
3

Theoretical Framework for Comparing Several
Stochastic Optimization Approaches

James C. Spall, Stacy D. Hill, and David R. Stark

The Johns Hopkins University, Applied Physics Laboratory
11100 Johns Hopkins Road
Laurel, Maryland 20723-6099 USA
{james.spall,stacy.hill,david.stark}@jhuapl.edu

Summary. In this chapter, we establish a framework for formal comparisons of sev-
eral leading optimization algorithms, providing guidance to practitioners for when
to use or not use a particular method. The focus in this chapter is five general algo-
rithm forms: random search, simultaneous perturbation stochastic approximation,
simulated annealing, evolution strategies, and genetic algorithms. We summarize the
available theoretical results on rates of convergence for the five algorithm forms and
then use the theoretical results to draw some preliminary conclusions on the relative
efficiency. Our aim is to sort out some of the competing claims of efficiency and to
suggest a structure for comparison that is more general and transferable than the
usual problem-specific numerical studies.

3.1 Introduction

To address the shortcomings of classical deterministic algorithms, a number
of powerful optimization algorithms with embedded randomness have been
developed. The population-based methods of evolutionary computation, for
example, are one class among many of the available stochastic optimization
algorithms. Hence, a user facing a challenging optimization problem for which
a stochastic optimization method is appropriate meets the daunting task of
determining which algorithm is appropriate for a given problem. This choice is
made more difficult by some dubious claims that have been made about some
popular algorithms. An inappropriate approach may lead to a large waste of
resources, both from the view of wasted efforts in implementation and from
the view of the resulting suboptimal solution to the optimization problem of
interest.

Hence, there is a need for objective analysis of the relative merits and
shortcomings of leading approaches to stochastic optimization. This need has
certainly been recognized by others, as illustrated, for example, in recent
conferences on evolutionary computation, where numerous sessions are de-
voted to comparing algorithms. Nevertheless, virtually all comparisons have

100 J.C. Spall, S.D. Hill, D.R. Stark

been numerical tests on specific problems. For example, a large fraction of
the book [323] is devoted to numerical comparisons. Although sometimes en-
lightening, such comparisons are severely limited in the general insight they
provide. Some comparisons for noisy evaluations of a simple spherical loss
function are given in [15], Chapter 6; however, some of the competitors were
implemented in non-standard forms, making the results difficult to interpret
for an analyst using a more conventional implementation. Spall [341] also has
a number of comparisons (theoretical and numerical) for the cases of noise-free
and noisy loss evaluations. At the other end of the spectrum are the ‘no free
lunch’ theorems, [399], which simultaneously consider all possible loss func-
tions and thereby draw conclusions that have limited practical utility since
one always has at least some knowledge of the nature of the loss function
being minimized.

Our aim in this chapter is to lay a framework for a theoretical comparison
of efficiency applicable to a broad class of practical problems where some (in-
complete) knowledge is available about the nature of the loss function. We will
consider five basic algorithm forms: random search, simultaneous perturbation
stochastic approximation (SPSA), simulated annealing (SAN), and two forms
of evolutionary computation (evolution strategy and genetic algorithms). The
basic optimization problem corresponds to finding an optimal point θ∗:

θ∗ = arg min
θ∈Θ

L(θ),

where L(θ) is the loss function to be minimized, Θ is the domain over which
the search will occur, and θ is a p-dimensional vector of parameters. We are
mainly interested in the case where θ∗ is a unique global minimum.

Although stochastic optimization approaches other than the five above
exist, we are restricting ourselves to the five general forms in order to be
able to make tangible progress (note that there are various specific implemen-
tations of each of these general algorithm forms). These five algorithms are
general-purpose optimizers with powerful capabilities for serious multivari-
ate optimization problems. Further, they have in common the requirement
that they only need measurements of the objective function, not requiring
derivative information (gradient or Hessian) for the loss function. It is the
long-term expectation that this theoretical framework will provide guidance
to those faced with an optimization problem and the associated difficult choice
of selecting a suitable method. It is critical to make an informed choice prior
to investing the considerable resources required given the inherent difficul-
ties in implementing a particular algorithm in a large-scale practical problem
(software implementation, data preparation, algorithm tuning, etc.).

Central to the approach of this contribution will be the known theoretical
analysis on the rate of convergence of each of the candidate algorithms. Our
approach will be built as much as possible on existing theory characterizing
the rates of convergence for the algorithms to perform the comparative anal-
ysis. There appears to be no previous analysis putting the theoretical results

3 Theoretical Comparison of Stochastic Optimization Approaches 101

on a common basis for performing an objective comparison. Of course, this
approach has limitations in general because many algorithms have little – or
possibly no – theoretical justification. Nonetheless, it is our expectation that
performing a formal theoretical comparison of the chosen algorithms will shed
light on relative performance of other similar algorithms as well, even if the
similar algorithms lack the same current level of theoretical justification.

One might ask whether questions of relative efficiency are relevant in light
of the ‘no free lunch (NFL)’ theorems of [399] and others. The NFL theorems
state, in essence, that the expected performance of any pair of optimization
algorithms across all possible problems is identical. In practice, of course, one
is not interested in solving ‘all possible problems,’ as there is usually some
prior information about the problems of interest and this prior information
will affect the algorithm implementation. Hence, the NFL results may not
adequately reflect the performance of candidate algorithms as they are actu-
ally applied. In other words, some algorithms do work better than others on
problems of interest. Nevertheless, the NFL results are an important backdrop
against which to view the results here, providing limits on the extent to which
one algorithm can be claimed as ‘better’ than another.

In Sections 3.2 through 3.5, we discuss the known convergence rate results
on the five algorithm forms under consideration. Section 3.6 then uses these
results to provide a theoretical framework for comparison. We demonstrate
these results in analyzing the relative efficiency as the problem dimension
increases.

3.2 Simple Global Random Search

We first establish a rate of convergence result for the simplest (‘blind’) random
search method where we repeatedly sample over the domain of interest, Θ ⊆
R

p. This can be done in recursive form or in ‘batch’ (non-recursive) form by
simply laying down a number of points in Θ and taking as our estimate of θ∗

that value of θ yielding the lowest L value. A recursive implementation of this
idea is as follows.

Step 0 (Initialization). Pick an initial value of θ, say θ̂0, according to prior
information or some probability distribution on the domain Θ. Calculate
L(θ̂0). Set k = 0.

Step 1. Generate a new independent value of θ, say θnew(k), according to the

chosen probability distribution. If L(θnew(k)) < L(θ̂k), set θ̂k+1 = θnew(k).

Else take θ̂k+1 = θ̂k.
Step 2. Repeat Step 1 until the maximum allowable number of L evaluations

has been reached or the user is otherwise satisfied with the current esti-
mate of θ∗.

102 J.C. Spall, S.D. Hill, D.R. Stark

It is well known that the random search algorithm above will converge
in some stochastic sense under modest conditions (see, e.g., [338]). A typical
convergence theorem is of the following form (proof in [341], Section 2.2).

Theorem 1. Suppose that θ∗ is the unique minimizer of L on the domain Θ
in the sense that L(θ∗) = infθ∈Θ L(θ) and inf{L(θ) : ‖θ−θ∗‖ ≥ ε} > L(θ∗) >
−∞ for all ε > 0. Suppose further that for any ε > 0 and ∀k, there exists a
δ(ε) > 0 such that

P{θnew(k) : L(θnew(k)) < L(θ∗) + ε} ≥ δ(ε).

Then, for the random search algorithm, θ̂k → θ∗ a.s. (almost surely) as k→∞.

While the above theorem establishes convergence of the simple random
search algorithm, it is also of interest to examine the rate of convergence.
The rate is intended to tell the analyst how close θ̂k is likely to be to θ∗

for a given cost of search. The cost of search here will be expressed in terms
of number of loss function evaluations. Knowledge of the rate is critical in
practical applications as simply knowing that an algorithm will eventually
converge begs the question of whether the algorithm will yield a practically
acceptable solution in any reasonable period. To evaluate the rate, let us
specify a ‘satisfactory region’ S(θ∗) representing some neighborhood of θ∗

providing acceptable accuracy in our solution (e.g., S(θ∗) might represent a
hypercube about θ∗ with the length of each side representing a tolerable error
in each coordinate of θ). An expression related to the rate of convergence of
the above simple random search algorithm is then given by

P{θ̂k ∈ S(θ∗)} = 1 − (1 − P{θnew(k) ∈ S(θ∗)})k (3.1)

We will use this expression in Section 3.6 to derive a convenient formula for
comparison of efficiency with other algorithms.

3.3 Simultaneous Perturbation Stochastic
Approximation

The next algorithm we consider is SPSA. This algorithm is designed for contin-
uous variable optimization problems. Unlike the other algorithms here, SPSA
is fundamentally oriented to the case of noisy function measurements and
most of the theory is in that framework. This will make for a difficult com-
parison with the other algorithms, but Section 3.6 will attempt a comparison
nonetheless. The SPSA algorithm works by iterating from an initial guess
of the optimal θ, where the iteration process depends on a highly efficient
‘simultaneous perturbation’ approximation to the gradient g(θ) ≡ ∂L(θ)/∂θ.

Assume that measurements y(θ) of the loss function are available at any
value of θ:

3 Theoretical Comparison of Stochastic Optimization Approaches 103

y(θ) = L(θ) + noise.

For example, in a Monte Carlo simulation-based optimization context, L(θ)
may represent the mean response with input parameters θ, and y(θ) may
represent the outcome of one simulation experiment at θ. In some problems,
exact loss function measurements will be available; this corresponds to the
noise = 0 setting (and in the simulation example, would correspond to a de-
terministic, non-Monte Carlo, simulation). Note that no direct measurements
(with or without noise) of the gradient of L(θ) are assumed available.

It is assumed that L(θ) is a differentiable function of θ and that the min-
imum point θ∗ corresponds to a zero point of the gradient, i.e.,

g(θ∗) =
∂L(θ)

∂θ

∣∣∣∣
θ=θ∗

= 0. (3.2)

In cases where more than one point satisfies (3.2), there exists theory that
ensures that the algorithm will converge to the global minimum, [220]. (As
a consequence of the basic recursive form of the algorithm there is generally
not a risk of converging to a maximum or saddlepoint of L(θ), i.e., to non-
minimum points where g(θ) may equal zero.) Another extension of SPSA to
global optimization is discussed in [88]. The SPSA procedure has the general
recursive SA form:

θ̂k+1 = θ̂k − akĝk(θ̂k),

where ĝk(θ̂k) is the estimate of the gradient g(θ) at the iterate θ̂k based
on the above-mentioned measurements of the loss function and ak > 0 is
a ‘gain’ sequence. This iterate can be shown to converge under reasonable
conditions (e.g., [341] Section 7.3, and [112] for local convergence; [220] for
global convergence). The core gradient approximation is

ĝk (θ̂k) =
y (θ̂k + ck∆k) − y (θ̂k − ck∆k)

2ck

⎡⎢⎢⎢⎣
∆−1

k1

∆−1
k2

...
∆−1

kp

⎤⎥⎥⎥⎦ , (3.3)

where ck is some ‘small’ positive number and the user-generated p-dimensional
random perturbation vector, ∆k = [∆k1, ∆k2, . . . , ∆kp]

T , contains {∆ki}
that are independent and symmetrically distributed about 0 with finite inverse
moments E(|∆ki|−1) for all k, i. One particular distribution for ∆ki that satis-
fies these conditions is the symmetric Bernoulli ±1 distribution; two common
distributions that do not satisfy the conditions (in particular, the critical finite
inverse moment condition) are uniform and normal. The essential basis for ef-
ficiency of SPSA in multivariate problems is apparent in (3.3), where only two
measurements of the loss function are needed to estimate the p-dimensional
gradient vector for any p; this contrasts with the standard finite difference
method of gradient approximation, which requires 2p measurements.

104 J.C. Spall, S.D. Hill, D.R. Stark

Most relevant to the comparative analysis goals of this chapter is the
asymptotic distribution of the iterate. This was derived in [339], with further
developments in [88,112,340]. Essentially, it is known that under appropriate
conditions,

kβ/2(θ̂k − θ∗) dist−−→ N (µ,Σ) as k → ∞, (3.4)

where β > 0 depends on the choice of gain sequences (ak and ck), µ de-
pends on both the Hessian and the third derivatives of L(θ) at θ∗ (note that
in general, µ �= 0 in contrast to many well-known asymptotic normality re-
sults in estimation), and Σ depends on the Hessian matrix at θ∗ and the
variance of the noise in the loss measurements. Given the restrictions on the
gain sequences to ensure convergence and asymptotic normality, the fastest
allowable value for the rate of convergence of θ̂k to θ∗ is k−1/3. This contrasts
with the fastest allowable rate of k−1/2 for gradient-based algorithms such as
Robbins-Monro SA.

Unfortunately, (3.4) is not directly usable in our comparative studies here
since the other algorithms being considered here appear to have formal results
for convergence rates only for the case of noise-free loss measurements. The
authors are unaware of any general asymptotic distribution result for the
noise-free case (note that it is not appropriate to simply let the noise level go to
zero in (3.4) in deriving a result for the noise-free case; it is likely that the rate
factor β will also change if an asymptotic distribution exists). Some partial
results, however, are available that are related to the rate of convergence.

Gerencsér [137] established that the moments
[
E

(∥∥∥θ̂k − θ∗
∥∥∥q)]1/q

converge

to zero at a rate of k−1/2 for any q > 0, when ak has the standard 1/k decay
rate. More recently, Gerencsér and Vágó [138] established that the noise-
free SPSA algorithm has a geometric rate of convergence when constant gains
ak = a are used. In particular, for functions having bounded third derivatives,
they show for sufficiently small a,

lim sup
k→∞

∥∥∥θ̂k − θ∗
∥∥∥

ηk
= 1 a.s.

for some 0 < η < 1. Gerencsér and Vágó [138] go further for quadratic loss
functions by specifying η in terms of a and the Hessian matrix of L. Unfortu-
nately, even in the quadratic case, η is not fully specified in terms of quantities
associated with L and the algorithm itself (i.e., η depends on unknown con-
stants).

3.4 Simulated Annealing Algorithms

The simulated annealing (SAN) method [187,226] was originally developed for
optimization over discrete finite sets. The Metropolis SAN method produces

3 Theoretical Comparison of Stochastic Optimization Approaches 105

a sequence that converges in probability to the set of global minima of the
loss function as Tk, the temperature, converges to zero at an appropriate rate.

Gelfand and Mitter [134] present a SAN method for continuous param-
eter optimization. They obtained discrete-time recursions (which are similar
to a stochastic approximation algorithm) for Metropolis-type SAN algorithms
that, in the limit, optimize continuous parameter loss functions. Spall ([341]
Section 8.6) summarizes this connection of SAN to SA in greater detail. Sup-

pose that θ̂k is such a Metropolis-type SAN sequence for optimizing L. To
define this sequence, let qk(x, ·) be the p-dimensional Gaussian density func-
tion with mean x and variance b2kσ

2
k(x)Ip, where σ2

k(x) = max {1, aτ
k‖x‖}, τ is

fixed in the range 0 < τ < 1/4, and ak = a/k for large k, with a > 0. (Observe
that sup

{
σ2

k(x), x ∈ A
}
→ 1 as k → ∞ for any bounded set A.) Also, let

sk(x, y) =

{
exp

(
−L(y)−L(x)

Tk

)
if L(y) > L(x)

1 otherwise,

where Tk(x) = b2kσ
2
k(x)

/
(2ak). The function sk(x, y) is the acceptance proba-

bility, as in the usual Metropolis algorithm.
The SAN sequence can be obtained through simulation, in a manner sim-

ilar to the discrete case:

Step 1. Let θ̂k be the current state.
Step 2. Generate a candidate solution θ̃ according to (the one-step Markov

transition) probability density qk(θ̂k, ·).
Step 3. Let δk = L(θ̃)−L(θ̂k). (Then sk(θ̂k, θ̃) ≤ 1, where sk(θ̂k, θ̃) = 1 if δk ≤

0). Let θ̂k+1 = θ̃ if δk ≤ 0. Otherwise, consider an independent random

variable Uk uniformly distributed on the interval [0, 1]. Let θ̂k+1 = θ̂k if

sk(θ̂k, θ̃) > Uk.

The resulting sequence θ̂k has Markov transition probabilities

P

{
θ̂k+1 ∈ A

∣∣∣θ̂k = x
}

=

∫
A

pk(y|x)dy,

where
pk(y|x) = qk(x, y)sk(x, y) + rk(x)δ(y − x)

and δ(·) is the Dirac-delta function.
Let {Wk} be an i.i.d. sequence of p-dimensional standard Gaussian random

vectors and let the sequence ξ0, ξ1, . . . be defined by setting

θ̂k+1 = θ̂k − ak(g(θ̂k) + ξk) + bkWk a.s., k > 0. (3.5)

The reason for introducing this form for the recursion is to show that θ̂k

converges in probability to the set of global minima of L. This can be shown
if we can show that the sequence θ̂x

k is tight, where θ̂x
k denotes the solution to

106 J.C. Spall, S.D. Hill, D.R. Stark

(3.5) with initial condition θ̂0 = x. If θ̂x
k is tight, then it can be established

that θ̂x
k converges in probability, uniformly in x, for x belonging to a compact

set K. The limiting distribution is given by the loss function L. In particular,
it is the uniform measure on the set of global minima of L. Thus, the main
reason for introducing ξk is to facilitate the proof of tightness of θ̂x

k . The

sequence θ̂x
k is tight under certain restrictions on the sequences ak and bk,

namely that ak = a/k (as mentioned above) and bk = b/
√
k log log k for large

k, where a and b are positive constants.
The algorithm is a Metropolis algorithm in the usual sense (i.e., as in the

discrete case where the temperature sequence is independent of the state) if

almost all θ̂k lie in some fixed compact set for all k > K, for some K > 0,
since eventually σ2

k(θ̂k) = 1. (This assertion follows directly from steps in

the proof of Lemma 2(a) in [134], page 121). The sequence {θ̂k} converges in
probability to the global minimum of the loss function. If there is a unique
global minimizer θ∗, then the sequence converges in probability to θ∗. To be
specific, suppose that L(θ) has a unique minimum at θ∗ and let S(θ∗) be a

neighborhood of θ∗. Gelfand and Mitter [134] show that P{θ̂k ∈ S(θ∗)} → 1
as k → ∞.

Furthermore, like SPSA, SAN has an asymptotic normality result (but
unlike SPSA, this result applies in the noise-free case). In particular, follow-
ing [403], assume that ak = a/k, bk = (b/(kγ log(k1−γ +B0))

1/2, where B0, a,
and b are positive constants, 0 < γ < 1. Let H(θ∗) denote the Hessian of L(θ)
evaluated at θ∗ and let Ip denote the p× p identity matrix. Yin [403] showed
that

[log(k1−γ +B0)]
1/2(θ̂k − θ∗) → N (0, Σ) in distribution,

where ΣH +HTΣ + (b/a)I = 0.

3.5 Evolutionary Computation

3.5.1 General Principles and Theory

Evolutionary computation (EC) represents a class of stochastic search and op-
timization algorithms that use a Darwinian evolutionary model. The principle
feature of an EC algorithm is the search through a population of candidate
solutions for the optimal value of a loss function. There are three general
approaches in evolutionary computation, namely evolutionary programming
(EP), evolution strategies (ES) and genetic algorithms (GA). All three ap-
proaches work with a population of candidate solutions and randomly alter
the solutions over a sequence of generations according to evolutionary oper-
ations of competitive selection, mutation and sometimes recombination (re-
production). The fitness of each population element to survive into the next
generation is determined by a selection scheme based on evaluating the loss
function for each element of the population. The selection scheme is such that

3 Theoretical Comparison of Stochastic Optimization Approaches 107

the most favorable elements of the population tend to survive into the next
generation while the unfavorable elements tend to perish.

The principal differences in the three approaches are the selection of evolu-
tionary operators used to perform the search and the computer representation
of the candidate solutions. EP uses selection and mutation only to generate
new solutions. While both ES and GA use selection, recombination and mu-
tation, recombination is used more extensively in GA. A GA traditionally
performs evolutionary operations using binary encoding of the solution space,
while EP and ES perform the operations using real-coded solutions. The GA
also has a real-coded form and there is some indication that the real-coded
GA may often be more efficient and provide greater precision than the binary-
coded GA ([341], Chapters 9 and 10). The distinction among the three ap-
proaches has begun to blur as new hybrid versions of EC algorithms have
arisen.

The formal convergence of EC algorithms to the optimal θ∗ has been con-
sidered in a number of references. Eiben et al. [118] derived a convergence
in probability result for an elitist GA using the powerful tools of Markov
chain theory assuming a finite search space. This result characterized the
convergence properties of the GA in terms of the selection, mutation, and re-
combination probabilities. Rudolph [306] analyzed the basic GA in the binary
search space, the canonical GA, without elitist selection. He found that the
canonical GA will never converge to the global optimum, and that conver-
gence for this GA comes only by saving the best solution obtained over the
course of the search. For function optimization it makes sense to keep the best
solution obtained over the course of the search, so convergence is guaranteed.
For GA in the binary search space, convergence results that assume a finite
search space seem of little practical use; since there are a finite number of
points to search, random search and simple enumeration are also guaranteed
to converge. However since convergence is a precondition for convergence rate
calculations, convergence results assuming a finite search space are not en-
tirely meaningless. Rudolph [309] summarizes the sufficient conditions on the
mutation, recombination, and selection probabilities for convergence of EC al-
gorithms in finite search spaces, with a simplified mathematical structure that
does not rely on Markov chain theory. Reeves and Rowe [293] and Spall [341],
Chapter 10 include a review and further references related to EC convergence
theory.

Convergence analysis for EP, ES, and real-valued GA often relies on the
Borel-Cantelli Lemma (see for example [21]). The convergence proofs for
these algorithms assume that the mutation is applied with non-zero prob-
ability such that the joint distribution of new solutions has non-zero prob-
ability everywhere. The restrictions made on the mutation operator seem
to make these proofs of only academic interest. Convergence properties of
EP, ES and real-valued GA may also be derived using the theory of Markov
chains. Rudolph [307] details the theory and offers sufficient conditions for
convergence of EC algorithms. Other approaches have been taken including

108 J.C. Spall, S.D. Hill, D.R. Stark

modeling EC algorithms as supermartingales as in [307]. Qi and Palmeiri [283]
analyzed the real-valued GA assuming an infinite population size. They found
that the solutions for a GA using only selection converges in distribution to
the distribution concentrated at the global optimum. Also the mean loss value
for a real-valued GA with selection and mutation converges to the global op-
timum. Hart [153] takes a different tack. He defines a class of EC algorithms
called evolutionary pattern search algorithms that encompass the real-coded
GA, EP, and ES and establishes a stationary point convergence result by ex-
tending the convergence theory of generalized pattern search algorithms. The
convergence result does not guarantee convergence to the global optimum; it
only guarantees that a stationary point is found. Stopping rules related to
modifying the mutation probability for the algorithms are provided, however
the stopping rules seem to require that the pattern search algorithm structure
be adopted.

Global convergence results can be given for a broad class of problems, but
the same cannot be said for convergence rates. The mathematical complex-
ity of analyzing EC convergence rates is significant. Determining how many
generations of the population are required in order to ensure a certain er-
ror in the solution is apparently an open problem for arbitrary loss functions.
Vose [386,387] showed that assuming an infinite population size, and for every
0 < δ < 14, the number of generations required for the GA to come within a
distance δ of θ∗ is O(− log δ). This result is not directly usable in our compar-
ison, however, since it does not give a quantifiable expression for the number
of generations required to guarantee that the best population element will be
within some δ distance of θ∗.

Additional convergence rate results that exist are for restricted classes of
loss functions that have some special properties that can be taken advantage
of and usually with simplified ECs. In particular, except for the ‘big O’ result
above, [386,387] (which allows for all three fundamental operations-selection,
mutation, and recombination), most of the convergence rate results available
are for EC algorithms using selection and mutation only, or using selection
and recombination. Both [45] and [307] examine ES algorithms that include
selection, mutation and recombination. The function analyzed in both cases is
the classic spherical loss function L(θ) = ‖θ‖2. Convergence rates based on the
spherical loss function are somewhat useful, if it is assumed that the sphere
approximates a local basin of attraction. A number of other convergence rate
results are also available for the spherical loss function; see for example [283]
for a real-valued GA.

3.5.2 Convergence Rates for ES Algorithms

This section presents several means by which to determine the rate of con-
vergence for the ES approach to EC. One of the more practically useful con-
vergence rates for EC algorithms applies in a particular class of convex loss
functions. The following theorem due to Rudolph [308] is an application of a

3 Theoretical Comparison of Stochastic Optimization Approaches 109

more general result by Rappl [285]. The theorem is the starting place for the
specific convergence rate result that will be used for comparison in Section 3.6.

Definition 1. An algorithm has a geometric rate of convergence if and only
if E[L∗

k − L(θ∗)] = O(ηk) where η ∈ (0, 1) defines the convergence rate.

Theorem 2 ([308]). Let Θ̄k ≡ {θ̂k1, θ̂k2, . . . , θ̂kN} be the sequence of pop-

ulations of size N generated by some ES at generation k(θ̂ki) represents the
ith estimate for θ from the population of N elements). If E[L∗

k − L(θ∗)] < ∞
and E[L∗

k+1 − L(θ∗)|Θ̄k] ≤ η[L∗
k − L(θ∗)] a.s. for all k ≥ 0 where L∗

k =

min{L(θ̂k1), L(θ̂k2), . . . , L(θ̂kN)}, then the ES algorithm converges a.s. geo-
metrically fast to the optimum of the objective function.

The condition E[L∗
k+1 − L(θ∗)|Θ̄k] ≤ η[L∗

k − L(θ∗)] implies that the se-
quence decreases monotonically on average. This condition is needed since in
the (1, λ)-ES that will be considered below, the loss value of the best par-
ent in the current generation may be worse than the loss value of the best
parent of the previous generation, although on average this will not be the
case. Rudolph [308] shows that a (1, λ)-ES using selection and mutation only
(where the mutation probability is selected from a uniformly distributed dis-
tribution on the unit hyperball), with certain classes of loss functions, satisfies
the assumptions of the theorem. One such class is the (K, q)-strongly convex
functions:

Definition 2. Let L : Θ → R. Then L is called (K, q)-strongly convex on Θ
if for all x, y ∈ Θ and for each α ∈ [0, 1] the inequalities

K

2
α(1−α)‖x− y‖2≤αL(x)+(1−α)L(y)−L(αx+(1−α)y)≤G

2
α(1−α)‖x− y‖2

hold with 0 < K ≤ G ≡ Kq < ∞.

For example, every quadratic function is (K, q)-strongly convex if the Hes-
sian matrix is positive definite. In the case of twice differentiable functions,
fairly simple tests are available for verifying that a function is (K,q)-strongly
convex, from Nemirovsky and Yudin [241]. Let ν1 be the smallest eigenvalue
and let ν2 be the largest eigenvalue of the Hessian matrix. If there exist pos-
itive constants K and G such that 0 < K ≤ ν1 ≤ ν2 ≤ G < ∞ for all θ
then the function L is (K, q)-strongly convex with q = G/K. Other tests are
possible that only assume the existence of the gradient g(θ) (see [146]).

The convergence rate result for a (1, λ)-ES using only selection and mu-
tation on a (K, q)-strongly convex loss function is geometric with a rate of
convergence

η =
(
1 −M2

λ,pq
2
)

where Mλ,p = E[Bλ:λ] > 0 and where Bλ:λ denotes the maximum of λ inde-
pendent identically distributed Beta random variables. The computation of

110 J.C. Spall, S.D. Hill, D.R. Stark

Mλ,p is complicated since it depends on both the number of offspring λ and
the problem dimension p. Asymptotic approximations are available. Assuming
p is fixed and λ → ∞ then Mλ,p ≈ (2p−1 log λ)1/2. To extend this convergence
rate from a (1, λ)-ES to a (N,λ)-ES, note that each of the N parents generate
λ/N offspring. Then the convergence rate for the (N,λ)-ES where offspring
are only obtained by mutation is

η ≤ 1 − 2p−1 log(λ/N)

q2

for (K, q)-strongly convex functions.
Let us now discuss an alternative method based on approximating the

behavior of an idealized (N,λ)-ES as a solution to an ordinary differential
equation. Let r =

∥∥θ̄k − θ∗
∥∥, where θ̄k is the center of mass (sample mean)

of {θ̂k1, θ̂k2, . . . , θ̂kN}. Consider a loss function of the spherical-based form
L(θ) = f (‖θ − θ∗‖), where f is a strictly increasing function. Then, an ap-
proximate description of the ES is given by the differential equation

dr

dt
= −c(t)

p
r(t),

where each time increment (t) of unity represents one iteration of the ES
and c(t) is some function dependent on the ES coefficients, [46]. An idealized
ES may be based on the assumption that c(t) is a constant, say c∗. As dis-
cussed in [46], this is tantamount to knowing the value of r at every time,
and normalizing the mutation scale factor at each time so that it is propor-
tional to r. Obviously, this implementation of an ES is idealized because r
will almost certainly not be known in practice. Nevertheless, it provides a ba-
sis for some theoretical analysis. Solving the above differential equation with
constant c(t) = c∗ and then inverting to solve for t yields

t =
p

c∗
log

[
r(0)

r(t)

]
. (3.6)

Expression (3.6) provides a basis for an estimate of the number of time steps
to reach a given distance r(t). Ignoring negligible computation associated with
the algorithm itself (e.g., the random number generation), the total cost of
the algorithm is then the number of function evaluations per iteration times
the number of time steps.

3.5.3 Convergence Rates for GA Algorithms

Based on results in [306] and elsewhere, [341], Section 10.5 and [344] dis-
cuss how it is possible to cast the binary bit-based GA in the framework of
Markov chains. This allows for a rate of convergence analysis. Consider a GA
with a population size of N . Further, suppose that each population element

3 Theoretical Comparison of Stochastic Optimization Approaches 111

is a binary string of length b bits. Hence, there are 2b possible strings for
an individual population element. Then the total number of unique possible
populations is given by (see [348])

Npop ≡ (N + 2b − 1)!

(2b − 1)!N !
.

It is possible to construct a Markov transition matrix Π that provides the
probability of transitioning from one population of size N to another popula-
tion of the same size. This transition matrix has dimension Npop ×Npop. An
individual element in the transition matrix can be computed according to the
formulas in [344] (see also [348]). These elements depend in a non-trivial way
on the population size, crossover rate, mutation rate, and number of elements
considered ‘elite.’

Of primary interest in analyzing the performance of GA algorithms using
Markov chains is the probability of obtaining a population that contains the
optimum θ∗. Let πk be an Npop×1 vector having jth component, πk(j), equal
to the probability that the kth generation will result in population j. From
basic Markov chain theory,

πT
k =πT

k−1Π=πT
0 Π

k

where π0 is an initial probability distribution.
The stationary distribution of the GA is then given by

π̄T ≡ lim
k→∞

πT
k = lim

k→∞
πT

0 Π
k.

Further, under standard ergodicity assumptions for Markov chains, π̄ satisfies
π̄T = π̄TΠ. This equation provides a mechanism for solving directly for the
stationary distribution (e.g., [168], pages 123-124).

Unfortunately, from a practical view, the Markov chain approach has a
significant deficiency. The dimension Npop grows very rapidly with increases
in the number of bits b and/or the population size N . An estimate of the size
of Npop can be obtained by Stirling’s approximation as follows:

Npop ≈
√

2π

(
1 +

2b − 1

N

)N (
1 +

N

2b − 1

)2b−1 (
1

2b − 1
+

1

N

)1/2

Thus far, our analysis using the above approach has been restricted to
scalar θ systems (requiring fewer bits b than a multivariate system) and low
N . Examples are given in [341], Section 10.5 and [344]. An approach for com-
pressing the size of the transition matrix (to emphasize only the most likely
states) is given in [343]. However, this approach is only useful in an adaptive
sense as the algorithm is running; it is not designed for a-priori efficiency
analysis.

112 J.C. Spall, S.D. Hill, D.R. Stark

3.6 Comparative Analysis

3.6.1 Problem Statement and Summary of Efficiency Theory for
the Five Algorithms

This section uses the specific algorithm results in Sections 3.2 to 3.5 above in
drawing conclusions on the relative performance of the five algorithms. There
are obviously many ways one can express the rate of convergence, but it is
expected that, to the extent they are based on the theory outlined above, the
various ways will lead to broadly similar conclusions. We will address the rate
of convergence by focusing on the question:

With some high probability 1 − ρ (ρ a small number), how many L(·)
function evaluations, say n, are needed to achieve a solution lying in some
‘satisfactory set’ S(θ∗) containing θ∗?

With the random search algorithm in Section 3.2, we have a closed form
solution for use in questions of this sort while with the SPSA, SAN, and EC
algorithms of Sections 3.3 through 3.5, we must apply the existing asymptotic
results, assuming that they apply to the finite-sample question above. For
the GA, there is a finite sample solution using the Markov chain approach.
For each of the five algorithms, we will outline below an analytical expression
useful in addressing the question. After we have discussed the analytical ex-
pressions, we present a comparative analysis in a simple problem setting for
varying p.

Random Search

We can use (3.1) to answer the question above. Setting the left-hand side of
(3.1) to 1 − ρ and supposing that there is a constant sampling probability
P ∗ = P{θnew(k) ∈ S(θ∗)} for all k, we have

n =
log ρ

log (1 − P ∗)
. (3.7)

Although (3.7) may appear benign at first glance, this expression grows
rapidly as p gets large due to P ∗ approaching 0. (A numerically stable approx-
imation that is useful with small P ∗ is given in [341], page 62). Hence, (3.7)
shows the extreme inefficiency of simple random search in higher-dimensional
problems as illustrated in the study below. Note that while (3.7) is in terms

of the iterate θ̂k, a result related to the rate of convergence for L(θ̂k) is given
in [265], page 24; this result is in terms of extreme value distributions and
also confirms the inefficiency of simple random search algorithms in high-
dimensional problems.

Simultaneous Perturbation Stochastic Approximation

As mentioned in Section 3.4, there is no known asymptotic normality re-
sult in the case of noise-free measurements of L(θ) (although Gerencsér and

3 Theoretical Comparison of Stochastic Optimization Approaches 113

Vágó, [138], show that the rate of convergence is geometric with an unknown
constant governing the decay). Nonetheless, a conservative representation of
the rate of convergence is available by assuming a noisy case with small levels
of noise. Then we know from (4.4) that the approximate distribution of θ̂k

with optimal decay rates for the gains ak and ck is N (θ∗ + µ/k1/3, Σ/k2/3).
In principle, then, one can use this distribution to compute the probabilities
associated with arbitrary sets S(θ∗), and these probabilities will be directly a
function of k. In practice, due to the correlation in Σ, this may not be easy
and so inequalities such as in [363], Chapter 2 can be used to provide bounds

on P{θ̂k ∈ S(θ∗}) in terms of the marginal probabilities of the θ̂k elements.
For purposes of insight, consider a case where the covariance matrix Σ is

diagonal. If S(θ∗) is a hypercube of the form [s−1 , s
+
1] × [s−2 , s

+
2] × ... ×

[s−p , s
+
p], then P{θ̂k ∈ S(θ∗)} is a product of the marginal normal probabilities

associated with each element of θ̂k lying in its respective interval [s−i , s
+
i] ,

i = 1, 2, . . . , p. Such diagonal covariance matrices arise when the loss function
is separable in each of the components of θ. Then we can find the k such
that the product of probabilities equals 1 − ρ. To illustrate more specifically,
suppose further that Σ = σ2I, the µ/k1/3 term in the mean is negligible, that
S(θ∗) is centered around θ∗, and that δs ≡ s+i − s−i for all i. (i.e., s+i − s−i
does not depend on i). Then for a specified ρ, we seek the n such that P{θ̂k ∈
S(θ∗)} = P{θ̂ki ∈ [s−i , s

+
i]}p = 1 − ρ. From standard N (0, 1) distribution

tables, there exists a displacement factor, say d(p), such that the probability
contained within ±d(p) units contains probability amount (1 − ρ)1/p; we are
interested in the k such that 2d(p)σ/k1/3 = δs. From the fact that SPSA
uses two L(θ∗) evaluations per iteration, the value n to achieve the desired

probability for θ̂k ∈ S(θ∗) is then

n = 2

(
2d(p)σ

δs

)3

.

Unfortunately, the authors are unaware of any convenient analytical form
for determining d(p), which would allow a ‘clean’ analytical comparison with
the efficiency formula (3.7) above (a closed-form approximation to normal
probabilities of intervals is given in [171], pages 55-57, but this approximation
does not yield a closed form for d(p)).

Simulated Annealing

Because SAN, like SPSA, has an asymptotic normality result, the method
above for characterizing the rate of convergence for SPSA may also be used
here. Again, we shall consider the case where the covariance matrix is diagonal
(Σ = σ2I). Assume also that S(θ∗) is a hypercube of the form [s−1 , s

+
1] ×

[s−2 , s
+
2] × ... × [s−p , s

+
p] centered around θ∗, and that δs ≡ s+i − s−i ,

for all i. The (positive) constant B0 is assumed small enough that it can be
ignored. At each iteration after the first, SAN must evaluate L(θ∗) only once

114 J.C. Spall, S.D. Hill, D.R. Stark

per iteration. So the value n to achieve the desired probability for θ̂k ∈ S(θ∗)
is

log n1−γ =

(
2d(p)σ

δs

)2

.

Evolution Strategy

As discussed in Section 3.5, the rate-of-convergence results for algorithms
of the evolutionary computation type are not as well developed as for the
other three algorithms of this chapter. Theorem 2 gives a general bound on
E[L(θ̂k)−L(θ∗)] for application of a (N,λ)-ES form of EC algorithm to (K, q)-
strongly convex functions. A more explicit form of the bound is available
for the (1, λ)-ES. Unfortunately, even in the optimistic case of an explicit

numerical bound on E[L(θ̂k) − L(θ∗)], we cannot readily translate the bound

into a probability calculation for θ̂k ∈ S(θ∗), as used above (and, conversely,

the asymptotic normality result on θ̂k for SPSA and SAN cannot be readily
translated into one on L(θ̂k) since ∂L/∂θ = 0 at θ∗, see, e.g., [327], pages
122-124, although Lehmann in [204], pages 338-339 suggests a possible means
of coping with this problem via higher-order expansions). So, in order to make
some reasonable comparison, let us suppose that we can associate a set S(θ∗)
with a given deviation from L(θ∗), i.e., S(θ∗) = {θ : L(θ̂k) − L(θ∗) ≤ ε} for
some prespecified tolerance ε > 0 (note that S(θ∗) is a function of ε). As

presented in [308], E[L(θ̂k)−L(θ)] ≤ ηk for sufficiently large k, where η is the
convergence rate in Section 3.5. Then by Markov’s inequality,

1 − P{θ̂k ∈ S(θ∗)} ≤ E[L(θ̂k) − L(θ∗)]
ε

≤ ηk

ε
(3.8)

indicating that P{θ̂k ∈ S(θ∗)} is bounded below by the ES bounds mentioned
in Section 3.5. For EC algorithms in general (and ES in particular), there are
λ evaluations of the loss function for each generation k so that n = λk, where

k =
log ρ− log(1/ε)

log
[
1 − 2

pq2 log(λ/N)
] . (3.9)

We also report results related to the differential equation solution (3.6).
As noted, this solution is tied to some restrictions, namely to loss functions
of the spherical-based form L(θ) = f (‖θ − θ∗‖) and to an idealized ES with
a mechanism for adaptively scaling the mutation magnitude according to the
current distance r =

∥∥θ̄k − θ∗
∥∥. Further, as a deterministic approximation to

a stochastic algorithm, there is no simple way to determine the probability
ρ defined above. If, as mentioned above, we consider S(θ∗) in the form of
a hypercube [s−1 , s

+
1] × [s−2 , s

+
2] × ... × [s−p , s

+
p], we can specify a rinside

that defines the radius of the largest hypersphere that is contained within the
hypercube and routside that defines the radius of the smallest hypersphere that

3 Theoretical Comparison of Stochastic Optimization Approaches 115

lies outside (i.e., contains) the hypercube. The number of function evaluations
needed to yield a solution in S(θ∗) is then bounded above and below by the
number required for a solution to lie in these inside and outside hyperspheres.
That is, substituting rinside or routside for r(t) in the right-hand side of (3.6)
yields an upper and lower bound, respectively, to the number of time steps,
which, by the appropriate multiplication, yields bounds to the number of
function evaluations.

Genetic Algorithm

As mentioned in Section 3.5, while the GA has a relatively clean theory that
applies in both finite and asymptotic samples, there are significant challenges
in computing the elements of the Markov transition matrix Π. The number
of possible states – corresponding to the number Npop of possible populations
– grows extremely rapidly with the number of population elements N or the
number of bits b. The computation of the Npop × Npop transition matrix Π
quickly overwhelms even the most powerful current or foreseeable personal
computers.

Nevertheless, in principle, the Markov structure is convenient for estab-
lishing a convergence rate for the GA. Recall that πk is the Npop × 1 vector
having jth component, πk(j), equal to the probability that the kth genera-
tion will result in population j. Let us denote by SJ the set of indices j such
that population j contains at least one member lying inside S(θ∗). Hence,
SJ ⊆ {1, 2, . . . , N}. Then

n = N + (N −Nelite) min

⎧⎨⎩k :
∑
j∈SJ

πk(j) ≥ 1 − ρ

⎫⎬⎭,

where Nelite denotes the number of elite elements in the population being
saved from one generation to the next and we have assumed that all non-elite
function evaluations are not ‘saved’ from one generation to the next (i.e.,
every generation entails N −Nelite function evaluations).

3.6.2 Application of Convergence Rate Expressions for Varying p

We now apply the results above to demonstrate relative efficiency for vary-
ing p. Because the GA result is computationally explosive as p gets larger
(requiring a larger bit string length and/or population size), we restrict the
comparison here to the four algorithms: random search, SPSA, SAN and ES.
Let Θ = [0, 1]p (the p-dimensional hypercube with minimum and maximum
θ values of 0 and 1 for each component). We want to guarantee with proba-
bility 0.90 that each element of θ is within 0.04 units of the optimal. Let the
(unknown) optimal θ, θ∗, lie in (0.04, 0.96)p. The individual components of θ∗

are θ∗i . Hence,

116 J.C. Spall, S.D. Hill, D.R. Stark

S(θ∗) = [θ∗1 − 0.04, θ∗1 + 0.04] × [θ∗2 − 0.04, θ∗2 + 0.04] × . . .

×[θ∗p − 0.04, θ∗p + 0.04] ⊂ Θ.

Table 3.1 is a summary of relative efficiency for the setting above for
p = 2, 5, and 10; the efficiency is normalized so that all algorithms perform
equally at p = 1, as described below. The numbers in Table 3.1 are the ratios
of the number of loss measurements for the given algorithm over the number
for the best algorithm at the specified p; the highlighted values 1.0 indicate
the best algorithm for each of the values of p. To establish a fair basis for
comparison, we fixed the various parameters in the expressions above (e.g.,
σ in SPSA and SAN, λ for the ES, etc.) so that the algorithms produced
identical efficiency results for p = 1 (requiring n = 28 measurements to achieve
the objective outlined above). These parameters do not explicitly depend on
p. We then use these parameter settings as p increases. Of course, in practice,
algorithm parameters are typically tuned for each new problem, including
changes in p. Hence, the results may not reflect practical relative efficiency,
including the cost of the tuning process. Rather, they point towards general
efficiency trends as a function of problem dimension in the absence of problem-
specific tuning.

For the random sampling algorithm, suppose uniform sampling on Θ is
used to generate θnew(k) for all k. Then, P ∗ = 0.08p. For SPSA, we fix σ such
that the same number of function measurements in the p = 1 case (n = 28)
is used for both random search and SPSA (so δs = 0.08 and σ = 0.0586).
Likewise, for SAN, we fix σ to achieve the same objective (so δs = 0.08 and
σ = 0.031390). Also, for convenience, take γ = 1/2. To compare the (N,λ)-ES
algorithm with the random search, SPSA, and SAN algorithms, it is assumed
that the loss function is restricted to the (K, q)-strongly convex functions or
spherical-based forms discussed in Section 3.5. Also let λ = 14, N = 7, ε = 8.3,
q = 4, and ρ = 0.1. The variables were constrained here so that for p = 1,
we have the same n (= 28) as realized for the other algorithms. Table 3.1
summarizes the performance comparison results.

Table 3.1. Ratios of loss measurements needed relative to best algorithm at each
p, for 1 ≤ p ≤ 10

p = 1 p = 2 p = 5 p = 10

Random search 1.0 11.6 8970 2 × 109

SPSA 1.0 1.5 1.0 1.0

SAN 1.0 1.0 2.2 4.1

ES (from (3.8), (3.9)) 1.0 1.9 1.9 2.8

ES (from (3.6) w. inside hypersphere) 1.0 2.1 2.4 3.8

ES (from (3.6) w. outside hypersphere) 1.0 1.8 1.8 2.6

3 Theoretical Comparison of Stochastic Optimization Approaches 117

Table 3.1 illustrates the explosive growth in the relative (and absolute)
number of loss evaluations needed as p increases for the random search al-
gorithm. The other algorithms perform more comparably, but there are still
some non-negligible differences. For example, at p = 5, SAN will take 2.2
times more loss measurements than SPSA to achieve the objective of having
θ̂k inside S(θ∗) with probability 0.90. Of course, as p increases, all algorithms
take more measurements; the table only shows relative numbers of function
evaluations (considered more reliable than absolute numbers).

This large improvement of SPSA and SAN relative to random search may
partly result from the more restrictive regularity conditions of SPSA and SAN
(i.e., for formal convergence, SPSA assumes a several-times-differentiable loss
function) and partly from the fact that SPSA and SAN work with implicit
gradient information via gradient approximations. (The reasons for improve-
ment with ES are less clear due to the lack of an identifiable connection to the
gradient.) Of course, to maintain a fair comparison, SPSA and SAN, like the
other algorithms here, explicitly use only loss evaluations, no direct gradient
information. On the other hand, there are some differences between SPSA
and SAN. The different gradient approximations in SPSA and SAN may ex-
plain their relative efficiency. The ‘Metropolis-type approximation appears to
be much farther away from an exact gradient-based algorithm than a finite-
difference approximation’ ([134], page 128). By contrast, SPSA, recall, uses
a (highly efficient) finite-difference-like approximation to the gradient.

The performance for ES is quite good. The restriction to strongly convex
loss functions (from (3.8) and (3.9)) or spherical losses (from (3.6)), however,
gives the ES in this setting a strong structure not available to the other
algorithms. It remains unclear what practical theoretical conclusions can be
drawn on a broader class of problems. More advanced sensitivity studies for
various λ, N , and q have not yet been completed. Further, the inequality in
(3.8) provides an optimistic assessment of the convergence rate. Ideally, a more
general rate-of-convergence theory will provide a more broadly applicable basis
for comparison.

