function of the
values on its input wires. Updating is usually done in parallel, in discrete
“timesteps,” but may also be sequential in a predetermined order.

This is the system in a nutshell. It remains to set up the network according
to its various parameters.

• The value-range, v. The range of values available to a cell. In other words,
the number of possible internal states of the cell, or colors, or letters in its
“alphabet.” In older versions of DDLab this was limited to just 2 values
(0,1), but can now be selected from 2 to 8.

• The number of network elements, the system size, n.
• How the elements are arranged in space: in a 1D, 2D, or 3D lattice with

axial dimensions i, j, h, or some other arrangement. This network “geom-
etry” may have real meaning (depending on the “wiring scheme” below),
or it may simply allow convenient indexing and representation.
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For a binary network size n, an example of one of its states
B might be 1010 . . . 0110. State-space is made up of all 2n

states, the space of possible bitstrings or patterns.

Part of a trajectory in state-space, where C is a successor of
B, and A is a predecessor (pre-image) of B, according to the
dynamics on the network.

The state B may have other pre-images besides A, the total
is the in-degree. The pre-image states may have their own
pre-images or none. States without pre-images are known as
garden-of-Eden states.

Any trajectory must sooner or later encounter a state that
occurred previously — it has entered an attractor cycle. The
trajectory leading to the attractor is a transient. The period
of the attractor is the number of states in its cycle, which may
be just one — a point attractor.

Take a state on the attractor, find its pre-images (excluding
the pre-image on the attractor). Now find the pre-images of
each pre-image, and so on, until all garden-of-Eden states are
reached. The graph of linked states is a transient tree rooted
on the attractor state. Part of the transient tree is a subtree
defined by its root.

Construct each transient tree (if any) from each attractor
state. The complete graph is the basin of attraction. Some
basins of attraction have no transient trees, just the bare “at-
tractor.”

Now find every attractor cycle in state-space and construct
its basin of attraction. This is the basin of attraction field
containing all 2n states in state-space, but now linked accord-
ing to the dynamics on the network. Each discrete dynamical
network imposes a particular basin of attraction field on state-
space.

Fig. 11.4. State-space and basins of attraction.

• The number of input wires, k, to each cell, or the “k-mix” if k is not
homogeneous. k may vary from 0 to 25. Maximum k is reduced for greater
value-range v.

• The “wiring scheme”: defining the location of the output terminals of each
cell’s input wires, the element’s “neighborhood.” CA have a homogeneous
“nearest-neighbor” (local) neighborhood throughout the network. RBN
and DDN may have a completely arbitrary wiring scheme (a “pseudo-
neighborhood”). The wiring scheme can be assigned at random, or may
be biased in some way, for example, by confining an element’s pseudo-
neighborhood close to itself. The wiring scheme also defines boundary con-
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Fig. 11.5. The basin of attraction field of a multivalue v=3 n=6, k=3 CA. The
look-up table is 120201201020211201022121111 (1886122584a655 in hex). Just the
8 nonequivalent basins are shown from a total of 23, and attractor nonequivalent
states are shown as a 2D pattern. State-space = vk = 36 = 729.

ditions. CA wiring usually requires periodic boundary conditions, where
an array’s edges wrap around to their opposite edges.

• The “rule scheme”: the rules or logical functions in the network. Each
element applies a rule to its inputs to compute its output. Usually this
is made into a look-up table, the “rule table,” listing the outputs of all
possible input patterns. CA have a homogeneous rule scheme, the same rule
throughout the network. RBN and DDN may have a completely arbitrary,
heterogeneous, rule scheme, or again, it may be biased in some way.

DDlab is able to create networks with any combination of these parame-
ters, and graphically represent and analyze both the networks themselves and
the dynamics resulting from the changing patterns as the complex feedback
web unfolds. Network updating may be sequential as well as parallel, noisy as
well as deterministic.

11.3 Space-Time Patterns and Basins of Attraction

DDLab has two alternative ways of looking at network dynamics: local dynam-
ics, running the network forward, and global dynamics, which entails running
the network backward.

Running forward generates the network’s space-time patterns from a given
initial state. Many alternative graphical representations of space-time pat-
terns, and methods for gathering and analyzing data, are available to illus-
trate different aspects of local network dynamics, including “filtering” to show
up emergent structures more clearly as in Fig. 11.8.

Running “backward” generates multiple predecessors rather than a trajec-
tory of unique successors. This procedure reconstructs the branching subtree
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Ordered rule 01Dc3610 Complex rule 6c1e53a8 Chaotic rule 994a6a65

Fig. 11.6. Ordered, complex, and chaotic dynamics of 1D binary CA are illustrated
by the space-time patterns and subtrees of three typical k=5 rules (shown in hex).
The bottom row shows the space-time patterns from the same random initial state.
The bit-strings (n=100) of successive time steps (represented by white and black
dots) are shown horizontally one below the other; time proceeds down. Above each
space-time pattern is a typical subtree for the same rule. In this case n=40 for the
ordered rule, and n=50 for the complex and chaotic rules. The root states were
reached by first iterating the system forward by a few steps from a random initial
state, then tracing the subtree backward. Note that the convergence in the subtrees,
their branchiness or typical in-degree, relates to order-chaos in space-time patterns,
where order has high, chaos low, convergence.

of ancestor patterns rooted on a particular state. States without predeces-
sors are disclosed, the so-called “garden-of-Eden” states, the leaves of the
subtrees. Subtrees, basins of attraction (with a topology of trees rooted on
attractor cycles), or the entire basin of attraction field can be displayed as
directed graphs in real time, with many presentation options, and methods
for gathering/analyzing data. The attractor basins of “random maps” may be
generated, with or without some bias in the mapping.

Attractor basins represent the network’s “memory” by their hierarchi-
cal categorization of state-space; each basin is categorized by its attractor
and each subtree by its root. Learning/forgetting algorithms allow attach-
ing/detaching sets of states as predecessors of a given state by automatically
mutating rules or changing connections.
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Fig. 11.7. Space-time pattern of the 2D game of Life [2], (v=2, k=9, n = 55× 55)
in a 3D isometric projection. 2D time steps stack below each other and are shown
as if looking up at a transparent shaft. Left: Starting from the “r-pentomino” seed.
Center: Rescaled to the smallest scale, new seeds set at intervals. Upper right: A 2D
state (time step) colored according to value. Lower right: The same state colored
according to the neighborhood look-up. See also color plate.

11.4 DDLab User Interface

DDLab is an interactive applications program that does not require writ-
ing code. The graphical user interface allows setting, viewing, and amending
network parameters, and the various presentation and analysis functions, by
responding to prompts or accepting defaults.

The prompts present themselves in a main sequence for the most com-
mon 1D CA parameters. and also in a number of context-dependent pop-up
windows for DDN, 2D and 3D networks, and various special settings.

A flashing cursor prompts for input. Just enter return if in doubt, or the
appropriate input from the keyboard. Press q, backspace (or the right mouse
button) to revise. return (or the left mouse button) to accept and move on to
the next prompt or routine. Just return (or left mouse button) automatically
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Fig. 11.8. A space-time pattern of a complex 1D CA, v = 2, k = 5, hex rule e9 f6 a8
15, n = 150. About 360 time steps, and some analysis shown by default: Left: The
space-time pattern colored according to neighborhood look-up, and progressively
“filtered” on-the-fly at three times, suppressing the background domain to show
up “gliders” more clearly. Center and right: The input-entropy plot of the look-up
frequency histogram, relative to a moving window of 10 time steps.

selects a default. To backtrack to the preceding prompt, revise, or interrupt a
running process such as space-time patterns or attractor basins being gener-
ated, press q or the right mouse button. To quit DDLab immediately (except
for DOS), enter Ctrl-q at any prompt, followed by q. Otherwise backtrack
with q to the start of the program.

11.5 Initial Choices

Some initial choices in the prompt sequence set the stage for all subsequent
DDLab operations, There is a choice to constrain DDLab to run forward-only
for various types of totalistic rules; this reduces memory load by cutting out
full look-up tables and all attractor functions; it allows larger neighborhoods,
up to max-k=25 instead of max-k=13.

If DDLab is not constrained as above, there is a further choice; either to
show the whole basin of attraction field, or alternatively to show something
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Fig. 11.9. The basin of attraction field of a small random Boolean network,
n=13. The 213 = 8192 states in state space are organized into 15 basins, with
attractor periods ranging between 1 and 7, and basin volume between 68 and
2724. The arrow points to the basin shown in more detail in Fig. 11.10. See also
color plate.

that requires an initial state: a single basin of attraction, a subtree, or just
space-time patterns.

The value-range v can be set from 2 to 8. If v=2, DDLab behaves as in
the old binary version. Note that as v is increased, the size of max-k will
diminish, but this also depends on whether DDLab was constrained to run
forward-only for totalistic rules. For example, for v=8 and unconstrained,
max-k=4 to handle the large look-up table; if constrained, max k=11.

11.6 Setting the Network Size

The network size n for 1D is set early on in the prompt sequence, but this
is superseded if a 2D (i, j) or 3D (i, j, h) network is selected in a subsequent
prompt window.

For space-time patterns, the network size is limited to n=65,025, based
on the maximum size of a 2D network (i, j)=255×255. This limit also applies
for single basins and subtrees, though in practice much smaller sizes are ap-
propriate, except when generating subtrees for maximally chaotic CA “chain
rules”.
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Fig. 11.10. One of the basins of attraction in Fig. 11.9, indicated by an arrow. The
basin links 604 states, of which 523 are garden-of-Eden states. The attractor period
is 7. One attractor state is shown in detail as a bit pattern. The direction of time is
inwards from garden-of-Eden states to the attractor, then clockwise.

For basin of attraction fields, however, the maximum network size, max-n,
is much smaller, and depends on the value-range v as set out below:

v: 2 3 4 5 6 7 8
max-n: 31 20 15 13 12 11 10

11.7 The Neighborhood k or k-mix

The size of the neighborhood k, the number of inputs each cell receives, can
vary from 0 to max-k. Max-k itself depends on the value-range v and also
on whether or not DDLab was constrained to run forward-only for totalistic
rules. This is set out ahead, showing also the size of the corresponding look-up
tables S (Fig. 11.15).

k can be homogeneous, or there can be a mix of k-values in the network.
The k-mix may be set and modified in a variety of ways, including defining
the proportions of different k’s to be allocated at random in the network, or
a “scale-free” distribution. A k-mix may be saved/loaded but is also implicit
in the wiring scheme. Figure 11.14 shows some predefined neighborhoods,
designed to maximize symmetry. In 2D the layout can be either square or
hexagonal.
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Fig. 11.11. Top: The space-time pattern of a 1D complex binary CA where inter-
acting gliders emerge [13], n=700, k=7, 308 time steps are shown from a random
initial state. Center: The basin of attraction field for the same rule, n=16. The 216

states in state space are connected into 89 basins of attraction, but only the 11
nonequivalent basins are shown, with symmetries characteristic of CA. Bottom: A
detail of the second basin in the basin of attraction field, where states are shown as
4 × 4 bit patterns. See also color plate.
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Fig. 11.12. The DDLab window showing an evolving 2D CA space-time pat-
tern, in this case on a hexagonal grid. n = 88 × 88, v=3, k=6. The k-totalistic
rule (0022000220022001122200021110, 0a0282816a0254 in hex) first makes gliders
emerge, but spirals eventually take over. When the space-time pattern run is in-
terrupted (with q), top right windows appear, giving the rule details and interrupt
options; on-the-fly options are listed on the the right. A k-totalistic look-up table
depends on just the frequency of the v=3 colors (2,1,0) in the k=6 neighborhood,
as shown below

black: 2: 6 5 5 4 4 4 3 3 3 3 2 2 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0 -
red: 1: 0 1 0 2 1 0 3 2 1 0 4 3 2 1 0 5 4 3 2 1 0 6 5 4 3 2 1 0 - frequencies

white: 0: 0 0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5 6 -
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
0 0 2 2 0 0 0 2 2 0 0 2 2 0 0 1 1 2 2 2 0 0 0 2 1 1 1 0 - rule table

Fig. 11.13. The cell value color key window that appears when the value-range is
selected, here for v=8. The values themselves are indexed from 7 to 0.



276 Wuensche

1D neighborhoods: for even k the extra asymmetric cell is on the right.

2D neighborhoods k=4-25: top row square; bottom row hex; black indicates the default.

3D neighborhoods

Fig. 11.14. Predefined 1D, 2D, and 3D neighborhoods. For 1D and 2D, k ≤ 25
if totalistic-rules-only are set, otherwise k ≤ 13. For 3D k ≤ 13. For 2D the lat-
tice/neighborhood can be either square or hexagonal.

unconstrained constrained

------------- -----------

max look-up max look-up

v k S v k S

- -- ----- - -- -----

2 13 8162 2 25 26

3 9 19683 3 25 351

4 7 16484 4 25 3276

5 6 15629 5 25 23551

6 5 7776 6 17 26334

7 5 16807 7 13 27132

8 4 4096 8 11 31824

Fig. 11.15. Look-up tables S.
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11.8 Wiring

The network’s wiring scheme, its connections, has default settings for regular
CA (for 1D, 2D, and 3D), with periodic boundary conditions, for each neigh-
borhood size, as shown in Fig. 11.14. Wiring can also be set at random, with
a wide variety of constraints and biases, or by hand. The predefined neighbor-
hoods in this case act as pseudo-neighborhoods to which the rule is applied.
A wiring scheme can be set and amended just for a predefined subnetwork
within the network, and may be saved/loaded.

Random wiring can be constrained in various ways, including confinement
within a local patch of cells with a set diameter in 1D, 2D, and 3D. Part of the
network only can be designated to accept a particular type of wiring scheme,
for example, rows in 2D and layers in 3D. The wiring can be biased to connect
designated rows or layers.

The network parameters can be displayed and amended in a 1D, 2D, or
3D graphic format as in Fig. 11.16, in a “spreadsheet” as in Fig. 11.26, or as
a network graph which can be rearranged in various ways, including dragging
nodes with the mouse as in Figs. 11.1 and 11.28.

Fig. 11.16. RBN/DDN network wiring: Cells anywhere in the network are wired
back to each position in a “pseudo-neighborhood.” Left: 1D: The wiring is shown
between two time steps. Center: 2D: k=5. Right: 3D: k=7.

11.9 Rules

The most general update logic or rule is expressed as a full look-up table.
However, there are useful subsets of the general case, two types of totalistic
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Fig. 11.17. A 2D CA space-time pattern, on a hexagonal grid. n=88x88, v=3,
k=6. The k-totalistic rule 0022000220022001122200021210 (0a0282816a0264 in hex)
allows the emergence of gliders, glider-guns, and self-reproduction by glider collisions
[16]. This look-up table differs by just one value from the spiral rule in Fig. 11.12.

Fig. 11.18. The neighborhood matrix for a full look-up table for n=2 k = 6. All 64
possible neighborhoods from 111111 to 000000 (63 to 0) are shown vertically. The
position of each neighbor is indexed 5-0. Assigning an output to each neighborhood
makes the look-up table with 64 bits.

rules, and “outer” versions of each type. The simplest, a t-totalistic rule,
depends on the sum of values in the neighborhood. k-totalistic rules depend
on the frequency of each value (color) in the neighborhood (see Fig. 11.12). If
k=2, these two types are identical.

In addition, both types of totalistic rules can be made into outer-totalistic
rules (also called semitotalistic), where a different rule applies for each value
of the central cell; the Game of Life is one such rule.

For these various types of totalistic rules, DDLab can be constrained to run
forward-only. This allows greater [v, k] networks than for a full look-up table.
Transformations and mutations then apply to just the constrained look-up
table.
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Fig. 11.19. A 3D CA space-time pattern, n=40×40×40. v=3, k=6 (nearest neigh-
bors in 3D). The k-totalistic rule 0200001020100200002200120110 (200484200a0614
in hex) allows the emergence of gliders and other complex structures as in the 2D
example in Fig. 11.17.

If DDLab remains unconstrained, the totalistic rules can still be selected,
but they will be transformed into a full look-up table (which allows attractor
basins). Transformations and mutations will then apply to this full look-up ta-
ble. Within the full look-up table there are also subsets of rules that can be au-
tomatically selected at random, including symmetric rules, maximally chaotic
“chain rules,” Altenberg rules (Fig. 11.29), and others. The rules can be bi-
ased by various parameters, lambda, Z, and canalizing inputs. The “Game of
Life,” “majority,” and other predefined rules or rule biases can be selected.

A network may have one homogeneous rule, as for CA, or a rule mix as for
RBN and DDN. The rule mix can be confined to a subset of preselected rules.
Rules may be set and modified in a wide variety of ways, in decimal, hex, as
a rule-table bit pattern, at random, or loaded from a file. A rule scheme can
be set and amended just for a predefined subnetwork within the network and
may be saved/loaded.

Rules may be changed into their equivalents (by reflection and nega-
tive transformations) and transformed into equivalent rules with larger or
smaller neighborhoods. Rules transformed to larger neighborhoods are useful
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to achieve finer mutations (see Fig. 11.25). Rule parameters λ and Z, and the
frequency of canalizing inputs in a network, can be set to any arbitrary level.

11.10 The Initial Network State, the Seed

An initial network state, the seed, is required to run a network forward and
generate space-time patterns. A seed is also required to generate a single
basin, by first running forward to find the attractor, then backward from each
attractor state.

A seed is, of course, required to generate a subtree, by simply running
backward from the seed. However, for most CA rules, most states in state
space have no predecessors; they are the leaves of a subtree, “garden-of-Eden”
states, so from a random seed its usually necessary to run forward by a few
steps to penetrate the subtree before running backward, and an option is
provided to do this. This was done to generate the subtrees in Fig. 11.6.

A basin of attraction field does not require setting a seed, because appro-
priate seeds are automatically provided.

Fig. 11.20. Drawing a 2D initial state (seed) n=88×88, the number of colors v=8.
Select the color 0 to (v − 1); draw with the mouse or keyboard. The image/seed
can be moved, rotated, and complemented. Subpatterns saved earlier can be loaded
into specified positions within the main pattern. In this example there are 8 colors.
Drawing the seed also applies for 1D and 3D.

As in setting a rule, there is a wide variety of methods for defining the
seed: in decimal or hex, as a bit pattern in 1D, 2D, or 3D, at random (with
various constraints or biases), or loaded from a file. The bit pattern method
is a mini-paint program, using the keyboard to set colors (values), and the
mouse or keyboard to draw those colors as in Fig. 11.10.
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20 × 20 × 20,
random k7 rule from a singleton seed

40 × 40 × 40,
k7 totalistic code=11101000

Fig. 11.21. Examples of 3D CA, v=2 k=7. The projection is axonometric seen
from below, as if looking up at the inside of a cage. Cells are shown colored accord-
ing to neighborhood look-up for a clearer picture (instead of by value: 0,1). Left:
n=20×20×20, with a randomly selected rule. The initial state is a “singleton seed”,
a single on cell in an otherwise empty array. Right: n = 40×40×40 (the maximum
size DDLab supports). The initial state was set at random, but with a bias of 45%
of on cells.

11.11 Networks of Subnetworks

It is possible to create a system of independent or weakly coupled subnetworks
(as in Fig. 11.1), either directly, or by saving smaller networks to a file, then
loading them at appropriate positions in a base network. Thus a 2D network
can be tiled with subnetworks, and 1D, 2D, or 3D subnetworks can be inserted
into a 3D base network.

The parameters of the subnetworks can be totally different from the base
network, provided the base network is set up appropriately, with the right
attributes to accommodate the subnetwork. For example, to load a DDN into
a CA, the CA may need be set up as if it were a DDN. To load a mixed-
k subnetwork into single-k base network, k in the base network needs to be
at least as big as the biggest k in the subnetwork. Options are available to
set up networks in this way. Once loaded, the wiring can be fine-tuned to
interconnect the subnetworks.

A network can be automatically duplicated to create a total network made
up of two identical subnetworks. There is a function to see the difference
pattern (or damage spread) between two networks from similar initial states.
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Fig. 11.22. Space-time patterns of a binary 1D CA (n=24, k = 3, rule 90). Twenty
four time steps from an initial state with a single central 1. Two alternative pre-
sentations are shown. Left, cells by value, Right, cells colored according to their
look-up neighborhood.

11.12 Presentation Options for Space-Time Patterns

Many options are provided for the presentation of space-time patterns. Again,
many of these settings can be changed on-the-fly.

Cells in space-time patterns are colored according to their value, or alter-
natively according to their neighborhood at the previous time step, the entry
in the look-up table that determined the cell’s value. A key press will toggle
between the two. Space-time patterns can be filtered to suppress cells that
are updated according to the most frequently occurring neighborhoods, thus
exposing “gliders” and other structures, as in Fig. 11.8.

The presentation can be set to highlight cells that have not changed in the
previous x generations, where x can be set to any value. The emergence of
such frozen elements (order) depends on “canalizing inputs,” and is applied
in Kauffman’s RBN model of gene regulatory networks [3, 4].

A 1D space-time pattern may be presented in successive vertical sweeps, or
may be continuously scrolled. 2D networks can be toggled between square and
hexagonal layout. 2D networks can also be displayed with a time dimension
(2D+time) in a 3D isometric projection, as is Fig. 11.7 for the “Game of
Life”. 3D networks are presented within a 3D “cage” (Figs. 11.19 and 11.21).
The presentation of space-time patterns can be switched on-the-fly between
1D, 2D, 2D+time, and 3D, irrespective of their native dimensions. DDLab
automatically unravels or bundles up the dimensions.

There are many other on-the-fly options, including skipping time steps,
reversing to previous time steps, changing the scale of space-time patterns,
changing the seed, rule/s, wiring, and the size of 1D networks.

Concurrently with these standard presentations, space-time patterns can
be displayed in a separate window according to the network graph layout. This
can be rearranged in any arbitrary way, including various default layouts. For
example, a 1D space-time pattern can be shown in a circular layout.
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Fig. 11.23. The DDLab screen showing a basin of attraction field. This example is
for a binary 1D CA, n=15, k=5 totalistic code 53. To achieve this layout, a pause
was selected after each basin, and the position and spacing of basins were amended
on-the-fly.

11.13 Presentation Options for Attractor Basins

Options for attractor basins allow the selection of the basin of attraction field,
a single basin (from a selected seed), or a subtree (also from a seed). Because
a random seed is likely to be a garden-of-Eden state, to generate subtrees an
option is offered to run the network forward a given number of steps to a new
seed before running backwards. This guarantees a subtree with at least that
number of levels.

Options (and defaults) are provided for the layout of attractor basins, their
size, position, spacing, and type of node display (as a spot, in decimal, hex, or
a 1D or 2D bit pattern, or none). Regular 1D and 2D CA produce attractor
basins where subtrees and basins are equivalent by rotational symmetry. This
allows “compression” of basins (by default) into nonequivalent prototypes,
though compression can be turned off. Attractor basins are generated for a
given system size, or for a range of sizes. As attractor basins are generating,
the reverse space-time pattern can be simultaneously displayed.
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Fig. 11.24. The basin of attraction field (in Fig. 11.9) with each basin redrawn
within the nodes of the attractor jump-graph. The jump-graph shows the proba-
bility of jumping between basins due to single bit-flips to attractor states. Nodes
representing basins (shown inside each node) are scaled according the number of
states in the basin (basin volume). Links are scaled according to both basin vol-
ume and the jump probability. Arrows indicate the direction of jumps. Short stubs
are self-jumps. Note that the jump-graph itself can be suppressed, making this an
alternative, flexible method for positioning basins.

An attractor basin run can be set to pause to see data on each transient
tree, each basin, or each field. Any combination of these data, including the
complete list of states in basins and trees, can be saved to a file.

Normally a run will pause before the next “mutant” attractor basin, but
this pause may be turned off to create a continuous demo of new attractor
basins. A “screensave” demo option shows new basins continually growing at
random positions.

11.14 Filing

DDLab allows filing a wide range of internally defined file types, including net-
work parameters, data, and the screen image. Network parameters and states
can be saved and loaded for the following: k-mix, wiring schemes, rules, rule
schemes, wiring/rule schemes, and network states. Data on attractor basins,
at various levels of detail, can be automatically saved. A file of “exhaustive
pairs,” made up of each state and its successor, can be created.
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Various data including mean entropy and entropy variance of space-time
patterns can be automatically generated and saved. This allows a sorted sam-
ple of CA rules to be created, discriminating between order, complexity, and
chaos [13], as in Fig. 11.31. A large collection of complex rules, those fea-
turing “gliders” or other large-scale emergent structures, can be assembled.
Pre-assembled files of CA rules sorted by this method are provided with DD-
Lab.

The screen image is saved and loaded using an efficient homemade com-
pressed format that is only applicable within DDLab. Alternatively, the DD-
Lab window or part of it can be saved and printed using any external screen
grabber.

11.15 Mutations

Fig. 11.25. Thirty-two mutant basins of attraction of the v=2, k=3 rule 195 (n=8,
seed all 0s). Top left: The original rule, where all states fall into just one very regular
basin. The rule was first transformed to its equivalent k=5 rule (f00ff00f in hex), with
32 bits in its rule table for finer mutations. All 32 one-bit mutant basins are shown.
If the rule is the genotype, the basin of attraction can be seen as the phenotype.

As well as on-the-fly changes to presentation, a wide variety of on-the-fly
network “mutations” can be made.

When running forward, key-press options allow mutations to wiring, rules,
and current state. A number of “complex” CA rules (with glider interactions)
are provided as files with DDLab, and these can be activated on-the-fly.

When running backwards and attractor basins are complete, a key press
will regenerate the attractor basin of a mutant network. Various mutation
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options can be preset, including random bit-flips in rules and random rewiring
of a given number of wires. Sets of states can be specified and highlighted
in the attractor basin to see how mutations affect their distribution. The
complete set of one-bit mutants of a rule can be displayed on a single screen
as illustrated in Fig. 11.25.

Fig. 11.26. The wiring matrix for a mixed k network with random wiring. n=14,
k=2-13, with binary rules. k-12...0, indexes columns, n-13...0, indexes rows. The
column on the left shows the “out-degree” of each cell, the number of output wires
that link to it, also shown as a histogram. If rules have been set, they are shown in
hex (as much as will fit) on the right, in the column “rule(hex).” It is possible to
move around the wiring matrix as in a spreadsheet to change wiring settings.

Fig. 11.27. The 1D wiring graphic, showing wiring to a block within a 1D network.
k=5, n = 150. The block was defined from cells 60–80. Revisions to rules and wiring
can then be confined just to the block. The 1D wiring graphic can also be shown as
a circle. The “active cell” (109) is still visible and can be moved as usual.
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11.16 Network Architecture

DDLab provides methods for reviewing and amending network architecture:
both wiring and rules: from the wiring matrix (Fig. 11.26) and from the net-
work architecture graphic (Fig. 11.27), which can be displayed in 1D, 2D, or
3D. The network’s connections and rules can be examined, changed, and tai-
lored to requirements, including biased random settings to predefined parts of
the network. These are very flexible methods, and for RBN/DDN it is usually
easier to set up a suitable dummy network initially, then tailor it here.

Network connectivity measures from the network architecture graphic in-
clude the following:

• Average k (inputs), and the number of reciprocal links, and self-links.
• Histograms of the frequency distribution of inputs (i.e., k), outputs, or

both (i.e., all connections) in the network.
• The recursive inputs/outputs to/from a network element, whether direct

or indirect, showing the “degrees of separation” between elements.

11.17 The Network Graph

Another method of reviewing network architecture is an adjacency matrix
and network graph (see Figs. 11.3 and 11.28) that looks just at the network
connections, nodes linked by directed edges. It does not allow changes to
the underlying network, but includes flexible methods for representing the
network, and rearranging and unraveling its graph.

For example, single nodes, connected fragments, or whole components can
be dragged with the mouse to new positions with “elastic band” edges. Frag-
ments depend on inputs, outputs, or both, and the distance of fragment links
from a node can be defined.

Dragging can include the node + its immediate links (step 1), the node +
immediate links + their immediate links (step 2), etc. The average directed
shortest path and nondirected small world distance can be calculated. Arbi-
trary 1D, 2D, and 3D blocks can be dragged. Nodes with the fewest links can
be automatically moved to the outer edges. This makes it possible to unravel
a graph. The preprogrammed graph layouts available are a circle of nodes, a
spiral, or 1D, 2D, or 3D. The graph can be rotated, expanded, contracted,
and various other manipulations can be performed. The graph layout can be
saved/loaded. An “ant” can be launched into the network that moves accord-
ing to the link probabilities (as in a Markov chain) keeping a count of node
hits.
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2D 8x8, k=5 3D 6x6x6, k=6, with a vertical slice
dragged from the center

2D 6x6, k=6, dragging node 14 and
its step=1 inputs

the network (left) broken by disconnecting
some nodes, a component was dragged and
rotated

Fig. 11.28. Network graphs of a 2D and 3D CA. Top left: a 2D CA. Top right: a 3D
CA, an axonometric projection seen from below as if looking up into a cage. A verti-
cal slice has been defined and dragged from the graph. Bottom left: a 2D CA where
the links follow a hexagonal lattice, showing a node and its 1-step inputs dragged
out, and Bottom right: various manipulations to the graph. Note that breaking and
creating new connections affect only the graph, not the underlying network, which
can be restored.

11.18 Static Parameters Measures

Various static parameter measures on rule look-up tables include the λ-
parameter and equivalent P -parameter, the Z-parameter, which is generalized
for multivalue, and the (weighted) average λ and Z for mixed rule networks;
the frequency of canalizing “genes” and inputs [3, 4], and Post functions.

Single rules or a rule-mix can be tuned to adjust any of these measures to
any arbitrary level.

11.19 Measures on Space-Time Patterns

Some measures on space-time patterns are listed here:

• The rule-table look-up frequency histogram in a moving window of time
steps, and its entropy plot (Fig. 11.8). This is the basis of the method for
automatically filtering space-time patterns [13], as in Fig. 11.32.
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Fig. 11.29. A 1D CA of an Altenberg rule (v=8, k=7, n=150), where the probability
of a rule-table output depends on the fraction of colors in its neighborhood. On the
right the color density is plotted for each of the 8 colors, relative to a moving window
of 10 time steps.

Fig. 11.30. Entropy/density scatterplot [13]. Input-entropy is plotted against the
density of 1s relative to a moving window of 10 time steps. Plots for a number of k=5
complex rules (n=150) are show superimposed, each of which has its own distinctive
signature, with a marked vertical extent, i.e., high input-entropy variance. About
1000 time steps are plotted from several random initial states for each rule.
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Fig. 11.31. Classifying a random sample k=5 rules by plotting mean entropy
against the standard deviation of the entropy, with the frequency of rules within
a 128 × 128 grid shown vertically.

Fig. 11.32. Filtering a binary 1D space-time pattern with interacting gliders em-
bedded in a complicated background left, and the same space-time pattern filtered
right. Filtering is done on-the-fly for any rule. In this example, k=3 rule 54 was first
transformed to its equivalent k=5 rule (hex: 0f3c0f3c). n=150.

• The space-time color density in a moving window of time steps(Fig. 11.29).
• The variance of the entropy, and an entropy/density scatterplot, where

complex rules have their own distinctive signatures (Fig. 11.30).
• A scatterplot of mean entropy against the standard deviation of the en-

tropy for an arbitrarily large sample of CA rules, which allows ordered,
complex, and chaotic rules to be classified automatically, also shown as
a 2D frequency histogram (Fig. 11.31). Ordered, complex, and chaotic
dynamics are located in different regions, allowing a statistical measure
of their frequency. The rules can be sorted by entropy variance, allowing
complex rules to be found automatically.

• Various methods for showing the activity/stability of network elements.
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Fig. 11.33. Derrida plots for random Boolean networks (36×36, k=5). This is a
statistical measure of how pairs of network trajectories diverge/converge in terms
of their Hamming distance. A curve above the main diagonal indicates divergence
and chaos, below — convergence and order. A curve tangential to the main diagonal
indicates balanced dynamics. This example shows 4 plots where the the percentage
of canalizing inputs in the randomly biased network is 0%, 25%, 52%, and 75%,
showing progressively greater order.

Fig. 11.34. The return map for binary 1D k=3 rule 30, n=150, for about 10,000
time steps. Note the fractal structure. Each state (bit string) B0, B1, B2, B3 . . . Bn−1

is converted into a decimal number 0–2 as follows, B0 +B1/2+B2/4+B3/8+ · · ·+
Bn−1/2

n−1. As the network is iterated, this value at time step t (x-axis) is plotted
against the value at time step t+1 (y-axis).
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• The damage spread, or pattern difference, between two networks in 1D
or 2D. A histogram of damage spread frequency can be automatically
generated for identical networks with initial states differing by 1 bit.

• The Derrida plot [3,4], and Derrida coefficient, analogous to the Liapunov
exponent in continuous dynamical systems, which measures how pairs of
network trajectories diverge/converge in terms of their Hamming distance.
This indicates if a random Boolean network is in the ordered or chaotic
regime (see Fig. 11.33), and is also generalized for multivalue.

• A scatterplot of successive iterations in a 2D phase plane, the “return map”
(Fig. 11.34), which has a fractal structure, especially for chaotic rules.

11.20 Measures on Attractor Basins

Some measures on attractor basins (i.e., measures on subtrees, basins of at-
traction, and the basin of attraction field) are listed below:

• Data on attractor basins. The number of basins in the basin of attraction
field, their size, attractor period, and branching structure of transient trees.
Details of states belonging to different basins, subtrees, their distance from
attractors or the subtree root, and their in-degree.

• A histogram showing the frequency of arriving at different attractors from
random initial states. This provides statistical data on the basin of attrac-
tion field for large networks. The number of basins, their relative size, pe-
riod, and the average run-in length are measured statistically. The data can
be used to automatically generate an attractor jump-graph as in Figs. 11.3
and 11.24. An analogous method shows the frequency of arriving at differ-
ent “skeletons,” partially frozen patterns.

• Garden-of-Eden density plotted against the λ and Z parameters and
against network size.

• A histogram of the in-degree frequency in attractor basins or subtrees.
• The state-space matrix, a plot of the left half against the right half of each

state bit string, using color to identify different basins, or attractor cycle
states.

• The attractor jump-graph (see Figs. 11.3 and 11.24): an analysis of the
basin of attraction field, tracking where all possible 1-bit flips (or 1-value
flips) to attractor states end up, whether to the same or to which other
basin. The information is presented in two ways, as a jump-table: a matrix
showing the jump probabilities between basins, and as a jump-graph: a
graph with weighed vertices and edges giving a graphic representation of
the jump-table. The jump-graph itself can be analyzed and manipulated
in various ways, and rearranged and unraveled, including dragging vertices
and defined components to new positions with “elastic band” edges; the
same methods as for the network graph, Section 11.8.
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11.21 Reverse Algorithms

There are three different reverse algorithms for generating the pre-images of
a network state. These have all been generalized for multistate networks.

• An algorithm for 1D CA, or networks with 1D CA wiring but heteroge-
neous rules.

• A general algorithm for RBN/DDN, which also works for the above.
• An exhaustive algorithm that works for any “random mapping” including

the two cases above.

The first two reverse algorithms generate the pre-images of a state directly;
the speed of computation decreases with both neighborhood size k and net-
work size. The speed of the third, exhaustive, algorithm is largely independent
of k, but is especially sensitive to network size.

Fig. 11.35. Computing RBN pre-images. The changing size of a typical partial pre-
image stack at successive elements. n=24, k=3. This histogram can be automatically
generated for a look at the inner workings of the RBN/DDN reverse algorithm.

The method used to generate pre-images will be chosen automatically,
but can be overridden. For example, a regular 1D CA can be made to use
either of the two other algorithms for benchmark purposes and for a reality
check that all methods agree. The time taken to generate attractor basins is
displayed in DDLab. For the basin of attraction field, a progress bar indicates
the proportion of states in state space used up so far.

The CA reverse algorithm applies specifically to networks with 1D CA
wiring (local wiring) and homogeneous k, though the rules may be heteroge-
neous. This is the most efficient thus fastest algorithm, described in [8, 13].
Furthermore, compression of 1D CA attractor basins by rotation symmetry
speeds up the process [8].

Any other network architecture, RBN or DDN, with nonlocal wiring, will
be handled by a slower general reverse algorithm described in [9, 13]. A his-
togram revealing the inner workings of this algorithm can be displayed as
in Fig. 11.35. Regular 2D or 3D CA will also use this general reverse algo-
rithm. Compression algorithms come into play in orthogonal 2D CA to take
advantage of the various rotation symmetries on the torus.
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The third, brute-force, exhaustive, reverse algorithm first sets up a map-
ping, a list of “exhaustive pairs,” each state in state space and its successor
(this can be saved). The pre-images of states are generated by reference to
this list. The exhaustive method is restricted to small systems because the size
of the mapping increases exponentially as vn, and scanning the list for pre-
images is slow compared to the direct reverse algorithms for CA and DDN.
However, the method is not sensitive to increasing neighborhood size k and
is useful for small but highly connected networks. The exhaustive method is
also used for sequential updating.

A random mapping routine can assign a successor to each state in state
space, possibly with some bias. Attractor basins can then be reconstructed
by reference to this random map with the exhaustive algorithm. The space of
random maps for a given system size corresponds to the space of all possible
basin of attraction fields and is the superset of all other deterministic discrete
dynamical networks.

11.22 Chain Rules and Encryption

The CA reverse algorithm is especially efficient for a subset of maximally
chaotic 1D CA rules, the “chain rules,” which can be automatically generated
in DDLab for any v, k. The approximate number of chain rules is v

√
rulespace.

These rules are special because in contrast to the vast majority of rule
space, the typical number of predecessors of a state (in-degree) is extremely
low, decreasing with system size. For larger systems the in-degree is likely to
be exactly one. Consequently, the garden-of-Eden density is also very low and
decreasing with system size; becoming vanishingly small in the limit. This
means nearly all states have predecessors, embedded deeply along chain-like
transients. Large 1D CA can be run backward very efficiently for these rules,
generating a chain of predecessors. As the rules rapidly scramble patterns, they
allow a method of encryption which is available in DDLab; run backward to
encrypt, forward to decrypt (Figs. 11.36 and 11.37).

11.23 Sequential Updating

By default, network updating is synchronous, in parallel. DDLab also allows
sequential updating, both for space-time patterns and attractor basins. De-
fault updating orders are forward, backwards, or a random order, but any
specific order can be set from the n! possible orders for a network of size n.
The order can be saved/loaded from a file.

An algorithm in DDLab computes the neutral order components (limited
to network size n ≤ 12). These are sets of sequential orders with identical
dynamics. DDlab treats these components as subtrees generated from a root
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Fig. 11.36. A 1D pattern is displayed in 2D (n=1600, 40×40); the “alien” seed was
drawn as in Fig. 11.10. The seed could also be an ASCII file, or any other form of
information. With a v=2, k=7 chain rule selected at random, and the alien as the
root state, a subtree was generated with the CA reverse algorithm; note that the
subtree has no branching, and branching is highly unlikely to occur. The subtree
was set to stop after 20 backward steps, which took about 12 seconds. The state
reached is the encryption.

order, and can generate a single component subtree, or the entire set of compo-
nents subtrees making up sequence space (the neutral field) which are drawn
in an analogous way to attractor basins.

11.24 Sculpting Attractor Basins

Learning and forgetting algorithms allow attaching and detaching sets of
states as predecessors of a given state by automatically mutating rules or
wiring couplings. This allows “sculpting” the attractor basin to approach a
desired scheme of hierarchical categorization. Because any such change, espe-
cially in a small network, usually has significant side effects, the methods are
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Fig. 11.37. To decrypt, starting from the encrypted state in Fig. 11.36, the CA
with the same rule was run forward by 20 time steps, the same number that was
run backwards, to recover the original image or bit-string. This figure shows time
steps 17 to 25 to illustrate how the “alien” image was scrambled both before and
after time step 20.

not good at designing categories from scratch, but might be useful for fine
tuning a network that is already close to where it is supposed to be.

More generally, a very preliminary method for reverse engineering a net-
work, also known as the inverse problem, is included in DDLab, by reducing
the connections in a fully connected network to satisfy an exhaustive map (for
network sizes n ≤ 13). The inverse problem is how to find a minimal network
that will satisfy a full or partial mapping, fragments of attractor basins such
as trajectories.
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Simulated Breeding — A Framework of
Breeding Artifacts on the Computer

Tatsuo Unemi

This chapter describes a basic framework of simulated breeding, a type of
interactive evolutionary computing to breed artifacts, whose origin is Blind
Watchmaker by R. Dawkins. These methods make it easy for humans to de-
sign a complex object adapted to his/her subjective criteria, just similarly to
agricultural products we have been developing over thousands of years. Start-
ing from randomly initialized genome, the solution candidates are improved
through several generations with artificial selection. The graphical user inter-
face helps the process of breeding with techniques of multifield user interface
and partial breeding. The former improves the diversity of individuals that
prevents being trapped at local optimum. The latter makes it possible for
the user to fix features he/she already satisfied. These methods were exam-
ined through artistic applications by the author, SBART for graphics art and
SBEAT for music. Combining with direct genome editor and exportation to
another graphical or musical tool on the computer, they can be powerful tools
for artistic creation. These systems may contribute to the creation of a type
of new culture.

12.1 Introduction

For over a thousand years, mankind has been utilizing the technique of breed-
ing to obtain useful plants and animals to help human life. Almost all agricul-
tural products and domesticated animals we see now are the results of these
processes of many generations. Even in the new century of highly improved
genetic engineering, it is still impossible to build such a complex living system
by human hands in a similar manner with mechanical and electric machines.

It is also a fact that we already have highly sophisticated technologies
in our hands to make complex machines and systems, such as robots, trans-
portation control systems, hi-tech aircrafts, space shuttles, and so on. Many
researchers and developers are struggling and competing with each other to
design and implement amazing gadgets day by day in laboratories and private
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companies. Recent improvement of information technologies accelerates this
movement. However, it is hard to say that we are receiving enough results
on these technologies because of the bottleneck of the developmental cost.
The more complex the product gets, the more time we need for design and
implementation.

One method to overcome this bottleneck may be to introduce a method
of breeding we have been using for living organisms. Some of the currently
developed machines are complex enough for objects of breeding. Features that
enable us to breed organisms are reproduction with changes, the essential
functions for evolvability. All living systems on the Earth intrinsically have
this mechanism supported by genetic inheritance and mutation. Artifacts have
no ability to reproduce itself in nature, but the computer can help us to realize
it. If we build an interactive software to simulate breeding process, it might
enable us to obtain our desired design in a reasonable time. In addition, there
is the possibility to give us new products that we have unconsciously given
up because of the developmental cost.

This chapter presents a framework of simulated breeding that realize breed-
ing the artifacts on the computer through an overview of two sorts of appli-
cations. One is SBART for drawing abstract computer graphics, and another
is SBEAT for composing short musical pieces.

Initializing the population
by random genes

Evaluation

Selection

Genetic operation
(mutation/crossover)

Is a good solution found?
Yes

No

End

Fig. 12.1. A flowchart of a simple genetic algorithm.
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12.2 Basic Framework of IEC

Research on computational intelligence and artificial life has brought some
useful algorithms to produce complex systems inspired from biological mech-
anisms such as morphology, evolution, learning, herding, and so on. One of the
most successful technique in terms of engineering applications may be evolu-
tionary computing for optimization in a various types of problems that had
been thought difficult to solve. This method was originally developed from a
type of optimization of morphological design of living organisms to gain high
a rate of reproductive success in the physical and ecological environment. Fig-
ure 12.1 shows a flowchart of a simple genetic algorithm, a typical evolutionary
computing scheme, consisting of a loop of evaluation, selection, crossover, and
mutation.

An ordinary type of evolutionary algorithm uses a predefined fitness func-
tion to give a criterion of optimization. It just corresponds to the condition of
natural selection. This framework works well if the human designer can draw
an appropriate procedure to compute fitness values to evaluate each individ-
ual. However, we often go through difficulties in figuring it out explicitly by
some reasons, such as multi-objectivity, subjective criteria, dynamic environ-
ment, and so on. In a design of room arrangement of a house, for example,
each member of the resident family has different preference criteria from oth-
ers. They are, of course, subjective and often dynamically changing with the
natural and social environment.

Initializing the population
by random genes

Visualization

Artificial selection

Genetic operation
(mutation/crossover)

User

Fig. 12.2. A schematic framework of interactive evolutionary computing (IEC).

Interactive evolutionary computing (IEC) [13] is a promising technique
to find better solutions in the domains for optimization by user’s subjective
criteria, of whose root can be found in Blind Watchmaker by R. Dawkins [3].
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Differently from ordinary methods of evolutionary computing, fitness values
are not calculated automatically by the predefined evaluation function but are
given by the user for each individual in some manner. Some researchers are
calling this method as the interactive genetic algorithm (IGA) [12], because it
can be seen as a modified version of the genetic algorithm (GA) [4]. Usually,
the application systems have a method for the user to rate each individual,
typically a graphical user interface using a slider or a set of radio buttons.
In the method named simulated breeding, the user directly picks up his/her
favorite individuals as parents for the next generation. This means the fitness
values can take only one (selected) or zero (not selected). It disables stochastic
selection, but has an advantage to reduce the number of user’s operations to
assign the fitness values. Figure 12.2 shows a schematic framework of IEC,
where the phases of evaluation and selection in simple GA are replaced with
visualization and artificial selection.

Another source of advantage of IEC compared to the other types of design
support framework of generate and test is explicit separation between geno-
type and phenotype. Genotype is information on genome that changes through
genetic operation. Phenotype is the object of evaluation that performs in the
environment. In natural living organisms, genotype is genetic information on
DNA, and phenotype is the body and its performance for survival and repro-
duction. This separation makes it flexible to design the search space for an
application domain.

12.3 SBART and SBEAT

The author developed several types of applications of simulated breeding over
the years. One is named SBART for computer graphics, and another is named
SBEAT for computer music. These artistic domains are mostly suitable for
IEC because they are strongly dependent on subject criteria of evaluation.

12.3.1 SBART

SBART [20] is an application of simulated breeding to breed an abstract
image of 2D computer graphics. The basic mechanism is based on the idea
by K. Sims [11], who implemented his system on a combination of a super-
computer and graphic workstations in 1991. Some researchers who wanted to
experience this innovative system developed their small system on personal
computers. SBART is one of these systems that was developed in 1993 on a
Unix workstation and was exported to MacOS in 1998. The basic idea is the
same between Sims’s system and SBART, but some features described here
were uniquely modified and added in SBART. This software has been widely
distributed through the Internet and CD-ROMs attached with some books
and journals.
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Fig. 12.3. A field window of SBART containing 20 individuals.

Fig. 12.3 shows an example of field window that contains 20 individual
drawings, each of which is a candidate of parents for the next generation.
The user selects one or more of his/her favorite individuals to reproduce off-
spring. Through some iterations of generation changes, the user can obtain
satisfactory results.

The structure of a genotype is a mathematical expression that calculates
color value for each pixel from the two-dimensional coordinates x and y. Each
of the intermediate values in the calculation is a three dimensional vector that
is interpreted as a color in hue, saturation, and brightness at the result. For
example, the genotype of the bottom left individual in Fig. 12.3 is

and(−(1.180), and(0XY, XY0) + XY0 − hypot(hypot(Y0X, 0XY), 1.680))

where four types of binary functions +, −, “and,” and “hypot,” and one unary
function −, are used. 0XY, XY0, and Y0X are variable vectors that mean
〈0, x, y〉, 〈x, y, 0〉, and 〈y, 0, x〉, respectively. SBART has six types of variables
in all permutations of x, y, and 0. Constant scalar values are expanded into
a vector containing three same values, that is, 1.180 in the above expression
is expanded into 〈1.180, 1.180, 1.180〉. Almost all functions calculate each ele-
ment values in a vector independently, that is, 〈x, y, 0〉+〈1.180, 1.180, 1.180〉=
〈x + 1.180, y + 1.180, 1.180〉. Some exceptional functions calculate the result
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by combination of elements of argument vectors. In the case of the function
named “max,” for example, the value is defined as

max(〈x1, x2, x3〉, 〈y1, y2, y3〉) =
{ 〈x1, x2, x3〉 if x1 > y1

〈y1, y2, y3〉 otherwise.

When more than one individual is selected, crossover operation is applied.
When only one individual is selected, the mutants are produced as the pop-
ulation of the next generation. These genetic operations are done in a style
of genetic programming [5]. Crossover is exchange of subtrees between par-
ents. Mutation is replacement of a node: function, variable or constant with
randomly selected one. The target subtree and node are selected randomly.

SBART has not only a breeding mechanism but also some utilities to
import some image files and a single movie file to produce a type of collage,
to draw arbitrary size of product image to export to another graphics tool,
and to create a movie allocating time variable into the 0 element of variable
vectors. Some visual jockeys (VJs) are using this system to produce stuff of
their own video clips for playing at a dance club.

12.3.2 SBEAT

Sound and music are also attractive targets for the application of IEC tech-
niques because they also strongly depend on subjective criteria for artistic
production. One of the key issues for building a successful system in this do-
main is how the user checks and selects suitable individuals from a population.

J. A. Biles [1] has proposed an alternative method to solve this problem
and implemented it in his system, named GenJam. This system helps the user
to create improvisational phrases in Jazz music. In GenJam, the user listens to
endless phrases generated from individual genotypes in turn. The user pushes
the “g” or “b” key according to his/her good or bad feelings about the phrase.
It is not necessary for the user to assign fitness values explicitly, or to know
the correspondence between the individual and the phrase.

Another type of implementation of musical application of IEC has been
developed as the Sonomorph system by G. L. Nelson [6, 7]. It shows nine
candidates on the screen by drawing the scores in the form of a collection of
horizontal line segments just like piano roll paper. SBEAT [18] was developed
by the author in 2000 independently with Sonomorph, which means the author
had no knowledge about Sonomorph when considering the basic idea. SBEAT
shows nine individuals on a field window shown in Fig. 12.4. A phenotype
of each individual is a score of 16 beats and several parts, maximally 23
parts in version 3. Four of the whole parts chosen by the user are shown in
the subwindow. The first version of SBEAT treated only three parts, guitar,
bass, and drums. It was extended to eight parts, five solos, piano, drums and
percussion in the second version SBEAT2 [19]. The next version, SBEAT3 [22],
handles 13 solo parts, 2 piano (or chord) parts, and 8 drums and percussion
parts.
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Fig. 12.4. A typical field window of SBEAT containing nine initial individuals.

The genotype of SBEAT3 is a set of three two-dimensional arrays for
pitches, rhythm, and velocity. Each array contains 16 by 23 elements for each
beat and part. It uses a type of recursive algorithm to produce a basic melody
from genotype to guarantee a natural similarity between parents and children.
It is also useful to produce individuals in the initial population acceptable for
the user.

SBEAT2 and 3 have some utilities to set tempo and scale, to change the
instruments set for each part, to integrate the result scores into a longer tune,
and to save the score into a file of standard MIDI format (SMF). It is possible
to compose a complete tune only by these systems, but the users may export
the result in an SMF file to another application, the so-called Desk Top Music,
to mix with another kind of composition and to add a various types of effects.
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12.4 Breeding in a Field Window

Visualized phenotypes of a population are displayed together in a field window
as shown in Figs. 12.3 and 12.4. We assume that it is possible to visualize each
phenotype with not too high of a computational cost and that the population
size is about from 9 to 30. A field window is divided into from 3×3 to 5×6 grids,
showing each individual in each rectangle of grid. These 9 to 30 individuals
are the members of the current population and there is no other member of
the population. The user explicitly selects one or more individuals from the
field as parents for the next generation. When only one individual is selected,
all individuals except the selected one are replaced by mutants of the selected
individual in the next generation. When more than one individual is selected,
all individuals are replaced by the children of selected parents produced with
crossover operation.

From the results of various settings of experimental implementation of
SBART, the appropriate number of individuals simultaneously shown on the
screen should be in the range from 16 to 30. The user often had to produce
alternative children to obtain improved candidate if the number was less than
16. Some good individuals were ignored if the number was greater than 30.

There is another issue in the domain of sound and music. It is possible to
select favorite graphical drawings in seconds, but the user needs a longer time
to evaluate sound and music. It is possible to compare candidates simultane-
ously in graphics domains, but individuals must be examined independently
in sound and musical domains. So a system for sound and music has to have
two types of selection methods for each individual. One is for selection as a
parent, and the other one is for selection for playing. In the case of SBEAT,
three types of buttons are attached to each individual subwindow as shown
in Fig. 12.4, a play button with speaker icon, a protection button with lock
icon, and a selection checkbox. The role of protection is described in the later
Sec. 12.5.2.

The collection of genotypes in a field population can be recorded in a disk
file similarly to any other document files of a word processor, a drawing tool,
and so on. It can be opened again as a field window later if the user saved
it. Menu items entitled “New,” “Open,” “Save,” “Save as . . . ,” and “Reset”
are available with functions that can be easily guessed from an analogy with
other documentation tools. A field is always filled with a fixed number of
individuals, so the “New” field is not empty but initialized with individuals
of random genes.

12.5 Multifield User Interface

In [17], we propose a design of a graphical user interface using multifield
for simulated breeding method. The term field is used here as a population
of visualized individuals that are candidates of selection from an analogy
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Fig. 12.5. Migration of an individual by drag & drop.

with fields in an experimental farm. A multifield interface enables the user
to breed his/her favorite phenotypes by selection independently in each field,
and he/she can copy arbitrary individuals into another field. As known among
the researchers of evolutionary computing, a small population likely leads to
premature convergence trapped by a local optimum, and migration among
plural populations is useful to escape from this trap. For IEC applications, it
is impossible to take a large size of population because the user has to ob-
serve all phenotypes in the population as possible to evaluate them instead of
predefined fitness function in the ordinary framework of evolutionary compu-
tation. The multifield user interface is a suitable method for IEC to provide
easy implementation of migration and wider diversity.

We often suffer a complicated multimodal landscape in a structural opti-
mization problem because the search space constructed by solution candidates
is usually high-dimensional. It is necessary to examine as many candidates as
possible to find the best solution because each candidate has a lot of neighbors
in a high-dimensional space. One of the key techniques for successful search
is a method to keep diversity of individuals in population. Island model [9] is
one of the methods to keep diversity.

After geographical separation of a continent into islands, a population of
species that lived in a continent is divided into subpopulations in each island,
and they usually reach distinct organisms through independent evolutionary
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process since mating between different islands is prohibited and there are
many suboptimal points for the structure of an organism. As the scheme the-
ory [4] in the genetic algorithm indicates, a crossover operation, a combination
of parts of different genomes, has the possibility to spawn a better individual
by combination of good genes from different individuals. We can expect to
get better solutions by migration of individuals among different islands after
reaching some convergence in each island. The multifield user interface is a
method to bring a similar effect with the island model.

12.5.1 Migration Among Fields

The user can open an arbitrary number of field windows by choosing the
“New” and “Open” items from the File menu if the memory capacity is ade-
quate. In addition to these operations, a new field window spawns when the
user clicks the “new” button at the top right of each field window instead of
“this” to generate a population of the next generation. The new field window
is filled with the children of selected parents.

SBART and SBEAT have two types of methods to migrate an individual
between fields. The first one is to move it by copy & paste. The operation
includes four steps:

1. Select the individual that the user wishes to move on the field.
2. Copy it into the copy buffer.
3. Select the individual that should be discarded by overwriting.
4. Paste it.

Selection of an individual on the field is done simply by clicking the subwin-
dow. A red border frame of a rectangle area indicates that the individual is
selected. It takes six steps if the user uses the Edit menu to both copy and
paste because of invoking the Edit menu from the menu bar. Shortcut keys
can reduce it by two steps.

The other way is drag & drop. As Fig. 12.5 shows, the user can copy any
individual by pointing to it with the mouse cursor, pressing the left button,
moving the mouse pointer keeping the mouse button pressed, and releasing the
button at the destination rectangle. A small individual image moves following
the mouse’s move. This method needs a fewer number of operations than the
first one. It is easier for the user who well knows another application with
similar operation such as a file manager.

12.5.2 Protection of Individual

Not only to save genes in a disk file, the user sometimes wish to keep some in-
teresting individuals without modification temporally. It is realized by protec-
tion of individual. The user can protect his/her selected individual by pushing
“Protect” button in the “Edit menu” and the “Context menu”� in SBART
� “Context menu” is a term in MacOS that is called “pop-up menu” in Motif.
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×

↓

Fig. 12.6. An example of offspring spawned by migration and crossover between
two individuals bred independently in the different fields.

and attached each subwindow in SBEAT. Protected individuals can neither
be overwritten by migration nor replaced by offspring.

An alternative design of individual protection is to facilitate the other type
of window that keeps the arbitrary number of genome as a profile. This method
may lead to a filing system including library files; however, we have not tried
to implement it yet. Some method for efficient retrieval for the desired genome
from a large-scale database will be needed for this type of filing system.

12.5.3 Effects of Multifiled Interface

Populations processed through independent evolution usually reach unique
features for each. In these cases, we can expect a new one will be produced
by migration among independent fields. Figure 12.6 shows offspring produced
by crossover between individuals that came from different fields. Some part of
features of both parents pass to the children, but it is unknown which feature
remains because the crossover points are determined randomly. If the gene
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coding allows redundant representation or noneffective part, it may produce
children of more unexpected features.

12.6 Partial Breeding

It is a good method to divide a large problem into independent subproblems to
solve it efficiently. But it is often difficult because of dependency among parts
of the problem features. Musical tune consists also of a complex information
including melody, rhythm, tempo, timbre, and so on. We can easily divide
information into these functional parts, but evaluation of the tune usually
depends on the combination of them. Combination of good melody and good
timbre is not always good.

One of the advantages of evolutionary computation comparing with the
other optimization technique by search is that we can design different structure
of search space than the structure of solution space using mapping between
genotype and phenotype. Phenotype corresponds to the solution candidate,
and genotype corresponds to the search point. Musical tune can be divided
into sections, parts, bars, and so on. It is also helpful to build each of the
parts or sections independently and to combine them later. In addition, we can
independently breed each of the functional features of music, rhythm, melody,
timbre, and so on by encoding them in separate parts of the genotype.

Because of dependency among features in terms of the effect for the quality
of the solution, it is difficult to obtain good solution by optimizing each fea-
ture step by step independently. We often need to revise a feature previously
optimized during optimization of another feature. Even in the ordinary style
of evolutionary computation, it is still a research theme how we should apply
evolutionary computation to multi-objective optimization problems. Fortu-
nately in IEC, the user can control the evolutionary process by indicating
which parts and features should be fixed and which parts should be modified
if the system has a user interface of partial protection.

We designed the structure of a genotype for SBEAT as it consists of three
types of chromosomes for rhythm, pitches, and velocity, as shown in Fig. 12.7.
Velocity, which means loudness of the sound of note as a technical term in
music, is an important factor for tune to sound natural for humans’ ears. The
individual in SBEAT population is a bar of 16 beats and 23 parts. Each of the
chromosomes is a two-dimensional array of 16 by 23 to include information
for each possible note. Some loci in the pitches and velocity chromosomes
are ignored if the corresponding loci of rhythm chromosome indicate rest or
continuation.

We designed a graphical user interface to make it possible for the user
to indicate which part should be the object of genetic operation. In ordinary
cases, all features are the objects of mutation. So we introduced check buttons
to indicate protection against mutation. Figure 12.8 shows the dialog window
of SBEAT, which includes many buttons, sliders, and menus. The short slider
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Fig. 12.7. Structure of a genotype in SBEAT3.

Fig. 12.8. Part option dialog of SBEAT3.
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allocated for each part is for setting the correspondence between musical parts
and genotypical parts. The buttons with the lock icon are for indicating pro-
tection. These operations are applied to one of three chromosomes indicated
by the pull-down menu at the top row of these sliders and buttons.

It is possible for the user to indicate protection of arbitrary parts of geno-
type corresponds to functional or physical part of phenotype at any time
he/she wants. To reduce the number of operations for pressing arbitrary num-
ber of buttons at once, we implemented a method to choose them by the
press-drag-release operation of mouse. The buttons in the rectangular area
indicated by mouse operation act as being clicked. It makes it easy to revise
any parts again and again by breeding independently until any acceptable
solution is found.

This method was invented through an application for music, but it will
be useful for another domain where the solution candidates are complex but
well-structured [21]. However, it is difficult to apply this method to SBART,
because the user hardly understands which part of genotype affects which
feature of phenotype.

12.7 Direct Genome Operation

Breeding is a good method for producing novelty, but it is mostly redundant
when we know what type of direct modification brings a better result. The
genome editor was designed to answer this requirement by all owing the user
to edit chromosomes directly.

The user is allowed to edit the genome of any individual on the field.
Figure 12.9 shows an example of the windows of genome editor in SBART.
As shown in the right window of Fig. 12.9, the user selects a node from
tree structure of genome to cut, copy, paste, and swap with the subtree in
the copy buffer, and to replace it with another symbol. The new function
symbol, variable, and constant can be indicated using the left dialog window
of Fig. 12.9.

Figure 12.10 shows an example of the windows of genome editor in SBEAT.
It has two windows, a score of an individual and an editing panel. The user
selects a part to be edited using a pop-up menu,�� and then operates buttons
allocated to each beat of each chromosome. The button of each beat has
different type of function among chromosomes because the data types of allele
are different among the types of chromosomes.

In the case of SBART, this function of direct editing is not so useful because
it is usually difficult for the user to understand the concrete correspondence
between genotype and phenotype. But in the case of SBEAT, it is relatively
clear which loci affect which feature and part in phenotype even though loci
and features do not always have a one-to-one correspondence. It can play a

�� “Pop-up menu” is a term in MacOS that is called “option menu” in Motif.
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Fig. 12.9. Genome editor of SBART.

Fig. 12.10. Genome editor of SBEAT.
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different role that allows the user to input the score already known if possi-
ble.��� Collection of the mutant of a known melody can be useful to make an
arrangement of tune.

12.8 Production Samples

The readers have already seen some examples of images produced with SBART
in Fig. 12.3, but to understand the potential possibility of this system this
section shows other examples produced using augmented functions to embed
an external video data.

T. Kamei, a VJ in Tokyo, suggested that it would be nice if SBART could
import a movie file to embed and to deform it, similarly to importing image
files to make a collage. It needs a fast and sophisticated smoothing algorithm
among related pixels in video frames that wastes much of computation re-
sources. It seemed to be impossible to process it within reasonable time by
the personal computer some years ago. But now GHz CPU and hundreds
MB memory on board are available at reasonable prices. The newest version
of SBART includes this feature, and we are investigating some technical is-
sues and developing new algorithms and user interfaces for achieving feasible
usability [23].

Two new nonterminals were added to realize this functionality. One is
named “movief” that extracts pixels’ HSB color values from one frame of
time t at the position indexed by referring to the first and second elements of
the argument vector as x- and y-coordinates. The other one, named “moviec,”
similarly extracts color values, but it assumes the movie data as the three-
dimensional volume and picks a boxel up by referring to three elements.

The upper sequence of movie frames in Fig. 12.11 is external movie data
in half size of NTSC DV format, 320× 240 pixels of frame size, 14.98 frames
per second, and 30 seconds’ duration. It includes 14.98 × 30 = 449 frames,
then totally 320 × 240 × 449 =34,483,200 boxels. It was taken by a handy
camcorder in the campus during a campus festival in the fall of 2003.

Figure 12.12 shows two typical productions using the boxel method. The
genotype of the left side drawing has the function moviec at the root of the
tree structure. This makes nonlinear transformation of the shape of original
pattern. The time axis was expanded along the horizontal axis. Some vertical
lines included in the resultant image indicate rapid reaction of automatic
exposure adjustment by the camcorder. Small vertical vibration along the
horizontal axis means it was difficult to keep the handy gadget steady in the
operator’s hand.

The right one has a more complex genotype that includes “moviec” at
the intermediate nodes. It produces not only deformation of the shape but

��� In the current implementation of SBEAT, some types of score cannot be mapped
backward to genotype due to the algorithm of morphology.
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a. Original external movie.

b. movief(hypot(0.648, XTY) + XTY + YXT)

c. −0.203 + (0.648 + YXT + movief(XYT))

Fig. 12.11. Sample frame sequences produced with frame image method.

also modification of colors. As shown in both drawings, the boxel method
brings us a new effect to produce more complicated and unpredictable results
from some types of external movies by inheriting the complexity of three-
dimensional pattern involved in the movie data.

The middle and lower frame sequences in Fig. 12.11 are sample movies
produced from genotypes that includes “movief.” The middle one includes
the function at the root, and the lower one includes it at just above a leaf of
variable XYT. The former one produces shape deformation, and the latter one
produces color modification, similarly to the two examples for boxel method.

We also examined another film taken at a concert of a student big band.
It can produce a very interesting and effective movie clip that seems useful to
create a music video or so on.
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moviec(XYT− cos(log(hypot(YXT+ moviec(XTY) + XTY·
−1.227,

√
log XYT) + TYX))) (sin(moviec(YTX)) − TXY)

Fig. 12.12. Sample images produced from the external movie in Fig. 12.11 by boxel
method.

Figure 12.13 is a score of example production bred using SBEAT that
consists of six parts. The target of breeding in SBEAT is a bar of 16 beats
and 23 parts as described before. This tune was composed by integration of
nine bars each of which restricted only five solo parts and one chord part. A
set of sample tunes composed by the author in both SMF and MP3 format is
available from the web page of SBEAT.

12.9 Future Works

Of course, there are many types of further works to be tried in the future
concerning the simulated breeding method. From the viewpoint of engineering,
it would be important to examine various types of alternative methods usable
for similar purpose and to compare them to each other in several aspects such
as efficiency, usability, flexibility, and so on. For the technical evaluation, it
must be important to execute experiments on the human-machine interface
employing a number of subjects as typical users. One feature that should be
examined is the method of artificial selection. In some application domain or
for some types of users, stochastic selection by fitness-value rating might be
essential to obtain satisfactory results efficiently.

Our project of SBEAT is now still less than four years old. Some researchers
are struggling to build similar systems using their original ideas of musical
application of IEC technique such as [15,16]. Including the previous pioneers’
approaches including sound filtering [8] and sound generation [2], it may be
fruitful to combine several different ideas to build up more practical integrated
system to support human activities of music composition.

SBEAT was designed under assumption of off-line composition, that is,
the processes of composition and performance are separated. But it is also
potentially usable for live performance on time. The system needs some ex-
tension to have two separated channels for sound output for a breeder and
listeners, because mutation may sometimes spawn less interesting sounds.
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Fig. 12.13. Sample score composed with SBEAT.
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The combination of SBART and SBEAT should be considered as an inte-
grated system to make a computer graphics animation with music. The variety
of result products should be enhanced to realize this plan because the prod-
ucts from current systems seem unsuitable to combine each other. Using a
video editing tool on the personal computer currently available, it is possible
to combine the products of SBART and SBEAT. But, interactive breeding
between these two systems seems important to improve the final results.

12.10 Conclusion

The framework of simulated breeding has been described. Through the experi-
ence with SBART and SBEAT, we may expect future expansion of application
of these systems and their framework. In addition to the basic framework of
IEC, multifield user interface, partial breeding, and direct genome editing
extend efficiency and usefulness of breeding.

Simulated breeding provides not only an alternative method to support
humans’ design activity, but also quite a new style of production based on
cooperation between human and machine. The only one thing the user has to
do is selection according to his/her preference. The user needs to know a little
about the operation of breeding, but does not need to know how the target
system can be built up. Though more than 18 years have passed since the
original idea of Blind Watchmaker, and some artists have employed this idea
for their productions, such as W. Latham [14] and S. Rooke [10], it is still not
popular enough comparing with the potential power.

These ideas may contribute to create a type of new culture in the near
future.
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Enriching Aesthetics with Artificial Life

Alan Dorin

Perhaps one day our machines will be able to take us beyond environments
that look more and more familiar as we traverse them, into spaces that con-
tinue to surprise us as we explore. Can our engineered artifacts ever rival the
intricacy of nature?

13.1 Introduction

Artificial life is studied largely as a means of furthering our understanding of
biology and of complex adaptive systems in general. While it has demonstrated
potential in a number of fields, in particular as a means of solving engineering
problems, Artificial life techniques have also been applied by some in the art
community. The field promises to continue to enrich artistic practice and our
approach to contemporary aesthetics, even as its initial flash of popularity
wanes. It is this continued application to aesthetics which the present chapter
begins to address.

The techniques of art based in artificial life form a subset of generative art.
This is an artistic practice that adopts an aesthetic of process. This means
that although the final outcome of a work may depend for its appeal on
the aesthetics of an image, sound, sculpture, or other form, the process that
generates it is also significant. The generative artist is responsible for setting
up initial conditions and a process to act upon them. The work that unfolds is
the result of this series of changes. This is analogous to a biological phenotype
(usually an organism and its behavior) being the result of the physical and
chemical interactions that govern its development from a genotype (its genetic
material as stored in DNA). Hence, there are conceptual connections between
generative art and artificial life as well as practical ones.

Generative/process-based art is no longer treated as a fresh field for aes-
thetic exploration. Fascination with its possibilities seemed to fade sometime
after its heyday in the late 1960s. This of course was the time of the Cyber-
netic Serendipity exhibition in London, Jack Burnham’s text Beyond Modern
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Sculpture, and much other activity linking art and computer technology in in-
novative ways. Recently artists involved in artificial life have retrodden some
of the ground cleared by their predecessors in cybernetic art and have cleared
some new space for themselves. Now that artificial life is also unfashionable,
perhaps a serious assessment of its past and future contributions can be made
while side-stepping the hype that initially accompanied the field.

The first section below begins by discussing the sense of wonder people
often feel while contemplating nature or simple physical systems. This is then
related to the tradition of the sublime in aesthetics. The chapter then discusses
means of employing artificial life techniques to explore the computational sub-
lime such that a computational system emulating the physical world’s capa-
bility to generate complexity and novelty might be devised.

13.2 Wonder and the Sublime in Art and Nature

People stare contemplating the ocean as it swells and crashes on a rocky shore.
They gaze fixedly into a fire until the sting of smoke raises their awareness.
People may lie on their backs and follow passing clouds, or marvel at the
glittering of stars. There are many things that fascinate us, that mesmerize
us, that cause us to forget ourselves and our situation as we become lost in a
timeless appreciation of nature.

There are also circumstances under which we may have an experience that
reminds or forces us to consider our insignificance: the feeling that accompa-
nies the vastness of spaces such as the ocean, a desert plain, or an endless
mountain range, or the feeling of insignificance when contemplating the age
of the universe or the years over which a trickle of water has eroded a canyon,
for example. These expanses can nevertheless be made subject to reason. We
are mentally equipped to discuss the concept of infinity, even if we are unable
to quite fathom it intuitively. This paradoxical experience Kant has labeled
the mathematical sublime [8].

Likewise Kant introduces the dynamically sublime as relating to encounters
with the ferocity of nature and the sense of vulnerability this entails, coupled
with the triumph of reason over fear. In his own writings on the sublime,
Edmund Burke takes the view that the sensation of incomprehensibility, the
fear of hopelessness or of danger, coupled with the knowledge that one is
able to reason about something beyond one’s senses, or one is not inadequate
or in danger, causes a kind of delight through internal conflict — a sublime
experience [11]. That is to say there is an element of the sublime, perhaps not
an artistic element, in resisting the urge to flee as a tiger roars behind bars.
One’s body responds with fear to the situation, but reason easily overcomes
this and forces the body to stand its ground — generating a sense of delight
tinged with terror. In the case of a painting, the viewer’s separation from a
wild scene of stormy seas or a vast desert is not enforced by iron bars, but by
the picture plane. This is coupled with the knowledge “it is only a picture.”
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How can a work of art, specifically a work of computer-based, generative
software, approach the sublime? While there is a vast amount of literature on
the sublime in art dating back as far as Longinus [15], the focus of this chapter
is a little more narrow. A recent publication [5,17] outlines the computational
sublime. This arises from viewing the computer in terms of its capability to
perform logical operations at a rate and on a scale vastly outside our own abil-
ities in this area. Due to its speed, the computer is able to mediate between
our human perceptual apparatus and (practically) infinite computationally
defined spaces. Yet, since we are the makers and programmers of these ma-
chines, our power of reason is not only able to overcome, but also to define
these very spaces that our senses are unable to grasp fully.

Before discussing computer-based art in more detail, some much simpler
artifacts, possibly just for a moment, rival natural wonders in the fascination
they hold. How does this relate to the sublime? It seems that there are a
number of methods by which the sensation may be encouraged and that some
of these have been recreated in artifacts specifically for this purpose. They are
categorized below for convenience.

Marking Time

Maybe the simplest examples of our mesmerizing creations include a stream
of liquid running from a water-clock or fountain, the shifting sands of the
hour glass, and the oscillating pendulum. Each of these marks time in its
own manner: one a continuous stream; the next a finely particulate flow;
and the last in clear, discrete stages. The eternal flow, the innumerable sand
particles, the never-ceasing oscillations confront us with the infinite through
this visible marking of time. Although these natural processes were utilized
in desk ornaments to amuse the bored office worker of the 1980s, even in
“serious” art, simple processes like this may give a sense of the sublime.

Exposing Spaces

The wire-suspended mobiles of Calder successfully employ mechanical pro-
cesses in a manner accepted within the art world [21]. Calder’s playful pieces
are captivating and elegant for all their simplicity. Their workings are laid
plainly before the viewer, all that they are is apparent at a glance — and
yet this is not so, for their movement brings a vitality and opens a space the
static sculpture does not possess. The universe a mobile sweeps out is con-
tained within its wires, rods, and solid forms, so in one sense they may be
held in (and created from) the palm of a hand. Yet as they are touched by
invisible air currents their inner complexity is exposed.

Intricacy

Many a visitor has been fascinated by the button-driven clockwork and gearing
of exhibits in traditional science museums. Here a sense of wonder at the
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machine in its entirety arises, but also a fascination with the intricacy of the
mechanism. Each gear meshes with another, each component is configured
“just so,” and together the pistons and wheels turn in harmony to produce a
composite that might drive a clock, crush a quartz boulder, pump water, or
power a vehicle. This is not the beauty of a crashing ocean or a sunset, but
the charm of peering into an ant’s nest or through a microscope at a drop of
pond water. There is something in these systems that causes one to marvel
at a complexity that is just beyond grasp.

Defying the Natural Order

There is still another wonder to be described here, that of somehow defying
the natural order of things. It appears wonderful that a huge boulder might
come to be balanced on a slender rock column; that a gyroscopic top remains
on its tip despite interference; that a bird or a massive airplane can remain
suspended in the air, or a colossal steel ship can float; that a magnet can
push another away without touching it. These things, of course, are dealt
with to some extent by simple science. Sadly, only children may wonder at
these things. Yet implicitly these interactions remain in need of continual re-
explanation since each instills apprehension through not being quite “right.”
That boulder or spinning top might topple at any moment. That bird should
fall from the sky and the ship ought to take on water. The magnets are
behaving unnaturally. All of these systems cause one to ponder, “How can
this be?” even if one can reason about the answer through science.

Curiosity

Related to all of the above phenomena, in particular the previous one, at-
tention can also be held by riddles and intellectual pursuits. Included in this
are mind games such as chess, paradoxes, and mathematical puzzles, but
also scientific enquiry. These all captivate us through our drive to learn why
something behaves as it does, especially if it seems to defy the natural order
of things. Of the algorithmic art exhibition at Xerox PARC in 1994, Bern
writes, “The appearance of algorithmic visual art should raise the temporal
questions of ‘How is this made?’ and ‘Can this be extended?’ ” [2].

While the use of the term should is of questionable accuracy, nevertheless
there is something of relevance in the idea that algorithmic art may invite a
question and arouse curiosity as much as it satisfies visual aesthetic criteria
associated with traditional media.

Any of the preceding devices (and no doubt many besides) may be used to
convey a sense of the sublime. All of them expose us to our own limitations in
terms of comprehension, experience, or endurance, while simultaneously pre-
senting us with the power to reason about or to encapsulate a phenomenon
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in a word or representation, or the opportunity to walk away unharmed. Of
course, the context in which the preceding occurrences and objects are encoun-
tered will have much to say about the extent to which the sensation derived
relates to art. However, the potential to employ any of these basic devices for
artistic purposes in search of the sublime experience is present.

13.3 Sublime Software

Now we return to the issue at hand — writing artificial life software for artistic
purposes. There are, of course, infinitely many reasons why an artist might
wish to do this. Let us suppose in this instance that the goal was software that
surprised, not only a viewer, but also the artist who fashioned the work. This
is in keeping with a proposal made elsewhere by the author [6]. The surprise
required might not be a trivial one-off shock, but a genuine and continuing
fascination with the novelty of the outcome generated, combined with a sense
of being lost in a complex world beyond one’s grasp. The work requires an
aesthetic quality that exhibits the character listed above as intricacy and also
at the level listed as curiosity.

It so happens of course, that the techniques of artificial life are well suited
to this application, Conway’s Game of Life cellular automata (CA) being
a case in point [9]. CAs are fascinating for their ability to (practically, if
not theoretically) produce ever-fresh patterns. Like clockwork automata or
Calder’s mobiles, the patterns produced may fall well within a limited domain,
often even a cycle. However, especially in a large-scale configuration, there is
always some aspect of the system that remains to be discovered in the vast
universe these interactions define.

The innovative design pair, the Eames, understood this aspect of a com-
plex visual field. They used their understanding effectively in the 1964 New
York, World Fair exhibit for IBM to build a multiscreen cinema. The screens
displayed related material simultaneously in such a way as to make it impos-
sible to view all of the footage in detail. Viewers could watch the spectacle as
a whole and see it as a multiscreen montage, or they could pick and choose
elements to observe in detail — much as one examines a complex clockwork
machine, a microscopic world, or a beehive — piecemeal.

On a related topic, Tufte indicates the benefits for presenting information
in parts grouped carefully together, “Panorama, vista and prospect deliver
to viewers the freedom of choice that derives from an overview, a capacity to
compare and sort through detail” [25]. Such considerations also assist painters
in creating worlds that reward careful study of their detail. For example,
Hieronymous Bosch’s Garden of Delights (c. 1500) portrays a world over which
the eye may wander at will as it takes in relationships between couples, groups
of people, sections of garden, and so on. Of course, where the object under
study is static, a viewer may take the time to examine and re-examine the
various parts of a display and avoid missing anything of importance (as Tufte
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would prefer). When the object is constantly changing, as with multiscreen
cinema or a Game of Life run, an investigation of one element results in
irrevocably missed information about another. Under these circumstances, no
matter where a viewers’ attention is focused, she is left with the impression
that an abundance of chances was missed. Her faculties are fundamentally
unable to absorb all that is before her.

While one of the attractions of the Game of Life occurs at the visual
level, the software is also an attractive subject for philosophical discussions
concerning emergence and complex systems [3]. It contains a vast number of
possibilities within the bounds of its simple virtual-physics. While its transi-
tion rules may be considered in terms of biological analogy (overcrowding and
mutual support of living cells, for instance), the result is still an intrinsically
digital system. Cells are in one of exactly two states, and their behavior is
completely deterministic. Yet from this emerges a milieu of flickering forms
that somehow suggest life, without mimicking it.

The question “How does it work?” is implied by any given run of the Game
of Life in which it is recognized that the output is not at all random, but highly
organized and structured according to its own internal rules. Even once the
viewer know these rules, that they are capable of creating such a bewildering
outcome remains a source of fascination to the artificial life researcher and to
the newly informed student alike.

13.4 The Betrayal of Points and Lines

Having briefly discussed the concepts of wonder and the sublime, this section
now addresses the representational schemes that may be used to bring the
digital realm to the realm of sublime experience. Of particular interest is the
way in which points of light may be used to give the bounded computer screen
the appearance of intricacy and an ability to expose unbounded space (see
the earlier categorization of methods for approaching the sublime). This has
already been touched upon while discussing the Game of Life in the previous
section.

Taking the lead of Kandinsky, the discussion begins with the geometric
point, an invisible thing too perfect to exist [13]. An artist may approximate
it by instigating a collision between a sharp tool and a flat plane. The artist’s
point has character. It is not one of Plato’s Ideal Forms, but it is beautiful
for all its imperfection.

The point may also be displayed on a CRT or LCD monitor. The size and
shape of the smallest displayable shape are dictated by the display technology.
Beyond a single pixel the character of the point may also be altered, albeit
with less potential for variation than in the analog world.

Anyone familiar with Islamic or Roman mosaics, medieval tapestry, Pointil-
list painting, the television screen, or a computer monitor is aware that in vast
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numbers, the point may vanish in an ocean of its kind. Here it becomes simply
one atom in a larger texture — mobs of points are not as honest as individuals.

If the draftsman drags a pen across the page, another form results, a line.
Like the point, the line seems unpretentious, especially if it is straight and
completely surrounded by white space. However, place a few straight lines
together and important transformations may take place. For example, the
triangle is born of three lines and is eventful for its ability to enclose space on
the plane and thereby define a boundary, and with it, an object. The second
transformation of relevance here is the apparent shift into three dimensions
brought about by the Cartesian axes. This is also born of three lines and is
eventful for its ability to suggest space that extends beyond the plane in which
the lines are drawn.

Under some circumstances the three lines that represent Cartesian space
may appear simple and flat; under others, however, the third dimension “pops”
out of the plane at the viewer. It is outside the scope of this chapter to discuss
how this second transformation occurs; the interested reader is referred to [12].
For now it is sufficient if it be acknowledged that at least in some cases, three
Cartesian axes suggest a volume where there is none, this being (of course) the
principle that underlies Renaissance painting and a host of styles up to and,
of relevance to this discussion, including modern computer graphics. Using
only lines one may build a two-dimensional representation of a solid object in
unbounded three-dimensional space.

To return at this stage to the Game of Life, the system is typically dis-
played as, strangely enough, a grid of points. The choice of the point as the
basic element of the simulation excludes the misleading suggestions of line
drawings. Still, even within this limited visual space, the CA is successful at
its evocation of life and with it intricacy. How can similar systems expose or
suggest spaces that are infinitely large and intricate?

13.5 Moving Beyond Two Dimensions

The Game of Life and CA-based generative art such as IMA Traveler [7] work
in the domain of points and suggestion, as outlined earlier. With a computer
monitor it is easy to represent lines and surfaces using a multitude of similarly
lit pixels.

IMA Traveler, while working with points in a plane, recursively sub-divides
these, giving the viewer the sensation of a bottomless plummet. This is an in-
teresting perceptual phenomenon when it is considered that by continuously
zooming in on a two-dimensional image (the points aren’t modeled in three-
dimensional space) one can instill the sensation of motion through a con-
tinuous and infinitely detailed universe. The fractal zooms of the 1980s are
perhaps the most familiar and overused form of this same trick. In their work
Powers of Ten (1968), the Eames also utilized rapid scale shifts to produce a
film of great effect.
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The CA and its artistic derivatives draw attention for evoking natural phe-
nomena and for prompting the viewer to determine the underlying principles
by which they operate. Not all artificial life software is of this type, even if
it is important to the research field for other reasons. One may propose a
full range of works of which the CA-based software falls near the center. This
spectrum runs from abstract systems such as Ray’s Tierra [20], to clearly
representational systems such as Sims’ Virtual Creatures [23].

Ray’s work emphasizes the principles of selection and evolution through
rapid reproduction, and has itself proved a useful model and a starting point
for other researchers such as Pargellis [18] (discussed ahead) to further the
study of evolutionary systems. However, Ray’s work does not have the vis-
ceral appeal that visual cellular automata may have. Tierra’s space of machine
code instructions is abstract and not typically represented in such a way as to
be comprehended by the eye. A fascination with Tierra arises through careful
study and is predicated upon an understanding of the core workings of the
system and the way in which the instructions interact and occupy memory.
This contrasts with the CA, in which the rules need not be known to under-
stand the system at one level. It is this first level of visceral comprehension
that prompts theorizing about what underlies the behavior of the CA cells.

At the opposite end of the spectrum, Sims’ Virtual Creatures fascinate
researcher and layperson alike. His jumping, swimming, running and limping
creations are so full of character that one easily takes a leap of faith by referring
to them as “creatures,” even though their bodies are clearly rendered cuboids.
This leap erases any chance of a viewer posing the question, “How does it
work?” because it is implied by the visualization that these are creatures!
While a graphics researcher or software engineer may see Sims’ video and
wonder at the means of producing such marvelous results, this question is not
implied by the creatures’ visualization as it is by the CA. The virtual creatures
do not operate according to unknown rules; we are tricked into believing that
they operate according to the rules all creatures obey. There is seemingly
nothing here to discover.

This aspect of Sims’ creatures is largely due to the way in which they
are visualized — the representations of three-dimensional space, of solids and
their surfaces, of friction and other forces are all customary. In this case the
visualization is prescriptive, rather than evocative. McCormack’s Eden, which
was constructed as an artwork (see article in this issue and [16]), similarly
represents organisms and their real-world behaviors. But it displays them
using iconic forms on a two-dimensional grid (mapped to an “X” in three-
dimensional space) and in a world nevertheless governed by rules of survival,
energy, mating, and space, based on those of the real world. In contrast with
Sims’ work, this underlying link to the physical world is not prescribed and
takes some experience to decipher if a viewer is able to decipher it at all.
Although the system is still considerably more representational than the Game
of Life, what remains is an aesthetic visual experience akin to viewing an
intricate CA, coupled with the implicit question, “How does it work?”
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This discussion of Ray’s, Sims’, and McCormack’s work is in no way in-
tended as an evaluation of their worth. These examples only serve to illustrate
the various ways in which a viewer may contemplate a generative process and
its outcome, and therefore the various ways in which the devices may be
employed for artistic purposes. The next section takes current generative art-
works and artificial life software as a starting point. It explores areas into
which artists might move to further expand the sense of wonder their works
inspire.

13.6 Spaces That Build Themselves

An artist aiming to produce a system capable of sustaining a continuous in-
crease in complexity shares a goal with many artificial life researchers [1]. Why
would an artist wish to do such a thing? To return to the ideas discussed ear-
lier, the artist searching for the computational sublime would find it, perhaps
in its ultimate form, by generating an experience of open-ended complexity
governed by processes instantiated on a computer. The loss of control would
be complete — the system would build its own structures and define its own
universe. It would do this according to human-engineered rules, yet in a way
that defies humans to anticipate its outcome.

This system would be following the code a programmer laid down and run
on a machine an engineer designed. Would this device behave in a way about
which we could easily reason? In this conflict between control and riot lies the
sublime. Mary Shelley knew this well — her friends and contemporaries were
much interested in the sublime — when she vividly penned Frankenstein and
his monster run amok [22]. For a historical overview of theories of the sublime
in this period, see [11].

How does one write code that will produce the hierarchically organized
composite structures associated with life and ever-increasing complexity? If
we consider the cells of a CA grid as analogous to molecules, and higher-
level emergent structures such as gliders as analogous to organelles (a far
stretch when one considers the complexity of interactions a physical molecule
or an organelle may undergo, and the feeble interactions between neighboring
cellular automata), can we code the system so that still larger-scale groupings
of structure occur? Can it produce structures at the level of single cells, a
multicellular organism, or an ecosystem?

In theory, even gliders, spinners, and other structures of the Game of Life
may be carefully arranged into larger-scale units (such as a self-reproducing
machine incorporating a universal Turing machine, if one has the patience to
arrange its 1013 cells [3]). The question remains though, is it possible that
such a higher-level structure will appear of its own accord? If software could
be arranged to facilitate this, the structures that arose would do so on their
own terms and might therefore behave in ways the creator did not envisage.
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This might provide an effective source of complexity to assist an artist in his
search for the computational sublime.

If theories about the process of natural increase in complexity (such as
those extensively discussed by Kauffman, for example [14]) hold true in virtual
systems, then the elements in the virtual space might self-assemble into simple
stable structures. Perhaps, if the virtual physics and chemistry of the world
allowed it, simple reactions might occur, possibly some in auto- and cross-
catalytic sets such as those described by Dorin [4]. These might form the
basis of a recognizable topology with the bare bones of a metabolism. What
next?

As natural evolution demonstrates, one way to achieve an increase in com-
plexity beyond this is to have the structures engage in a reproductive battle
against one another for resources (see [24]). Pargellis’ system Amoeba manages
to initiate reproduction randomly. It establishes conditions in which practical
CPU and memory resources are sufficient for a replicator to appear sponta-
neously from the prebiotic soup [18]. In a Tierra run such an event is much less
likely than in Amoeba. Hence Ray initially seeded Tierra’s population with a
replicator to allow evolution to commence. The problem of coding a simula-
tion that can make the leap from self-organization to spontaneous evolution
of structure seems (as far as this author is aware) unmade by any researcher.

Setting aside the leap from self-organization to evolution, even though
systems solely employing artificial evolution are readily implemented, getting
these to mimic natural evolution’s progression from molecules to organelles to
cells and on to multicellular creatures and ecosystems has proved a stumbling
block. Although worlds such as SOCA give rise to auto- and cross-catalytic
sets, Amoeba may randomly give rise to replicators, and Polyworld [28] gives
rise to simple communities, there has been limited success (arguably no suc-
cess) in writing software that encompasses more than one of these important
level shifts without resorting to abstractions so high that the simulations they
are contained within become trivial.

The reasons for this difficulty are not yet clear. In part, current computa-
tional resources may be to blame. However, this is quite likely only a part of
the story, and maybe only a small part at that. Rasmussen, for instance, has
suggested that the bottom level of our simulations are not complex enough
to give rise to the kind of multilayered outcomes we desire. He proposes that
only by adding complexity to the bottom-level elements of a simulation can
we expect to gain extra levels of organized structure on top of any earlier
ones [19]. This claim seems to contradict the “complex systems dogma” that
explicitly treats complex phenomena as emergent from simple interactions.
Since in Rasmussen’s paper notions of “complexity” and “adding complexity”
are only loosely defined, it is not clear exactly how and to what extent this
might be the case. This is discussed in detail elsewhere [5].

Rasmussen supports his view with a claim about a model he has con-
structed. Gross and McMullin [10] argue that this model does not, in fact,
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demonstrate the emergence of multiple levels, and that a similar outcome can
be obtained without adding complexity at the base layer.

It is outside the scope of this chapter to become too deeply embroiled in
this battle. Rasmussen’s suggestion may in some sense prove true. Either way,
further questions need to be addressed simultaneously. Might there be a limit
to all this “complexity adding”? How much added complexity is necessary
to move from one level to the next? Questions like these remain open and
continue to be debated.

Besides issues raised above, there may be fundamental problems with cur-
rent approaches to solving the problem. It is possible that simulations on
current computer architectures and employing computer programs as they
are currently understood will turn out to be practically limited in their abil-
ity to produce the kind of truly open-ended complexity increase required.
Issues of available resource consumption are an obvious reason why infinite
increase is impossible; however, are there reasons why any interesting string
of increases in complexity may be impossible with current programming and
computer technology? These questions remain a topic for a further chapter
and, in one sense (counter to the claims of the Renaissance writer Vasari about
artists surpassing nature [27]), the hope of one day creating a virtual space
as multi-faceted as nature remains faint.

13.7 Conclusion

Although the limitations of our abilities to code multiple-level hierarchies are
apparent, clearly this does not imply that our art is similarly constrained. The
element of the sublime in a Caspar David Friedrich canvas does not arise from
the intricacy of its mechanism, but from contemplating nature and our place
in it from behind the safety of a picture plane. Even more apparent is the irrel-
evance of intricacy and nature (taken literally) to postmodern interpretations
of the sublime such as those discussed by Jean-François Lyotard [26]. Hence
works such as the dark canvasses produced in Mark Rothko’s later years may
be discussed in terms of their contribution to the postmodern sublime. The
sublime does not lie in a work, rather the work may act to trigger a sublime
experience in a viewer. In the case of Lyotard’s ideas, this relates to a sense
of formlessness and therefore of things that may be better left unpresented.

Since our machines are faster at mathematics than we are they will always
maintain the ability to play the role of mediator between us and the vast
computational spaces outside our direct experience. Perhaps one day these
same machines will be able to take us beyond spaces that look more and more
familiar as we travel through them, into spaces that increase in complexity and
continue to surprise us. Here the sublime experience of nature’s vastness and
ferocity may be rivaled through a sense of the computational sublime. We will
be sensing a space rendered maybe with points on a plane and computed on-
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the-fly by our fastest machines, and it will seem to us as terrible and delightful
as standing on an icy summit surveying all the world.
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actuator 218
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artificial life 116, 211, 323
autopoiesis 158
avatar 76
Avida 6, 338

battlefield 152
Biota 73
Boolean networks 263
Braitenberg’s vehicles 147

cell 17, 45
CelLab 235
Cellsprings 235
Cellular 235
cellular automata 147, 233, 263, 327
cellular automata, binary 237
cellular automata, cyclic 238
cellular automata, totalistic 237, 273
cellular automata, voting 245
cellular automata, WireWorld 250
chemostat 30
chemotaxis 135
Chojo 78
Collidoscope 235
combat models 144
Connection Machine 195
Core War 5
cybernetics 212

Darwin Pond 81
Discrete Dynamics Lab, DDLab 235,

263, 341
dynamics, global 268
dynamics, local 268

Echo 213
ecosystem 30, 60
Eden 213, 340
edge of chaos 264
effector 42
EINSTein 147, 340
embryology 95

Flatland 89
Framsticks 37, 95, 338

Game of Life 69, 233, 242, 249, 327
Game of Life, weighted 247
garden-of-Eden 269
gene 45, 168
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Interactive Evolutionary Computing
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Fig. 2.8. A sample genotype and the corresponding creature (body and brain).
Some genes are selected by a user, and the corresponding parts of the body and
brain are highlighted.

Fig. 2.10. A simulated creature with the control system under investigation. Four
neural probes can be seen, showing signals in different locations of the neural net-
work.



Fig. 2.17. Four Framsticks Theater shows: introduction, dance, biomorph, and
reproduction.

Fig. 3.2. Nerve Garden interface in web browser



Fig. 3.6. Bee flight through a Nerve Garden island populated by user-generated
L-System plants

Fig. 6.1. A Repast model user interface.



Fig. 6.4. RepastJ in the Eclipse Development Environment.

Fig. 6.14. The simulated trajectories of 25 bacteria.



sing command sing data

actuator message

sound produced

frequency

vo
lu

m
e

L M H

Fig. 9.6. The “sing” actuator message contains two parts. The first is the com-
mand requesting the agent to perform a sing operation; the remainder contains the
sing data: volume levels for three distinct frequency bands. Using three bits per
frequency band results in 29, or 512 distinct sounds.

Fig. 9.8. Images of Eden in operation.



Fig. 10.6. Sample rules from the Generations family.

Fig. 10.7. Sample rules from the Larger than Life family.

Fig. 10.13. Sample rules from the User DLLs family.



Fig. 11.7. Space-time pattern of the 2D Game-of-Life, (v = 2, k = 9, n = 55× 55)
in a 3D isometric projection. 2D time steps stack below each other, and are shown
as if looking up at a transparent shaft. Left : Starting from the “r-pentomino” seed.
Center : Re-scaled to the smallest scale, new seeds set at intervals. Upper right : A
2D state (time step) colored according to value. Lower right : The same state colored
according to the neighborhood look-up.

Fig. 11.9. The basin of attraction field of a small random Boolean network,
n = 13. The 213 = 8192 states in state space are organized into 15 basins, with
attractor periods ranging between 1 and 7, and basin volume between 68 and
2724. The arrow points to the basin shown in more detail.



Fig. 11.11. Top: The space-time pattern of a 1D complex binary CA where inter-
acting gliders emerge, n = 700, k = 7, 308 time steps are shown from a random
initial state. Center : The basin of attraction field for the same rule, n = 16. The
216 states in state space are connected into 89 basins of attraction, but only the 11
nonequivalent basins are shown, with symmetries characteristic of CA. Bottom: A
detail of the second basin in the basin of attraction field, where states are shown
as 4 × 4 bit patterns.
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