
Art and science have their meeting point in method.
Edward Bulwer-Lytton, poet, 1803–73

3.1 Introduction

System modelling supports the analysis and design process by introducing a
degree of formality into the way systems are defined. During system develop-
ment it is often the case that pictures are used to help visualize some aspects of
the development. Modelling provides a way of formalizing these representa-
tions, through diagrams, by not only defining a standard syntax, but also pro-
viding a medium for understanding and communicating the ideas associated
with system development.

The art of modelling is arguably the most creative aspect of the work of the
systems engineer. There is no “right” solution and models will evolve through
various stages of system development. Models are most often represented visu-
ally and the information is therefore represented through connected diagrams.
New methods such as object orientation have advanced the concept of model-
ling; however, most approaches are also based on the principles used and tested
over time.

A good model is one which is easily communicated. They need to be used for
communication within a development team, and also to an organization as a
whole, including the stakeholders. The uses of a model can be diverse and cover
a wide spectrum. It might be to model the activities of an entire organization or
to model a specific functional requirement of a system.

Modelling has the following benefits:

• Encourages the use of a precisely defined vocabulary consistent across the system.

• Allows system specification and design to be visualized in diagrams.

• Allows consideration of multiple interacting aspects and views of a system.

• Supports the analysis of systems through a defined discipline.

• Allows validation of some aspects of the system design through animation.

• Allows progressive refinement towards detailed design, permitting test case
generation and code generation.

• Encourages communication between different organizations by using common
standard notations.
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Much of the creativity and art of the systems engineer is expressed in the use of
modelling techniques. This chapter considers a number of these representations
and also some methods for requirements engineering which use them.

3.2 Representations for Requirements Engineering

3.2.1 Data Flow Diagrams

Data flow diagrams (DFDs) are the basis of most traditional modelling methods.
They are the minimalist graphical representation of the system structure and inter-
faces and although initially produced for use in data representation and flow, the
diagrams can in fact be used to show any type of flow, whether a computer-based
system or not. The one output which DFDs do not show is that of control flow.

The elements in a data flow diagram are

• data flows (labelled arrows);

• data transformations (circles or “bubbles”);

• data stores (horizontal parallel lines);

• external entities (rectangles).

The simple example in Figure 3.1 shows the use of a data flow diagram in its tra-
ditional, information systems context.

Flows represent the information or material exchanged between two transforma-
tions. In real-world systems, this may be continuous, on demand, asynchronous, etc.

Credit card holder

Accounts system

Transactions

Check details

Process
transaction

Printer

Print receipt

Figure 3.1 Data flow diagram.



When using the notation, diagrams must be supported by textual descriptions of
each process, data store and flow.

A data dictionary is used to define all the flows and data stores. Each leaf node
bubble defines the basic functionality provided by the system components.
These are described in terms of a P-spec or mini-spec. This is a textual descrip-
tion often written in a pseudo-code form.

The context diagram is the top-level diagram of a DFD and shows the exter-
nal systems interacting with the proposed system, as in Figure 3.2.

Bubbles can be decomposed another layer down. Each bubble is exploded
into a diagram which itself may contain bubbles and data stores. This is repre-
sented in Figure 3.3.
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To illustrate the use of a DFD, consider an example of a context diagram for
an Ambulance Command and Control (C&C) system (Figure 3.4). This is the
starting point for a data-flow analysis of the system.

The primary external entities are the callers, who make the emergency calls,
and the ambulances, which will be controlled by the system. Note that records are
an important output of the system (in fact a legal requirement) and a very
important means of measuring “performance”.

Other potential external entities that would be required for a real system are
shown in the diagram, but for simplicity we shall ignore them.

The next step is to identify the internal functionality of the system, usually
starting by drawing a function for each external entity as the minimal decompo-
sition and then drawing the basic data that must flow between these top-level
functions – see Figure 3.5.
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Figure 3.4 Context diagram for Ambulance C&C system.
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Figure 3.5 Model for Ambulance C&C system.



Following this, decomposition of the top-level functions takes place, thus
including more detail, as shown in Figure 3.6.

The functional hierarchy in a set of data flow diagrams can be used as a frame-
work for deriving and structuring system requirements. Figure 3.7 shows the
functional structure for the Ambulance C&C example derived from Figure 3.6.
Figure 3.7 also indicates some examples of requirements derived from this structure.
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The hierarchical breakdown and interfaces give a good view of the compo-
nent model, but they give a poor view of the “transactions” across the system,
that is, from input to output (or to complete some system action), as can be seen
in Figure 3.8.

It is therefore necessary to observe these transactions across the system in
terms of the path(s) they follow, the time they take and the resources they
absorb. Animating the stakeholder requirements and being able to see which
functions are operating, will illustrate major transactions, but an alternative way
of showing the system transactions is to mark them on to a data flow diagram as
shown in Figure 3.9, using the thick arrows.

DFDs are good at presenting structures but they are not very precise. DFDs
are less precise than text for developing a complete definition of a system –
interface lines can mean anything, and single words can summarize anything.
They cannot handle constraints properly.

A DFD clearly shows functions and interfaces. It can be used to identify end-
to-end transactions, but does not directly show them. Ideally, we would like to
view the diagrams with an “expand in place” approach so that it is possible to
view the context in which each level of decomposition is intended to work. Few
CASE tools provide this level of facility.

Figure 3.6 actually breaks the conventions for drawing DFDs, because it shows
a decomposition of the overall system into several processes and also shows exter-
nal agencies with which the system must interact. We advocate a pragmatic use of
DFDs, rather than strict adherence to a conceptually pure ideal. To follow precisely
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Figure 3.8 System transactions.



the rules for drawing DFDs, the external agencies should appear only in the con-
text diagram, and hence should not be visible at this level. However, the diagram
would be far less meaningful if the external agencies were not shown and the flows
to them left dangling (which is the defined convention for them).

In summary, DFDs:

• show overall functional structure and flows;

• identify functions, flows and data stores;

• identify interfaces between functions;

• provide a framework for deriving system requirements;

• have tools are available;

• are widely used in software development;

• are applicable to systems in general.

3.2.2 Entity–Relationship Diagrams

Modelling the retained information in a system, for example flight plans, system
knowledge and database records, is often important. Entity–relationship dia-
grams (ERDs) provide a means of modelling the entities of interest and the rela-
tionships that exist between them. Chen (1976) initially developed ERDs. There
is now a very wide set of alternative ERD notations.
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An entity is an object that can be distinctly identified, such as customer, sup-
plier, part, or product. A property (or attribute) is information that describes the
entity. A relationship has cardinality, which expresses the nature of the associ-
ation (one-to-one, one-to-many, many-to-many) between entities. A subtype is a
subset of another entity, i.e. a type X is a subtype of Y if every member of X
belongs to Y.

ERDs define a partial model of the system by identifying the entities within
the system and the relationships between them. It is a model that is independent
of the processing which is required to generate or use the information. It is there-
fore an ideal tool to use for the abstract modelling work required within the
system requirements phase. Consider the example Ambulance C&C system in
Figure 3.10.

3.2.3 Statecharts

Functionality and data flows are not enough for requirements definition. It is
also necessary to be able to represent the behaviour of the system and in some
circumstances consider the system as having a finite number of possible “states”,
with external events acting as triggers that lead to transitions between the states.
To represent these aspects, it is necessary to examine what states the system can
be in and how it responds to events in these states. One of the most common
ways of doing this is to use Harel’s statecharts (Harel, 1987).

Statecharts are concerned with providing a behavioural description of a system.
They capture hierarchy within a single diagram form and also enable concurrency
to be depicted and therefore they can be effective in practical situations where 
parallelism is prevalent. A labelled box with rounded corners denotes a state.
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Figure 3.10 ERD for Ambulance C&C system.



Hierarchy is represented by encapsulation and directed arcs, labelled with a
description of the event, are used to denote a transition between states.

The descriptions of state, event and transition make statecharts suitable for
modelling complete systems.

Figure 3.11 presents a statechart for an aircraft flight. The two top-level states
are “airborne” and “on ground”, with defined transitions between them. Inside
the “airborne” state, there are three independent sets of states, and within the “on
ground” state there are states for “able to taxi” and “on runway”. Inside the “on
ground” state, there are further states for “taxiing” and “on stand”.

The “airborne” state is entered when the aircraft wheels leave the ground and
the “on ground” state is entered when the wheels touch down. Each of these
states can now be further refined in a hierarchical way.

Statecharts introduce one further useful notion, that of history. When a 
state with the (H) annotation is re-entered, then the substate that was exited is
also re-entered.

3.2.4 Object-oriented Approaches

Object orientation provides a different approach from that of the structured
analysis approach. Objects describe stable (and hopefully) re-usable components.
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Object orientation tries to maximize this re-usability by asking the systems
engineer to pick persistent objects, i.e. those that can be used in system require-
ments and design.

Hence the goals of object orientation are to:

• encapsulate behaviour (states and events), information (data) and actions
within the same objects;

• try to define persistent objects, which can be used within both requirements
and design phases;

• add information by defining the objects in more detail;

• create new objects by specialization of existing objects, not creation of new
objects.

Object orientation focuses on the behaviour of objects and their inter-
relationships. A flat organization of objects is sometimes assumed, but this is not
necessary, or even desirable. The analyst looks for entities that are long-lived and
models the behaviour of the system around them. This approach gives a coher-
ent behavioural definition of the system. System elements should be re-usable
because the elements (if not their behaviour) can be incrementally enhanced.

Some methodologists insist that design (and even implementation) is refine-
ment of the analysis models. This can be a tall order for non-trivial systems.
However, the progression from analysis, through design to implementation is
often far clearer in object orientation than in other approaches. More analysis
elements end up being represented in the implementation than is common in
structured analysis and design. This is a tremendous aid to traceability and
maintainability.

Class Diagrams

The class diagram is the basic diagramming notation from object-oriented
analysis and design. Object orientation arose out of computer-based simulation.
The basic principle is that the contents of a software system should model the
real world. The natural way to handle this is to have objects in the software that
represent entities in the real world, in terms of both information and actions.

For example, in a banking system, instead of having an accounts file and sep-
arate accounts programs, there are accounts objects that have information such as
balance and overdraft limit and relationships to other objects such as account
owner. These objects have operations (also called methods) to handle the actions
that are performed on accounts, such as check balance, deposit, withdraw.

The original reasoning behind this approach was that it made software devel-
opment far more akin to modelling, and therefore more natural. As with many
good ideas, practicalities intervene, and few object-oriented software systems
can be seen as pure representations of the real world. Nevertheless, there is still
considerable merit in the method.

A class (or object) diagram is shown in Figure 3.12.
Class diagrams express information about classes of objects and their rela-

tionships. In many ways, they are similar to entity–relationship diagrams. Like



them, they show how objects of a certain class relate to other objects of the same
or different classes.

The principal additional pieces of information are:

• operations (methods);

• the concept of generalization;

• attributes within the objects.

Use Cases

Use cases define the interaction that takes place between a user of a system (an
actor) and the system itself. They are represented as process bubbles in a DFD
type of context diagram. The use case diagram contains the actors and the use
cases and shows the relationship between them. Each use case defines functional
requirements for the system. Actors do not need to be human, even though they
are represented as stick figures, but in fact represent roles. Each of the actors will
have an association with at least one use case.

The system boundary is also defined on the use case diagram by a rectangle,
with the name of the system being given within the box. Normally significant,
and useful, textual information is associated with each use case diagram.

Figure 3.13 presents a use case diagram for a banking system.

3.3 Methods

A method is a degree more prescriptive than a modelling approach – it tells us what
to do to and in what order to do it. Methods use various representations ranging
from natural language, through diagrammatic forms to formal mathematics.
Methods indicate when and where to use such representations. Those methods
that use diagrammatic representations are usually referred to as “structural meth-
ods”; those that use object orientation are referred to as “object-oriented methods”
and those that use mathematics are referred to as “formal methods”.

The purpose of the representations used in a method is to capture informa-
tion. The information capture is aided by defining the set of concepts that a dia-
gram represents, and the syntactic rules that govern the drawing of diagrams.
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As we have seen in the earlier sections of this chapter, there are a variety of dif-
ferent representations used for system modelling. Most methods – those of
DeMarco (1978), Yourdon (1990), Rumbaugh et al. (1991a), Shlaer and Mellor
(1998), to name but a few – are a reorganization of these concepts, varying the
choice and the order in which they are done, often with minor enhancements.
Interestingly, similarities between these methods are far more striking than their
differences.

3.3.1 Viewpoint Methods

A viewpoint-based approach to requirements engineering recognizes that
requirements should not be considered from a single perspective. It is built on
the premise that requirements should be collected and indeed organized from a
number of different viewpoints. Basically two different kinds of viewpoint have
been proposed:

• viewpoints associated with stakeholders;

• viewpoints associated with organizational and domain knowledge.

The role of the stakeholder is well understood in requirements engineering;
however viewpoints associated with organization and domain knowledge may
be those associated with some aspect of security, marketing, database system,
regulation, standards, etc. Such viewpoints are not associated with a particular
stakeholder, but will include information from a range of sources.

The following sections consider three different methods based on viewpoints.
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Figure 3.13 Use case diagram for a banking system.



Controlled Requirements Expression (CORE)

CORE was originally developed following work on requirements analysis carried
out for the UK Ministry of Defence. A key finding of this work was that methods
often started by defining the context of a solution to a problem, rather than
attempting to define the problem itself, before beginning to assess possible solu-
tions. CORE was specifically designed to address the latter approach. Figure 3.14
indicates the concepts and representations used in CORE.

The central concept of CORE is the viewpoint and the associated representa-
tion known as the viewpoint hierarchy. A viewpoint can be a person, role or
organization that has a view about an intended system. [This concept has been
used as the basis of user viewpoint analysis by Darke and Shanks (1997).] When
used for system requirements, the viewpoints can also represent the intended
system, its subsystems and systems that exist within the environment of the sys-
tem that may influence what the system must do. The viewpoints are organized
in a hierarchy to provide a scope and also to guide the analysis process.
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If we consider as an example, an aircraft brake and control system (ABCS),
then Figure 3.15 shows a possible list of initial viewpoints arrived at by means of
brainstorming.

Having produced a list of potential viewpoints, they are organized into a hier-
archy by grouping related candidates. Boundaries are drawn around related sets
and this is repeated until all candidates have been enclosed and a hierarchy is
produced.

Figure 3.16 shows a partial hierarchy for the aircraft braking control system.
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Figure 3.15 Initial viewpoints for ABCS.
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In CORE, the actions that each viewpoint must perform are determined. Each
action may use or produce information or other items (e.g. commodities) rele-
vant to the system in question. The information generated by the analysis is
recorded in a tabular collection form (TCF) as indicated in Table 3.1.

Lines are drawn between adjacent columns to indicate the flows that take place.
Once each viewpoint has been analyzed in this way, the TCFs at each level in the
viewpoint hierarchy are checked as a group to ensure that the inputs which each
viewpoint expects are generated by the source viewpoint and that the outputs
which each action generates are expected by the viewpoint(s) indicated as the
destination(s) for them.

Returning to the example aircraft braking control system, part of the TCF for
the system is shown in Table 3.2.
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Table 3.1 Tabular collection form.

Source Input Action Output Destination

The viewpoint from The name of the The action performed on The name(s) of any The viewpoint to 
which the input input item one or more inputs to outputs generated by which the output
comes generate required outputs the action is sent

Channel 1,2 Power On of
Channel 1,2

Self Test OK  Channel 1,2 

Self Test Fail 

Cockpit Power Up Power Up
Self Test

Channel Fault 

NWS Isolator
Valve Fault 

Autobrake
Fault

System
recording

Shutoff Valve
Fault

Towing State

Other Sensors/
Actuators

Towing
Controlled

Monitor
Towing

Towing
Control On 

Aircraft

Towing
Control Off Channel 1,2 Operational

of Channel 1,2 

Wheel Speed Wheel
Speeds

Monitor
Wheel Speeds 

Speed �70
knots

Cockpit

Source Input Action Output Destination

Table 3.2 TCF example.
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Further analysis consists of developing a more detailed data flow model for
each viewpoint in turn. The starting point for these single viewpoint models
(SVMs) is the information recorded in the TCFs. SVMs add flows that are
entirely within a viewpoint and data stores. The SVMs also define how actions
are controlled and triggered by flows from other actions.

Thus the analysis is driven top-down by analyzing each stratum in the view-
point hierarchy. With top-down analysis, it can be difficult to know when to stop
and to predict where the analysis will lead. The approach of first identifying the
viewpoints and then using them to control the subsequent analysis provides a
controlled way of doing analysis in a top-down manner. This overcomes a major
problem associated with data flow-based analysis. This element of control is
alluded to in “Controlled Requirements Expression”, the full name of CORE.

The other main concept of CORE is the system transaction. This is a path
through the system from one or more inputs, data flows or events to one or more
specific output flows or events. The system transactions address how a system is
intended to operate. They provide a view orthogonal to the top-down analysis.
System transactions provide a sound basis for discussing the non-functional
requirements.

Structured Analysis and Design Technique (SADT)

SADT is a method of structured analysis, based on the work undertaken by Ross
on structured analysis (SA) in the 1970s (Ross, 1977). It is graphically oriented
and adopts a purely hierarchical approach to the problem with a succession of
blueprints both modularizing and refining it until a solution is achieved. The
basic element of SADT is the box, which represents an activity (in activity dia-
grams) or data (in data diagrams). The boxes are joined by arrows representing
either the data needed or provided by the activity represented by the box (in
activity diagrams), or the process providing or using the data (in data diagrams).

There are four basic arrows associated with a box, as shown in Figure 3.17. The
type of arrow is implied by its point of connection to the box:

• Input arrows enter the box from the left side, and represent data that is avail-
able to the activity represented by the box.

• Output arrows exit the box from the right side, and represent data that is pro-
duced by the activity represented by the box, i.e. the input data has been
transformed by the activity represented by the box to produce this output.

• Control arrows enter the box from the top and govern the way in which the
transformation takes place.

• Mechanism arrows enter the box from below and control the way in which the
activity may use outside mechanisms, e.g. a specific algorithm or resources.

An SADT diagram is made up of a number of boxes with the associated set of
arrows. A problem is refined by decomposing each box and generating a hier-
archical diagram, as shown in Figure 3.18.

Figure 3.19 shows an example activity diagram for an ABCS. This decompos-
ition proceeds until there is sufficient detail for the design to proceed.



Viewpoint-oriented Requirements Definition (VORD)

VORD (Kotonya and Sommerville, 1996) is a method based on viewpoints. The
model used is a service-oriented one, where the viewpoints are considered to be
clients, if one was to think of it as a client–server system.

A viewpoint in VORD receives services from the system and in turn passes
control information to the system. The service-oriented approach makes VORD
suited for specifying interactive systems.
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There are two types of viewpoint in VORD – direct and indirect:

• Direct viewpoints receive services from the system and send control infor-
mation and data to the system.

• Indirect viewpoints do not interact directly with the system but rather have
an “interest” in some or all of the services delivered by the system.

There can be a large variation of indirect viewpoints. Examples include engin-
eering viewpoints concerned with aspects to be undertaken by the systems engi-
neer, external viewpoints which may be concerned with aspects of the system’s
environment and organization viewpoints which may be concerned with aspects
of safety.

There are three main iterative steps in VORD:

• viewpoint identification and structuring;

• viewpoint documentation;

• viewpoint requirements analysis and specification.

The graphical notation for a viewpoint is shown in Figure 3.20. A viewpoint is
represented by a rectangle, which contains an identifier, label and type. View-
point attributes are represented by labels attached to a vertical line dropping
down from the left-hand side of the rectangle.

The VORD method guides the systems engineer in identifying viewpoints. It
provides a number of abstract viewpoints which act as a starting point for iden-
tification (see Figure 3.21) (following the convention for VORD diagrams, direct
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viewpoints are unfilled rectangles and indirect viewpoints are in greyscale). This
class hierarchy is then pruned to eliminate viewpoint classes which are not rele-
vant to a particular problem. The system stakeholders, the viewpoints represent-
ing other systems and the system operators are then identified. Finally, for each
indirect viewpoint that has been identified, consideration is given to who might
be associated with it.

Based on this approach, Figure 3.22 gives the viewpoints for a “pay and dis-
play” car park system.

“Cash User” and “Credit Card User” viewpoints are specializations of the 
“Car Park Customer” viewpoint. “Cash Collector” and “Car Park Manager” are 
specializations of “Car Park Staff”. The “Ticket Issuing” viewpoint represents the
database of the organization responsible for issuing the pay and display tickets.
The “Credit Card Database” is external and holds details of the customer’s credit
card details.

Chapter 3 • System Modelling for Requirements Engineering 61

n Type

Label

m  attribute

n.1

n.2

Viewpoint identifier

Attribute identifier

Figure 3.20 Viewpoint notation.

Engineering

Maintenance

Regulatory

Organization

Indirect

Standards

Policy

Training
Environment

Customer

Viewpoint

Direct

System

Operator

Figure 3.21 Viewpoint classes.



62 Requirements Engineering

The next step in VORD is to document each of the viewpoint requirements.
An example of how this is achieved is given in Table 3.3, which shows the initial
viewpoint requirements for the “Car Park Customer” viewpoint. The require-
ment type refers to a service (sv) or to a non-functional (nf) requirement.

VORD also allows for attributes of viewpoints to be provided which charac-
terize the viewpoint in the problem domain. These are important as they provide
the data on which the system operates. As stated previously, these are represented
on the viewpoint diagram by labels attached to a vertical line dropping down
from the left-hand side of the rectangle as shown in Figure 3.23.
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Figure 3.22 “Pay and display” machine viewpoints.

Table 3.3 Requirements from the car park customer viewpoint.

Viewpoint requirement

Identifier Label Description Type

1 Customer 1.1 Provide facility for ticket based on sv
suitable payment and length of stay

1.1 Credit Card User 1.1.1 Provide facility based on valid credit card sv
1.1.2 Provide ticket issuing service for customer sv
1.1.3 Ticket issuing service should be available nf

99/100 requests
1.1.4 Ticket issuing service should have a response nf

time of no more than 30 seconds
1.2 Cash User



System behaviour is modelled using event scenarios. These describe how the
system interacts with the environment and provide a way of describing the com-
plex interactions between the various viewpoints and the system.

The final stage of VORD is to translate the results of the requirements analy-
sis process into a requirements document, based on an industry standard.

3.3.2 Object-oriented Methods

During the late 1980s and early 1990s, numerous object-oriented (O-O) methods
emerged proposing different approaches to O-O analysis and design. The earli-
est uses of O-O methods were in those companies where time to market and
resistance to change were paramount. They included telecommunications,
financial organizations and later aerospace, healthcare, banking, insurance,
transportation, etc. The main players were object-oriented analysis (OOA),
object modelling technique (OMT), Booch and Objectory. Shlaer and Mellor’s
method (Shlaer and Mellor, 1998) was also there, but would not have been
regarded as a truly O-O method. However, it did play an important role in assist-
ing in the identification of objects.

OOA

OOA was developed by Coad and Yourdon (1991a). OOA is spread across three
layers, as they are called. The first layer is the subject layer, which is concerned
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Figure 3.23 Representation of viewpoint attributes.
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with object identification. Here the users are able simply to represent their
understanding of the problem domain by identifying relevant problem domain
objects. The second layer, called the attributes layer, is concerned with identify-
ing attributes (data elements) associated with problem domain objects. The
third and final layer is the services layer. This specifies the services (or oper-
ations) performed by each object.

In effect, OOA helps the systems engineer in identifying the requirements of
a system, rather than how the software should be structured or implemented. It
therefore describes the existing system, its operation and how the software sys-
tem should interact with it.

OMT

The OMT method was developed by Rumbaugh (Rumbaugh et al., 1991a, b). It
aims to construct a series of object models that refine the system design until the
final model is suitable for implementation. The approach is achieved in three
phases. The analysis phase produces models of the problem domain. Three types
of model are produced – the object model, the dynamic model and the func-
tional model. The object model is the first one to be built. It uses notation simi-
lar to that used in OOA, which is based on the concept of ER modelling which
describes the objects, their classes and the relationships between the objects. The
dynamic model represents the behaviour of the system and uses an extension of
Harel’s statecharts. The functional model describes how the system functions are
performed through the use of DFDs.

These models are arrived at by using an iterative approach. The design phase
then structures the model and the implementation phase takes into account the
appropriate target language constructs. In this way, OMT covers not only the
requirements capturing phase but also helps to inform the architectural design
process.

Booch

The Booch method (Booch, 1994) is one of the earliest O-O methods proposed.
Although the method does consider analysis, its strength lies in the contribution
it makes to the design of an object-oriented system. The approach is both incre-
mental and iterative and the designer is encouraged to develop the system by
looking at both logical and physical views of the system.

The method involves analyzing the problem domain to identify the set of
classes and objects and their relationships in the system. These are represented
using a diagrammatic notation. The notation is extended further when con-
sidering the implementation of classes and objects and the services they provide.
The use of state transition diagrams and timing diagrams is also an important
part of this method.

Objectory

Jacobsen proposed the Objectory method (Jacobsen et al., 1993). Many of its
ideas are similar to those in other O-O methods, but the fundamental aspect of



this method is the scenario or use case, as described earlier in this chapter. The
system’s functionality should therefore be able to be described based on the set
of use cases for a system – the use case model.

This model is then used to generate a domain object model, which can
become an analysis model by classifying the domain objects into three types:
interface objects, entity objects and control objects. This analysis model is then
converted to a design model, which is expressed in terms of blocks, from which
the system is implemented.

The UML

The Unified Modelling Language (UML) (OMG, 2003) was an attempt to bring
together three of the O-O approaches which had gained greatest acceptance –
Booch, OMT and Objectory. In the mid-1990s, Booch, Rumbaugh and Jacobsen
joined Rational to produce a single, common and widely usable modelling lan-
guage. The emphasis was very much on the production of a notation rather than
a method or process.

Since its inception, the UML has undergone extensive development and
changes with various versions being launched. UML 1.0 became a standard in
1997 following acceptance by the Object Management Group (OMG). Version 1.3
was released in 1999 and in 2003 the UML 2.0 was released, which is the version
used in this book. A discussion of the UML is provided in the following section.

3.3.3 The UML Notation

The UML is made up of a number of models, which together describe the system
under development. Each model represents distinct phases of development and
each will have a separate purpose. Each model is comprised of one or more of
the following diagrams, which are classified as follows:

• structure diagrams;

• behaviour diagrams;

• interaction diagrams.

The 13 diagrams of UML2 are shown in Figure 3.24 and represent all the dia-
grams which are available to the systems engineer. In reality many will not be used
and often only a small subset of the diagrams will be necessary to model a system.
Class diagrams, use case diagrams and sequence diagrams are probably the most
frequently used. If dynamic modelling is required, then activity diagrams and state
machine diagrams should be used.

It is how the UML diagrams contribute to modelling which is of interest to us.
The purpose of this section is not so much to provide an overview of UML2,
but rather to show how models can be used in various aspects of requirements
engineering.

Consider the banking example used earlier in this chapter. The class is the
basic modelling diagram of the UML. Figure 3.25 presents a UML class diagram
extending the set of classes to include “Account”, “Owner”, “Current Account”
and “Issued Cheque” – used to model the system. As shown, each class has an
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Figure 3.24 UML diagrams.
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Figure 3.25 Extended UML class diagram.



associated set of attributes and operations, i.e. the relationships (in this case,
generalization and association) which exist between one or more classes.

Figure 3.26 gives a different example, that of a Baggage Handling System.
This considers the stakeholder requirements which are firmly within the pro-
blem domain. When modelling, it is often the case that there are external sys-
tems, or perhaps, devices which the system will use. These can be represented by
classes. For the Baggage Handling System, classes are identified such as “Pass-
enger”, “Clerk” and “Conveyor”, and also two embedded systems, “Baggage
CheckInSystem” and “WeightSystem”. The associations between the systems
and other classes serve to define aspects of the system context.

If we turn to the solution domain, then it becomes necessary to reason about
function and behaviour. The class diagram therefore needs to be elaborated in
order to show these attributes which will be necessary for modelling the system
requirements. This is shown in Figure 3.27.

Use case modelling is used to describe the functional requirements of sys-
tems. For our example we will consider two use case diagrams – one for the
Baggage Handling System and one for the Baggage Check-in System. Figure 3.28
shows the first of these portrayed as the top-level system. Figure 3.29 is the use
case diagram for the Baggage Check-in System. Both diagrams identify their
respective system boundaries (marked by a rectangle) and identify the various
stakeholders or actors which lie outside the system boundary. It should be noted
that the highest level goals of the stakeholders are represented by the use cases.
The «include» relationship shows that a use case is included in another use case,
indicating the start of hierarchical decomposition.

The UML also provides diagrams to allow the systems engineer to model
functionality and behaviour. A sequence diagram shows the interaction and 
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Figure 3.27 Elaborated class diagram.
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Figure 3.28 Use case diagram for Baggage Handling System.



collaboration which exists between objects and thus can model complex behav-
iour. It is depicted by messages which flow between objects over time. Figure 3.30
shows a sample sequence diagram. The objects are represented by rectangles at
the top of the diagram and each is attached to a vertical timeline. Messages are
ordered by their sequence and are represented by arrows between the timelines.
Also included is the feature of an “interaction frame” and the operation “ref”
has been used to indicate “reference” i.e. refers to an interaction defined in
another diagram, in this case “WeighBaggage” and “LabelBaggage”. These
frames have been included to cover the lifelines involved in the interaction.

3.3.4 Formal Methods

Formal methods provide a more rigorous representation based on mathematics,
and can be used to conduct mathematical proofs of consistency of specification
and correctness of implementation. Rigorous checking is possible, which can
eliminate some kinds of errors. This may be necessary in certain types of sys-
tems, for example, nuclear power stations, weapons and aircraft control systems.

Z (Spivey, 1989), VDM (Jones, 1986), LOTOS (Bjorner, 1987) and B (Abrial,
1996) are the most common formal methods for formal definition of function-
ality. LOTOS (Language of Temporal Ordering Specification), VDM (the Vienna
Definition Language) and Z are formal methods standardized by ISO. B and
LOTOS models are executable, and B models can be refined into code.

Formal methods are particularly suitable for critical systems, i.e. those in
which potential financial or human loss would be catastrophic, and the cost of
applying mathematically rigorous methods can be justified.
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Formal methods are slowly becoming more important. If their scope can be
broadened to address wider system issues, they will become more useful.

Z – A Model-based Formal Method

Z is a formal specification notation based on first-order predicate logic and set
theory. The notation allows data to be represented as sets, mappings, tuples, rela-
tions, sequences and Cartesian products. There are also functions and operation
symbols for manipulating data of these types.

Z specifications are presented in a small, easy to read boxed notation called a
“schema”. Schemas take the form of a signature part and a predicate part. The
signature part is a list of variable declarations and the predicate part consists of
a single predicate. Naming a schema introduces a syntactic equivalence between
the name and the schema. The Z schema is illustrated in Figure 3.31.

Specifications in Z are presented as a collection of schemas where a schema
introduces some specification entities and sets out the relationships between
them. They provide a framework within which a specification can be developed
and presented incrementally.

Figure 3.32 shows a Z specification for the “issue” operation for a library,
where the general behaviour of the overall library system would be specified in a
schema named “library”. The notation �Library is called a delta schema and
indicates that the “issue” operation causes a state change to occur in the library.

Passenger CheckInClerk BaggageCheckInSystem
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YourTicketsPlease()

HereYouAre()

BaggagePlease()

PutBaggage()

TransportBaggage()
YourBoardingCard()

ref
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Figure 3.30 Example sequence diagram.



The schema in Figure 3.32 distinguishes between inputs and outputs, and
before states and after states. These operations are denoted as follows:

• “?” denotes the variable as an input to the operation;

• “!” denotes the variable as an output of the operation.

A state after the operation is decorated with a prime, e.g. stock�, to distinguish it
from the state before the operation.

3.4 Summary

This chapter has addressed the issues of system modelling, particularly with
respect to the solution domain. A variety of techniques and methods have been
presented ranging from those which have stood the test of time to those which
have been developed more recently. All have been widely used in industry. The
contents of this chapter provide a basis for the discussion on modelling stake-
holder and system requirements in subsequent chapters.
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Figure 3.31 Z Schema.

Issue

∆ Library
b? : Book
r? : Reader

b? ∈ shelved; r? ∈ readers
issued′ = issued ⊕ {b? � r?}
shelved′ = shelved\{b?}
stock′ = stock: readers′ = readers

Library = = [shelved: P Book: readers: P Reader:
                  stock: P Book: issued: P Book]

Figure 3.32 Example schema.




