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The analysis, control, and optimization of manufacturing processes in the
semiconductor industry are applications with significant economic impact.
Modern semiconductor manufacturing processes feature an increasing num-
ber of processing steps with an increasing complexity of the steps them-
selves to generate a flood of multivariate monitoring data. This exponen-
tially increasing complexity and the associated information processing and
productivity demand impose stringent requirements, which are hard to meet
using state-of-the-art monitoring and analysis methods and tools. This chap-
ter deals with the application of selected methods from soft computing to
the analysis of deviations from allowed parameters or operation ranges, i.e.,
anomaly or novelty detection, and the discovery of nonobvious multivariate
dependencies of the involved parameters and the structure in the data for
improved process control. Methods for online observation and offline interac-
tive analysis employing novelty classification, dimensionality reduction, and
interactive data visualization techniques are investigated in this feasibility
study, based on an actual application problem and data extracted from a
CMOS submicron process. The viability and feasibility of the investigated
methods are demonstrated. In particular, the results of the interactive data
visualization and automatic feature selection methods are most promising.
The chapter introduces to semiconductor manufacturing data acquisition,
application problems, and the regarded soft-computing methods in a tutorial
fashion. The results of the conducted data analysis and classification exper-
iments are presented, and an outline of a system architecture based on this
feasibility study and suited for industrial service is introduced.

2.1 Introduction

The exponential increase of available computational resources leads to an ex-
plosive growth in the size and complexity of application-specific databases.
In fact, today’s industrial sites can produce so much data per day that the
evaluation of potentially beneficial information and even complete storage
become close to impossible. The monitoring of complex processes, for in-
stance, in industrial manufacturing, however, requires online monitoring and
decision making as well as ensuing extraction of nonobvious information and
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structure of the data. This procedure of knowledge discovery and the online
decision making serve to control the respective complex processes, e.g., for
quality assurance purposes, keeping the process in a multivariate window of
allowed parameter tolerances.

One important instance of this general problem class with a significant
commercial impact and stringent information processing demands is repre-
sented by the analysis, control, and optimization of manufacturing processes
in the semiconductor industry. Typical aims are the centering of the process
in a so-called process window and the assurance of an optimum yield based
on functional and electrical tests. For instance, in [2.53] a good general intro-
duction to the topic can be found. In this particular work, decision trees are
applied to determine significant individual variables or groups of variables. A
more focused example is given in [2.3], where data mining and various classi-
fication techniques are applied to a single processing step dealing with wafer
cleaning. Leading-edge technology and the corresponding manufacturing lines
have reached an unprecedented complexity in terms of both required machin-
ery and the required process monitoring, control, and optimization demands.
Thus, modern semiconductor manufacturing processes feature an increasing
number of processing steps with an increasing complexity of the steps them-
selves from initial wafer preparation to final passivation. Due to the continued
validity of Moore’s exponential growth law (see, e.g., the STA ITRS roadmap
[2.2]) the complexity of the processes will continue to increase at a rapid pace.
In Section 2.2.2; a brief introduction to this part of the presented work will
be given. Consequently, a tremendous amount of monitoring data are gener-
ated by the manufacturing line. The generated data have to be analyzed with
regard to the required process specification or qualification, i.e., whether the
process remains in the process window (see Fig 2.1). In simple models, the
process window can be described, e.g., by a multiparameter or multivariate
bounding box with thresholds in each parametric dimension. Exceeding the
threshold makes overt that the process is going out of specification for one
or several of the involved parameters. This approach neglects multivariate
dependencies and higher-order correlations of variable groups. Figure 2.2 de-
picts typical problems occurring, such as the process being off-centered or
showing correlated parameters or multimodality. The same holds for the typ-
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Fig. 2.1. Illustration of a process window.
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Fig. 2.2. Illustration of process window problems.

ical statistical analysis approach employed for the analysis and evaluation of
process-related data. Individual parameters are checked for model consistency
with regard to univariate, typically Gaussian assumptions. Further, methods
like principal component analysis are used, which by its nature is a linear
and parametric approach and, thus, is of limited applicability for nonlinear
cases not obeying a multivariate Gaussian model. The significant economic
potential of the data mining field in general and the field of semiconductor
process data analysis in particular has triggered many activities. Numerous
statistical tools with interactive visualization have recently become available.
For instance, for the semiconductor industry, tools like dataPOWERsc [2.51],
Knights’ Yield Manager [2.52], or Q-Yield [2.7] are on the market. These tools
dominantly apply parametric first order methods, i.e., methods based on the
statistical information of a single variable or the correlation of two selected
variables.

Thus, for the cases regarded earlier, advanced methods from soft comput-
ing originating from the fields of pattern recognition, neural networks, bio-
inspired computing and statistics, and corresponding tool implementations
provide improved leverage by multivariate, nonparametric, and nonlinear ap-
proaches. In Section 2.3.1, specific methods and their potential for advanced
process window modeling and detection of deviation from the process window
in (semi)automatic operation are briefly presented.

For the offline analysis of the multivariate process data as a baseline
for ensuing process control and optimization, advanced methods for efficient
multivariate data dimensionality reduction and interactive visualization can
be salient. The benefit is given in terms of capturing multidimensional re-
lations in the data, transparency as well as speed in the process of analy-
sis, and knowledge extraction. In prior work of other groups, e.g., Goser’s
group in Dortmund [2.38] [2.14], Kohonen’s self-organizing map (SOM) has
been applied. In an enhancement of this work Riickert et al. [2.47] have de-
veloped the dedicated tool DANI for the analysis of semiconductor data of
Robert Bosch GmbH. In this kind of application, the topology-preserving
and dimensionality-reduction mapping properties of the SOM are exploited
in conjunction with visualization enhancements, as, e.g., the U-Matrix of
Ultsch [2.54]. The properties of the SOM and other neural networks have
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also been employed in the smart fabrication project from 1995 to 2000 by
a consortium including TEMIC, Siemens, and the University of Tiibingen
(Rosenstiel et al.). The detection of characteristic failure patterns [2.36] and
yield prediction [2.37] were some of the pursued goals in this project.

In these and similar efforts, Kohonen’s SOM has been employed with
static visualization techniques. The advanced methods investigated here,
however, differ in many ways and especially target on bringing improvements
with regard to mapping speed, mapping error reduction, user convenience,
and interactivity in the analysis process. The respective methods briefly
browsed in Section 2.3.2 can serve to project data in a lower-dimensional
space to make it amenable for interactive human perception—based analysis
as well as automatic variable or variable group selection and pattern clus-
tering. The objective of the current phase of the work and this chapter is
to demonstrate the viability of the addressed methods for real process data
extracted from a modern CMOS process. As a feasibility study, data with
known but nonobvious information content prove that the methods can in-
deed help in rapidly detecting the desired information. In the second phase
of the feasibility study, novel information and knowledge shall be extracted
from additional process data by applying the proposed methods, e.g., in-
teractive multivariate data visualization. In this regard, the chapter is as
organized as follows. In the next section, the general data acquisition process
and the chosen instance data for the conducted experiments are described. In
the following section, the spectrum of applied methods and their tool imple-
mentations are covered. Then the conducted experiments and the achieved
results are presented and discussed. Before concluding, the envisioned per-
spective of the work and the related information processing architecture for
manufacturing process monitoring and optimization are introduced.

2.2 Semiconductor Manufacturing and Data Acquisition

2.2.1 Brief History of the IC

Semiconductor devices had a slow start as a curiosity that was not well under-
stood. Still, they had important niche applications in radio communications,
when vacuum tubes could not be used. As the understanding of their princi-
ples of operation grew, refinements to the manufacturing process first enabled
military applications and then delivered the first commercially available de-
vices in the form of single-pn-junction diodes and transistors in the early
1950s. The year 1958 marked the birth of the monolithic integrated circuit,
now commonly just called IC. The invention of the IC is attributed to TI en-
gineer Jack Kilby, but without the planar manufacturing process developed
in the same year by Jean Hoerni and advanced by Robert Noyce and Gordon
Moore at Fairchild,? it would likely have taken quite a bit longer for the idea

3 R. Noyce and G. Moore left Fairchild to cofound Intel in 1968.
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to take off. Meanwhile, also at Fairchild, a group of researchers* were getting a
handle on manufacturing stable metal-oxide semiconductor (MOS) field effect
transistors. They had actually been invented decades before the bipolar tran-
sistor, but irreproducible characteristics and fast degradation had prevented
their application. The MOS transistor came back into focus because as a sur-
face device it is a natural match to planar processing. In 1963 complementary
MOS,? or CMOS, now the dominant technology for ICs, was invented. In the
April 1965 issue of Electronics [2.40], Gordon Moore boldly predicted® that
the number of components per IC would double each year at least through
1975. Depending on how you count components, the actual doubling interval
turned out to be 18 months, but the general pattern of exponential growth
has proven to be accurate for more than 40 years, with no end in sight. One
of the important consequences is that the smallest feature F of an IC has
to be halved about every three years. The diminishing of the feature size is
commonly called technology scaling or shrinking, derived from the fact that
at larger feature sizes it sufficed to simply draw the layout of an IC at a
smaller scale to go from one technology generation to the next (provided the
new technology was designed to be compatible with the old). As F becomes
smaller, it becomes more difficult, if not impossible, to keep this strict com-
patibility between technology generations; however, there are design tools to
“scale” IC layouts down to the new generation while making these differences
transparent. Technologies with an F of 0.13 um are in production right now,
and the next technology generation with sub-100-nm structures is imminent.
These ICs will integrate more than 100 million transistors.

2.2.2 IC Production Process

The prevalent technology for producing ICs today is CMOS on silicon. The
silicon substrate (called the wafer) is sliced off of a single crystal of extremely
pure silicon (the ingot) at a precise angle with respect to the cristallographic
orientation. The wafers are then polished to achieve an atomically smooth
surface and extreme flatness. Currently, wafer diameters of 200 mm are most
common, while 300 mm wafers just being put into production.

The actual IC production process takes place in clean rooms, at the so-
called fab floor. Clean rooms are classified by the number of particles larger
than a certain size in a cubic meter of air. A laminar flow of air from the
ceiling to the bottom is maintained to quickly remove any particles becom-
ing airborne. The IC production process is roughly divided into the wafer or
frontend processing, wafer test, and the back-end processing where the chips
are singulated, packaged, and subjected to more tests. Commonly test and

4 One of them was Andrew Grove, later to become Intel employee number 4.

5 Thus far, MOS IC technology had employed only n-conducting devices, which
led to the name NMOS technology.

5 In various forms, this prediction is now known as Moore’s law. Beyond that
prediction, this article is an elucidating read even today, almost 40 years later.
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packaging make up more than 50% of the production cost. Wafer processing
takes places in a so-called wafer fab or manufacturing line and is often further
divided into front-end-of-line (FEOL) and back-end-of-line (BEOL) process-
ing. Simply speaking, the FEOL processing provides the active devices within
the silicon, BEOL processing produces the connections between the devices,
and the back-end processing provides the connections to the outside world
as well as protective packaging. To simplify the fab logistics, wafers typically
run in lots of 25, 7 although some tools demand batches (see Fig. 2.3) of up
to six lots to be used effectively, while other tools can’t process a complete
lot, which will then be split into smaller batches or even single wafers.

All wafer processing, whether FEOL or BEOL, has the same general struc-
ture of producing so-called layers, one after another. The whole wafer is sub-
jected to some processing, like producing a thin film of oxide or metal. Then
a mask is transferred to the wafer, most commonly by optical lithography, to
selectively protect parts of the wafer from the following process steps. Then
the wafer is subjected to further processing, like etching or implantation of
ionized dopants. Manual and automatic inspections are inserted at various
stages (Fig. 2.4). Then the mask is removed and the next layer is processed.
Layers vary widely in the number, complexity, and cost required to make
them. This leads to a distinction between critical and uncritical layers. Mod-
ern technologies make use of 20 to 30 layers, and this number continues to
go up. The number of layers that make up the actual devices stays relatively
constant. However, as the minimum feature size F continues to shrink, the
exponentially growing number of devices requires much more interconnect
between them. For this reason, the number of interconnect or metal layers in
the BEOL, another commonly cited characteristic of a technology, increases
quite rapidly. In fact, the interconnect of the devices (the BEOL) is now more
costly to produce then the devices themselves (the FEOL).

2.2.3 Data from the Fab — Inline Data

Historically, each lot was accompanied by a stack of paper, called the process
record. Each sheet detailed one process step and the operator would set up the
tool accordingly, run the process, sign off, note remarks and the result of any
measurements taken, look up the next operation, and hand the lot over to the
next operator. This is really where the term semiconductor manufacturing
stems from. The process record has been replaced® by a database and the
lots are moved to the next operation by automatic transport systems (Fig.
2.5) coupled to that database. The so-called process flow is defined by the
layer sequence at the top level. This has to be broken down into individual
process steps, often called moves. Each of the process steps is made up of a

7 The lot size is somtimes reduced to 12 wafers for 300-mm wafers, as a lot of 25
wafers is too heavy to be handled manually.
8 Some fabs still use printouts to accompany the lots.
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Fig. 2.3. Batched 300-mm wafers ready to go into a vertical furnace (open furnace
tube on the upper left).

sequence of operations (called a recipe) within the tool. It is now common to
have so-called cluster tools comprising of multiple stations capable of running
a variety of processes, so a recipe can be quite complex.

While the process record has been moved into an electronic database,
it has also been expanded over time to contain more data. Measurement
equipment will generally store results to a dedicated database before a result
summary is attached to the process record. Additionally there are separate
databases dedicated to certain tools or tool groups for recipe repositories and
recording events and in situ measurements during processing. The trail of
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Fig. 2.4. A 300-mm wafer at so-called floodlight inspection to check for correct
printing of the mask).

data collected about each lot is therefore scattered about various databases.
Lately, single-wafer processing has become more important. Often the exact
sequence of wafers through a single-wafer process or the position of wafers (re-
spectively lots in batch tools) will be needed to pinpoint problems found with
specific wafers. For so-called single-wafer tracking, this information needs to
be fully recorded, which is only possible if all tools can read the wafer ID
and lot information automatically and are connected to a database system.
Additionally, a vast amount of (often temporary) data is produced and eval-
uated for inline process monitoring and closed-loop process control. It can
be estimated that a typical semiconductor manufacturing line produces such
data in excess of 1 TByte per day. It is therefore essential to evaluate, prune,
and compact much of this data directly at the source. Routine reports are
extracted for common purposes like maintenance, documentation, process
control and optimization, and quality management. Process data that are
actually stored, whether on the process tool itself or in a database, are usu-
ally kept only for a limited time or in a rolling log file to limit the storage
requirements. This is far from an optimal solution as most of the data will be
completely normal and therefore uninteresting, while crucial data needed to
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Fig. 2.5. Automatic transport system loading up a fully automatic wafer storage
(Stocker).

analyze a process failure may already have been deleted before the anomaly
is recognized and triggers a detailed investigation.

Collecting and evaluating all data for even a single lot are a formidable
tasks. The resulting very large multivariate data set must therefore be anal-
ysed for deviations from allowed parameters or operation ranges, i.e., anomaly
or novelty detection, and nonobvious multivariate dependencies of the in-
volved parameters and the structure in the data must be disclosed for im-
proved process control. Here, appropriate methods, e.g., from soft computing,
for online observation and offline interactive analysis employing novelty clas-
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sification, dimensionality reduction, and interactive data visualization tech-
niques can be employed.

2.2.4 Electrical Test Data

After fabrication, electrical tests (ET) on the wafer level are carried out to
assess that all single devices defined by the process are within their specified
range. The devices tested are separate from the actual ICs on the wafer, often
placed into the space between individual chips that is needed to singulate
them later. These test structures are laid out carefully to isolate the layers
needed to process them as much as possible from other layers. These tests are
also called parametric tests as the results are actual measurement values for
device parameters, like the threshold voltage or saturation currenrt of some
specific transistor.

Later the actual ICs on the wafer are subjected to functional and para-
metric tests (FT and PT) on the wafer to decide which devices should be
packaged after singulation. These tests are usually performed on a multitude
of devices to save time. A sequence of tests is performed on each chip, and
the first test that fails is recorded. The failed chips continue to be tested, but
as the fail may have put it into an undefined state, the results of these tests
cannot be relied on.

Both electrical and functional test data are stored in databases (s. Fig. 2.6)
and is often preprocessed to facilitate analysis. Such preprocessing routinely
includes the removal of spurious faults, calculation of derived values for pa-
rameteric data, and binning for functional data. Binning collects several in-
dividual tests that are associated with the same failure mechanism into a
so-called fail bin.

Often the IC will again be tested after being fully packaged. When relia-
bility is of utmost concern, a burn-in procedure may be performed to weed
out early fails, necessitating further tests.

2.2.5 Data Analysis

Standard data analysis concentrates on keeping the process within specifica-
tion limits, thus ensuring the quality of the final product. Typically a normal
distribution of the measured parameter is assumed and parameters of the
distribution like median and sigma are reported. In conjunction with the
process specification limits, the so-called process capability ¢p and process
centering cpk can be calculated. These methods and their application are
widely accepted and mandated by various quality management methods and
standards like ISO 9000.

However, their application to process specification, process trouble shoot-
ing, and process optimization often does not yield the desired results. Due
to their univariate nature, complex interactions between parameters are not
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Fig. 2.6. Illustration of the overall process flow and the various origins of data.
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taken into account. Also, while nonnormal distributions can in principle be
accounted for properly, the procedure is cumbersome to implement and does
not immediately address the failure mechanisms that change the shape of the
distribution, for instance, to a multimodal distribution.

2.2.6 Process Experiment

Two lots of 25 wafers each were split identically into three groups at two
process steps (s. Fig. 2.7) to vary the process parameters of these steps and
in accordance the electrical parameters of certain devices. The intention of the
split was to vary the threshold voltages of both n- and p-type logic transistors
about the target voltage for each device. This is also called a performance
split, indispensable for dynamic performance characterization, as it results
in slow, nominal, and fast logic gates for the final product. As a side effect,
some parameters related to the threshold voltage (most notably saturation
current) and the so-called IO device coupled to the logic device will also
follow the split.

This particular experiment was chosen because its effects are well known
in advance and the analysis is reasonably tractable by conventional methods
(Fig. 2.8). Thus there is an established baseline to compare the results of our
newly developed data analysis methods against. We expect any successful
method to reconstruct the split information in the two individual lots and to
recognize that any residual differences between the two lots are not related
to the splits, as the splitgroups are identical. Further, both the intended
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Fig. 2.8. Typical result from conventional statistical analysis. The three split
groups have been separated by a priori knowledge and are shown in a single di-
agram to facilitate further evaluation of the experiment.

parameter changes and the side effects should be flagged as belonging to the

split.
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2.2.7 Experimental Data

From the proprietary software system and company database affiliated with
the regarded manufacturing process, a subset of data generated for processing
two wafer lots with five measurement positions for each wafer was extracted.
A split of three, i.e., a partitioning of each wafer batch into three subgroups
for individual processing of each partition, was carried out during produc-
tion. Six wafers from the second lot were still staged in the fab for another
experiment, so no data were available for these wafers. The electrical test
data contain redundancies with regard to the particular split, as for each
device specimen, different channel length and width are available. Also, as
already explained, variation of the threshold voltage will influence further
parameters belonging to that particular device. By means of conversion to
an Excel spread-sheet and the application of a standard conversion tool, the
database is converted to the QuickCog system requirements. The QuickCog
system comprises all the methods discussed in this chapter, in particular
the interactive data visualization methods and tools. A first database of 220
vectors with 205 dimensions will be regarded in the following experiments.
It will be denoted by SPLIT in the following. The size of this database is
given by the typical wafer batch size of 25 times the five measurement sites
per wafer. However, the measurement values of six of the wafers from one
set were not available, which reduces the data from the expected 250 to 220
samples. Larger databases could only be generated if larger wafer batches
were made subject to identical split processing. With regard to the associ-
ated effort and cost, the aim of this work was to assess the applicability of the
regarded methods also for rather sparse data of this application. No general
limitation of the approach is implied by the choice of this practically relevant
problem, as the regarded methods themselves scale well for large database
sizes [2.23], [2.24].

Complementing the parameter data, class affiliations were generated in
two files. A three-class file was generated, regarding split information only for
the complete database. The data labeled by this class file will be denoted by
SPLITS in the following. Additionally, a six-class file was generated according
to lot and split affiliation of each wafer/measurement location. The labeled
data will be denoted by SPLIT6 in the following. Additionally, according to
the underlying lots the data have been separated into two databases denoted
by SPLITTrain3 and SPLITTest3 with three classes each, corresponding to
the underlying split of 3 of each lot. Finally, for the novelty classification
purposes, a training set was extracted from the first lot containing data only
from one split. This will be denoted by SPLITTrainOCC in the following.
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2.3 Selected Soft-Computing Methods

In the following, we focus our investigations on two method groups. With the
objective to achieve a (semi)automatic monitoring and control system, se-
lected classification methods are regarded first. These shall serve the purpose
of automatic assessment or classification of online generated process data
with regard to its relevance and potential storage as well as the determina-
tion of the current process state within the process window. As the second
group, methods for offline exploratory data analysis are regarded. We focus
on relevant methods of dimensionality reduction and interactive visualization
that allow us to extract nonobvious structure and underlying dependencies
from the database. The results obtained using these methods also provide the
baseline for the design of the effective (semi)automatic classification methods.

2.3.1 Novelty or Anomaly Detection

For the (semi)automatic classification task, powerful decision units are re-
quired that can deal with complex, nonlinear, separable, nonparametric,
and potentially multimodal data. For instance k-nearest-neighbor classi-
fiers (kNN), multi-layer perceptrons (MLP), radial-basis-function networks
(RBF), or, more recently, support-vector machines (SVM) are attractive can-
didates for this task. In the context of the regarded application, dominantly
decision trees, adaptive-resonance theory (ART) networks, and MLPs have
been applied so far (see, e.g., [2.53] [2.36] [2.3]). However, especially RBF
networks are intriguing for this application due to numerous salient features.
In addition to being universal function approximators, RBF networks pro-
vide iterative topology learning, rapid training, fast convergence, and excel-
lent predictable generalization capabilities [2.4], [2.43], [2.44]. In contrast to
MLPs, the hidden layer of RBF networks comprises distance computation
units equipped with a radially declining nonlinearity. The Euclidean distance
and the Gaussian function are typical instances for RBF networks, which are
closely related to the Parzen-Window technique [2.41]. However, storing all
sample patterns is a significant burden with regard to storage and computa-
tion requirements. Thus, generalized RBF networks [2.4], i.e., networks with
fewer hidden neurons N* than training patterns N, are typically applied,
which are given for the case of a one-dimensional function s(x) by

N
s(x) = Zwi@(n x—t;|), zeRM, (2.1)

Here, t; denotes the centroid vector of the basis function, ¢; denotes the ra-
dial basis function, w; denotes the weight for the linear combination of the
basis function outputs by the output neuron,  denotes an input vector, M
denotes the dimension of the input vector, and N* denotes the number of
hidden neurons. Judicious and efficient choice of a sufficient but minimum
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number N* of hidden neurons is a major issue, especially for large scale
problems. Several top-down and bottom-up strategies have been developed
in the past [2.42] [2.15] [2.35] [2.30], employing and combining both super-
vised and unsupervised learning techniques. In a typical top-down strategy,
a large number of centers will be determined by vector quantization tech-
niques, e.g., Kohonen’s self-organizing map. Fine-tuning of the network is
achieved by a following supervised learning step, e.g., using gradient descent.
Further network optimization and size reduction can be achieved by pruning
techniques.

On the other hand, in bottom-up approaches the network is generated
from scratch, thus completing a network-size tailored to the training data.
The RBF network proposed by Platt [2.42] and the restricted-Coulomb-energy
(RCE) network [2.46], [2.5] are significant examples of this category, as they
allow dynamic automatic topology construction tailored to the problem re-
quirements. This and an additional advantage of RBF-type networks make
them excellent candidates for the investigations in this work. They also allow
the concept of background classification (BC) to be implemented, which can
be generalized from multiclass to one-class classification (OCC). BC is im-
plemented by assigning the whole feature space to the selected background
class. Other class regions are established by placing kernel functions and ap-
propriately adjusting their widths during the learning process. Clearly, the
network loses the rejection capability associated with the appearance of data
far from the training samples. However, in cases like visual inspection or
semiconductor manufacturing, in contrast to the plethora of potential errors,
the desired condition can be described by sufficient examples. Thus assign-
ing the background to such an error class can be advantageous. Initial ideas
can be found in the Nestor-learning-system (NLS) [2.5], [2.6], which com-
prises a special RBF model denoted by RCE network [2.46]. The concept has
been generalized to RBF networks in [2.20]. The special case of OCC, also
addressed in the literature as novelty filtering [2.19] or anomaly detection
[2.17], [2.31], [2.50], [2.33], is attractive because the classifier structure can
be generated just by presenting data from a normal process situation. This
is fortunate, as typically a lot of data from normal operation conditions are
available; however, the universe of potential deviations is hard to grasp in
terms of representative data samples actually covering all relevant regions in
the high-dimensional parameter space for appropriate class border definition.

Thus, in the following, a model for OCC will be briefly derived from
RBF-type networks for the regarded application domain.

The RCE Algorithm. The RCE network [2.46] is a special case of the RBF
network given earlier. Instead of smooth nonlinearities as, e.g., the Gaussian
function, a hard limiter or step function with a variable threshold parameter
is applied. Each RCE basis function is equivalent to a hypersphere, repre-
sented by a center t; and the threshold parameter, which has the meaning
of a radius R;. Each hypersphere is affiliated to one of the classes of the
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application and gets activated if S(||x — t;|| <= R;), i.e., if pattern @ is sit-
uated within the hypersphere. The RCE output layer is also modified from a
linear combination to an OR-like logic operation combining the hypersphere
responses to determine the overall classification.

The algorithm practically requires only two parameter settings, Ry .x and
Rpin, for operation. The following situations can arise in classification:

e A pattern is uniquely classified by one or several hyperspheres of the same
class.

e No hypersphere is activated by the presented pattern. This defines a re-
jection mechanism, which can be controlled by setting Ry.x in training.
A decision can be forced by, e.g., the nearest-neighbor rule. The rejection
mechanism is replaced if the background is affiliated to one of the problem
classes in BC.

e Several hyperspheres of different classes are activated by the presented
pattern. The pattern is identified as ambiguous. A decision can be made
according to the affiliation of the majority of the activated hyperspheres
or by the nearest-neighbor rule.

The iterative RCE training algorithm starts with an empty network and
presents all patterns of the training set until no more changes take place in
the following basic training steps:

e If no hypersphere is activated by the presented pattern k, it is stored as
tj41 with Rj41 = Rpax, where J denotes the current number of reference
vectors.

e A pattern is uniquely classified by one or several hyperspheres of the same
class. All radii are left unchanged, the pattern is not stored.

e Several hyperspheres of the same and different classes are activated by the
presented pattern. Radii of hyperspheres affiliated to different classes will
be reduced until the pattern is no more included, or R; = Ry, is reached
for the regarded hypersphere j. The pattern is not stored.

e Only hyperspheres of different classes are activated by the presented pat-
tern. Radii of activated hyperspheres will be reduced until the pattern is
no more included or R; = Ry is reached. In the first case, pattern & will
be stored with Ry11 = ||t — tj11]], i-e., the radius will extend just to the
center of the closest or nearest-neighbor hypersphere [. In the second case,
pattern k will not be stored.

With the choice of Ry, the storage of vectors close to class borders can
be suppressed, thus influencing network resubstitution and generalization
properties. Evidently, patterns once stored in the RCE network will never be
removed. Just the pattern radii will be reduced until R,,;, is reached. This
means that the size and quality of the achieved network are determined by
the order of presentation of training vectors. A probabilistic presorting of
sample data for RCE (ProRCE) based on local probability estimation and
sorting of the training presentation order proportional to the probability has
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proven to be one beneficial extension of the method [2.20]. However, for the
regarded application, the focus will be on the extension of RCE to BC and
OCC.

Extension of RCE for OCC. As already addressed, it is of practical in-
terest to derive a system that is trained just by available examples of one
class and that detects samples from the other class, e.g., production errors
or system malfunctions, as deviations from the normal state. An instance of
such a system has been introduced in prior work for image processing. The
NOVelty detecting ASsociative memory (NOVAS) [2.31] stores a number of
multidimensional pixel images and generates for each pixel an internal rep-
resentation of hyperspheres with uniform radii, which is quite similar to an
RCE classifier with BC. The difference is that RCE with BC assigns one
problem class as the background class and trains the radii of the remain-
ing classes’ hyperspheres according to the correct classification of training
patterns from all classes. In case of OCC, no patterns will be available for
the background class. So the hypersphere radii must be determined by an
additional rule or method. RCE can heuristically be adapted to that aim by
storing all selected examples of the normal class from the training set based
on a prior computation of a radius Ry, for all hyperspheres according to the
maximum distance of two nearest neighbors «; and x; in the normal class
[2.31]:

Rmax = maxg\le(mln%; ||$l - m]”) (22)

After Ry .x computation, the normal training data can be completely stored
as classifier reference data of the novelty classifier (NOVCLASS). Data vec-
tors «; from the monitored process can be classified with regard to their
novelty by the following steps:

1. Compute the nearest neighbor ¢ty of x; in the prototype set T with:
M

dtNN = min;’vzl(Z(xli - tji)2)~ (23)
=1

2. Classify the pattern x; as:

M L )2
2 s normal for (Z:J\iil(xlZ INN 1)2 ) < Rmax (2.4)
novel for (Zi:l(xli - tNN 1) ) Z Rmax~

The resulting novelty detection can be employed to perceive process devia-
tions and filter data out as representing an important event worth storing.
Deviations or anomalies are detected as patterns on the background, outside
of the normal domain, similar to the BC mode of RCE in multiclass prob-
lems. This is illustrated for the two-dimensional case in Fig. 2.9. Employing
an iterative presentation of the training data, data reduction in terms of
stored vectors, similar to the original RCE classifier, could be achieved, trad-
ing off alleviation of storage requirements and real-time classification with
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Fig. 2.9. Principle of OCC by NOVCLASS.

sufficient covering of the normal domain. In this iterative training case, a
new hypersphere with center t;.1 = «; and radius Rp,,x is added to the
initially empty classifier iff a presented vector x; from the training set is
classified as novel by the already stored J reference vectors t; according to
the basic steps given earlier. The denseness of the NOVCLASS model poten-
tially can be controlled by scaling the Ry,.x parameter by a scale factor n
to 7 X Rpmax in the training process. A large-scale factor implies few stored
vectors and potential coarse window modeling, whereas a small-scale factor
17 < 1 means fine window modeling at the cost of storing and processing a
potentially large number of vectors. A functional nonparametric classifier is
thus achieved with examples of just one class. Additionally, if at least a few
examples for anomalies are available, these can be used to fine-tune the radii
of the stored normal class hyperspheres by applying RCE-like adaptation for
the conflicting hyperspheres. In this case, radii will no longer be uniform.

Currently, a prototype NOVCLASS version has been implemented and
validated with modified Iris data, where all examples of class 3 were affil-
iated to class 2. Class 1 was chosen as the normal class. Resubstitution of
the training set was perfect and in generalization just one vector slightly
separated from the main cluster was misclassified.

Summarizing, the NOVCLASS algorithm allows both data reduction and
arbitrary coverage of the parameter space. Thus, the concept of the process
window is generalized to arbitrary shapes, including no convex boundaries.
The current rather ad hoc uniform R,,.x computation approach could be
improved by more sophisticated methods, e.g., locally adaptive radii com-
putation, in future work. The present NOVCLASS implementation will be
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applied to semiconductor application data for basic feasibility demonstration
in Section 2.4.

2.3.2 Dimensionality Reduction and Interactive Visualization

Motivation. In addition to semiconductor manufacturing, a wide variety
of other technical problems are characterized by typically large sets of high-
dimensional data, obtained, e.g., from sensor registration, medical laboratory
parameters, manufacturing process parameters, financial databases, measure-
ments, or other generally observed features. With regard to the given applica-
tion, significance, correlations, redundancy, and irrelevancy of the variables z;
are a priori unknown. The extraction of underlying knowledge or the reliable
automatic classification requires reduction of the initial data set to the es-
sential information and the corresponding variables. This especially holds, as
the well-known curse of dimensionality (COD) [2.12] makes the compaction
of the data a mandatory prerequisite for reliable decision making. Unsuper-
vised and supervised methods can be employed for this reduction step for
interactive and automatic processing of the data. The exploitation of the
remarkable human perceptive and associative capabilities for the complex
problem of identifying nonobvious correlations, structure, and hidden knowl-
edge in the data can be a powerful complement of existing computational
methods. Of course, an appropriate visual representation is required, which
can be achieved by means of dimensionality reduction or multivariate pro-
jection methods combined with interactive visualization of the data [2.49].
Typical database representation, e.g., as an Excel spread-sheet is not eas-
ily amenable to human perception and understanding. This is illustrated in
Fig. 2.10, together with the alternative human-adapted visual representation
of the same database. Thus, dimensionality reduction is a ubiquitous prob-
lem and together with multivariate data visualization a topic of interest and
interdisciplinary research for more than three decades. Applications of high
economical interest, e.g., the one investigated in this work and other data
mining and knowledge discovery applications, give renewed strong incentive
to the field. Numerous methods were derived in the past for dimensionality
reduction that considerably differ with regard to the methodology, computa-
tional complexity, transparence, and ease of use. In this work, effective meth-
ods promising the best productivity increase will be preferred. The following
common definitions of two main groups of dimensionality reduction methods,
briefly adapted from [2.16], shall clarify the pursued objectives. For a given

sample set X with N M-dimensional feature vectors x = [z, ¥, ..., 2|7
feature extraction is defined as a transformation
J(A) = max 4J(A(V)) (2.5)

and the special case of feature selection is defined as a transformation

J(AS) = max 4s J(A®). (2.6)
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Fig. 2.10. Exploitation of human perceptive capabilities by appropriate presenta-
tion of multivariate data employing dimensionality reduction and interactive visu-
alization.

While in selection, according to a chosen criterion J and the applied selec-
tion matrix A° (see Eq. 2.13), the best features are retained and the remain-
ing ones are discarded; in extraction all features are retained and subject
to transformation A. In both cases a mapping @ : RM — R™ optimizing
a criterion J with m < M and y = [y1,¥2,...,Ym]? is determined. Here
y = A(v) can be a linear or nonlinear mapping and employ unsupervised as
well as supervised information. The optimization criterion or cost function J
can represent various objectives, e.g., signal preservation, distance preserva-
tion, topology preservation, or discrimination gain for the underlying L-class
problem (see Fig. 2.12). For the latter case, selected instances of J will be
given in the following. Figure 2.11 gives a taxonomy of state-of-the-art dimen-
sionality reduction methods for multivariate data classification, analysis, and
visualization in a unified presentation. This taxonomy has been elaborated
on in the last few years and is continuously enhanced, including new meth-
ods. Most of the methods have been implemented in the QuickCog system
[2.28] [2.29] and compared in previous survey publications [2.24] and tutori-
als [2.29] [2.22]. The taxonomy given in Fig. 2.11 covers methods as, e.g., the
principal-component analysis (PCA) [2.12], scatter matrices (SCM) [2.12],
Sammon’s nonlinear mapping (NLM) [2.48], and accelerated heuristic vari-
ants, the nonlinear discrimination analysis method of Koontz and Fukunaga
[2.32], or Kohonen’s self-organizing map [2.19] (see also [2.24]). For visual-
ization purposes, in this work distance-preserving nonlinear mappings, e.g.,
the one introduced by Sammon [2.48] have been applied. Interpoint distances
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Fig. 2.11. Taxonomy of dimensionality reduction methods.

dx;j, and, thus, implicitly the data structure, shall be preserved in the NLM
according to the cost function E(m):

L (dxyy — dyij(m))° .

dxij

N
(2.7)

fi =15

Here

d
dyis(m) = |3 (iq(m) — giq(m))? (2.8)

q=1

denotes the distance of the respective data points in the visualization plane
and

in the original data space and
N J
c=> > dxij. (2.10)
j=11i=1

Based on a gradient descent approach, the new coordinates of the N pivot
vectors in the visualization plane y; are determined by:

yiq(m + 1) = yzq(m) — MF x Ayiq(m) (2'11)
with
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In particular for large databases, due to the underlying computational com-
plexity of the standard methods, e.g., the NLM with O(N?), mapping compu-
tation becomes infeasible. Therefore, particular interest was placed on heuris-
tic and hierarchical methods of dimensionality reduction as mapping accel-
erators.

One of the first heuristic accelerating methods of the NLM was pub-
lished by Lee, Slaggle, and Blum [2.34]. Rightly assuming that the gradient
procedure does not always achieve an accurate projection (cf., e.g., [2.9]),
they developed a fast distance-preserving mapping that focuses on the ex-
act preservation of only a limited number of 2N — 3 distances, neglecting
all remaining ones. For this mapping, the minimum spanning tree (MST) of
the data distance graph is computed. Points are mapped by common trian-
gulation while traversing the MST, based on the previously mapped MST
neighbors serving as pivot point. However, in spite of the appealing heuris-
tic idea, MST computation and traversal itself still has O(N?) complexity.
Thus, in own prior work, an even faster mapping algorithm was developed
[2.26]. This alternative mapping, denoted as Visor mapping, also uses a tri-
angulation mapping step, but with three fixed global pivot points that are
heuristically chosen from the data set. The purpose of the pivot point de-
termination is to find the three most extruded data points that meet the
additional constraint of maximum mutual distance while enclosing the re-
maining data set. Based on centroid computation, these three data points
are successively selected as pivot points from the data set. These points are
placed first and the remaining N-3 data points are placed in the visualization
plane employing triangulation.

This algorithm, denoted by Visor [2.26], has O(N) complexity and thus
provides data projections with a very short response time and negligible sensi-
tivity to the database size. As shown by prior investigations with a mapping
quality measure, achievable mapping quality is similar to the NLM [2.26],
[2.24]. Due to their salient properties with regard to speed, convenience, and
transparence, distance-preserving mappings have been applied throughout
this work to the regarded semiconductor manufacturing data. In addition,
efficient hierarchical methods, offering a more delicate speed-accuracy trade-
off are available [2.23] and will be employed in the next stages of the work.

The unsupervised mapping methods discussed so far retain all features
from the high-dimensional feature space and compute a more compact opti-
mized feature space, e.g., for visualization and analysis purposes.

In contrast to this, feature selection actually helps to discard incoming
variables that have no or little significance for the tackled problem. It must
be remembered, that two very different aims can be pursued by the method
of feature selection. For classification tasks, the selection of an as-small-as-
possible group is desired, to allow generalization with a minimum classifica-

and 0 < MF < 1. (2.12)
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tion error. For data analysis, the discovery of all involved variables and the
underlying knowledge are aspired. Feature selection can be understood as
the computation of a constrained matrix A° for a linear mapping with the
following form

1 0 - 0
as— [ Oz 0 (2.13)
00 - CM

where only diagonal elements can have nonzero values and the ¢; € {0,1} are
binary variables or switch variables determined by a preceding optimization
process. Thus, a linear mapping y = Ax is constituted. However, due to the
constrained matrix A and the fact that column vectors with ¢; = 0 can be
entirely omitted, computation can be simplified to y = [y1,%2, - . ., ¥m]T with
yi = x; Vc; # 0, i.e., m corresponds to the number of ¢; # 0 and the cor-
responding features x; are just copied to the y;. Feature selection performs
a scaling of feature or coordinate axes by binary variables, i.e., switching off
dimensions and thus defining a subspace that is salient with regard to the
chosen criterion J. As no rotation of the basis vectors is carried out, explicit
interpretability of the result is sustained. However, due to the binary nature
of the selection process, the difference in importance or the impact of individ-
ual features is occluded. A straightforward extension of the binary matrix A
given for feature selection is feasible, which allows continuous valued rank-
ing of the features. The binary ¢; are replaced by real variables a; € [0,1],
which are determined by a preceding optimization process. The limitation
or normalization to [0, 1] is introduced for the sake of interpretability and
comparison with corresponding feature selection results. This approach com-
monly denoted by feature weighting (FW) allows a continuous scaling of
features or coordinate axes for a; # 0. Those columns with a; = 0 can be
omitted, reducing the matrix from M x M to M x m with m < M. Thus,
in addition to the aspired potentially higher achievable discrimination and
better generalization properties, explicit salient information for data analy-
sis purposes and rule weighting is extracted by this method. One particular
method of finding appropriate a; based on a certain cost function J and a
gradient descent technique can be found in [2.21]. Numerous other options
with regard to the chosen J and the optimization strategy, e.g., evolutionary
computation, are feasible [2.45] and are currently being pursued in ongoing
work. Various strategies and methods for feature selection will be discussed
after presentation of relevant cost functions J.

Cost Functions. In the following, from a larger collection of potential cost
or assessment functions summarized in Fig. 2.12, dedicated cost functions
for feature space assessment introduced in prior work, e.g., [2.27] and [2.28]
[2.22], will be briefly presented for the aim of a self-contained presentation.
These serve for discrimination measuring in terms of class regions separability,
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Fig. 2.12. Taxonomy of cost functions.

overlap, or compactness in the regarded feature space and ensuing systematic
dimensionality reduction. Though the classification rate or a posteriori prob-
abilities of any classifier could serve here (cf, e.g., [2.16] or [2.45]), for obvious
practical reasons, robust measures nearly free of required parameters, model
assumptions, and intricate training requirements are preferred in this work.

For instance, to measure separability, a nonparametric measure ¢, exploit-
ing nearest-neighbor techniques can be computed. For this class separability
assessment, the RNN-classifier [2.13] is exploited, which iteratively selects
a subset of relevant vectors as reference vectors from the training set, as
the number of these selected reference vectors Tryn is proportional to the
feature space separability. This is illustrated in Fig. 2.13, where selected ref-
erence vectors Try v are emphasized in bold. In the case of linear separability
of class regions, one vector per class region would be required. So the quality
measure given by

N — (Trnn — L)
N

has 1.0 as its optimum value indicating linear separability. An improved vari-
ant of ¢, takes significantly different a priori probabilities in account:

TRNN 1)
Gsi = LZ : (2.15)

Here N; denotes the number of patterns affiliated to class w; and Tryy, the
number of reference vectors selected for class w;. (It is assumed here that N;
corresponds to the actual a priori probability of class w;). The quality mea-
sures ¢s and ¢y have O(N) complexity and thus are very fast; however, the
resolution is quite coarse, which can be detrimental for optimization schemes.
Numerous feature space configurations can be mapped on the same assess-
ment value.
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Fig. 2.13. Class separability assessment.

A very simple parametric measure for overlap computation was introduced
in [2.49]. The class specific distributions are modeled by Gaussian functions
and an overlap of two-class regions, denoted by w; und w;, can be computed
from the respective mean values p;, pt; and standard deviations oy, o; by

oy = |Mi—Mj|

= N = Do (N, = Doy (2.16)

The merit of a feature for the separation of one class from all others is given
by

L
1
G, = T qulﬁ. (2.17)
J#
Also, the merit of a single feature to distinguish all classes could be computed
by

L
1
Qo =7 E G, - (2.18)
i=1

However, practical experience has shown that the global summation can be
misleading in some cases. A feature can, for instance, be excellent for certain
class separations and meaningless for most others but have a summation value
that outperforms other features that are good everywhere in feature space.
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Fig. 2.14. Class overlap assessment.

Proposals for efficient application of these simple measures will be given in
the following sections on feature selection strategies.

A nonparametric overlap measure ¢,, which was inspired by the edited-
nearest-neighbor (ENN) algorithm [2.8], in contrast to ¢4, provides a very
fine-grained value range and thus is better suited for optimization schemes.
However, the price tag is an increased complexity of O(N?) with regard to
qs- The basic idea of g, is illustrated in Fig. 2.14. The overlap measure g, is
computed by:

1 N
i=1 i=1
Go = Z - (2.19)

N =1
oy
i=1
with
d
ng=1— (2.20)
dN N,
and
_ n; LW =Wy
ANN;; = {n Cw; A wi (2.21)

Here, n; denotes the weighting factor for the position of the ith nearest neigh-
bor NNj;, dNNji denotes the distance between x; and NNj;, dNNjk denotes
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the distance between x; and most distant nearest neighbor N Nji, qnn;, de-
notes the measure contribution of x; with regard to NN;;, and w; and w;
denote the class affiliation of x; and NNj;, respectively. The influence of
a nearest neighbor in the quality measure decays with its rank position to
n; = 0 for NNji. The final measure g, is fine-grained and sensitive to small
changes in the feature space. Further g, is also normalized in [0,1], where 1.0
indicates no overlap in the feature space. Typically, 5 to 10 nearest neighbors
are well suited for computation of this quality measure. Simplification of the
measure is feasible, trading off fine-grained resolution in overlap computation
and, thus, sensitivity to small changes in the feature space against computa-
tional savings. An improved variant of ¢, takes significantly different a priori
probabilities into account

k

k
1 1N ZqNNji +Zni
Goi =7 D e P —— (2.22)
c=1 j=1 Qan
i=1

Finally, compactness q. can be measured by explicitly computing the ratio
of current intra- and interclass distances. Implicitly this criterion is also used
in the computation of scatter matrices [2.12]. The compactness ¢, previously
introduced in [2.22] suffers from the flaw that the measure will be optimum,
if the majority of intraclass distances will be made small, i.e., class regions
with the majority of patterns will dominate the assessment and consequently
any optimization process based on the measure g.. An improved measure
qe; for different a priori probabilities and corresponding N; in the L-class
problem can be obtained by class-specific normalization during compactness
computation

L N N
% 2t m Dim1 Z]‘:i+1 §(wi, wj)o(wi, Ddx,,
N N
ﬁ Z¢=1 Zj=i+1(1 — O(ws, wj))dXij

Gei = (2.23)

with

> (@ig — zjq)? (2.24)

and 0(w;,w;) is the Kronecker delta, which is §(w;,w;) =1 for w; = wj, i.e.,
both patterns have the same class affiliation, and §(w;,w;) = 0 elsewhere.
Also, 0(w;, ) prescribes that only distances with w; = w; = [ are accumulated
for the Ith-class sum of intraclass distances. Further, the normalization factor
NB is given by

NE=3"3" (1= 6(wi,w;)) (2.25)

i=1 j=i+1
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Fig. 2.15. Class compactness assessment.

The principal idea of intraclass and interclass distance computation for g.;
is illustrated in Fig. 2.15. The improved compactness ¢.; has a complexity of
O(N?2), is a nonparametric measure, and requires no parameters to be set by
the user. It shows a high sensitivity to changes in feature space, as these are
immediately mirrored by changes in distance, and, thus, in changes in g;.
In comparison to the existing overlap measure q,; with equal sensitivity and
computational complexity, q,; is inferior, as it requires the parameter k to
be set. But q,; is superior with regard to normalization properties, returning
a value in [0,1], whereas ¢.; values depend on the distances in the data set
and only allow the observation of relative changes. For FS, an additional
normalization step for each selection or configuration is required for gq;.
These measures will serve in the following as feature space assessment or
ranking measures J. Information on the individual features’ merit as well as
the current feature combinations’ merit can be obtained by employing the
presented measures. Also, the results of different dimensionality reduction
methods, e.g., FS or FW, can be quantitatively compared and assessed [2.24].

Feature Selection Methods. The process of finding the appropriate co-
efficients ¢; in (Eq. 2.13) is an intricate optimization problem. Due to the
combinatorial complexity inherent to the problem of FS, the computational
effort of finding the best selection, i.e., feature combination, grows exponen-
tially. Thus, the global optimum solution for the selection process cannot be
found with polynomial complexity or effort, i.e., we have an NP-complete
problem (cf., e.g., [2.1]). Therefore, a complete or exhaustive search of all
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feature combinations in general is out of the question. Several alternative
search strategies for F'S, employing the cost functions from Section 2.3.2, will
be summarized with regard to achievable performance and required compu-
tational effort.

First-Order Selection Techniques. One simple but often effective way of find-
ing a suboptimum solution with minimum effort is to compute an individual
figure of merit for each feature. This first-order approach neglects possible
higher-order correlations between feature pairs or feature tuples. For assess-
ment or figure of merit computation, for instance, one of the cost function
given in the previous subsection has to be applied. However, the cost func-
tion in this simplified case will be computed separately for each feature. Three
permutations are basically feasible:

e The figure of merit is computed for a selected feature and a selected com-
bination of classes, i.e., the feature contribution to pairwise class discrimi-
nation is assessed. For instance, the measure Qay,, could be computed here.
For each class pair, features are ranked according to their individual merit.
Selection from these rank tables can be achieved, for instance, by choos-
ing all features in first-rank position. Table 2.1 gives an example of this
first-order selection scheme for the well-known Iris data. Obviously, for
first-rank position R, features 3 and 4 will be selected. The method can be
computed very quickly, but the rank table grows for given feature number
M and class number L by M « (L(L —1)/2).

e The figure of merit is computed for a selected feature and for the discrim-
ination of one class versus all others. The corresponding rank table grows
for given feature number M and class number L by M * L.

e Computing the figure of merit with regard to discriminating all classes for
each feature returns a single column with M elements.

As shown in Table 2.1, the parametric overlap measure Gy, and its vari-
ants can serve for the three approaches of fast first-order feature selection.
If the parametric assumption is met, then this simple scheme can be very
effective. However, in many practical cases, even for the one-dimensional dis-
tributions of the individual features, a nonparametric nature can be observed.
An effective remedy for this situation is the application of, e.g., the overlap

Table 2.1. Rank table from first-order assessment for Iris data.

Feature R C1-2 R C1-3 R C2-3

1 4 1,020 3 1482 3 0,442
o 3 1,065 4 0890 4 0,255
s 2 4139 1 5,451 2 1,218
T4 1 4,387 2 5180 1 1,660
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Table 2.2. Rank order for first-order feature selection computed for visual in-
spection feature data based on parametric (left column) and nonparametric (right
column) assessment measure.

Feature R C1-2 R C1-2

1 5 02917 5  0,6977
T2 4 06489 30,8211
T3 11,1558 40,7058
T4 30,8547 20,8808
x5 21,0047 10,9270

measure g, (or g,;) separately for each individual feature. This returns a cor-
responding nonparametric measure to the parametric one given earlier. For
Iris data, the selection will be identical. In Table 2.2, however, a feature set
computed from images of a practical visual inspection problem is subject
to both the parametric and the nonparametric first-order feature selection
scheme.

For the regarded nonparametric example data set only the nonparamet-
ric measure provides the a priori known correct solution. Summarizing, first-
order selection schemes are a special case of heuristic approaches to find
solutions to the otherwise NP-complete feature selection problems. Subopti-
mum solutions can be found at very low computational costs. Employment of
the nonparametric measure provides more robustness due to the relaxed dis-
tribution assumption at moderate cost increase, which is dependent on the
sample set size with O(N?). Further, the simple first-order selection could
be employed to weed out variables, which already possess distinct meaning
for themselves, and apply more complex search strategies on the residual
variables.

Higher-Order Selection Techniques. Higher-order correlations or dependen-
cies of features require the computation of the feature merit with regard to
a tuple of other features. In the limit, the effect of a certain feature with re-
gard to all other features has to be considered. As mentioned before, this is a
problem of combinatorial optimization and the best possible solution, i.e., the
global optimum can be found by exhaustive search. Due to the exponential
increase of possible combinations, which grow by 2™ for the binary selection
problem and the number M of features, and the underlying NP-completeness
of the problem only for small to moderate M is an exhaustive search feasible.

Let us assume that computation of the assessment measure ¢,, which de-
pends on the sample set size N with O(N?), takes one second on a standard
computer. Then an exhaustive search for M = 12 will consume 2!2 = 4096
seconds, which amounts approximately to 1 hour and 8 minutes of compu-
tation time. For M = 16, more than 18 hours of computation time will be
required. It is obvious that for larger databases, either for classification or for
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data analysis, the employment of exhaustive search, and thus the guaranteed
finding of the global optimum, will be infeasible.

In addition to first-order selection schemes, for more features, heuris-
tic search strategies employing tree search schemes, e.g., Sequential For-
ward /Backward Selection (SFS/SBS) were devised [2.16]. These are also im-
plemented in the method collection and corresponding toolbox within the
QuickCog system [2.28]. These heuristic approaches systematically reduce
the number of searched and assessed feature combinations. As many combi-
nations are left out of consideration, the global optimum can be missed, and
convergence to just a local optimum solution for the selection problem is guar-
anteed. In SFS, for instance, initially no features are selected. Now each of
the IV features is tentatively selected and its effect on the figure of merit, e.g.,
class regions overlap, is computed. The feature with the best assessment is
permanently selected and frozen. The same procedure is iteratively repeated
for the remaining (N — 1) features until only one feature can be altered. Now
either the feature combination with the best assessment value can be se-
lected, regardless of the number of selected features, or for a fixed maximum
number of features the row with the best compromise of assessment value
and required minimum number of features will be selected. In SBS, the same
process starts from the initial condition that all features are selected and get
rejected in the process. Figure 2.16 elucidates the SBS process and Table 2.3
shows an example of a selection process protocol for Iris train data using SBS
[2.16] and the ¢, quality measure [2.28]. As M * (M —1)/2+ M combinations
have to be assessed in both cases, the computational complexity is given by
O(M?). Thus, for M = 16, in this case, a local optimum solution will be
found within approximately 4 seconds compared to more than 18 hours for
an exhaustive search. Though the finding of a global optimum is not guaran-
teed, these robust methods provide good solutions quickly, and in practical
work the global optimum was often found.?” Comparing these heuristic meth-
ods with the simple first-order selection schemes, it can be stated with some

9 These were cases where an exhaustive search for result comparison was still
feasible.

Tentative removal of Q Permanent removal of the

each active feature

oO——

1 features active
M features active O M-2 features active

M-1 features active

Fig. 2.16. Illustration of SBS feature selection.
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Table 2.3. Feature selection protocol for Iris data.

Selection strategy: SBS
Assessment measure: Separability gs
1234 0.90667

- 234 0.94667

- -34 0.96000

- --4 0.00000
Optimum quality
Significant Features:

S ©

caution, that the higher-order methods are usually superior. But, of course,
it is possible that the simple first-order scheme runs on a configuration that is
neglected by the higher-order methods due to the search strategy and returns
a better solution. Instead of strict top-down or bottom-up processing, as met
in SBS or SFS, an alternation between feature rejection and selection during
the search process can be found in other approaches, e.g., branch-and-bound
approaches or floating search.

Further heuristic search strategies, employing stochastic methods, e.g.,
simulated annealing (SA) [2.1] or Boltzmann machines (BM) [2.1], as well
as bio-inspired techniques for optimization, e.g., genetic algorithms (GA) in
particular and evolutionary strategies (ES) in general, can be applied for
FS [2.45], [2.11]. Also, multiobjective optimization can be merged with the
GA/ES approach [2.11]. This subject is pursued in ongoing work.

The permanent elimination of redundant and irrelevant features from the
sample set by FS provides an effective means of dimensionality reduction.
However, the crispness of the selection process can lead to stronger sensitiv-
ity with regard to variances in the feature representation in generalization
due to the loss of information contained in the discarded features. The issue
of the stability of the F'S solution and the underlying maximum of the cost
function is raised here. It is especially painful for data analysis and knowl-
edge acquisition, if for minor changes in the data entirely different features
are selected. The methods discussed so far are specialized to classification
problems and require revision and enhancement with regard to stability and
data analysis.

Visualization Techniques and Dedicated Tools. In contrast to the state
of the art, e.g., static scatter plots, in the methodology pursued in this re-
search work, the achieved projections are the baseline for interactive human
analysis. Interactive CAD-like visualization techniques, e.g., interactive nav-
igation, diverse component plots, grid plots, and attribute plots, support
human perception and analysis [2.24]. Figure. 2.17 gives a taxonomy of rel-
evant visualization techniques for large high-dimensional data. For instance,
at each projection point, the value of a selected variable can be plotted in
a Hinton diagram style, i.e., the variable value is coded by the side length
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Multivariate data visualization methods
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Fig. 2.17. Taxonomy of visualization techniques for high-dimensional data.

or the area of a rectangle. Alternatively, several variables can be plotted by
iconified radar plots at each projection point (see Fig. 2.10).

Figure 2.18 (a) shows the underlying multivariate data visualization ar-
chitecture. Especially the features for accessing database contents from the
top-level map should be pointed out here as unique characteristics of the ap-
proach. Two implementations have been conceived so far, the general-purpose
tool WeightWatcher (WW) in QuickCog (Fig. 2.18 (b)) and the dedicated
Acoustic Navigator [2.25] with enhanced interactive features (Fig. 2.18 (c)).
Further interactive enhancements are on the way, e.g., interactive selection,
labeling, and extraction of arbitrary data from the map. The outlined meth-
ods and tools have been compared, assessed [2.24], and employed in numerous
scientific and industrial applications. Examples of applicability are given in

e rapid prototyping in the design of recognition systems [2.10];

e analysis of medical databases [2.18];

e analysis of psychoacoustic sound databases with the extension to synthesis
in sound engineering [2.25]; and

e analysis and design of integrated circuits with regard to design centering
and yield optimization.

For the case of rapid and transparent recognition system design a brief ex-
ample will be given. A vision system was designed for a medical robot in an
object recognition task [2.10]. Dimensionality reduction and interactive visu-
alization approach helped to assess the current system’s capability in terms
of feature space discrimination and occurrence of pop-outs or outliers. This
is illustrated in Fig. 2.19. Additionally, the backtracking capability from the
resulting interactive map is illustrated by invoking the original image of a
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Error due
to loose

Fig. 2.19. Feature space for vision system of medical laboratory robot.

selected object for each class from the underlying database. Thus, occurring
problems, e.g., misclassifications, and underlying causes, can be easily made
overt. This alleviates troubleshooting in system design and increases design
speed, reliability, and overall productivity. The work is extended to micro-
electronic manufacturing process data analysis and the features elaborated
in prior research and application projects are adapted to this domain. For
instance, data entries can be tracked back from the projection in the process
database as illustrated in Fig. 2.19 for image data. Thus, the database can
be browsed and analyzed according to the inherent clustering and structure
in the data. The extension of the existing approach to semiconductor manu-
facturing will be presented in the following section and in Section 2.5, giving
an outline of the envisioned domain-specific system.

2.4 Experiments and Results

The first step of the work in this feasibility study targets the validation
and demonstration of the actual practical assistance of the dimensionality
reduction and visualization approach to discover structure in and extract
knowledge from the industrial high-dimensional database. Thus, it is expected
from the visualization that the known split information can be effortlessly
retrieved from the map. In this case, unknown clustering in the data, due to
detrimental and unintended effects, could also be made overt to the process
analyst at a glance.

The most simple and fast Visor projection method was applied to the
data first [2.24]. Figure 2.20 shows that distinct yet overlapping clusters can
be identified in the data. It is well known from physical and technological
background knowledge, that the generated split affects only a fraction of
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Fig. 2.20. Visualization of SPLIT6.

more than 200 parameters included in the database. Therefore, the observed
cluster overlap in this unsupervised mapping approach is related to the quasi-
noise of the large number of variables unrelated to the split. However, as in
previous application projects, the feasibility of the dimensionality reduction
and visualization approach could be shown for the regarded semiconductor
manufacturing process.

Additionally, in Fig. 2.21 four selected variables are displayed by compo-
nent plots. It can be perceived from this representation that the variables
C118 and C119 are characteristic for the existing split, whereas C071 distin-
guishes the lots rather than the split, and finally C063, which is characteristic
for neither the lots nor the split.

In addition to the overall visualization of the data, based on unsupervised
dimensionality-reducing mapping and all variables, it is of importance to
determine which parameters or groups of parameters are conforming with or
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Fig. 2.21. Visualization of SPLIT6 by four selected component plots.

opposed to the existing split. Parameters also might be redundant with regard
to this issue. From the available supervised methods, automatic selection of
features has been employed to find an answer to this question for the regarded
application data. The SBS selection method delivered the best results for
the higher-order methods in the conducted experiments. In Table 2.4 the
results for lot and split discrimination (SPLIT6) and only split discrimination
(SPLIT3) are documented for the three regarded cost functions and the best
obtained results.

For instance, application of SBS with ¢4; reduced the SPLIT6 database to
just nine parameters. Figure 2.22 shows the resulting projection with nearly
linear separability of the data. From the resulting projection in Fig. 2.22, as
well as the later Fig. 2.23, the existing asymmetry of the split can clearly be
observed, which is a very significant achievement of the regarded visualization
method. The expectation, of course, is that the selected parameters are dom-
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Table 2.4. FS results for SPLIT6 and SPLITS3.

Selection  Cost Dim. Chosen

method function features

1rstOP 1. Rank 4 1, 32, 118, 141

SBS qsi = 0.99487 9 32, 65, 79, 114, 119, 142, 191, 198, 199
SBS qoi = 1.0 8 32, 65, 86, 129, 131, 142, 191, 201
SBS Gei 15 78, 79, 114, 115, 118, 119, 120, 121,

126, 129, 140, 141, 142, 143, 144

1rstOP 1. Rank 2 118, 141

1rstOP 1.~ 2. Rank 4 118, 120, 140, 141

1rstOP 1.-3.Rank 6 118, 119, 120, 140, 141, 144

SBS gsi = 1.0 1 126

SBS goi = 1.0 2 118, 205

SBS Qei 15 78, 79, 114, 115, 118, 119, 120, 121,

126, 129, 140, 141, 142, 143, 144

inantly responsible for the observed split. However, it must be minded that
weaker correlations of potential interest for the data analyst are removed by
this method, which is tailored to the needs of classification. Only those vari-
ables of value for optimum separability or optimum overlap will be chosen.
The measure g,; saturated early in the selection process, i.e., the maximum
cost function value 1.0 was reached very early, which means the measure lost
capability to properly distinguish between the contribution of the remaining
variables. Correlating the achieved result with the underlying physical mean-
ing of the variables showed that only a fraction of the relevant variables were
identified (see Table 2.5). For comparison purposes, the described first-order
method (1rstOP) also has been applied, employing the first highest-ranking
variables for pairwise class separation. Some of the relevant variables were
found with a significant speed difference compared to the higher-order meth-
ods, i.e., seconds vs. several hours on a state-of-the-art PC. However, the
method identifies an irrelevant variable, too, and regretfully leaves out of
consideration numerous relevant ones.

For SPLIT3, for ¢,; only one and for ¢,; only two variables were selected.
The methods both saturated early in the selection process. In both cases the
class regions are not compact and show considerable scatter. Though a lean
classification system could be devised from this result for the information
gathering and knowledge discovery this results is far from desirable. The ap-
plication of the 1rstOP delivered similar results for first-rank variables. Only
a few of the relevant variables were identified. Increasing the included rank
positions, more relevant variables were included (see Table 2.4). However, it
is difficult for the user to judge, which parameter value for the rank position
should be set to include all relevant variables and avoid irrelevant ones. Also,
redundant variables could still be present in the selection. Due to its speed,
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Fig. 2.22. Visualization of selected SPLIT6.

the method could be applied to create a starting solution for a higher-order
method in a hierarchical approach. Such a hierarchical approach is considered
very promising for future work.

The most meaningful result with regard to identified underlying physical
and technological evidence was achieved by the most recent F'S variant, em-
ploying SBS and ¢q.; for SPLIT6 as well as SPLIT3. Fifteen variables have
been selected (see Table 2.4), and a feature space with compact and well-
separated class regions is obtained by this selection. Figure 2.23 shows the
resulting projection of the 15-dimensional data of SPLIT3, which is definitely
superior to the result obtained for ¢,; application. Regarding the underlying
physical meaning of the variables, the validity and significance of this selec-
tion is underpinned. Table 2.5 explains the meaning of the selected variables
for the regarded submicron CMOS process.
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Fig. 2.23. Visualization of selected SPLIT3 according to compactness qc;-

After the regarded steps of interactive visualization, analysis, and au-
tomatic determination of relevant variables, the monitoring of the process
state by classification methods is investigated. According to the underlying
lots, SPLIT6 was separated after feature selection (SBS, gs;, 9 features) into
a training set, SPLITTrain3, and a test set, SPLITTest3. The six different
classes in SPLIT6 were due to the distinguishing of the lots. Splitting SPLIT6
into a training and a test set reduces the classification task to an L = 3 class
problem. In the first step of this part of the work, the training set was used
to train a reduced nearest neighbor classifier (RNN) [2.13]. As can be seen
from Fig. 2.24, generalization was perfect and data from the second lot can
perfectly be classified according to the three split classes and the features
chosen for optimum separability. However, in this approach numerous sam-
ples of the novel or abnormal cases were available. In the second step of this
part of the work, OCC was applied to the same data. It must be kept in mind
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Table 2.5. Physical and technological meaning of selected variables.

Parameter number

Explanation

IO device

78,79

Logic NMOS device
114, 118, 120, 129

115, 119, 121

131

Logic PMOS device
140, 143

141, 144

142

Parameters unrelated to split
1

32

65

71,73

191

198, 199, 201, 205
Derived parameter
126

Threshold voltages

Threshold voltages
Saturation currents
Punchthrough current

Threshold voltages
Saturation currents
Channel leakage

Breakdown voltage
Saturation current MV device
Sheet resistance well
Threshold voltage HV devices
Gate oxide thickness

Sheet resistance poly

Universal curve FOM

67

that NOVCLASS only uses the samples affiliated to class 1 of the training set
during learning. Thus, samples affiliated to classes 2 and 3 were not involved
in the training of NOVCLASS and were unknown to the OCC classifier. In
the following, classes 2 and 3 will be merged to class 2, denoting abnormal or
novel measurements and respective process states. The aim was to assess the
feasibility of NOVCLASS for (semi)automatic significance and novelty data

Fig. 2.24. Visualization of selected SPLIT6 classification.
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Fig. 2.25. Visualization of selected SPLIT6 novelty classification.

filtering within an information-processing hierarchy for process analysis, con-
trol, and optimization. The achieved results are illustrated in Fig. 2.25. The
complete training set itself was correctly classified with regard to the bifur-
cation normal (class 1) or novel (class 2). For the test set, the vectors of
classes 2 and 3 were also correctly identified as novel. However, numerous
vectors of the normal test data were also classified as novel, as they occur a
significant distance from the normal training data. Thus, a recognition rate of
only 87.2% was achieved for the test set. It must be minded that the superior
result of the RNN classifier required training by 95 vectors. The majority
of these samples were counterexamples from the abnormal or novel range.
In contrast, OCC was trained with only 30 vectors. The presented training
data are rather sparse, so improvements of the OCC performance can be ex-
pected by providing larger data sets of normal process data as well as by a
more sophisticated R.x computation and resulting normal range coverage
in parameter space. However, though numerous practical improvements are
possible, the feasibility of the described method to filter out significant novel
data and perform as a data-reduction module also has been demonstrated.

The objectives of this feasibility study for the chosen problem and data
have all been achieved. The feasibility of the selected soft-computing methods
could be confirmed and relevant approaches for method improvement could
be identified.

2.5 Proposed System Architecture
In the presented feasibility study, several selected methods were investigated

with actual problem data with regard to their applicability for semiconduc-
tor manufacturing. As encouraging results have been obtained, a more so-
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Fig. 2.26. Proposed system architecture for semiconductor manufacturing process
analysis.

phisticated approach of employing and combining the regarded methods will
be pursued next. A rough sketch of the envisioned information-processing
architecture is given in Fig. 2.26. Similar to other applications, e.g., event
classification in high-energy physics [2.39], a real-time classification stage is
included in the proposed architecture. This module shall assess locally and
in realtime whether interesting and relevant, i.e., novel, data occurred that
should be stored for ensuing interactive analysis by human experts. OCC
and the NOVCLASS model are first-choice candidates for this module. After
storing in the database, dimensionality-reduction methods and interactive
visualization will be undertaken for the analysis of the novel or abnormal
data. Resulting understanding and knowledge extraction provide the base-
line for potential actions as, e.g., classifier stage refinement or process control
and optimization activities. Especially the interactive data visualization mod-
ule can be significantly improved to the benefit of the regarded application.
This has already been demonstrated for a different application domain in
psychoacoustics, where an enhanced tool, denoted Acoustic Navigator (AN),
was devised [2.25]. AN has been equipped with improved display features,
such as multiple- and single-radar plots and practical search functions, which
effortlessly direct the analyst to data entries of interest in the map visualiza-
tion. These and numerous other convenience functions will allow transparent,
fast, consistent, and thus, productive work on large, high-dimensional, and
abstract databases. Figure 2.27 shows a first adaptation of the AN to the re-
garded application. Radar plots and the search function are illustrated. The
focus of the follow-up research shall be put on this crucial system compo-
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Fig. 2.27. Illustration of enhanced visualization features by the adapted AN.

nent and the related dimensionality-reduction methods, which also can be of
assistance to cluster, select, and rank features or measurement parameters.

2.6 Conclusions

The presented work contributes to the industrial application of advanced
soft-computing methods in the field of semiconductor manufacturing pro-
cess data analysis. In particular, fast and efficient methods for multivariate
data-dimensionality reduction, including automatic methods for parameter or
parameter group saliency detection, and interactive visualization have been
investigated in this first feasibility study.

Already the least complex and therefore most computationally inexpen-
sive visualization methods allow significant insight into the structure of the
data. Complemented by an interactive feature-selection tool, these visualiza-
tion methods represent a powerful addition to the standard statistical analysis
that is usually performed. Online visualization of the process trajectory in
the multivariate space is also feasible by available fast methods for adding
new data vectors in an existing mapping [2.23].

Furthermore, the investigation of automatic feature-selection methods has
yielded very promising results. For instance, from the resulting projection,
the asymmetry of the split can clearly be observed, which is a very signifi-
cant achievement. Additionally, even in those cases where variables selected



2. Analysis of Semiconductor Manufacturing Data 71

were not pertinent to the split, the selection is soundly based. The bases are
differences between the two lots, between single wafers in each lot, and even
variations with regards to the position on the wafer. Again this is properly
accounted for in the projections, further validating our approach.

In addition to these offline analysis and knowledge-extraction methods,
dedicated classification techniques for online observation and potential con-
trol of the underlying process have been investigated. The feasibility of OCC
and the proposed NOVCLASS method for selective data storage could be
confirmed.

In this early stage of the work, the proposed methods were confronted
with actual high-dimensional process data from a practical but, in terms of
available samples IV, small-scale problem. Most of the presented methods are
more sensitive to the increase in the number of dimensions M than in the
sample count N. Thus, it can be rightfully assumed that the methods will
scale well with larger databases.

Future work will emphasize the improvement of the visualization tool
and the integration of the algorithms and tools into the existing industrial
environment for meaningful large-scale method application, assessment, and
improvement based on more comprehensive data and data containing hereto-
fore unknown information on the process.
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