
Never tell people how to do things.
Tell them what to do,
and they will surprise you with their ingenuity.

George Smith Patton, general, 1885–1945

6.1 What is the Solution Domain?

The solution domain is the domain in which engineers use their ingenuity to solve
problems. The primary characteristic that differentiates the solution domain from
the problem domain is that, invariably, requirements engineering in the solution
domain starts with a given set of requirements. In the problem domain require-
ments engineering starts with a vague objective or wish list. The extent to which
the input requirements for the solution domain are “well formed” depends on the
quality of the people within the customer organization that developed them. In an
ideal world, all the requirements would be clearly articulated, individual testable
requirements.

As indicated in Chapter 2, the solution is very rarely arrived it in a single step
(see Figure 6.1).

At each level there is modelling and analysis done first to understand the input
requirements and second to provide a sound basis for deriving the requirements
for the next level down. The number of levels of design is dictated by the nature
of the application domain and the degree of innovation involved in the develop-
ment. No matter how many levels are necessary, it is always vital to understand
how many solution details – the “how” – should be introduced at each step.

At every level in the solution domain, engineers must make decisions that
move towards the final solution. Each of these decisions, by their very nature,
reduces the available design space, i.e. they preclude certain design options, but
it is impossible to make progress in the absence of decisions. Engineers are
always very strongly tempted to go into too much detail too soon. This tempta-
tion must be avoided, in order to allow creativity and ingenuity to work together
to produce innovative solutions that could never be achieved in the presence of
the constraints imposed by premature design decisions.

Typically the first level of system development in the solution domain is to
transform the stakeholder requirements into a set of system requirements. These
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must define what the system must do in order to solve the problems posed by the
stakeholder requirements. This first level is illustrated by the top instantiation of
the generic process in Figure 6.1.

The issue of premature design detail is especially problematic at the first step.
The system model indicated in Figure 6.1 must be created at a level of abstrac-
tion that enables the functionality of the system to be defined without going into
unnecessary detail.

The next step on from defining the system requirements is to create an archi-
tectural design as indicated by the second instantiation of the generic process in
Figure 6.1. This must be expressed in terms of a set of components that interact
to generate the emergent properties identified by the system requirements. The
derived requirements from the architectural design process (Figure 6.1) define
the requirements that the component suppliers must satisfy for each component.

Development proceeds by further levels of design that move further towards
implementation detail.

This chapter concentrates on the transformation from stakeholder requirements
to system requirements because it is the most problematic in most developments,
because typically too much detail is added too soon.

6.2 Engineering Requirements from Stakeholder
Requirements to System Requirements

The full instantiation of the generic model for this transformation is shown in
Figure 6.2.

As with all instantiations, the process commences by agreeing the input
requirements, which, in this case, are the stakeholder requirements. The agree-
ment process must not assume that the input requirements have been produced
according to the guidelines given earlier in this book. Instead, it is necessary to
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consider the requirements and the associated qualification strategy on their 
merits and apply the review criteria for stakeholder requirements with rigour and
thoroughness.

6.2.1 Producing the System Model

To avoid the tendency to go into too much detail, engineers should always work
in the context of a model (see Figure 6.1) that is sufficiently detailed for the pur-
pose of defining requirements in terms of what should be done rather than how.
The level of detail that should be provided in derived requirements depends on
the level of development at which requirements engineering is being done, but the
maxim is always “do not add more detail than is necessary”. The temptation to go
into detail is always greatest at the top level where stakeholder requirements
expressed in problem domain terms are being translated into high-level system
requirements that indicate what the system must do to solve the problems posed
by the stakeholders. The difficulty arises because of the need to work at an
abstract level. The creation of an abstract system model, which will provide the
framework for the system requirements, always causes problems. At all levels
below this, development work progresses in the context of a design architecture.
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Engineers are much more comfortable with this level of detail, because they can
become involved with determining how the system will work. Even at these levels,
care must be exercised to ensure that the amount of detail imposed is appropri-
ate. Consequently, the architecture models should be expressed in terms of com-
ponents that work together, but care should be taken to ensure that components
are defined in terms of what they are required to do rather than how they should
achieve it. In other words, components should be specified as “black boxes”
whose internal details are of no concern provided that they achieve their overall
purpose as defined in the requirements.

The next sections of this chapter concentrate on the preparation of system
models for the derivation of system requirements. Following this, the ways in
which the same approach is applied at more detailed levels is explained.

6.2.2 Creating System Models to Derive System Requirements

The system model must be created at an appropriate level of abstraction such
that it encompasses:

• internal functionality that the system must exhibit – this must concentrate
on what the system must do rather than on how it should be done to avoid
pre-empting the design;

• functionality necessary to enable the system to interact with other systems in
its environment;

• functionality necessary to enable people to successfully interact with it;

• functionality to prevent the system from malfunctioning owing to the pres-
ence of other systems (threats) in its environment. (Note that some of these
systems may not be deliberately threatening, e.g. electromagnetic emissions
from neighbouring equipment.) This “safeguard” functionality must also
prevent the system from interfering in an adverse way with the environment.

The way in which these types of functionality interact with each other and with
elements in the system’s environment is expressed diagrammatically in Figure 6.3.
It is clear that the context of the system within its environment must be defined
with respect to:

• the existing systems with which the new system is required to cooperate;

• the types of people who are intended to interact with the system;

• the threats that the system must defend against;

• the adverse effects that must be prevented.

The functionality can be represented in a number of ways, for example:

• operations or methods on classes in class diagrams;

• message sequence charts;

• state transition diagrams;

• function flow block diagrams;

• processes in data flow diagrams.

In practice, it will be necessary to use several models in order to cover the many
different aspects required. Each model contains information of a defined set of



types and each modelling technique carries its own semantics. The information
for some models may be separate from information in other models. On the
other hand, the same information may appear in more than one model. In the
latter case, it is essential that, when information is changed, the change is
reflected in all other models in which that information occurs. Ideally this would
be achieved automatically by linking the modelling tools. If this is not the case
then extreme care should be exercised to ensure that any change is applied iden-
tically in all relevant models. The Venn diagram in Figure 6.4 indicates that some
models represent islands of information whereas others may have common
information presented in different forms. Figure 6.4 also indicates that there
may be some system information that is not present in any model.

Internal Functionality

This is the primary element of the creation of the system requirements, because
it is the main focus of defining what the system will do. It is necessary to create a
structure or model that can be the basis for creating the system requirements.
This model must have the capability to express some form of decomposition of
the system into modules or high-level components such as subsystems. The use
of terms such as “module” or “component” tends to make developers think more
in terms of implementation rather than specification. This is generally considered
to be bad practice, especially in software-based systems. In general systems, the
need to move to a more physical model is not considered to be particularly prob-
lematic, since the application domain will generally be of a more physical nature.
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As an alternative to terminology that may induce premature implementation,
there is an increasing tendency (some would say “fashion”) to use the term “object”
as the decomposition element, especially for software-based systems, since
objects can refer to items in the problem domain. This discipline helps to pre-
vent the premature descent into solution terms. Functionality can then be intro-
duced as methods or operations on objects and as interactions between objects.

The use of this object-oriented approach can also make the creation of trace-
ability from the system requirements to the stakeholder requirements an easier
task, because the same objects tend to be visible in both the problem domain and
the solution domain.

In addition to stating what the system must do, the system model may also be
required to indicate the intended behaviour of the system. There are a number of
ways in which to represent this type of information. Models in this area usually
represent the fact there are a number of concurrently active “actors” that interact
in some way. Examples of this sort of notation are message sequence charts and
behaviour diagrams. Message sequence charts have long been used in the
telecommunications industry. Behaviour diagrams originated in the US ballistic
missile early warning system (BMEWS) in the 1970s and have been imple-
mented in tools such as RDD-100 from Ascent Logic Corporation and CORE
from Vitech Corporation.

Behaviour can also be modelled using state transition diagrams or state-
charts. State transition diagrams have the limitation that they can only model a
sequence of states and the item being modelled can only be in one of these states
at any one time. State transition diagrams cannot represent hierarchical states
directly. Separate diagrams must be used for each level in the hierarchy and, in some
cases this means that there may be a set of active diagrams at certain times. Such
sets of diagrams can be difficult to understand. To avoid this complexity, it is better
to use statecharts because they have been developed to handle state hierarchies
directly. They also address parallel states.

In any system it is necessary to consider whether there is information to be
handled. Some systems, e.g. insurance company systems, require that information
must be gathered and retained for use over a number of years. In other systems,
e.g. radar data processing systems for air traffic control, there is some informa-
tion that has a long lifetime, e.g. flight plans, whereas the current position of an
aircraft in flight, by its very nature, is soon out of date. Hence the information
requirements must be examined to ascertain:

• the longevity of the information, i.e. for how long is the information rele-
vant, and for how long must it be retained?;

• the freshness of the information, i.e. how up to date must it be (seconds, min-
utes or hours)?

It is also very relevant to know the amount of information that may be involved.
This can have a profound effect on the design of the system.

Interface Functionality

It is necessary to define the nature of the interactions required with any other
system. Interactions may involve the movement of information or material



between the systems. The movement may be in one direction or both, and there
may be limits on the capability that can be transferred. It may be necessary to
provide temporary storage (e.g. data buffer or warehouse) for items that are held
up. There may be time response requirements on the speed with which either
system must react to a stimulus from the other.

The nature of interfaces varies significantly. However, there must always be 
a baseline reference that indicates what each party undertakes to do or provide
as part of the interface. These obligations are frequently documented in an 
interface control document (ICD). Where the interactions are controlled by
national or international standards, the standard becomes the interface control
document to which all relevant parties can work. Where the interface is less well
defined, the obligations (i.e. interface requirements) must still be written down
and agreed. Control of these requirements is notoriously difficult because there is
often no organization with a clear mandate to control the interface. Consequently,
each party to the interface tends to have its own version of the document and,
worse, each party tends to have its own interpretation of it.

It is usual for interface documents to be controlled by the organization that
has responsibility for the system that encompasses the two (or more) systems
that interact. Such an organization is difficult to define when a new system is
being developed. Often the existing system(s) will have been developed earlier
and the interfaces may not be properly documented. Further, the development
organization may well no longer have any responsibility for that system, having
handed it over to a higher level customer or other operating authority.

Care must be exercised to ensure that all interface obligations are accurately
reflected in derived requirements at the appropriate level and, as far as possible,
the interface control authority is clearly defined.

Human Interaction Functionality

The crucial issue for human interactions with a system is to know what inter-
actions are going to be required. The context in which the users will work is also
important. This can have an impact on the way they can work. For example,
users working in a standard office environment will be warm and able to work
conveniently without gloves. Other users may have to operate the system in harsh
environments such as extreme cold weather or hazardous situations where pro-
tective clothing will be necessary. In these circumstances, the design of the displays
and keyboards must take note of these aspects.

Safeguard Functionality

The environment in which a system must operate will also have a significant
influence especially with respect to safety and security. For example, in a bank-
ing system it is necessary to provide assurance that information and money will
not be given to unauthorised people. In a car (system) it is necessary to be assured
that the car will stop when the brake pedal is operated.

There may also be other systems operating in the environment of the system
that may be competing with the system being developed. This competition could
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be commercial competition as in online banking for example. Here the need for
any system to be evolved rapidly can be of prime importance.

Other “competing” systems include those that could interfere with the correct
operation of a system by, for example, making radio transmissions that confuse
the system or overload sensitive receivers. An example of this is the worry that
the use of mobile telephones on board aircraft in flight could interfere with the
aircraft’s navigation systems.

System Transactions

It is worthwhile revisiting the use scenarios that were developed for the system
from the stakeholders or, if none exist, to create a set of relevant scenarios. These
can be applied to the system model(s) to make sure that they are possible within
the system being specified (see Figure 6.5). Working through these “system trans-
actions” provides reassurance that elements of system functionality have not been
lost by a blinkered approach to object modelling or functional decomposition.
(Note that this use of the term “system transaction” is different to the use of the
term within the CORE method described in Chapter 3.)

The system transactions shown in Figure 6.5 as user system transactions are
those derived from the use scenarios. Figure 6.5 also indicates that there can be
other transaction derived from the way in which the system being developed
must interact with external systems.

System transactions encourage system engineers to stand back and take a
“holistic” view of the system. It is all too easy to concentrate on the detail and
forget the big picture, i.e. how do the detailed parts work together to achieve the
overall aim?
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Modes of Operation

Different functionality may be required in some circumstances. A typical example
for information-based systems is the need to be able to provide training for staff
without compromising the integrity of the data held in the system. Other examples
include fallback modes of operation following a failure or, in military systems,
different modes depending on the current state of alertness. These may be related
to the use scenarios in the stakeholder requirements.

Additional Constraints

In addition to the constraints already mentioned, there are additional aspects that
should be considered. Perhaps the most important are those concerned with
safety and certifiability. In these areas, additional requirements can be introduced
and these will certainly have a strong influence on the means adopted for quali-
fication. The relevant authorities will have to be convinced that a system is safe to
use or to be deployed or, in the case of an aircraft, that it can be given a certificate
of airworthiness.

A further set of additional constraints are introduced by the need to manu-
facture the system. It may be necessary to use an existing facility or the design
may have to be changed in order to reduce the cost of manufacturing.

6.2.3 Banking Example

In this example of a management information system, the primary concern will
be to model the information that must be handled, but it is clear that there are
many other areas that should be addressed. Several system models are therefore
likely to be used, one focusing on the information, others focusing on the flow
and security of information.

Figure 6.6 shows a model that provides an alternative abstraction for the bank
example. It identifies the types of locations where equipment might be sited and
thus from where transactions may be initiated.

Internal Functionality

The primary internal functionality is concerned with supporting the services
provided by the bank such as current accounts, deposit accounts, loans and
investment portfolios. To support these services, the system must be able to col-
lect, update and retain information. Of vital importance here are the types (or
classes) of information (e.g. accounts, customers), the relationships that exist
between them (e.g. how many accounts is a customer allowed to have?) and the
longevity, freshness and volume of each type.

It is important to determine how information is collected, disseminated and
manipulated.

A further important aspect of a banking system is the number and location of
sources of information and/or transactions. These will include branches, auto-
matic teller machines and credit card point of sale machines.
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From a performance point of view, it is important to understand the likely
loading that the system must be able to cope with, such as the number and mix
of transaction types. This will clearly vary from day to day and from hour to
hour within each day. There may be constraints imposed by existing infrastruc-
ture such as landlines or other communication mechanisms.

Interface Functionality

The primary interfaces for this type of system are to other banks for fund trans-
fers and use of their teller machines.

Banks also have existing systems for clearing cheques, etc, that are jointly cre-
ated amongst several banks.

It is highly likely that a banking system will make use of telecommunications
services from external providers.

Human Interaction Functionality

Information systems generally have to cope with a wide variety of user types. For
a bank the following list covers many of them:

• General public – Must be able to use automatic teller machines and, increasingly,
online facilities via the web without any prior training, i.e. the user interfaces
must be intuitive.
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Figure 6.6 An abstract model for the bank example.



• Counter staff – Must be able to use the system quickly in order to provide a
fast and efficient service to customers queuing up. These counter staff will
require training and the most important aspect of this type of interface is
that it should be “slick” when the staff have been trained.

• Managers at various levels – Some managers may not be as computer literate
as the counter staff (although, of course, some may have been promoted after
becoming proficient as counter clerks). The facilities to be provided for the
managers may include some of the counter staff facilities, but will include
more summary types of information derived from looking at a wider set of
information than a single account. These may include statement summaries
or branch or area business summaries. Note that these types of information
demand that information is retained over a period of time so that trends and
other historical information can be deduced and/or presented.

• Policy makers and marketing staff – Require different capabilities, perhaps
introducing the capability to start new business products.

• System maintainers – Must be able to update system facilities. Ideally they
should be able to do this while the system is fully operational, but in practice
they may take down all or part of the system (usually for a brief period in the
middle of the night) in order to guarantee integrity of data.

Safeguard Functionality

Security in banking systems is of paramount importance. The key element is the
need to protect the integrity of the information that is at the heart of the business.

Obvious mechanisms used include the personal identification numbers
(PINs) on credit or debit cards and encryption for transfers between branches,
teller machines, etc.

Other areas that must be considered are the need to keep the systems working
in the presence of computer faults, power failures or communication failures.
These categories of functionality are related to the perception of risk. The degree
of protection that can be afforded to mitigate the risks depends critically on the
exposure that is perceived.

Finally, and most importantly, it is necessary to consider threats from hackers,
embezzlers or others with fraudulent intent. The software must provide ade-
quate protection to safeguard the bank and its customers from these threats.

System Transactions

Each type of user is likely to be a stakeholder in this category of system. Therefore,
it is likely that there will be a set of use scenarios for each type of user. For the
bank customers these include regularly used facilities such as withdrawals, deposits
and transfers, whether made in person or done automatically as direct debits,
salary payments, etc. There will also be other transactions used less frequently
such as negotiating a personal loan or a mortgage.

For each type of user it is worthwhile considering the load that will be
imposed, so that the response time can be estimated. Of course, this will not be
a fixed time, but will depend on the current loading and this, in turn, will depend
on the time of day and day of the week.
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Increasing use of web-based facilities must add a further dimension to load
prediction.

Modes of Operation

The predominant mode of operation will be the normal mode. However, there
may be additional modes to cover training, backup and recovery operations and
system evolution.

6.2.4 Car Example

The second example addresses a more physical type of system, but it is interesting
to see that the same categories of information are still present, although in an
entirely different form.

The big issue in this example is whether the system model is a physical model
and to what extent it can become abstract. It is unlikely that a new car is going to
be radically different in architecture from previous models – it will still have a
wheel at each corner, an engine, a gearbox, suspension, a windscreen, etc. For this
reason, the system model for a car may well make reference directly to the phys-
ical objects of the architecture as indicated in Figure 6.7. The arrows on this dia-
gram indicate “some influence” in the direction of the arrow. The driver presses
the brake pedal and the brake pedal activates the brakes. The connections
between the body and the parts fastened to it are shown as double-ended arrows
to indicate that there is a dependency in both directions, e.g. the engine is fas-
tened to the body and the body has mountings to take the engine.

However, where aspects of the new car are likely to be rather different – such
as in an electronic vehicle control system – remaining more abstract will present
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advantages in determining the best solution. To the extent that the functionality
of a car is fairly well understood, what is required is to quantify the functionality.
For example, it is clear that a car must be able to move people and their luggage
or other items from one place to another. The key questions that should have
been addressed in the stakeholder requirements are:

• How many people?

• How much luggage?

• How comfortable will the car be?

• How fast will the car travel?

• How quickly will the car accelerate?

• How much will it cost?

• What information will be provided to the driver?

• What in-car entertainment facilities will be provided?

• What safety features will be necessary?

• Where will the car be used?

Internal Functionality

The key requirements that must be addressed at the functional level include:

• The acceleration rate of the car. This requires a balance between the engine
power, the overall weight of the car, the wind resistance of the body and the
drag induced by the wheels.

• The range of the car. This requires a balance between the fuel efficiency of the
engine, the fuel capacity, whether a manual or automatic gearbox is used and
the way in which the car is driven.

• The comfort level of the car. This will influence cost and weight of the car plus
people of different stature may perceive the end result differently.

Note that these key aspects are not independent. This is typical in a systems 
engineering situation. It is these interactions that tend to move the model to a
more abstract level. For example, the above factors will be different depending
on the type of engine and fuel used. Fuel types include petroleum, diesel and 
liquefied petroleum gas (LPG). The fuel efficiency and weight of engine, fuel 
and fuel tank are different in all three cases. Consequently, it is necessary to
determine:

• whether to make a selection at all at this point, or

• whether to keep all options open or

• whether to provide a customer selectable option for one, two or three of these
types.

The nature of the design will be significantly affected by the decision(s) that are
taken. It may be that multiple options are evaluated, each more detailed than the
overall model. Alternatively some options, for example LPG fuel, could be elim-
inated right at the start.
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Interface Functionality

One might expect that a car is going to be isolated in terms of its need to inter-
face with other systems. Increasingly this is not the case. One trivial example is
that a car will usually have a radio receiver and this entails conforming to certain
standards of demodulation in order to decode the transmitted signals.

As sophistication increases, so there are wider sets of standards that must be
conformed to. For example, cars that have GPS navigation must understand how
to receive and decode the satellite signals on which this system depends. Cars
that can provide traffic information to drivers must be able to interface with the
relevant information providers. In future, it is possible to envisage that the navi-
gation system may well be influenced by the traffic information and hence a 
further (internal) interface will be introduced.

For modern cars, the way in which they are serviced is an important consid-
eration. Frequently cars are required to retain information about events during
their operational use so that the service technician can access it to aid in diag-
nosing problems or to guide him to check or change relevant items that are
either faulty or nearing the end of their useful life. This is an example of a test
system that is partly installed in the operational system (i.e. the car) and partly
installed in the garage where the maintenance operations are undertaken.

Human Interaction Functionality

Many aspects of the “user interface” of the car are set by conventions that have
evolved over the years. For example, the relative positions of the foot pedals
(accelerator on the right, brake to the left and, if present, clutch to the left of
that) are identical all over the world.

Other aspects, such as left-hand or right-hand drive and position of indicators
and windscreen wipers, have local conventions in different geographical areas.

On the other hand, for entertainment systems, navigation systems and other
less common systems there are, as yet, no agreed conventions and therefore the
designers are free to provide an interface of their choice. As with most electronic
systems, there is a need to make the interface easy to use (or even possible to use)
for anybody who needs to use it. This is a challenge, because the only explanation
that can be provided is a user guide. It is not possible to send drivers and pas-
sengers on training courses and it is not appropriate to make any assumptions
about the educational level or experience of those who may need to use it.

Safeguard Functionality

The primary safeguard functionality in cars is to ensure the safety of the car and its
occupants. A further, increasingly important, area of functionality is the prevention
of theft.

Safety functionality starts with the braking system. It is essential that effective
braking is available to the driver at all times. Dual-circuit hydraulic brakes that
provide redundancy such that braking is still provided after any single hydraulic
failure is one way of providing this. The system model could include the imple-
mentation directly; alternatively, the model could just include the need for braking.



In the latter case, the fact that braking must still be available in the event of a single
hydraulic failure must be added outside of the model.

Note that this discussion has tacitly assumed that braking will be effected
using hydraulics! Some aspects of detailed design can be included especially
where there is a well-established precedent, or the decision can be taken in
response to a business objective introduced into the input requirements by the
developer organization.

Other areas of safety include ABS braking and the provision of air bags to
cushion the impact of a collision. Again these can either be explicitly included in
the model or the designer can be given freedom to invent alternative solutions.

The starting point for security is the provision of locks on doors. This can be
enhanced by the provision of an alarm system and engine immobilizer. The limit-
ing factor here is the cost of introducing the extra functionality and the amount
that a customer is prepared to pay for it. However, there are other factors such as
the facilities provided by competing cars and the attitude of insurance companies.
Both have a strong influence not only on the functionality that must be provided,
but also on the way its inclusion is justified.

System Transactions

There are many possible transactions for a car. All are based on journeys but with
specific objectives or characteristics, for example:

• Driver, shopping trip in town – leave parking bay, travel, park, secure vehicle,
unlock vehicle, load vehicle, leave parking bay, travel, park, unload, secure
vehicle.

• Driver, motorway trip.

• Driver, airport trip (with luggage).

• Driver, trip with accident.

• Passenger – get in, fit belt, travel, undo belt, get out.

• Garage technician – repeatedly service, with major/minor intervals.

• Owner – buy, depreciate, sell/dispose.

• Salesman – repeatedly attempt to sell, ended by selling, warranty period.

Each of these may add new requirements such as luggage capacity or maintenance
facilities. Therefore, it is important to consider them all and understand how the
implied requirements of each are addressed. Of course, this does not mean that
all of them will be satisfied. It may be that some are rejected because they are too
expensive or are not considered to be relevant for the market being considered.
Alternatively, the transactions may cause different models to be created for different
markets.

Modes of Operation

One could imagine a car in which the prevailing terrain could influence the way
in which the car operates. For example, in mountainous terrain, the gearbox could
automatically select lower ratios and the engine management system would take
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into account the amount of oxygen in the air and consequently alter the mixture
of petrol and air to take account of this. Alternatively, these could be options that
could be selected either at the time of purchase or when driving.

A further important mode of operation is the maintenance mode, in which the
engine management system is downloading the collected information for analysis
by the maintenance system and technician.

A more extreme mode could be to join a motorway “train” composed of a set
of cars all travelling at the same speed with minimal spacing. The cars would then
be controlled as a group and local driving facilities would be disabled.

6.2.5 Deriving Requirements from a System Model

Create a Document Structure for the Requirements

As indicated earlier, the system model may be composed of many independent
and potentially overlapping models. It is possible to start deriving requirements
from any of these models as has already been alluded to in the previous sections
covering the banking and car examples. However, the challenge is to find a struc-
ture into which all of these derived requirements can be placed such that every
requirement has an obvious place in that structure and that any empty sections
are empty by design rather than by accident. The structure is referred to as a
“document structure” in Chapter 4.

It is recommended that one of the models be chosen as the primary source for
generating the document structure. The model selected should be the one with
the widest scope, since the system requirements must cover the complete system
and not one small area. In practice, the decision is usually obvious. For data-
oriented systems such as the banking example, the data model is often the best
focus, since every function is concerned, to some extent, with establishing, dis-
seminating, updating or safeguarding the data. For more physical systems such
as the car example, it is often best to use a model derived from the physical struc-
ture of the system (assuming one exists), because most of the requirements refer
to one or more of these elements.

Derive or Allocate Requirements

Once the structure has been agreed, it is possible to collect all the requirements
that have been derived and to place them in the structure. It may be possible to
allocate some input requirements directly to the document structure. Where this
is the case, it frequently means that the input requirements are too detailed, i.e.
too close to the implementation.

All the rules for writing good requirements outlined in Chapter 4 should be
observed when formulating requirements. Remember that the golden rule is to
write each requirement as a single testable statement. As each requirement is
formulated, it is necessary to establish traceability back to the one or more input
requirements that the newly derived requirement satisfies wholly or partially.

When considering testability, it may be worthwhile thinking about the criteria
that will determine whether a test is considered successful or not. These acceptance
criteria should be documented with each requirement. Sometimes the criteria



can be embodied as a performance clause within the text of the requirement. An
alternative is to write the criteria in a separate attribute alongside the requirement.

As testability and performance are being considered, it is vital to consider how
the testing, or other demonstration of successful implementation, will be organ-
ized. This leads naturally into the issue of qualification strategy and the identifi-
cation, in outline, of the set of trials tests and inspections that will be necessary.

In this context, it is also essential to consider the test harnesses or special test
equipment that will be required. These may require separate development and,
in some cases, can become separate projects in their own right. A further con-
sideration in this area is the notion of built-in tests and the provision of monitor
points. Built-in tests are increasingly important, especially in safety-related areas.
For example, in the car example, most electronic systems will have a built-in test
that is performed when the car engine is started up. Monitor points are places
where significant information can be made available that would otherwise not
be visible. A simple example of this is an oil pressure gauge on cars. An information
example for the banking system could be a display screen showing the current
transaction rates across the whole of the banking network.

The final set of requirements that should be considered is the set of constraints.
These add no additional functionality, but control the way in which the func-
tionality is delivered. At the systems requirements level, there may be some con-
straints that come straight from the stakeholder requirements. For example, the
space that a system can occupy may be limited or the stakeholders may have
insisted that a pre-existing system is used as a subsystem in the new system.

Some other sources of constraint are:

• Design decisions – e.g. the decision to have a dual hydraulically operated
braking system.

• The application itself – e.g. that the equipment must be able to cope with the
vibration generated by the car when it is in motion.

• Safety – e.g. how can the developers convince the authorities that the car will
not constitute a hazard to other road users?

• Manufacturing – e.g. can the car be manufactured using the existing facilities
at a reasonable cost?

6.2.6 Agreeing the System Requirements with the Design Team

The final step in the creation of the system requirements is to agree the require-
ments with the team who will be responsible for developing the design. This uses
the agreement process described in Chapter 2 and therefore no further explanation
is necessary.

6.3 Engineering Requirements from System 
Requirements to Subsystems

The logical next step on from the creation of the system requirements is to pro-
duce a design architecture whose components are the major subsystems of the
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proposed system, as shown in Figure 6.8. As usual, the process starts off by agree-
ing the input requirements with the customer. The review criteria for system
requirements must be used as the basis for the agreement process together with
the general criteria presented in Chapters 2 and 4. The requirements should be
free from implementation bias unless there is a specific need to constrain the
design. In the latter case the requirement must be explicitly stated as a constraint.
All too frequently constraints are assumed because “that is what the customer
asked for”. It is always good practice to challenge any design constraint, especially
if the constraint is implied rather than explicit. Sometimes requirements are
expressed in design terms owing to laziness and because engineers have a tendency
to go into too much detail too soon.

The analysis work necessary to support the agreement process helps to educate
the designers about what is intended and starts them thinking about possible
solutions.

6.3.1 Creating a System Architecture Model

An architecture model identifies the components of the system and the way in
which they interact. The designer must understand how the components work
together to develop the emergent properties of the system, i.e. to indicate how
they satisfy the input requirements. The designers must also be able to predict
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whether there are any emergent properties that are definitely not required, such
as catastrophic failures or other safety or environmental hazards. There may,
however, be emergent properties that a given design generates that, although not
actually requested by the customer, may be perfectly acceptable. These additional
capabilities must be discussed with the customer. They may give rise to changes
in the input requirements to request them, or the customer may request that
they are inhibited. Finally, the designers may find that it is impossible to satisfy
the requirements at all or at reasonable cost.

It is only when a design architecture has been generated and explored that
these possibilities come to light. Once a design exists it is possible to predict the
cost and development time for a system with much greater accuracy than earlier.
Hence it is possible to enter a round of negotiation with the customer to hone
the input requirements by the customer making concessions where problems or
cost dictate the need.

In many circumstances, it is worthwhile considering two or more alternative
designs and then investigating the relative merits of each. Again this can lead to
further negotiation (trade-off) with the customer to determine the most appro-
priate options in terms of cost versus benefit.

When an agreed architecture has been established, each component must be
described in terms of its internal functions and its interaction obligations with
other components and with external systems.

6.3.2 Deriving Requirements from an Architectural Design Model

From the descriptions of the components, requirements can be derived. The
requirements must address the functionality that the component must provide,
the interfaces that it must use or provide and any constraints to which the com-
ponent must conform. These constraints may come directly from the overall system
constraints (e.g. a particular electronic technology must be used for all compo-
nents), or they may be derived from them (e.g. the overall weight limit for the
system has been divided amongst the components). The component (i.e. subsys-
tem) requirements are essentially the system requirements for that component
when it is viewed as a system in its own right.

As each requirement is derived, it should be traced back to one or more of the
input requirements that it partially or fully satisfies.

The strategy for testing each component must also be determined. This will
not be the first occasion that testability has been considered. Testability is one of
the most important aspects of the design and must be considered as the design
is being created.

6.4 Other Transformations Using a Design Architecture

As the development proceeds from one level down to lower levels, so each level
introduces its own architectural design model (see Figure 6.1). At each level the
process followed is as described in the previous section. Thus the next level down
from the creation of subsystems is to create the components of each subsystem
and so on.
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There is one special case in which an architectural model is used that is an
exception to this rule. This is indicated in Figure 6.9, which shows that a design
architecture and subsequently subsystem requirements are created directly from
the stakeholder requirements. This is only possible where the system architecture
model is known in advance. Examples of this include some of the physical sys-
tems already considered, e.g. cars and aeroplanes. Another important group of
applications are those in the telecommunications industry. Here the overall
design architecture is mandated in the telecommunications standards that gov-
ern the application domains. It is a moot point whether the input requirements
to such a process which are often taken directly from the standard are really
stakeholder requirements or are, in fact, system requirements. Whatever inter-
pretation is placed upon these requirements, during the transformation it is
usual to make direct allocations from the input requirements to the subsystem
requirements. Again this suggests that such standards are providing require-
ments at a detailed level.

6.5 Summary

In this chapter, the nature of the solution domain has been described and 
the way in which requirement engineering is applied to transform stakeholder
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requirements to system requirements and thence to subsystem requirements and
components requirements has been explained.

Two different examples have been used to explore the types of functionality
that must be used to define requirements in the solution domain. It has been
shown that, in addition to the required internal functionality, additional func-
tionality must be added to cope with external cooperating systems, human inter-
actions, to safeguard the system from external threatening systems make the
system safe to use. The latter aspect may also involve additional constraints on
the means of qualification in order to convince the relevant authorities.
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