
There is no fair wind for one who knows not whither he is bound.
Lucius Annaeus Seneca, philosopher, 3–65 AD

1.1 Introduction to Requirements

If ever systems development projects needed a “fair wind”, they certainly do so
today. Fast-changing technology and increased competition are placing ever-
increasing pressure on the development process. Effective requirements engin-
eering lies at the heart of an organization’s ability to guide the ship and to keep
pace with the rising tide of complexity.

Software is currently the dominant force of change of new products. The
trend is driven by three key factors:

1. Arbitrary complexity. The most complex systems tend to be those with soft-
ware, often integrated deep inside the system’s components. The complexity of
such products is limited only by the imagination of those who conceive them.

2. Instant distribution. Today a company can think of a new product, implement
it in software, and rapidly distribute it around the world. For example, a car
manufacturer can improve the software in its diagnostic system and then
transmit it electronically around the world to tens of thousands of car show-
rooms in a day.

3. “Off-the-shelf” components. Systems are now constructed from bought-in
technology and ready-made components with a corresponding reduction in
the product development cycle.

The net impact of these trends is a sudden intensity of competition and the abil-
ity to monopolize the rewards from the new technology without needing large
factories. The result is pressure to reduce the development cycle and the time to
deploy technology. However, “time to market” is not sufficient. The real goal is
“time to market with the right product”. Establishing the requirements enables
us to agree on and visualize the “right product”. A vital part of the systems engin-
eering process, requirements engineering first defines the problem scope and
then links all subsequent development information to it. Only in this way can we
expect to control and direct project activity; managing the development of a
solution that is both appropriate and cost-effective.

Introduction 1

1



2 Requirements Engineering

Requirements are the basis for every project, defining what the stakeholders –
users, customers, suppliers, developers, businesses – in a potential new system
need from it and also what the system must do in order to satisfy that need. To be
well understood by everybody they are generally expressed in natural language and
herein lies the challenge: to capture the need or problem completely and unam-
biguously without resorting to specialist jargon or conventions. Once communi-
cated and agreed, requirements drive the project activity. However, the needs of the
stakeholders may be many and varied, and may indeed conflict. These needs may
not be clearly defined at the start, may be constrained by factors outside their con-
trol or may be influenced by other goals which themselves change in the course of
time. Without a relatively stable requirements base, a development project can
only flounder. It is like setting off on a sea journey without any idea of the destin-
ation and with no navigation chart. Requirements provide both the “navigation
chart” and the means of steering towards the selected destination.

Agreed requirements provide the basis for planning the development of a
system and accepting it on completion. They are essential when sensible and
informed tradeoffs have to be made and they are also vital when, as inevitably
happens, changes are called for during the development process. How can the
impact of a change be assessed without an adequately detailed model of the prior
system? Otherwise, what is there to revert to if the change needs to be unwound?

Even as the problem to be solved and potential solutions are defined we must
assess the risks of failing to provide a satisfactory solution. Few sponsors or
stakeholders will support product or systems development without a convincing
risk management strategy. Requirements enable the management of risks from
the earliest possible point in development. Risks raised against requirements can
be tracked, their impact assessed and the effects of mitigation and fallback plans
understood long before substantial development costs have been incurred.

Requirements therefore form the basis for:

• project planning;

• risk management;

• acceptance testing;

• tradeoff;

• change control.

The most common reasons for project failures are not technical and Table 1.1
identifies the main reasons why projects fail. The data is drawn from surveys
conducted by the Standish Group in 1995 and 1996, and shows the percentage of
projects that stated various reasons for project failure. Those marked with an
bullet are directly related to requirements.

The problems fall into three main categories:

• Requirements – either poorly organized, poorly expressed, weakly related to
stakeholders, changing too rapidly or unnecessary; unrealistic expectations.

• Management problems of resources – failure to have enough money, and lack
of support or failure to impose proper discipline and planning; many of these
arise from poor requirements control.

• Politics – which contributes to the first two problems.

All these factors can be addressed at fairly low cost.



Project success factors are not quite the inverse of the failure factors, but as
can be seen in Table 1.2. Management support and proper planning are clearly
seen as important here – the larger the project and the longer its schedule, the
greater is the chance of failure (Scientific American, September 1994).

This book considers an engineering approach to requirements in general and
requirements management in particular. It explains the differences between stake-
holder requirements and system requirements and indicates how requirements
can be used to manage system development. It also shows how traceability from
stakeholder requirements through system requirements to design can be used to
measure progress, manage change and assess risks. Throughout, the reader will be
exposed to the testability aspects of requirements and the components designed to
satisfy them, and how to formulate validatability or verifiability requests. It stresses
the need to produce designs that can be integrated and tested easily.

Requirements management has important interfaces to project manage-
ment, which is recognized in the book through the presence of Chapter 8,
“Management Aspects of Requirements Engineering”.

1.2 Introduction to Systems Engineering

This book is not just about requirements for software. The principles and prac-
tice of requirements engineering apply to complete systems in which software
may play only a small part.

Chapter 1 • Introduction 3

Table 1.1 Reasons for project failure

• Incomplete requirements 13.1%
• Lack of user involvement 12.4%

Lack of resources 10.6%
• Unrealistic expectations 9.9%

Lack of executive support 9.3%
• Changing requirements/specification 8.7%

Lack of planning 8.1%
• Didn’t need it any longer 7.5%

Sources: Standish Group, 1995 and 1996; Scientific American,
September 1994.

Table 1.2 Project success factors

• User involvement 15.9%
Management support 13.9%

• Clear statement of requirements 13.0%
Proper planning 9.6%

• Realistic expectations 8.2%
Smaller milestones 7.7%
Competent staff 7.2%

• Ownership 5.3%

Sources: Standish Group, 1995 and 1996; Scientific American,
September 1994.



4 Requirements Engineering

For example, consider a railway system such as the West Coast Mainline from
London to Glasgow. A high-level requirement on the system may be to achieve a
journey time from Euston Station in London to Glasgow in Scotland in less than
250 minutes. Satisfaction of this single requirement arises from the coordinated
interaction of every major component of the system:

• the trains, and their speed;

• the tracks, and their ability to support high-speed trains;

• the stations and station staff, and the waiting time they impose on the trains;

• the drivers, and their ability to control the trains;

• the signalling subsystems;

• the train control and detection subsystems;

• the power delivery subsystems.

Although the software in the signalling and control subsystems plays a vital part
in achieving this requirement, it cannot deliver alone. The complete solution
involves the whole system. In fact, most requirements are satisfied by the prop-
erties that emerge from the way the system as a whole behaves.

What then do we mean by a “system”?
A system is a:

• collection of components – machine, software and human –

• which cooperate in an organized way –

• to achieve some desired result – the requirements.

Thus systems include people. In the West Coast Mainline, the drivers and station
staff – the training they receive and the procedures they use – are just as import-
ant as the software and machine components.

Since components must cooperate, interfaces between components are a vital
consideration in system (and requirements) engineering – interfaces between
people and machine components, between machine components and between
software components. An example of a machine-to-machine interface in a rail-
way system is the way in which train wheels interface with the track. Apart from
the physical arrangements (which are designed to allow the train to be guided
along the track without sliding off), electrical currents across the rails may be
used to detect the presence of the train as part of the train control subsystem.

At the heart of the concept of a “system” lies the idea of “emergent properties”.
This refers to the fact that the usefulness of a system does not depend on any par-
ticular part of the system, but emerges from the way in which its components
interact. Emergent properties may be desirable, in that they have been antici-
pated and designed into the system so as to make the system useful; or they may
be undesirable, in other words unanticipated side effects, such as harm to the
environment. The trick in systems engineering is to be able to harness desirable
emergent properties and avoid the undesirable ones.

Another important concept is that of “systems of systems”. Every system can
be construed as being part of a larger, enclosing system. For example, the West
Coast Mainline is part of a wider railway system and intersects with other major
and minor routes. The entire railway system is part of the wider transport system



and interacts in all kinds of ways with the road and air transport networks. The
transport system itself provides essential infrastructure for the transport of
goods and people as part of the economy of the country. And the country is part
of the wider world, and so forth.

To understand the requirements of a system properly is to understand its
enclosing system. Often the correct functioning of a system depends on provi-
sions of the enclosing system. For example, the ability of a helicopter to fly
depends on the environment provided by the Earth, its gravitation field and its
atmosphere.

Take another, very simple, example: a cup (Figure 1.1). It is evident that it has
components: a handle and a bowl-shaped container. What purpose do these
components serve? The bowl is for containing liquid and the handle is to allow
the bowl to be held by someone without getting burnt. We may deduce that the
purpose of – or requirement for – the cup is to allow a human being to transfer
hot liquid into the mouth without spilling it or getting burnt.

The cup is rich in interfaces. It can be placed on a flat surface for stability; it
can be held in a human hand; it can be filled with fluid and emptied; it must
interface with the fluid for sustained containment; and it must deliver fluid to
the human mouth.

However, there are other observations to be made:

• The cup is no good on its own. It depends on the motor movement of the
human arm to achieve its purpose.

• The bowl part of the cup depends crucially on the presence of gravity for its
correct functioning. It also has to be used correctly: holding the cup upside
down would cause spilling, and may cause scalding.

At the end of the day, the ability of this simple cup to fulfil its purpose depends on:

• the properties that emerge from the interaction of its components;

• appropriate interfaces to external components;

• its correct embedding in the enclosing system – being held in the human
hand and lifted by the arm;

Chapter 1 • Introduction 5

Component : handle Component : bowl

Interface: to hand

Interface: to table

Interface: to mouth

Interface: for filling

Interface: to liquid

E
nv

iro
nm

en
t:

 g
ra

vi
ty

Figure 1.1 A cup as a very simple system.



6 Requirements Engineering

• the presence of the proper environment – another solution would be neces-
sary in weightless conditions.

In summary, the engineering of requirements must take the nature of systems
into account. Essential considerations are emergent properties, the constraints
and provisions of the external environment and the interfaces with surrounding
systems.

1.3 Requirements and Quality

The consequences of having no requirements are many and varied. There is
ample evidence around us of systems that failed because requirements were not
properly organized. However well the system may appear to work at first, if it is
not the system that users want or need then it will be useless.

It is interesting to consider the relationship between requirements and quality.
The term “quality” may be understood in a variety of ways. When asked about
quality cars, one might mention Rolls Royce, Mercedes or Jaguar. This inherent
confusion between “quality” and “luxury” is exposed if consideration is given to
choosing the best car for the annual RAC rally. Neither Rolls Royce, Mercedes nor
Jaguar are chosen, since they do not exhibit the right weight/power ratio, ground
clearance and robustness properties. Recent history shows that the best quality
car in its class is a Skoda – not a luxury car, but the right quality of car for the job.

Quality, then, is “fitness for purpose” or conformance to requirements – it is
providing something that satisfies the customer and in doing so ensures that the
needs of all the stakeholders are taken into account.

As will be seen in Chapter 8, requirements engineering acts as a complement
to other management considerations, such as cost and schedule, by providing a
vital focus on the delivery of quality. Every management decision is a comprom-
ise between cost, schedule and quality, three inter-related axes.

Since requirements engineering is a discipline that applies from the start of
the development lifecycle, the leverage on quality that can be exercised by proper
requirements management is proportionately greater. Relatively little effort
expended in early stages of development can reap dividends in the later stages.
The adage “Quality is Free” (the title of a book by Phil Crosby) holds true, in that
getting it right at the outset can save huge amounts of effort that would have
been necessary to put things right later. Improving requirements means improv-
ing the quality of the product.

1.4 Requirements and the Lifecycle

There is a common misconception that requirements engineering is just a single
phase that is carried out and completed at the outset of product development.
The purpose of this section is to demonstrate that requirements engineering has
a vital role to play at every stage of development.

As an initial approach, consider one of the very last activities in the development
process: acceptance testing. What is a system accepted against? – the stakeholder



requirements. So it can be seen straight away that requirements developed at the
outset are still in use in the final stages of development.

The classic V-model, which is used to portray the various stages of develop-
ment, has its basis in this relationship between testing and requirements. Figure 1.2
shows this relationship at every stage of development.

The V-model also views development in terms of layers, each layer addressing
the concerns proper to the corresponding stage of development. Although
slightly different processes may be used at each level, the basic pattern of require-
ments use is the same – a point reinforced through the introduction of a generic
process in Chapter 2. Figure 1.3 shows the main concern of requirements engin-
eering at each layer.

Chapter 1 • Introduction 7

Stakeholder
Requirements

System
Requirements

Subsystem
Requirements

Component
Requirements

System 
test

Integration
test

Component 
test

Acceptance
test

Testing is with 
respect to 

requirements

Figure 1.2 Requirements in the V-model.

Stakeholder
Requirements

System
Requirements

Subsystem
Requirements

Component
Requirements

System 
test

Integration 
test

Component 
test

Acceptance
test

defining results for stakeholders,
validating the product

defining what the system must do,
verifying the system

optimizing the cost-benefits,
qualifying the requirements

allocating requirements,
qualifying components

Figure 1.3 Requirements engineering in layers.



8 Requirements Engineering

Another role that requirements can play in an organization is to act as a
means of communicating between projects. This is a good idea, because many
organizations wish to:

• maximise reuse of artefacts across projects;

• manage families of similar products;

• use programme management to coordinate activities;

• optimize process by learning from the experiences of other projects.

A good set of stakeholder requirements can provide a concise, non-technical
description of what is being developed at a level that is accessible to senior man-
agement. Similarly, the system requirements can form an excellent technical
summary of a development project. These descriptions can serve as a basis for
comparison with other activities. This is illustrated in Figure 1.4.

If requirements are to play such a central role in systems development, they
need to be maintained. To change the design of a product without having also
updated the requirements to reflect that change is to store up huge problems for
later stages of development. Hence requirements engineering connects strongly
with change management.

Whether change originates from within a project – for example, technical
issues arising from details of the design – or from without – such as evolving
stakeholder needs – the impact of that change on quality, cost and schedule
needs to be assessed. This assessment forms the basis on which to:

• accept or reject the change (where that is a choice);

• negotiate the cost of the change with the customer/suppliers;

• organize the redevelopment work.

Stakeholder
Requirements

System
Requirements

Subsystem
Requirements

Component
Requirements

System 
test

Integration 
test

Component 
test

Acceptance
test

informing the
enterprise

learning from
the enterprise

Figure 1.4 Enterprise requirements engineering.



The key concept that enables this kind of impact analysis is requirements trace-
ability, a topic treated in greater detail in Section 1.5 and in Chapters 2 and 7.
Suffice to say that change management is an integral part of the requirements
engineering process. This role is illustrated in Figure 1.5.

Quite apart from change management, a manager’s ability to control a 
project is considerably enhanced by good requirements engineering. Without
requirements, project managers have no means of gauging how well the project
is going, or even if it is going in the right direction. When it comes to changes
there is nothing against which change can be judged. What is more, when they
do come to intervene, their only approach is at a technical level, which is inap-
propriate to their role, and which interferes with the technical role properly
played by the engineers. Requirements well expressed at the appropriate level
give managers just the right view of the project to be able to perform their role.

In summary, requirements are essential to the health of every system devel-
opment. They influence the whole development from beginning to end and
from top to bottom. Without effective requirements engineering, development
projects are like ships drifting rudderless in a storm! Above all else, with good
requirements management, hearing the voice of the users and customers ceases
to be a game of Chinese whispers, and becomes a matter of clear lines of com-
munication throughout the development process.

1.5 Requirements Traceability

In the requirements engineering context, traceability is about understanding
how high-level requirements – objectives, goals, aims, aspirations, expectations,
needs – are transformed into low-level requirements. It is therefore primarily
concerned with the relationships between layers of information.

Chapter 1 • Introduction 9

Stakeholder
Requirements

System
Requirements

Subsystem
Requirements

Component
Requirements

System 
test

Integration 
test

Component 
test

Acceptance
test

using traceability 
and impact analysis
to manage change

Figure 1.5 Risk of traceability in change management.



10 Requirements Engineering

In a business context, one may be interested in how

• business vision
is interpreted as

• business objectives
are implemented as

• business organization and processes.

In an engineering context, the interest may focus on how

• stakeholder requirements
are met by

• system requirements
are partitioned into

• subsystems
are implemented as

• components.

Using traceability can contribute to the following benefits:

• Greater confidence in meeting objectives. Establishing and formalizing trace-
ability engenders greater reflection on how objectives are satisfied.

• Ability to assess the impact of change. Various forms of impact analysis become
possible in the presence of traceability information.

• Improved accountability of subordinate organizations. Greater clarity of how
suppliers contribute to the whole.

• Ability to track progress. It is notoriously difficult to measure progress when
all that you are doing is creating and revising documents. Processes sur-
rounding traceability allow precise measures of progress in the early stages.

• Ability to balance cost against benefit. Relating product components to the
requirements allows benefit to be assessed against cost.

Traceability relationships are usually many-to-many – that is, one lower level
requirement may be linked to several higher level requirements and vice versa.
The simplest way to implement a form of traceability is to link requirements
statements in one layer with statements in another. Requirements management
tools typically allow such linking by drag-and-drop between paragraphs of
documents. The links are rather like hyperlinks in web pages, but should ideally
be traversable in either direction. Figure 1.6 shows traceability downwards
through the layers of requirements and across to the test information. The
direction of the arrows follows a particular convention: information traces 
back to the information it responds to. There are a number of reasons for this
convention:

• It usually corresponds to the chronological order in which information is
created: always link back to the older information.

• It usually corresponds to access rights due to ownership: one owns the out-
going links from a document, someone else owns the incoming links.



Various forms of traceability analysis can be used to support requirements engi-
neering processes, presented in Table 1.3.

Impact analysis is used to determine what other artefacts in the development
might be affected if a selected artefact changes. This is illustrated in Figure 1.7.
The impact is potential; creative analysis has to be carried out by an engineer to
determine the exact nature of the impact, if any.

Derivation analysis works in the opposite direction to impact analysis. A low-
level artefact – such as a requirement, design element or test – is selected and the
traceability links are used to determine what higher level requirements have
given rise to it. Elements in the design that do not so trace back are potentially
adding cost without benefit.

Chapter 1 • Introduction 11

Stakeholder
Requirements

System
Requirements

Subsystem
Requirements

Component
Requirements

System
test plan

Integration
test plan

Component
test plan

Acceptance
test plan

Figure 1.6 Requirements traceability.

Table 1.3 Types of traceability analysis

Type of analysis Description Processes supported

Impact analysis Following incoming links, in answer to Change management
the question: “What if this was to change?”

Derivation analysis Following outgoing links, in answer to the Cost–benefit analysis
question: “Why is this here?”

Coverage analysis Counting statements that have links, in General engineering
answer to the question: “Have I covered Management reporting
everything?”
Most often used as a measure of progress



12 Requirements Engineering

Finally, coverage analysis can be used to determine that all requirements do
trace downwards to lower layers and across to tests. The absence of such a trace
is a fairly certain indication that the requirement will not be met or tested. The
presence of a link does not, of course, ensure that the requirement will be met –
that again requires creative engineering judgement.

Impact analysis

D
erivatio

n
 an

alysis

Derivation analysis

Acceptance
test plan

System
test plan

Component
test plan

Integration
test plan

Subsystem
requirements

Stakeholder
requirements

Component
requirements

System
requirements

Im
p

ac
t 

an
al

ys
is

Figure 1.7 Impact and derivation analysis.

Stakeholder
Requirements

System
Requirements

Subsystem
Requirements

Component
Requirements

System
test plan

Integration
test plan

Component
test plan

Acceptance
test plan

Are all
requirements
covered by
the layer below? 

Are all
requirements
covered by tests? 

Figure 1.8 Coverage analysis.



Coverage can also be used as a measure of progress: how far have the systems
engineers got in responding to the stakeholder requirements? Suppose the task
of writing systems requirements in response to stakeholder requirements is
given to engineers. As they write system requirements, they link them back to the
stakeholder requirements to which they are responding. (By doing it as they go
along, the creation of traceability is very little extra overhead – it is much more
difficult to establish traceability after both documents have been written!)

At any stage of the task, the engineers’ progress can be measured in terms of
the percentage of stakeholder requirements that have been covered so far. This is
a very useful management tool during the early stages of development.

The same principle can be used to measure progress in planning tests. What
percentage of the requirements have tests defined so far? These two dimensions
of coverage are summarized in Figure 1.8.

Because of the kinds of analysis that can be carried out, traceability is a sim-
ple concept that lies at the heart of the requirements engineering process. More
advanced forms of traceability are discussed in detail in Chapter 7.

1.6 Requirements and Modelling

It is important to understand the relationship between requirements manage-
ment and system modelling. They are mutually supportive activities that should
not be equated. Figure 1.9 compares the relationship to a sandwich. In this analogy,
requirements management is the “bread and butter” of the development cycle.
The “filling” provided by system modelling explains and exposes the analysis and
design that has led to subsequent layers of requirements.

Some people talk about requirements modelling. This is a misnomer. You
model the system design, not the requirements. Modelling supports the design
activity and is where most of the creative work takes place. It assists the engineer
in understanding enough of the system to decompose the requirements at a
particular level into the next level down. The requirements themselves are a
complete snapshot of what is required at each level in increasing levels of detail.

A particular model never says everything about a system – if it did, it would
not be a model. For this reason, several different, possibly inter-related, models
of systems are often used to cover a variety of different aspects. It is left to the

Chapter 1 • Introduction 13

Figure 1.9 The systems engineering sandwich.



14 Requirements Engineering

expression of requirements – usually in textual form – to cover those aspects not
modelled.

A model is an abstraction of a system that deliberately focuses on some
aspects of a system to the exclusion of others. Abstraction is, in this sense, avoid-
ance of distraction – ignoring those details that, although important, are not rele-
vant to a particular model. The advantage of this is that smaller amounts of
related information can be collected, processed, organized and analyzed, apply-
ing various specific techniques pertinent to the aspects under study.

Where a large amount of complex information has to be managed, modelling
provides a means of zooming in, collecting together subsets of the data for a par-
ticular purpose and zooming out once more to appreciate the whole. It aids in
maintaining a system-wide grasp through focussing on small amounts of infor-
mation at a time.

Figure 1.10 portrays the inter-related roles that requirements and system
modelling play. Models assist the requirements engineer in analysing the
requirements at a particular level so as to:

• communicate with the customer and improve mutual understanding of the
system to be developed;

• analyze the system to ascertain the presence of desired emergent properties
(and the absence of undesirable ones);

• determine how to satisfy the requirements by deriving new requirements at
the layer below.

The nature of the models used will vary from layer to layer. At the top layer,
usage models such as “stakeholder scenarios” are used to derive the first state-
ment of stakeholder requirements. Following this, various kinds of functional
model may be used to derive system requirements from the stakeholder require-
ments. For software, such models could include UML class diagrams, message
sequence charts and state charts. (See Chapter 3 for more details on these
modelling techniques.)

Figure 1.10 Requirements and modelling.



Moving from system requirements to architecture, the concerns become
focused on various aspects of performance. Multiple models may be used to give
confidence that the selected architecture can deliver against both non-functional
and functional requirements. Here, models may include queuing theory used to
assess performance, wind tunnels for assessing aerodynamics and timetable
modelling to assess viability of journey times.

As is evident from these examples, the nature of the models also varies from
application to application. The modelling of timetables may be appropriate for
the design of railway systems, but not for aircraft design, where the modelling of
aerodynamics is rather more appropriate. (Aerodynamics may also be important
to high-speed trains, of course.) Message sequence charts may be used in com-
munications systems, but data-rich applications will find data-focused model-
ling such as entity–relationship diagramming more appropriate.

Whereas the models may vary, the principles of requirements management
remain generic across applications. Since this book is about requirements engin-
eering, it also covers the closely associated subject of modelling and methods.

1.7 Requirements and Testing

As has been discussed above, testing is closely related to requirements at every
level. In its broadest sense, testing is any activity that allows defects in the system to
be detected or prevented, where a defect is a departure from requirements. So test-
ing activities include reviews, inspections, analysis through modelling in addition
to the classical tests of components, subsystem and systems that are carried out.

Because of the diversity of testing activities, the term qualification is used in
this book to refer to all such activities.

Qualification should begin as early as possible, since waiting until the system
is almost complete before carrying out any kind of testing can lead to very
expensive design changes and rebuilds. The earliest kinds of qualification action
take place during the design of the system, and include requirements reviews,
design inspections and various forms of analysis carried out on system models.

Figure 1.11 portrays the qualification strategy along a time-line below the 
V-model. Early qualification actions relate to the left-hand side of the V-model
and later ones to the test stages on the right-hand side.

A single stakeholder requirement will typically give rise to a multitude of
qualification activities at various stages of development. Where a requirement is
satisfied through useful emergent properties, qualification of components alone
is insufficient; tests have to be carried out at the level where emergent properties
are manifest.

1.8 Requirements in the Problem and Solution Domains

Systems engineering is concerned with developing and managing effective solu-
tions to problems. As has been discussed, it is a staged process vital for businesses
in enabling them to produce the right product within acceptable time-scales 
and costs.

Chapter 1 • Introduction 15



16 Requirements Engineering

Early in the process, the definition of the requirements for the product to be
built is of prime importance. From a management and engineering point of
view, a clear distinction should be made between the “problem domain” and the
“solution domain”. Those stages of development associated with the highest levels
of system description – statement of need, usage modelling and stakeholder
requirements – should be firmly rooted in the problem domain, whereas subse-
quent layers, starting with system requirements, operate in the solution domain.

Table 1.4 portrays the ideal boundary between the problem and solution
domains and the roles that the top requirements layers play.

Stakeholder
Requirements

Subsystem
Requirements

Component
Requirements

System 
test

Integration 
test

Component 
test

Acceptance
test

Reviews / Design inspections / Analysis / Prototypes / Component tests / Rig tests / System tests / Trials

Qualification Strategy / Programme
time

System
Requirements

Figure 1.11 Qualification strategy and the V-model.

Table 1.4 Problem and solution spaces

Requirements layer Domain View Role

Stakeholder requirements Problem domain Stakeholder’s view State what the stakeholders want to 
achieve through use of the system.
Avoid reference to any particular 
solution

System requirements Solution domain Analyst’s view State abstractly how the system will 
meet the stakeholder requirements.
Avoid reference to any particular 
design

Architectural design Solution domain Designer’s view State how the specific design will 
meet the system requirements



There is an important principle of abstraction at play here. The initial state-
ment of capability should state no more than is necessary to define the problem
and avoid any reference to particular solutions. This allows freedom to the sys-
tems engineers to carry out their role, which is to devise the best solution with-
out preconceived ideas.

Modelling assists in the derivation of the next layer of requirements and tends
to consider possible solutions, even at a high level. To avoid inappropriate solu-
tion bias, rather than focus on the system in question, early modelling should
focus on the immediately enclosing system. For instance, if a radio system is
being developed for a sailing boat, then early modelling should focus on the ves-
sel and not so much on the radio. This leads to a statement of the problem to be
solved in the context of the enclosing solution.

The same principle applies to the systems engineers: they should allow the
designers the freedom to perform their role, that of designing against an abstract
solution. The elements of solution introduced through functional modelling
remain at a high level, leaving the detail to be defined in subsequent stages.

For example, in a traffic control system:

• The stakeholders may express the problem in terms of maximizing traffic
flow while minimizing the risk of accidents at a traffic junction and min-
imizing cost of maintenance.

• The systems engineers may consider a variety of solutions, such as traffic-
lights or roundabouts and a bridge as the approach that best solves the prob-
lem within constraints of development and maintenance costs.

• The designers then set to work designing the bridge within the physical con-
straints presented by the physical environment.

It is frequently the case that the stakeholders will express the problem in terms
of a preconceived solution. It then becomes the requirements engineers’ job to
determine whether there is a good reason for mandating a particular solution or
whether it is an unnecessary constraint. For example, the customer starts by try-
ing to procure traffic lights; the supplier asks questions that lead to an under-
standing of the underlying objectives – maximize traffic flow and minimize risk
for drivers and pedestrians – leading to a solution-independent expression of the
problem; the reasons for the choice of solution are now better understood and
perhaps confirmed through appropriate modelling, leading to a precise and
well-informed specification of the abstract solution.

When it comes to procuring systems, a judgement needs to be made as to
whether to procure against the problem domain (stakeholder requirements) or
against the abstract solution domain (system requirements). Often the nature of
the solution is known in advance and it makes sense to procure against system
requirements framed in terms of that solution. However, even if procuring
against a particular solution, the discipline of capturing a statement of the pure
problem prior to a solution still offers important advantages.

Without a clear distinction between problem and solution, the following 
may result:

• lack of understanding of the real problem;

• inability to scope the system and understand which functions to include;

Chapter 1 • Introduction 17



18 Requirements Engineering

• domination of debate about the system by the developers and suppliers,
because the only descriptions of the system are expressed in terms of
solutions;

• inability to find optimal solutions due to lack of design freedom.

For these reasons, the book makes the distinction between stakeholder and
system requirements, in terms of how requirements are captured, modelled 
and expressed.

1.9 How to Read This Book

This book is concerned with engineering requirements and how this process
may help those systems engineers and software engineers to create better
requirements. Chapter 1 has discussed the importance of requirements and has
investigated the role of requirements engineering in all parts of the development
lifecycle.

Because of multiple dependencies between chapters, the ordering of material
has been carefully chosen to reduce the number of forward references. Although
it is best to read the chapters in the sequence presented, some guidelines are
given here to assist readers with particular objectives to make efficient use of
the book.

Chapter 2, “A Generic Requirements Engineering Process”, presents require-
ments engineering in a generic form that is applicable to all layers of develop-
ment. Although this approach assists the reader in gaining a good understanding
of the essence of requirements engineering, it remains, of necessity, fairly abstract.
The generic process is made more concrete, however, in Chapters 5 and 6, where
it is adapted to the stakeholder and system layers of development using numerous
examples.

Chapter 3, “System Modelling for Requirements Engineering”, talks about
system modelling, covering various techniques and methods in wide use. This is
again in preparation for Chapters 5 and 6, where particular modelling tech-
niques are placed in the context of stakeholder and system requirements.

Chapter 4, “Writing and Reviewing Requirements”, addresses the structuring
of requirements documents and the expression of requirements statements.
Here the language of different kinds of requirement is discussed.

Chapter 5, “Requirements Engineering in the Problem Domain”, instantiates
the generic process to address the problem domain, in which stakeholder
requirements are the primary focus.

Chapter 6, “Requirements Engineering in the Solution Domain”, then does
the same for requirements in the solution domain, from system requirements
downwards through subsystems and components.

Chapter 7, “Advanced Traceability”, presents further approaches to traceabil-
ity, aimed at improving the way in which rationale for traceability is captured,
and discusses metrics that can be derived from traceability.

Chapter 8, “Management Aspects of Requirements Engineering”, addresses
project management in a requirements management context, covering a variety
of organization types.



Finally, Chapter 9, “DOORS: A Tool for Requirements Management”, pro-
vides an overview of DOORS as an example of a software tool which serves 
as an enabler of a requirements management process. A case study is used to illus-
trate the processes presented in the book and features of the tool.

Figure 1.12 depicts the chapter dependencies.

Chapter 1 • Introduction 19

Chapter 1 – Introduction

Chapter 2 – A Generic Process for Requirements Engineering

Chapter 3 – System Modelling for Requirements Engineering

Chapter 5 – Requirements Engineering in the Problem Domain

Chapter 6 – Requirements Engineering in the Solution Domain

Chapter 4 – Writing and Reviewing Requirements

Chapter 7 – Advanced Traceability

Chapter 8 – Management Aspects of Requirements Engineering

Chapter 9 – DOORS: A Tool to Manage Requirements

Figure 1.12 Chapter dependencies.




