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Attention is a key component of all higher-level reasoning. A simplistic view
is that the mechanism of attention seems to turn parts of the brain on and off in
order to focus on what is currently important and ignore other things, but that
does not tell the whole story. Characteristics of such attention processes depend
on instincts, experiences and learning, and the human’s goals and motivations.
Attention helps us to cope with the large amount of information that can be
acquired with our sensory systems in a short amount of time. In a sense, atten-
tion is one method that has evolved to ensure that we can succeed in the face of
information overload. It helps us cope with complexity. Attention “filters out”
less useful information from our senses (it “selects” the useful information), and
thereby tries to optimally allocate cognitive resources. It also helps manage
the complexity of internal reasoning (e.g., problem solving) by allowing us to
focus on different internal representations, subproblems, and abstractions (i.e.,
it “selects” what to focus on when we are reasoning). Identifying components
of attention is in fact complicated, as it closely intermixes with what are often
considered other types of cognitive functions (e.g., planning and learning).

Due to its fundamental role in cognition, attention affects each type of con-
trol function that we have already considered in this part. On the other hand,
control functions can affect attention since they dictate the behavior of dynam-
ical attentional focusing. We may plan what to attend to, and have specific
“attentional control rules” for how to focus. We can learn that certain stim-
uli are important to attend to since they help us reach our goals, or that such
stimuli may play a significant detrimental role in our survival. We may learn
that other stimuli can be ignored (i.e., learn that attending to some stimuli has
no value to meeting our objectives). Indeed, we may even learn strategies for
improving our attentional capabilities (e.g., how to concentrate better). We will
not treat integrated attention-learning-planning in detail in this book. Instead,
we will focus on the principles of dynamic focusing of attention, and analyze
how control strategies can be used in attentional processes. We only briefly
discuss how attentional strategies can be used in engineering applications for
control and automation.

7.1 Neuroscience and Psychology of Attention

Attention is the process of focusing or concentrating. Often, we think of a
hierarchy involving, in order of higher to lower levels, consciousness, sleeping,
awareness, and attentiveness (e.g., you cannot be highly attentive when you
are unconscious or asleep). At different points in our day we may turn off our
attentional system. At others times our attentional system may be quite ac-
tively switching focus among different types of sensory data. For example, it
may at one time disengage from one focus, move, and then engage on another
focus. (Sometimes this is called “vigilance”.) Attentional processes in the hu-
man brain are implemented with neural networks, but we will not consider this
here (however, Design Problem 7.5 does request that you study the simulation
of connectionist models of attentional systems).
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We have certain types of attentional capabilities with all of our senses. For
vision, we can pay attention to the object that we are looking at (e.g., focusing
on these words as you read, while ignoring other peripheral visual stimuli or
sounds). For auditory sensing, we may learn how to ignore background noise so
that we are not distracted by it (e.g., if you have lived by a railroad track for a
long time you may find yourself not even noticing a periodic passing train). For
taste or smell, you can focus your attention on a certain spice in a food to try
to identify it. For touch, we often ignore certain tactile senses (e.g., if you are
holding this book, just an instant ago you probably did not notice the feeling
of touching the book because you were probably attending to comprehension of
the writing).

Attention allows us to
amplify some sensory
signals or internal
thought processes and
attenuate others.

A classical example of characteristics of our attentional system is given by
the so-called “cocktail party effect.” If you are at a party and there are many
small groups of people talking, you have the useful ability to ignore (attenuate)
what everyone is saying except for one person. The intriguing aspect, however,
is that the person you are attending to (amplifying their signal) is not necessarily
the one who is right next to you and talking the loudest. You may be able to
virtually ignore this person to listen in from a distance on a quieter conversation
that you are interested in (i.e., you may “eavesdrop”).

In one famous experiment on human attention, “event-related potentials”
(ERP) are measured via sensors on the scalp of a man via detection of electro-
magnetic waves. A specific ERP signal is the so-called “auditory N1 potential.”
The average voltage response for this ERP to an auditory stimulus that is at-
tended to is relatively large in magnitude compared to an auditory stimulus that
is not attended to. Some signals in the brain are amplified due to attention,
and attenuated via lack of attention.

7.1.1 Dynamically Changing Focus

In the context of vision it is useful to think of our focus of attention as a type
of “spotlight.” This spotlight may coincide with where our eyes are focused
(“overt” attention) or it may be that our eyes are focused at one point, and we
attend to (shine our attentional spotlight) a different point (“covert” attention).
Generally, we think of the spotlight as illuminating (amplifying) a region of
sensory input. The dark region outside the spotlight is the region you are not
attending to, and that visual sensory data are significantly attenuated.

There are two general types of control of attention, split according to what
dictates the changes in attentional focus (i.e., what controls the dynamics of
how the spot light moves). These are as follows:

Dynamic refocusing of
attention can be driven
by sensory data or
explicit cognitive control.

• Goal-driven (often “voluntary”) attention reorientation: Executive func-
tions in the brain may reorient the focus of attention. This is thought
of as a “top-down” refocusing that may be based on our problem-solving
strategy and goals. For example, if you are reading and you decide to
review a topic, you may go to the index of the book, find a key word,
then go to another page and shift your focus of attention to another topic.
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Typically, goal-driven reorientation of attention is slower and somewhat
less “potent” than the stimulus-driven reorientation of attention that we
discuss next.

• Stimulus-driven (often “involuntary”) attention reorientation: Sensory
signals can control the focus of attention in a “bottom-up” fashion. For
example, we seem to have an instinct to pay attention to certain visual
stimuli such as an object that is moving on a trajectory toward us, a
bright flash of light (e.g., a fire), or blood (with evolutionary forces likely
at work). Sensory inputs can achieve an automatic reorienting of atten-
tion, and often stimulus-driven attention reorientation is faster and more
potent than goal-driven reorientation. For instance, if while reading this
book, suddenly someone calls your name, yells in your ear, or your shirt
catches on fire, it is likely that your attention will be diverted from this
topic, no matter how interesting it is! Note, however, that if we repeatedly
receive some external cue, and that cue does not indicate danger and we
are not interested in it, we can typically learn to ignore it (i.e., learn not
to allow sensory signals to reorient our attention). Hence, learning can
play a key role in how our attentional dynamics operate.

Often, the two above methods to reorient attention are combined, or are inter-
laced over time. Clearly, both are influenced by knowledge acquired, and our
instincts that have been established via evolution.

7.1.2 Multistage Processing: Filtering, Selection, and Re-
source Allocation

A functional model of the multistage attention process is given in Figure 7.1.
There are sensory inputs that are “registered” (e.g., the receptor neurons detect
sensory stimuli), then information is passed to the perceptual analysis and se-
mantic encoding and analysis stages, where objects are recognized and processed
for meaning. Information is then passed to executive functions, decision-making,
memory, planning, etc. At the same time, there is feedback from executive
functions that indicate what should be focused on (e.g., for voluntary control of
attention).

Attention involves
filtering out (discarding)
some information.

There is evidence that at times, very early in the sensory processing process,
there is selection of which stimuli are important, and which can be “filtered
out.” Evidence shows that in some situations this can be done before perceptual
analysis or sensory encoding and analysis. For example, it seems that we have
instinctual rules about certain types of stimuli that result in stimulus-driven
reorientation of attention. It is this type of attentional control process that
is involved in “early selection.” On the other hand, “late selection” occurs in
some situations, where more abstract analysis and processing of sensory signals
(e.g., semantic encoding where meaning is determined) is conducted in order to
reorient attention. For example, in some cases there might be some processing
that determines whether the stimulus should gain full access to awareness, be
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Figure 7.1: Multistage attention process.

encoded in memory, or result in some response. This type of processing may
result in a goal-driven reorientation of attention.

Clearly, attention is a multistage process with feedback control paths. There
is a cascaded filtering process that occurs where the most important information
is focused on (“selected”), and less important information is ignored. Clearly,
such a process is essential for high level cognitive functioning in humans. We
have a finite amount of memory and processing power in our brain, and this
naturally leads to “bottlenecks” in information processing. Attention allows us
to allocate our cognitive resources to help us meet our goals. Hence, a key aspect
of attention is the strategies used to allocate cognitive resources, especially in
an “optimal” manner.

7.2 Dynamics of Attention: Search and Opti-

mization Perspective

Here, we briefly discuss how to represent some of the underlying mechanisms
of the dynamic focusing of attention as a search and optimization process. We
will only focus on the dynamics of tracking objects in an attentional focus, how
switching occurs from focusing on one object to another, and then the fine-
tuning of the focus of attention after refocusing and during dynamic movement
of an object. Our “model” is only based on the brief description in Section 7.1 of
the psychology of attention, not neurophysiological studies, biophysics, or any
of the other relevant underlying science. Hence, this is certainly of limited or
possibly no value from a scientific perspective. Then, why provide such a model?
First, the objective is to provide more detailed insight into the explanation of
attention in Section 7.1. Second, we do not necessarily need a good model
for the development of control and automation systems. The objective is to
get the reader to think about dynamically focusing on information and hence
ignoring other information. This is an essential feature of a complex automation
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problem where there is potential for “information overload” for the decision-
making system, and hence the need to focus on the most important information.

We assume that there is a search component that finds objects in the “field
of view” of the sensor and there is an optimization strategy at work that chooses
the highest priority object and tracks it as it moves through the field of view.
We do not focus on issues of the difference between where the sensor is directed
versus where the focus of attention lies. Consider the model of attentional

Dynamic focusing of
attention can be modeled
as optimization of a
time-varying cost
function.

focusing provided in Figure 7.2. There, we have sensory data entering from the
left into a block that processes these data to recognize objects, which we label
with i = 1, 2, . . . , N (we assume a finite number of objects are in the field of
view). For convenience, we assume in our discussion that the data are sensed
about objects in an (x, y) plane. Next, the objects are prioritized by assigning
a number pi > 0, i = 1, 2, . . . , N , where an object that is more important to
focus on is given a higher value of pi. Next, we assume that an “attention map”
Ja(x, y, t) is adjusted to represent the object positions and priorities at time
t. Then, the priorities and attention map are input to a module that controls
the focus point (i.e., where the focus is located in the (x, y) plane). To achieve
control, it first compares the priorities to each other and picks the object i∗(t)
to focus on at time t that has the highest priority. That is, it lets

i∗(t) = arg max
i=1,2,...,N

{pi}

(argmax is simply the notation for finding the index of the priority that has
the maximum value). Next, to pick the focus point, which we call (xa, ya), it
considers which object should be focused on, where the current focus is relative
to that object, and updates the focus point. It is assumed that it cannot move
the focus point arbitrarily fast when it is trying to maintain focus on a particular
object (e.g., as it moves across the plane), but that it can switch focus from one
object to another very fast.

Sensory
data Recognition

of objects

Assign
priorities
to objects

Adjust
spatial
attention
map

Control of
attention focus

Control of
focus point

Select object
to focus on

Focus attention
on (x ,y )

List of 
objects

List of 
objects and
priorities

Attention
map, J (x,y,t)a

a a

Focus point affects type of sensory data that are collected

Figure 7.2: Functions involved in dynamically focusing attention.
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7.2.1 Attentional Map

The key to our model of the dynamic focusing of attention lies in the definition
of the attentional map Ja(x, y, t). Here, we think of this map being generated
internally (e.g., via pattern recognizer/semantic analysis), and assume that it is
being used to indicate where it is important to focus on. In particular, we will
define it as a continuous surface with Ja(x, y) ∈ [−1, 0], where the point

(xa, ya) ∈ {(x∗, y∗) : Ja(x∗, y∗) ≤ Ja(x, y) ∀x, y}
is a minimum point on the surface (note that there could be more than one such
point, representing the possibility of a demand for split attention between equal
priority points).

An example attentional map is shown in Figure 7.3. Here, we show an
example attentional map that represents that there are two objects in the field
of view: one that is high priority (the deeper valley) and one that is not as
important (the shallow valley). The point that we want to focus on is the one
defined by the point where the minimum is achieved on this map; that is, where
the highest priority object is located.

Figure 7.3: Example attentional map.

It is important to note that the map shown in Figure 7.3 is not static. It
changes in several ways. First, if the objects move, the valleys move dynamically
about the field of view. Also, if the field of view of the sensor is changed, the
positions of the valleys change. The shape of the valleys may change (e.g., the
widths of the valleys) depending on object positions. Moreover, the pi priorities
of the objects may change, which would dynamically change the depths of the
valleys. For example, it may be possible that as relative positions of the objects
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changes, the shallow valley gets deeper and the deeper valley more shallow. If
this happens, we would want the attentional focus to change from one object
to another. If the valleys move, we want the attentional system to “track” the
object that is of highest priority. Finally, note that as the field of view changes,
and new objects appear and some disappear, it is possible that the number of
valleys changes dynamically over time.

7.2.2 Optimization/Search Process for Focusing

It should be clear that in order to implement an attentional strategy using the
attentional map, one could take an optimization/search perspective that has
the following two components:

• High priority object tracking: Suppose that the current focus of attention
(xa, ya) is located at the global minimum of the attentional map Ja(x, y, t)
(all other points on the Ja map are strictly above this point). Suppose
that the field of view is constant, that objects do not leave the field of
view, and that priorities of objects in the field of view stay constant.
Suppose, however, that all the objects are moving and that some cognitive
process keeps the attentional map up to date by dynamically adjusting
the map. This will result in the centers of the valleys moving about the
field of view dynamically. How does the attentional system work with
the attentional map in order to maintain focus directly on the highest
priority target? We could use a hill-climbing algorithm to continually
climb down the attentional map at each step (e.g., it could move the focus
of attention point in steps according to how someone would walk down a
hill, moving in directions at each step toward the most significant decrease
in the attentional map). Then, if the map does not move too fast, and
the hill-climbing algorithm can keep up, it will tend to keep the focus
of attention near the center of the valley that corresponds to the highest
priority object. As the object moves about the field of view, the algorithm
will tend to track the object.

• Changing focus: Next, suppose that the objects move about the field of
view, and their priorities change dynamically. In this situation, the at-
tentional tracking algorithm may track the highest priority object for a
period of time, but its priority may decrease, and the priority of another
object may increase. At the point where the global minimum of the atten-
tion function changes to correspond to the object with increasing priority,
it should be the case that the strategy can switch focus from one object
to another. How can this be achieved? Well, if the minimum points are
known, switching is easy via a simple monitoring of the values of the min-
imum points of the attention function, ranking those values, and choosing
to focus on the smallest one (a simple type of optimization). If those min-
imum points are not known, then one would need some type of “global”
optimization procedure to determine when to switch. One approach would
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be to have N tracking algorithms of the type described above, and sim-
ply select for focusing the one that achieves the lowest value. There is
some evidence that an analogous strategy is used in some cases in some
biological attentional systems.

In summary, we see that one way to view the attentional process is as an opti-
mization process for a cost function that is time-varying. Such an optimization
problem can be very difficult to solve, but ideas from the optimization methods
discussed in Part III and Part V provide many approaches to the problem.

7.3 Attentional Strategies for Multiple Preda-
tors and Prey

Consider an organism that is in some environment with multiple predators, and
it is trying to attend to all of them to maintain as accurate a picture of its
environment as possible in order that it can defend itself. Moreover, we assume
that in the same environment, there are multiple prey that the organism would
like to pay attention to in case it decides to pursue one of these to kill and
eat. How should the organism dynamically focus its attention on the predators
and prey to ensure its success in foraging and surviving? In this section we
will model such a problem and introduce a variety of attentional (“scheduling”)
strategies for focusing attention. Hence, we think of needing to schedule our
cognitive resources in order to maintain an accurate view of the environment.
We will simulate the strategies and discuss issues in their design.

7.3.1 Cognitive Resource Allocation Model

We will assume that there is a recognizer for predators and prey that provides
information to our attention strategy, so that it simply needs to decide what
to focus on (cognitively process). The focus here is on the selection process
that can be occurring in either early or late selection, or both. The key is
that there is a “limited channel” or one resource that must be shared, and the
attention strategy must decide how it is shared. We ignore issues of the possible
differences in where the organism’s sensor is pointed (e.g., where its vision is
directed), versus where the center of the focus of attention is.

Quantifying Length of Time Predators/Prey Are Ignored

Suppose that we assume that the number of predators and prey is constant and
that we number them and denote the set of predators and prey as

P = {1, 2, . . . , N}

Let t denote time. Let
Ti(t), i ∈ P, t ≥ 0
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denote the last time at which predator/prey i was detected (later you will see
that this is defined by the instant t′ when, by focusing on predator/prey i,
we get Ti(t′) = 0). By “detected” we mean that the organism has focused its
attention on the predator or prey, and has identified it and its characteristics
(e.g., its position).

Generally, we will view the attentional strategies as “controllers” that take
as inputs the Ti(t), i ∈ P , and choose which predator/prey to focus on next.
This is shown in Figure 7.4. We will assume that there is a cognitive tracking

An organism seeks to
schedule its cognitive
resources over time to
enhance its chance of
survival.

mechanism that is trying to estimate where predators/prey are moving, and
that it has a certain level of accuracy in achieving this task. We will not require
perfect accuracy in tracking multiple predators/prey; we will allow them to be
“lost” for a period of time. Loss of tracking could result from predators or prey
hiding (e.g., behind a tree), due to the sensor having only a limited “field of
view,” or from possible additional (but finite) time required to reacquire tracking
when attentional focus is shifted. We will discuss how we model such issues in
a moment.

Predator/prey
environment

Strategy
(controller)

Focus on
predator/prey

Attentional strategy
picks which 
predator/prey to focus on

Ti

Figure 7.4: Attentional strategy viewed as a controller.

Suppose that initially
Ti(0) = 0, i ∈ P

so that we act as though initially we had simultaneously detected all the preda-
tors/prey, which is clearly physically impossible. Note, however, that this is a
good initialization considering the fact that our attentional strategies will make
decisions about which predator/prey to focus on based on the sizes of the Ti(t),
i ∈ P (i.e., based on how long they have been ignored). Basically, for many
strategies this initialization indicates that at t = 0, there is no priority to seek
one predator/prey rather than any other one. For many strategies, an initial-
ization with Ti(0) > Ti′(0) for i �= i′ would indicate an initial preference to first
focus on the ith predator/prey over predator/prey i′.

Note that if the organism was not actively engaged in paying attention to
its environment (e.g., it was sleeping or doing something else), then clearly

Ti(t) → ∞, i ∈ P, t → ∞

since it will never detect a predator/prey. The goal of the attentional strategy is
to try to avoid Ti(t) → ∞ for any i ∈ P and indeed it will try to keep the Ti(t)
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values as small as possible since this represents that the organism has recently
detected each predator/prey and hence has good information about the preda-
tors/prey. It is assumed that each predator/prey will persistently periodically
“appear” (i.e., not be occluded by some object, or lost due to poor cognitive
tracking) so that there is a finite amount of time between predator/prey appear-
ances to the attentional strategy; this is assumed since, if some predator/prey
i ∈ P only appears for a finite amount of time, and never appears again, then
at some point it will clearly be impossible to detect it again so that Ti(t) → ∞
as t → ∞.

The organism wants to
minimize the amount of
time it ignores any
predator/prey to ensure
it has accurate
information about its
environment.

Environmental and Cognitive Delays Affecting Attentional Switching

Let δ(t) > 0 denote a “processing delay” that may represent the delay from the
environment (e.g., due to a predator being occluded for a brief period of time)
and a “cognitive processing delay.” The cognitive processing delay may be used
to represent the amount of time that it takes for the organism to switch from
paying attention to one predator/prey i to another predator/prey j, j �= i. We
will call this type of delay δi,j and assume it is a fixed known delay (if it were
unknown but bounded, then the attentional strategies and analysis still hold).
For convenience, we will assume that these attentional switching delays are all
the same and will denote that value by δs = δi,j for all i, j ∈ P .

The variable δ(t) may also incorporate delays in being able to detect a preda-
tor/prey. For instance, each predator/prey has a type of frequency of appear-
ance that is driven by a variety of characteristics such as how effectively the prey
can hide in the current environment, or how fast a predator can run. Suppose
that for a known predator/prey type i, there is some bound δi on the amount of
time that it would take for the organism to first realize that the predator/prey
may be at some location, if that was the only predator/prey that the organ-
ism focused on (clearly, this would depend on the predator/prey appearance
period). Getting the first indication of the presence of a predator or prey does
not correspond to achieving a detection of a predator/prey. Suppose that δe(t)
denotes the delay incurred by the organism in first getting an indication of the
presence of a predator/prey, from the time that it gets switched to focus on
that predator/prey. It could be that many characteristics contribute to this de-
lay, including cognitive tracking mechanisms and environmental characteristics.
Note that if we let

δ̄ = max
i

{
δi
}

then δe(t) ≤ δ̄. Let
δ(t) = δs + δe(t)

For convenience, we let δ denote a constant that is the least upper bound on
δ(t) so that δ(t) ≤ δ (i.e., we simply remove the time index to denote the least
upper bound on the variable).

To summarize, when the attentional strategy issues a command to focus on
predator/prey i, there is a delay to switch to the attention to focus on it, and
then there is an additional (time-varying) delay since the predator/prey may
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not have appeared. This additional delay is shorter than δ̄. After these two
types of delays occur we assume that the organism knows that a predator/prey
is where it is focusing (but we do not assume that the organism has identified
all the characteristics of the predator/prey and hence, has not yet “detected”
it).

Rate of Cognitive Processing

We will suppose that the organism may take additional time to detect a preda-
tor/prey that it has not detected for a long period of time. That is, we think of
the organism as having successively more difficult times finding a predator/prey
that it has not found for longer periods of time since it, in a sense, becomes
“desynchronized” with that predator/prey and cannot easily determine when or
where it will appear, or its other characteristics. To quantify this phenomenon,
we will use parameters

ai, i ∈ P

where 1/ai represents a “rate” at which the organism cognitively processes in-
formation about predators/prey in order to detect them. These ai parameters
require further explanation. Consider the case where there is only one preda-
tor/prey (N = 1), named “predator/prey 1.” Suppose that at some time t′,
the amount of time that has elapsed since the last time predator/prey 1 was
detected is T1(t′) > 0 as shown in Figure 7.5.

Predator/prey appearances

T (t')1

δ
δ

s

e(t')

Last time
predator/prey 1 was
detected

Declare predator/prey 1
detected

Time, t

Decide at time
t' to focus on 
predator/prey 1

Choice of a  parameter changes
the slope of this line

Slope=1

1

Figure 7.5: Illustration of timing of organism decision-making and preda-
tor/prey appearances (note that pulses represent the first times that preda-
tors/prey appear).

At time t′ + δs, the organism has switched its focus to predator/prey 1.
So, starting at t′ + δs, the organism is looking for predator/prey 1 and before
t′ + δs + δ1, we know that a predator/prey appearance will occur. Name the
delay between achieving a switch in focus to the time where a predator/prey
appearance is first found δe(t′). Then, at time t′ + δs + δe(t′), the organism
initiates the completion of the “detection” of predator/prey 1 and the amount
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of time that it takes to do that is dictated by the a1 parameter. (As you will
see below, smaller values of a1 correspond to it taking shorter amounts of time
to fully detect the predator/prey.) We declare predator/prey 1 “detected” at
the time at which T1 is decreased to zero. Next, we need to further clarify
the meaning of the ai parameters by explaining how they produce the slope
of the bold line in Figure 7.5 and hence quantify how long it takes to detect
a predator/prey. Also, we need to explain how the organism chooses which
predator/prey to focus on. To do this, we will introduce a specific attentional
strategy and explain how to interpret the ai, i ∈ P parameters.

7.3.2 Focus on a Predator/Prey Ignored for the Longest
Time

First, let Dkr denote the time at which the attentional strategy chooses a preda-
tor/prey to focus on (i.e., it is the decision time), and suppose that D1 = 0. An
attentional strategy that focuses on the predator/prey that was ignored for the
longest time makes choices of which predator/prey to focus on such that at Dkr ,
the attentional strategy chooses to focus on predator/prey i∗(kr) such that

Ti∗(kr)(Dkr ) ≥ Ti(Dkr ), ∀i ∈ P (7.1)

and focuses on it until it detects it. If there is more than one maximizer, then
the attentional strategy will simply choose one of these at random.

Decision-Timing for Attentional Switches

First, notice that the actual time when focusing starts for predator/prey i∗(kr)
occurs after some delay, and then it may take some additional (but finite time)
for the predator/prey to appear (δe(Dkr ) ≤ δ̄), and still more time based on how
long it has been since the predator/prey was last detected (i.e., the effect of the
ai). Note also that while the delays occur, the time since the last detection is
still increasing. Hence, the times when the attentional strategy makes decisions
are given by

Dkr+1 = Dkr + δ(Dkr) + ai∗(kr)Ti∗(kr)(Dkr ) + (Dkr+1 − Dkr) ai∗(kr) (7.2)

Here, the next decision point Dkr+1 is the time when the detection of the last
predator/prey that was focused on is detected and this formula gives the time
Dkr+1 when the next decision will be made. The value of Dkr+1 is given by the
sum of four terms. The first term is simply the last decision point Dkr . The
second term is the delay δ(Dkr ) where

δ(Dkr ) = δs + δe(Dkr )

Third, the term ai∗(kr)Ti∗(kr)(Dkr ) is the amount of time it takes to detect
predator/prey i∗(kr) that arises due to the fact that we have not detected it
for some time. (Note the proportionality—if it has not been detected for a



7.3 Attentional Strategies for Multiple Predators and Prey 277

long time, then it will take more time to find it and this represents that preda-
tors/prey that have not been detected for a long time become more difficult
to detect.) Finally, the fourth term quantifies that additional time is needed
to detect the predator/prey simply because during the time that the cognitive
processing for the predator/prey is occurring, even when it is focused on, the
length of time since the last detection continues to increase (we do not consider
a predator/prey i∗(kr) fully detected until Ti∗(kr)(Dkr+1) = 0).

Using simple algebra to rearrange Equation (7.2), we get

Dkr+1 = Dkr +
δ(Dkr ) + ai∗(kr)Ti∗(kr)(Dkr )

1 − ai∗(kr)
(7.3)

Notice that as expected, the delay δ directly influences the rate at which we
can switch attentional focus. Also, this equation shows us that the length of
time between decisions can be lengthened if a particular predator/prey has been
ignored for too long due to the effects of the ai parameters.

The Cognitive Capacity Constraint

In fact, using Equation (7.2), it is now possible to complete the explanation of
Figure 7.5 and further explain how to interpret the ai parameters. What is the
effect of the ai parameters on how fast a predator/prey is detected? Notice that
we incur the delay δ(t), and from Figure 7.5 we see that the slope of the bold
line dictates then how fast we achieve detection. What is the slope of the bold
line in Figure 7.5? We use simple geometry to determine this. First, notice that
the peak value

Ti∗(kr)(Dkr + δs + δe(Dkr )) = Ti∗(kr)(Dkr) + δs + δe(Dkr )

since the slope of the dashed line in Figure 7.5 is unity. Next, notice that
Equation (7.3) gives the amount of time between the decision time Dkr and
time of detection Dkr+1 so that the slope of the bold line in Figure 7.5 is

−
⎧⎨
⎩ Ti∗(kr)(Dkr) + δs + δe(Dkr )

δs+δe(Dkr )+ai∗(kr )Ti∗(kr )(Dkr )

1−ai∗(kr )
− (δs + δe(Dkr ))

⎫⎬
⎭

which with some simple algebra reduces to

− (1 − ai∗(kr))
ai∗(kr)

(7.4)

In a moment you will see that it is necessary that ai∗(kr) < 1. Using this fact,
Equation (7.4) indicates how fast detection occurs as shown in Figure 7.6 (i.e.,
how fast cognitive processing occurs). With small values of ai (high values
of 1/ai, the rate of processing by the organism in trying to detect) we get
fast detection, and with larger ones we get slower detection. So, how do we
interpret the ai parameters? They are parameters used to model how difficult
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Figure 7.6: Magnitude of the slope of the bold line in Figure 7.5 for various
values of a1.

it is to detect a predator/prey, where if a predator/prey has not been detected
for a long period of time, it can become more difficult to detect.

Clearly, it is necessary that the “capacity condition”

ρ =
N∑

i=1

ai < 1 (7.5)

be satisfied in order for any attentional strategy to ensure that the values of Ti(t),
i ∈ P , remain bounded. How should this capacity condition be interpreted?
Intuitively, it says that it must be the case that even if the predators/prey can
become more difficult to detect if they have not been detected for a long time,
the organism must be able to operate “fast enough” to be able to find them.
For instance, Equation (7.5) is satisfied if for each i ∈ P ,

Cognitive capacity
quantifies when an
environment presents too
large of an attentional
load for an organism so
that it will miss
important information.

ai <
1
N

This shows us that as the number of predators/prey grows, it is possible that
the cognitive capacity of the organism is overwhelmed and it is being given too
much work, so that there is no way that it can keep up, so it will end up being
the case that Ti → ∞ for at least some i ∈ P (or more than one i).

Equation (7.5) can be used to gain insight into the operation of attentional
strategies by using the ideas in [418]. First, note that you can think of ai as the



7.3 Attentional Strategies for Multiple Predators and Prey 279

amount of “load” (or the number of time units of “work”) that is brought to
the organism for the attentional task at each time instant by predator/prey i.
Hence, if the organism is to succeed, on average the organism can only afford to
spend a portion (1−ρ) of its total time being idle. If you assume that the delay
δ(t) is a constant δ, then each decision time when we switch from focusing on
one predator/prey to another costs δ time units of idle time; hence, the average
frequency of decision times is bounded above by

1 − ρ

δ

Now, if ρ is very close to 1 (representing an organism that is heavily loaded),
(1− ρ)δ−1 is very small so the frequency of switching attentional focus between
different predators/prey is low (which means that it can take a long time for
the organism to find each predator/prey, so the organism will tend to have large
Ti(t) values and hence will not perform as well).

7.3.3 Additional Attentional Strategies

There are a wide variety of possible attentional strategies. Next, we consider
one that is more general than the one of the previous subsection given in Equa-
tion (7.1), in the sense that at each decision point Dkr it could make exactly
the same decision as it did there, but could also make other choices.

Focus on a Predator/Prey Ignored More Than the Average One

The particular strategy is given by choosing the predator/prey to focus on that
has been ignored more than the average time that all the predators/prey have
been ignored. In particular, at Dkr , the attentional strategy chooses to focus

Attentional strategies are
feedback controllers that
dynamically refocus.

on predator/prey i∗(kr) such that

Ti∗(kr)(Dkr ) ≥ 1
N

N∑
i=1

Ti(Dkr) (7.6)

and focuses on it until it detects it (in a similar way to the strategy of the
last section). Note that Equation (7.3) also holds for this strategy, and that of
course the capacity condition Equation (7.5) must hold.

Note that for this strategy, any predator/prey that has been ignored for
more time than the average predator/prey has can be focused on. How does
the strategy choose which particular predator/prey to focus on? One simple
approach is to randomly choose one. However, more sophisticated criteria are
possible. For instance, it could try to optimize some other system quantity, or it
may use Equation (7.6) to provide a set of possible predators/prey to choose and
then use “predator/prey priorities” (some indication of which predator/prey is
most important) to choose the one to focus on. In the simulations of the next
section, when we study this strategy, we will assume that predator/prey i has
priority i and higher values of i correspond to higher priorities.
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Focus on a Predator/Prey That May be Most Difficult to Find

An attentional strategy that focuses on the most difficult to find predator/prey
makes choices of which predator/prey to focus on such that at Dkr , the atten-
tional strategy chooses to focus on predator/prey i∗(kr) such that

ai∗(kr)Ti∗(kr)(Dkr ) ≥ aiTi(Dkr ), ∀i ∈ P (7.7)

and focuses on it until it detects it. If there is more than one maximizer, then
the attentional strategy will simply choose one of these at random.

Clearly, this is similar to the attentional strategy that focuses on the preda-
tor/prey that has been ignored for the longest time that was given in Equa-
tion (7.1). Here, however, we have the scalings by the ai parameters and this
changes the attentional strategy. Intuitively, since ai is the amount of “load,”
you can think of this attentional strategy as choosing the the most difficult one
to find predator/prey to focus on.

Focus on a Predator/Prey Expected to be Most Difficult to Detect

The strategy to be developed next is motivated by the above strategy and is
modeled after the one in [418] that has been found to be very effective in a
different class of resource allocation problems. Recall from our earlier analysis
that if you pick predator/prey i∗(kr) to focus on,

Ti∗(kr)(Dkr ) + δs + δe(Dkr )

is the peak that Ti∗(kr)(Dkr ) reaches before the predator/prey is detected. Note
that in general we do not know δe(Dkr ) since it depends on how the organism
decision times are aligned with the predator/prey appearance times. A known
bound, however, on the peak value is given by

Ti∗(kr)(Dkr ) + δs + δe(Dkr ) ≤ Ti∗(kr)(Dkr ) + δs + δi∗(kr)

Hence, predators/prey with larger δi values (i.e., ones with possibly lower fre-
quency appearances) can be considered on average more difficult to detect in
this framework. Also, the ai parameters, which model another characteristic of
the difficulty of predator/prey detection, will also affect how soon detection can
occur.

Consider choosing predator/prey i∗(kr) to focus on at time Dkr if

i∗(kr) = argmax
i

{
wi

(
Ti(Dkr ) + δs + δi

(1−ai)
ai

)}
(7.8)

where wi > 0, i ∈ P are weighting factors. Notice that in this formula, the
numerator is the bound on the peak value and the denominator is the magnitude
of the slope of the bold line in Figure 7.5 given by Equation (7.4). Why divide by
the slope in the above formula? If the slope is greater in magnitude (smaller ai

value), this corresponds to an easier-to-detect predator/prey and this will result



7.3 Attentional Strategies for Multiple Predators and Prey 281

in Equation (7.8) with a reduced emphasis on focusing on that predator/prey.
Hence, the strategy picks the predator/prey to focus on that is expected to be
the most difficult to detect in the sense that it estimates which predator/prey
will take the longest time to detect and selects it (assuming wi = 1 for all i). To
see this geometrically, notice via Figure 7.5 that the numerator Ti(Dkr )+δs +δi

in Equation (7.8) should be thought of as an estimate of where the peak occurs
and we divide it by the slope; hence, this value is the length of time that elapses
from the time that the peak occurs, until detection.

The weighting factors wi can be chosen to force the organism to focus on
some predators/prey more than others. Equal weighting would correspond to
the choice of wi = 1 for all i ∈ P . If wi >> wj , i �= j, then Equation (7.8) will
tend to choose i rather than j to focus on. This may be useful in some preda-
tor/prey environments since it provides a way to indicate which predator/prey
should be focused on. Another possibility is to weight predators more than
prey so that the organism always focuses on those more. While the weighting
factors provide an opportunity to tune the strategy, there is no guarantee that
this strategy will be better than any of the others introduced above according to
typical performance measures. Generally, you would want to choose the weights
so as to make the attentional strategy perform as successfully as possible (where
you define what is meant by “successfully”).

7.3.4 Attentional Strategies Based on Predator/Prey Pri-
ority

In the last subsection, we introduced two ways to incorporate priorities of preda-
tors/prey into scheduling strategies. First, in Equation (7.6) we used priority
as a “secondary” selection mechanism to choose from the set of predators/prey
that has been ignored longer than the average one. Second, in Equation (7.8) we
introduced the weighting factors wi which allow us to emphasize the processing
of one predator/prey more than another (and this will be illustrated in the simu-
lation examples in Section 7.4). In this subsection we will introduce yet another
priority scheme, but one that integrates the consideration of predator/prey pri-
orities so that predator/prey priority is neither a secondary consideration nor
set by secondary weighting parameters that have loose connections with the
predator/prey priorities.

Attentional strategies
can include information
on which predators/prey
are most important to
pay attention to.

To do this, we introduce a set of parameters pi > 0, pi ∈ 	, i ∈ P , that repre-
sent the predator/prey priorities (larger values correspond to higher priorities).
We allow the designer to take two different views of the priority parameters:

1. Predator/prey environment information: You can assume that the values
of the parameters pi, i ∈ P , are set a priori and remain constant through-
out the activity (e.g., foraging) of the organism. Hence, you can view them
as part of the a priori information about the predator/prey environment.

2. Design parameters: Alternatively, you may view the priority parameters as
design parameters that can be tuned (e.g., via extensive simulations of the
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predator/prey environment) before an organism engages in the attentional
task.

How do we integrate the priority parameters into each of the strategies de-
fined in the previous subsections? For example, how can we use them to modify
the strategy in Equation (7.1) where we chose to focus on the predator/prey
that was ignored the longest. Here, we simply scale Ti by pi, i ∈ P in each of
the cases and then make all decisions based on the same formulas as above, but
with Ti replaced by piTi, i ∈ P . What is the effect of such a scaling? It serves
to scale the lengths of times that the predators/prey have been ignored, with
higher weights given to predators/prey with higher priorities. Thereby, it biases
the attentional strategy toward higher priority predators/prey.

For such strategies to be stable, it is clearly necessary that we modify our
capacity condition. With priorities, we require that

ρp =
N∑

i=1

piai < 1 (7.9)

be satisfied to ensure that the values of Ti(t), i ∈ P , remain bounded.
How does the scaling affect the behavior of the strategies? While it is clear

that predators/prey i ∈ P with Ti scaled by higher values of pi will have piTi

grow faster (the slope of the line representing the growth is pi), the behavior
is also affected by the range of values that you allow for the priorities. For
instance, if you dictate that your priorities pi ∈ (0, 1], i ∈ P , then if you were
given some ai values that satisfied Equation (7.5), the pi and ai values would
also satisfy Equation (7.9). Hence, if you use a proper range of values for the
priority parameters, any strategy that satisfies the capacity condition without
priorities will satisfy Equation (7.9). Note that there is really no reason why
you cannot make the choice of pi ∈ (0, 1], i ∈ P , since the parameters are simply
used to rank order the predators/prey. It is also interesting to note that if you
repeat the analysis in Sections 7.3.1 and 7.3.2, the result in Equation (7.4) still
holds (due to cancellations of the priority parameters in the algebra); hence,
simulation of the class of priority strategies discussed here is quite similar to
the earlier strategies.

To summarize, you can embed the priority parameters into any of the above
strategies. For instance, Equation (7.1), when converted to a priority scheme
using this approach, becomes one where the attentional strategy chooses to focus
on predator/prey i∗(kr) such that

pi∗(kr)Ti∗(kr)(Dkr ) ≥ piTi(Dkr ), ∀i ∈ P (7.10)

In this way you can have a strategy that selects predators/prey based on both
priorities and how long they have been ignored. The scheduling strategies in
earlier subsections are modified in a similar manner. Finally, note that you can
still use the two priority schemes we discussed earlier in conjunction with this
priority scheme.
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7.3.5 Viewpoint of Attention Scheduling as Online Opti-
mization

Next, note that we can provide an interpretation of the above attentional strate-
gies in terms of optimization. The key is to think of the attentional decision-
making in terms of optimizing a cost function Jp, and that Jp is the result of a
computation made in the scheduler (controller) so that it can make scheduling
decisions. With this view, we have the following:

Attentional strategies
make decisions that
optimize some
short-term performance
measure in hopes of
optimizing a long-term
one.

• Focus on a Predator/Prey Ignored for the Longest Time: Here, for the
strategy in Equation (7.1), we have

Jp = −max{Ti(Dkr ) : i = 1, 2, . . . , N}

and hence in trying to maximize Jp, we try to minimize the longest time
that the organism ignores any predator/prey. In this way, the scheduler
tries to focus on predators/prey so as to keep the values of Ti(t) low so
that the organism has good information about the predators/prey.

• Focus on a Predator/Prey Ignored More Than the Average One: Here, for
the strategy in Equation (7.6), we have

Jp = −
N∑

i=1

Ti(Dkr )

and hence in trying to maximize Jp, we try to minimize the average time
that the organism ignores any predator/prey (it attempts this even though
there is not a single maximizer at each decision time). Again, the scheduler
tries to focus on predators/prey so as to keep the values of Ti(t) low so
that the organism has good information about the predators/prey. Here,
however, it makes decisions in a different manner since it tries to maximize
a different Jp.

Using this same approach, it is simple to specify Jp measures for the other
strategies we defined above. For instance, for the strategy in Equation (7.7), we
have Jp = −max{aiTi(Dkr ) : i = 1, 2, . . . , N} and hence, in trying to maximize
Jp, we try to minimize the longest time that the organism ignores any preda-
tor/prey, but scaled by the “load” of the predator/prey. For Equation (7.8), our
Jp would quantify the desire to keep the peaks of the Ti(t) as low as possible
(which may or may not result in a lower average delay). Clearly, if you embed
a priority scheme via the priority parameters pi, i ∈ P , the same concepts hold.

Note that the above Jp measures should not be thought of as measures
of attentional success over the long term, but as instantaneous measures that
are used to guide decisions about which predator/prey to focus on. Achieving
an instantaneous optimization does not necessarily result in making optimal
decisions to try to ensure that the organism gets the best information over the
long term.
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7.4 Design Example: Attentional Strategies

In this section, we will simulate the attentional strategies of the last section in
order to provide insights into their operation. Moreover, we will discuss several
issues in how to design attentional strategies.

7.4.1 Simulation Approach and Performance Measures

For convenience, we simulate the predator/prey environment and organism as
a discrete-time system. We will use a sampling period of Ts = 0.01 and in
all our simulations we will have N = 4 predators/prey. Each predator/prey
will be characterized by a sequence of appearances, which we simply model as
unity height signal at some sampling instant. When there is no appearance, the
signal height is zero. For instance, for all our simulations below we will have
the predator/prey appearance sequences shown in Figure 7.7. We use different
frequencies of appearance for different predators/prey, but for simplicity we keep
the appearance frequencies constant (for predators/prey i = 1, 2, 3, 4 we have
them appear every 1, 1.1, 1.2, and 1.3 sec.).

Figure 7.7: Predator/prey appearance sequences, for N = 4 predators/prey
(predator/prey i = 1 is the top plot, i = 2 is the next one down, i = 3 is below
that, and i = 4 is the bottom plot).

Suppose that we know that the bounds on the spacing between appearances
are

δ1 = 1.05, δ2 = 1.15, δ3 = 1.25, δ4 = 1.35
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Notice that these are simply bounds for periods given in Figure 7.7. We choose
δs = 0.03. To model detection difficulty, and in order to satisfy the capacity
condition, we choose

a1 = 0.1, a2 = 0.2, a3 = 0.3, a4 = 0.1

This gives
∑4

i=1 ai = 0.7, which represents that the organism will be quite busy
in detecting predators/prey (lower values of this sum correspond to light loads).

There are several ways to measure performance of the attentional strategies.
Here we will compute the average of the length of time since any predator/prey
has been detected

1
N

N∑
i=1

Ti(k)

at each step k. We will also compute the time average of this quantity (i.e., the
time average of the average values) and the maximum average value achieved
over the entire simulation run. We will compute the maximum time that any
predator/prey has been ignored at each time step k

max
i

{Ti(k)}

We will also compute the time average of this quantity (i.e., the time average of
the maximum values) and the maximum of the maximum values achieved over
the entire simulation run. In order to measure how well we have focused on
higher priority predators/prey, we will use

1
N

∑
k

i∗(k)

where i∗(k) is the predator/prey chosen as step k. Clearly, higher values of this
measure will correspond to the case where on average, higher priority preda-
tors/prey were focused on, in the case where we use i to both label the preda-
tors/prey and as a priority parameter.

7.4.2 Attentional Strategy Behavior: Focus on Longest
Ignored

Here, we will illustrate the performance of the attentional strategy in Equa-
tion (7.1) that chooses the predator/prey to focus on that has not been detected
for the longest period of time.

First, consider Figure 7.8 where the top plot shows i∗(t), the predator/prey
being focused on at each time. The plot below it shows T1(t), and the bottom
plot shows T2(t). From the top plot it is interesting to note that the sequence
of predators/prey that is focused on is: 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, . . .. But, the
lengths of time that each is focused on is different, due to how the organism
decision times happen to line up with the predator/prey appearances and due
to the ai values. Notice the periodic behavior of the T1(t) and T2(t) plots (due
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to the switching from focusing on one predator/prey to another). Figure 7.9
shows a similar plot, but for predators/prey 3 and 4. Notice that the periodic
behavior of T3 and T4 is different from those shown in Figure 7.8. Ultimately,
the pattern of the behavior of the Ti(t) depends on the pattern of predator/prey
pulses, the ai values, the delay values, and how the predator/prey appearances
align with the decision times.
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Figure 7.8: Attention scheduler decisions, and Ti(t) for predators/prey 1 and 2.

Figure 7.10 shows a summary view of the dynamics of the attentional schedul-
ing process. There, in the top plot, we also plot the average of the priorities
of the predators/prey (assuming that priorities are defined by the i indices).
The bottom plot shows the dynamics by showing all the Ti(t) functions on one
plot so that you can see the pattern of switching, and the maximum amount of
time that the organism ignores any predator/prey. In Figure 7.11, we plot the
performance measures of the average length of time since the last detection and
maximum length of time since the last detection (and their average values as
the straight lines).

Next, the program outputs some numeric values of the performance mea-
sures: (i) The time average of the priorities is 2.5670, (ii) the time average of
the average values of the lengths of times waited is 3.4066, (iii) the maximum of
the average values of the lengths of times waited is 5.7949, (iv) the time average
of the maximum values of the lengths of times waited is 5.8297, and (v) the
maximum of the maximum values of the lengths of times waited is 9.6199.

The time average of the average values is 3.4066, and this provides a good
measure of scheduler performance. What does this value mean? It means that
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Figure 7.9: Scheduler decisions, and Ti(t) for predators/prey 3 and 4.

on average, the organism detected each predator/prey every 3.4066 seconds. Is
this good performance? Notice that the predator/prey appearances occurred
every 1, 1.1, 1.2, and 1.3 seconds (predators/prey i = 1, 2, 3, 4 respectively).
Considering the relative low rates of processing to detect the predators/prey,
and the delays in switching and waiting for appearances, this appears to be
reasonably good performance. Clearly, the performance could go up or down if
the frequency or timing of the predators/prey appearances changed.

7.4.3 Effect of Focusing on Higher Priority Predators/Prey

Next, we use the strategy in Equation (7.6) that picks the predator/prey that
has been ignored longer than the average one. For the set of predators/prey
that has been ignored longer than the average one, we choose the one that
has highest priority (i.e., predator/prey i with the greatest value of i). In this
way, we study how priorities enter into attentional strategies by augmenting
the strategy with a priority scheme. In this case, we get Figures 7.12 and 7.13.
We see in Figure 7.12 that the sequence of predators/prey that is focused on
is different from the previous strategy, and that the sequence is not periodic
in the same way (e.g., it is not a simple 1, 2, 3, 4 sequence). Also, we see that
the average value of the priority of the predator/prey that is focused on is a
bit higher, as we would expect. The bottom plot in Figure 7.12 shows quite a
different behavior than the bottom plot in Figure 7.10; notice that here there
is not an equal “balance” in focusing, since we see that the average values of
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Figure 7.10: Attention scheduler decisions, and Ti(t) for predators/prey i =
1, 2, 3, 4.

the Ti(t) are quite different (e.g., see the occasional peaks). Next, notice that
in Figure 7.13 we get poorer performance than that shown in Figure 7.11.

To quantify the performance further, notice that the numeric performance
Frequent focusing on
high priority
predators/prey generally
requires you to ignore
others for longer periods
of time.

measures are: (i) the time average of the priorities is 2.6896, (ii) the time
average of the average values of the lengths of times waited is 3.8204, (iii) the
maximum of the average values of the lengths of times waited is 6.4525, (iv) the
time average of the maximum values of the lengths of times waited is 7.6574,
and (v) the maximum of the maximum values of the lengths of times waited is
15.7399. This clearly shows that while we get slightly better focusing on higher
priority predators/prey, we get poorer performance for all the other performance
measures. We have paid a price in focusing on high priority predators/prey by
ignoring other predators/prey for longer periods of time.

7.4.4 Tuning Attentional Strategy Parameters

As we saw with Equations (7.8) and (7.10), there are ways to define attentional
strategies in terms of a set of parameters that specify how they make decisions
(e.g., weights or priorities that modify Jp). For instance, we could specify the wi

weights such that there is a high emphasis on focusing on one predator or prey.
To do this, you simply make one wi value much larger than the others. This will
result in frequent focusing on the corresponding predator/prey. Suppose that
we are not concerned with predator/prey priority, or that all the predators/prey
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Figure 7.11: Performance measures (average and maximum times since last
detection) and the time averages of their values.

have the same priority.
Can we tune the wi values in Equation (7.8) in order to try to improve

the performance measures? That is, can we use the parameters to simply try
to improve performance, rather than emphasize focusing on a particular high
priority predator/prey? The answer is yes, and to illustrate this, we ran a
few simulations, tuning the wi values with a focus on trying to minimize time
average of the average values of the lengths of times waited. We obtained w1 = 4,
w2 = 2, w3 = 1, and w4 = 4 and we get the performance in Figure 7.14. The
tuning strategy used was to try a set of wi values and look at the Ti(t) plots.
Then the value of wi was increased a bit for the predator/prey that had higher
peak values in order to try to make the strategy focus on that predator/prey
more heavily.

The performance for this new set of wi values is quantified via the following:
(i) the time average of the priorities is 2.5802, (ii) the time average of the average
values of the lengths of times waited is 3.2755, (iii) the maximum of the average
values of the lengths of times waited is 5.3599, (iv) the time average of the
maximum values of the lengths of times waited is 5.6423, and (v) the maximum
of the maximum values of the lengths of times waited is 9.0899.

Notice that compared to the result in Section 7.4.2, we have tuned the wi

values to get a better value for time average of the average values of the lengths
of times waited (there we obtained 3.4066). Is there further room to improve
the performance of the scheduler? This seems likely, as the tuning process used
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Figure 7.12: Attention scheduler decisions, and Ti(t) for predators/prey i =
1, 2, 3, 4.

did not involve consideration of too many values of the parameters. It should
be clear that the tuning problem can be quite difficult, especially if there are
many predators/prey.

7.5 Stability Analysis of Attentional Strategies

In this section, the first three attentional strategies defined earlier will be proven
to be stable, given that the capacity condition in Equation (7.5) holds. Stability
of the strategy defined in Equation (7.8) can be studied using a similar proof
procedure. Moreover, it is simple to extend the analysis below to the case
where priority parameters are added as discussed in Section 7.3.4. At the end
of this section, we will explain how to design a strategy that will stabilize any
scheduling strategy, such as the ones that we will discuss in the next section.

7.5.1 Stability Properties of Attentional Strategies

We begin with the strategies defined in Equations (7.1) and (7.6).

Theorem 1: Assume that Equation (7.5) holds. The attentional strategies
where the predator/prey that was ignored the longest time, or one that has been
ignored longer than the average one, as defined in Equations (7.1) and (7.6),
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Figure 7.13: Performance measures (average and maximum times since last
detection) and the time averages of their values.

have the following properties: They are stable in that

sup
t≥0

{Ti(t)} < Bi, i ∈ P

for some Bi > 0, i ∈ P so that they will not ignore any predator/prey for
too long. A specific bound on the ultimate longest time that the organism will
ignore any predator/prey is given by

lim
t→∞ sup

N∑
i=1

Ti(t) ≤ δ

⎡
⎣∑N

i=1 ai

a
+

āN

a
(
1 −∑N

i=1 ai

) max
i

{
−ai +

∑N
i=1 ai

ai

}⎤⎦
where a = mini{ai} and ā = maxi{ai}.
Proof: Let

V (t) =
N∑

i=1

aiTi(t)

be a “Lyapunov-like” function (strictly speaking it is not a Lyapunov function
because Ti(t) is not the state of the system, e.g., due to the presence of the
delays). You can think of V (t) as the amount of work that the organism needs to
do at time t in order to obtain perfect information about all the predators/prey.
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Figure 7.14: Attention scheduler decisions, and Ti(t) for predators/prey i =
1, 2, 3, 4.

The proof to follow focuses on the strategy where the predator/prey is chosen
that has been ignored longer than the average one; however, a special case of
this is when the one that is ignored the longest is chosen at each decision point
so the above bounds hold for that attentional strategy also.

Note that since Ti∗(kr)(Dkr+1) = 0 (i∗(kr) was the predator/prey that was
just detected),

V (Dkr+1) =
N∑

i=1

aiTi(Dkr+1) =
N∑

i�=i∗(kr)

aiTi(Dkr+1)

Also,
N∑

i�=i∗(kr)

aiTi(Dkr+1) =
N∑

i�=i∗(kr)

ai (Ti(Dkr ) + (Dkr+1 − Dkr))

since when the organism is focusing on predator/prey i∗(kr), the amount of time
that all other predators/prey are ignored increases by (Dkr+1 − Dkr) for each
i, i �= i∗(kr). Rearrange this equation to obtain

V (Dkr+1) = V (Dkr ) − ai∗(kr)Ti∗(kr)(Dkr) + (Dkr+1 − Dkr)
N∑

i�=i∗(kr)

ai (7.11)
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Now, use Equation (7.3) to obtain

V (Dkr+1) ≤ V (Dkr ) − α(i∗(kr))Ti∗(kr)(Dkr ) + β(i∗(kr)) (7.12)

where

α(i) =
ai

(
1 −∑N

j=1 aj

)
1 − ai

and

β(i) = δ

(
−ai +

∑N
j=1 aj

)
1 − ai

Note that α(i) > 0 and β(i) > 0 for all i ∈ P . To understand how Equa-
tion (7.12) is found, using Equation (7.3), note that since δ(Dkr ) ≤ δ

V (Dkr+1) ≤ V (Dkr ) − ai∗(kr)Ti∗(kr)(Dkr )

+

⎡
⎣ N∑

j �=i∗(kr)

aj

⎤
⎦ (1 − ai∗(kr))−1

[
δ + ai∗(kr)Ti∗(kr)(Dkr )

]
The term due to δ creates β(i∗(kr)). For the remaining terms, besides V (Dkr),
by grouping we get

−ai∗(kr)

(
1 −

∑N
j �=i∗(kr) aj

1 − ai∗(kr)

)
Ti∗(kr)(Dkr ) =

−ai∗(kr)

(
1 −∑N

j=1 aj

1 − ai∗(kr)

)
Ti∗(kr)(Dkr )

and this is used to define α(i∗(kr)).
Next, notice that due to the definition of either attentional strategy

α(i∗(kr))Ti∗(kr)(Dkr ) ≥ α(i∗(kr))
1
N

N∑
i=1

Ti(Dkr )

and due to the definition of ā,

α(i∗(kr))
1
N

N∑
i=1

Ti(Dkr ) ≥ α(i∗(kr))
1
N

ā−1
N∑

i=1

aiTi(Dkr )

(since ai

ā ≤ 1). But notice that

α(i∗(kr))
1
N

ā−1
N∑

i=1

aiTi(Dkr ) = α(i∗(kr))
1
N

ā−1V (Dkr ) (7.13)

Combine this with Equation (7.12) to get

V (Dkr+1) ≤
[
1 − ā−1N−1α(i∗(kr))

]
V (Dkr ) + β(i∗(kr)) (7.14)
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Subtract āN maxi
β(i)
α(i) from both sides of Equation (7.14) and after a bit of

algebra, you get

V (Dkr+1) − āN max
i

β(i)
α(i)

≤
[
V (Dkr ) − āN max

i

β(i)
α(i)

] [
1 − ā−1N−1α(i∗(kr))

]
+ β(i∗(kr))

[
1 − α(i∗(kr))

β(i∗(kr))
max

i

β(i)
α(i)

]
Focus for a moment on the last term in this equation, and notice that

β(i∗(kr))
[
1 − α(i∗(kr))

β(i∗(kr))
max

i

β(i)
α(i)

]
≤ 0

How do you get the last inequality? Note that β(i) > 0. If the maxi
β(i)
α(i) term

is maximized at some particular value j, then clearly this value divided by any
value considered in the maximization will be greater than or equal to 1.

Now, we have [
V (Dkr+1) − āN max

i

β(i)
α(i)

]

≤
[
V (Dkr ) − āN max

i

β(i)
α(i)

] [
1 − ā−1N−1α(i∗(kr))

]
(7.15)

But, notice that the second term on the right-hand side of this equation

[
1 − ā−1N−1α(i∗(kr))

] ≤ 1 − ā−1N−1 min
i

⎧⎨
⎩

ai

(
1 −∑N

j=1 aj

)
1 − ai

⎫⎬
⎭

≤ 1 − ā−1N−1

⎡
⎣a
(
1 −∑N

j=1 aj

)
1 − a

⎤
⎦

Notice that

0 <

(
1 −∑N

j=1 aj

)
1 − a

< 1

and
0 <

a

ā
< 1

so that
0 < 1 − ā−1N−1α(i∗(kr)) < 1

which makes the mapping in Equation (7.15) contractive so that

lim
kr→∞

sup
{

V (Dkr ) − āN max
i

β(i)
α(i)

}
= 0
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But this (ultimate) bound is in terms of only the decision points Dkr , kr =
1, 2, 3, . . . Due to the delay δ, the Ti(t) values can rise higher at times t not at
the decision points. However, for Dkr ≤ t ≤ Dkr+1

V (t) ≤ V (Dkr + δ)

But notice that

V (Dkr + δ) =
N∑

i=1

aiTi(Dkr + δ) =
N∑

i=1

aiTi(Dkr ) + δ
N∑

i=1

ai = V (Dkr ) + δ
N∑

i=1

ai

This gives us

lim
t→∞ sup V (t) ≤ δ

N∑
i=1

ai + āN max
i

β(i)
α(i)

and since

lim
t→∞ sup

N∑
i=1

Ti(t) ≤ 1
a

lim
t→∞ sup V (t)

we know

lim
t→∞ sup

N∑
i=1

Ti(t) ≤ δ
∑N

i=1 ai

a
+

āN

a
max

i

δ
(
−ai +

∑N
j=1 aj

)
ai

(
1 −∑N

j=1 aj

)
which gives the desired result.

Note that since the above bound for Theorem 1 may be conservative for some
situations, it would be of interest to specify “tight” bounds since this would
provide good guarantees for bounding the maximum time that a predator/prey
is ignored.

Next, we will study the stability properties of the other strategy defined in
the last section where we get a different bound on the maximum length of time
that a predator/prey will be ignored by the organism. The analysis, is however,
only slightly different and depends on the above proof.

Theorem 2: Assume that Equation (7.5) holds. The attentional strategies
defined in Equation (7.7) have the following properties: It is stable in that

sup
t≥0

{Ti(t)} < Bi, i ∈ P

for some Bi > 0, i ∈ P so that it will not ignore any predator/prey for too long.
A specific bound on the ultimate longest time that the organism will ignore any
predator/prey is given by

lim
t→∞ supV (t) ≤ δ(N − 1)

1 −∑N
i=1 ai

(
−a +

N∑
i=1

ai

)
+ δ

N∑
i=1

ai

≤ δ

[
N∑

i=1

ai

]
N −∑N

i=1 ai

1 −∑N
i=1 ai
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where a = mini{ai} and ā maxi{ai}.
Proof: Use the ideas from the proof for Theorem 1 and note that Equa-
tion (7.13) in this case is

α(i∗(kr))Ti∗(kr)(Dkr ) =
α(i∗(kr))
ai∗(kr)

ai∗(kr)Ti∗(kr)(Dkr )

≥ α(i∗(kr))
(N − 1)ai∗(kr)

N∑
i=1

aiTi(Dkr ) =
α(i∗(kr))

(N − 1)ai∗(kr)
V (Dkr )

The N − 1 factor appears, rather than N , for one i, Ti = 0. To complete the
proof, simply take the same approach as in the remainder of the proof of The-
orem 1, below Equation (7.13).

So, do these bounds give an indication of which of the three strategies is
“best”? Unfortunately, they generally do not since the bounds can be con-
servative. It is for this reason that simulation analysis is generally needed to
analyze the performance of particular strategies and determine which is best for
a particular predator/prey environment.

7.5.2 Stabilizing Mechanism for Attentional Strategies

At times there is significant knowledge about the predator/prey environment
and organism that is relevant to the design of attentional strategies. There is
then a natural tendency to incorporate this information in the specification of
the attentional strategy, often in the form of “scheduling heuristics.” We will
briefly discuss two such approaches in the next section. The problem with this
approach, however, is that the resulting strategies may end up being somewhat
nonstandard and there may be concerns about whether they will be stable.

Fortunately, the approach in [290] to specifying a “universal stabilizing
mechanism” (USM) for any scheduling strategy actually holds for the atten-
tion scheduling problem. (Actually, the approach in [290] was developed for a
fixed size delay and we have a time-varying but bounded delay; however, the
proofs there can be directly extended to our case with no difficulty.) This mech-
anism can then be applied to any heuristically constructed attentional strategy,
and you will be ensured that the overall strategy will be stable. In this sec-

The USM allows the
designer to focus on
improving performance
of the attentional
strategy.

tion, we introduce the USM from [290]. In the next two sections, we introduce
two types of schedulers that exploit predator/prey domain information to try
to enhance scheduler performance, and which can be stabilized by the USM
introduced here.

The key fact is that for the resource allocation problems we consider here,
as long as the capacity condition is satisfied, it is possible to define a USM
which, when used to supervise a scheduling strategy, will always result in stable
operation. To define the USM, let Q denote a first-come first-serve (FCFS)
priority queue for predators/prey that have been ignored for a long time. For
instance, if predator/prey’s Ti value becomes too large, we will have criteria for
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entering the queue at some time t′. If predators/prey i and j are in the priority
queue, and j entered it before i,

Q = (. . . , i, j, . . .)

then when this priority queue is serviced, predator/prey j will be taken off
the queue and focused on before predator/prey i (the “tail” of the queue is
the first predator/prey listed after the “(” and the “head” of the queue is the
predator/prey listed just before the “)” in the definition of Q above). We need
some additional parameters to specify the USM. Let L > 0 be a large number
satisfying

L >
Nδ

1 − ρ

where ρ is specified in Equation (7.5), N is the number of predators/prey, and
δ is the bound on the maximum delay. Next, let

Hi > 0, i ∈ P

denote a set of parameters, the interpretation of which will become clear as we
define the USM.

The USM is implemented by the following set of rules:

1. Truncation rule: The organism can process no predator/prey i longer than
Lai time units. This means that if at time t′+δs+δe(t′) the organism starts
to try to detect predator/prey i, then it can only try to detect it no longer
than up to the time t′ + δs + δe(t′) + Lai. If detection occurs before that
time, then the strategy acts as usual and selects another predator/prey
to focus on. If, however, it has not yet detected predator/prey i by this
time, it is forced to make a new decision (which could entail switching
predators/prey). Note that if it does switch to another predator/prey, we
assume that the progress it had made on predator/prey i is used, but that
the time since it was last detected, Ti, begins to increase again.

2. Rule for entering Q: Predator/prey i enters the tail of the priority queue
Q at time t if we have not just decided to focus on i or are currently
focusing (cognitively processing) to detect i, and Ti(t) > Hi (hence, the
Hi are thresholds for when a predator/prey is placed in the queue).

3. Predator/prey selection rule: If Q is not empty when the organism has
finished focusing on a predator/prey (either by achieving Ti = 0 or via
rule 1 above), then the predator/prey at the head of the priority queue Q
(i.e., FCFS) is chosen.

4. Rule for leaving Q: A predator/prey i leaves Q at the time t′ + δs + δe(t′)
where t′ is the time point when predator/prey i was selected by rule 3.

5. Rule for processing-time for a predator/prey from Q: If predator/prey i
from Q is chosen to be focused on, then beyond the time t′ defined in
rule 4, it is processed for Lai time units unless it is detected (i.e., Ti = 0)
before this time elapses.
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Notice that this is not simply another attentional strategy. It actually de-
fines a “supervisor” for any attentional strategy (e.g., ones that exploit heuristic
information from the problem domain) that ensures it will result in stable op-
eration. If you have constructed a stable strategy, and you choose L and the
Hi, i ∈ P , large enough, then the USM will never intervene. The USM simply
truncates the processing of predators/prey that are not found fast enough, and
via Q makes sure that predators/prey that have been ignored for too long will
get attention. How do we pick L and the Hi parameters? If you pick Hi = 0,
i ∈ P , then the USM simply enforces a type of FCFS strategy on predators/prey
with Ti > 0, but it stops processing any predator/prey that is focused on too
long. In this case, the USM always intervenes. As you increase the size of L
and the parameters Hi, i ∈ P , the USM intervenes less frequently.

What is the value of the USM? In a sense, it frees the designer of attentional
strategies from being concerned about the stability of the myriad possible atten-
tional strategies (but of course, the stability analysis of Section 7.5 is still useful,
particularly if the analysis helps to clarify how to design the strategy to achieve
high performance operation). You can adopt a design philosophy where you
construct a very complicated attentional strategy, possibly exploiting heuristic
ideas about how to achieve the best performance. Then, you can augment such
strategies with the USM and be assured that you will obtain stable operation.
Essentially, the USM allows the designer to focus on the design of attentional
strategies to improve attention scheduling performance. To illustrate this point,
in the next section we will briefly discuss the design of two heuristic strategies,
ones based on our intuitions about the problem domain.

7.5.3 Planning and Attention

In this section, we discuss two ways to use planning concepts from Chapter 6
in attentional strategies. Intuitively, this should make sense. We can plan how
to pay attention to a set of predators and prey if we have some idea of how
the environment might behave, and if we consider alternative predators/prey to
focus on based on predictions about how they might behave. We consider the
alternatives and choose what we think is the best one to focus on based on these
predictions. As an example, per our discussion in Sections 7.3.3 and 7.3.5, it
should be clear that even our earlier strategies used a type of online optimiza-
tion to choose which predator/prey to focus on. Moreover, for the strategy in
Equation (7.8), we used a type of prediction in determining which was the best

If environmental or
organism information is
available, it can be used
to plan what to attend
to.

predator/prey to focus on (there we predicted which Ti would be highest after a
delay, scaled that prediction, and then used it to decide which predator/prey to
focus on). For that strategy, the information we used was quite simple, and only
incorporated some information about delays in the organism and environment.

Hence, in a limited way we have already considered the use of planning con-
cepts in attentional strategies. Here, however, we will consider two explicit ways
to incorporate more detailed information about the environment. We invite the
reader to evaluate the performance of these strategies in Design Problem 7.6.
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Attentional Strategies that Use Predator/Prey Behavioral Charac-
teristics

The strategies considered up to this point do not incorporate a significant
amount of a priori information that may be available about the likely tim-
ing of predator/prey appearances. For example, if the organism has identified
the predator/prey type, it may have a good guess of when the next appearance
time will be, or if it has observed a fixed pattern of appearances in the past,
it may have a guess of when it will appear again. Without using such a pri-
ori information, the attentional strategies may focus on a predator/prey even
though it is unlikely that it will appear or be found for some period of time,
and during this time, the organism could more profitably search for and detect
other predators/prey.

How can such a priori information be incorporated? We simply provide a
few ideas here. First, suppose that we use a “certainty of appearance” function

Ck
i (t, tki )

for each predator/prey i, which is defined along the time-line t ≥ tki starting
from the time tki when predator/prey i was last detected (i.e., from the time that
the predator/prey was detected for the kth time). Suppose that this function
has values in the range of [0, 1], with 0 representing that it is unlikely that there
will be an appearance, 0.5 representing uncertainty about whether there will be
an appearance, and 1 representing that you are certain that there will be an
appearance (based on a priori information). Now, suppose we define a strategy
that at each decision point simply picks the predator/prey to focus on that is
most likely to appear (and perhaps taking into account any delay in switching
focus to a different predator/prey). See Figure 7.15.

In Figure 7.15, notice that there are appearance certainty functions for four
predators/prey. Predator/prey 1 is predicted to appear with a higher frequency,
and the width of each of the humps quantifies the certainty of occurrence of ap-
pearance; hence, appearances are most certain at the peaks. Notice that preda-
tors/prey 2 and 3 are predicted to have similar (lower) frequency appearances,
but the precise timing of the appearances is not as certain and this is quantified
via the spreads of the humps being larger. Predator/prey 4 is predicted to be
a lower frequency illuminator, but the certainties of when the appearances will
occur is similar to that specified for predator/prey 1. Note that the parameters
defining the Ck

i (t, tki ) functions (e.g., the points where the peaks occur and the
spreads) could be estimated in some situations by some other cognitive subsys-
tem, and then the Ck

i (t, tki ) functions used by the attention scheduler could be
changed. Finally, note that these certainties could be scaled by predator/prey
“priorities” so that the strategy could choose to focus on the highest priority
predator/prey that is likely to produce an appearance.

Will this result in a stable strategy? No, not if that is all that is used in the
attentional strategy. It could be that you have bad a priori information so that
bad guesses are made and the appearances are never found for a predator/prey
and so the length of time that it is ignored goes to infinity (representing that
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Figure 7.15: Attention strategy that exploits information about likely times of
appearance of predators/prey.

ultimately it knows nothing about the predator/prey). We can, however, use
the USM of the previous section to ensure stable operation. Moreover, if the
Ck

i (t, tki ) represent good predictions about the predators and prey, it is possible
that very good scheduling performance can be achieved.

Attentional Strategies Based on Model Predictive Control

In most engineering applications we can simulate, to a reasonable degree of ac-
curacy, the domain in which we make decisions. For instance, in this chapter
we have simulated the predator/prey environment in Section 7.4. The actual
predator/prey environment is certainly somewhat different from what our simu-
lations would lead us to believe. Let us suppose, however, that we can simulate
the predator/prey environment reasonably well, at least in its broad character-
istics. Furthermore, suppose that the organism can simulate this model of the
predator/prey environment in real-time in some cognitive module. Would such
a simulation provide useful information to help decide which predator/prey to
focus on? Below, we study this question by providing one way to incorporate a
simulated predator/prey environment into a scheduling strategy.

Suppose that we use the model of the predator/prey environment to predict
how the organism will perform using different strategies or orders of focusing on
predators/prey. Suppose that we use the model to predict M different behaviors
that result from M different candidate sequences of predators/prey to focus on
of length Nh (a specification of a sequence of Nh predators/prey to focus on).
The strategy is shown in Figure 7.16.

As shown in the figure, for the MPC strategy we rank order the M different
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Figure 7.16: Model predictive control (MPC) for use in an attentional strategy.

predator/prey focus sequences and choose the best one, and then we focus on
the predator/prey specified as the first one to focus on in the best predator/prey
sequence. The process repeats at the next decision point, i.e., when that preda-
tor/prey is detected. You can think of the MPC attentional strategy as a more
sophisticated version of the attentional strategy discussed in the last section.
We think of Nh as specifying a “receding horizon” or length of time we predict
ahead in time. For a very uncertain predator/prey environment it typically
does not make sense to make Nh very large since the predictions will typically
become more inaccurate as we predict farther ahead in time. If, however, your
model is good and you have sufficient computational resources you may want
to predict into the future for longer periods of time so that the best possible
predator/prey is chosen to focus on.

Clearly, if information was gathered online, you may be able to profitably
update the model that is used in the MPC strategy (this would then result
in the incorporation of learning and planning into attention). Moreover, it is
not difficult to incorporate a predator/prey priority scheme. Will MPC-type
strategies result in stable scheduling? Probably not. However, once again we
can use the USM to ensure that we obtain stable operation.
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7.6 Attentional Systems in Control and Automa-

tion

In this section we will overview how attentional systems and multisensor inte-
gration can be used in control and automation. For more information on each
of these topics, see the “For Further Study” section at the end of this part.

7.6.1 Attentional Strategies for Control

In this section, we briefly explain how to augment the control strategies consid-
ered so far with attentional mechanisms. Later, in Chapter 9, we briefly discuss
relationships between learning and attention and in Section 9.4.5, we discuss
how to augment adaptive (learning) controllers with attentional mechanisms.

At the neural level, attentional mechanisms can be implemented by neurons
so that an organism focuses on the most important aspects of its environment
in achieving a control task (e.g., stimulus-driven attention reorienting that is
implemented in a network of neurons). There has been a variety of neural
network models introduced for attentional systems, and some of these have
been experimentally validated to a certain extent. Some of the models have
incorporated the hierarchical aspects of attention, while others have illustrated
how attention is integrated with visual processing such as object recognition.
Here, we do not investigate neural network models for attention, but in Design
Problem 7.5 we provide some references and invite the reader to do so.

Attentional strategies
can be employed in
rule-based planning and
learning controllers.

Typically, the central issue in augmenting a fuzzy or expert controller with
an attentional mechanism is to add a mechanism that manages the matching
process since that is typically the most complex part of those systems, and the
part where sensory data are processed to determine how they should be used.
The attentional system in this case could try to prune the number of rules that
are on at any one time based on contextual information that is gathered. For
instance, suppose that you have a controller with many inputs (e.g., 1000 or
more). In this case, you could define priorities for your control objectives and
then you could only consider inputs that help you to meet those objectives, or
you could process the inputs to capture the essential features. This would be
a supervisory strategy that managed the flow of input information so that the
computational complexity is reduced. This strategy is shown in Figure 7.17.

To achieve “attentive planning,” the ideas for integrating planning and at-
tention in the last section could be useful, or, the attentional system could prune
projections into the future (as in Figure 6.2) since that is often the most compu-
tationally complex part of the planning process. This is pictured in Figure 7.18.
Goals, hard constraints, and other inputs may provide the information for how
to prune. Attention can make the complex problem of predicting the many ways
that the system can behave in reaction to different sequences of inputs, but it
could result in a performance degradation in control performance. Essentially,
attention tries to reduce complexity to a manageable level, without sacrificing
too much performance.
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7.6.2 Filtering and Focusing: Multisensor Integration

In complex highly automated systems, it is often necessary to use multiple
types of sensors for obtaining information about the environment (plant). For
instance, a mobile robot may need sensors for velocity, acceleration, yaw, etc.
It may also need a vision system for obstacle avoidance, coupled perhaps with
radar or an ultrasonic sensor for reliability in achieving obstacle avoidance.
The robot must decide how to combine this information for object recognition,
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decision-making, and other tasks. For some tasks it may ignore some sensor
data, and pay attention to other data. For other tasks it may “fuse” data from
two or more different sensors. The general task for a “multisensor integration
system” is to distill the most useful information from the suite of sensors. A
general sensor integration system is shown in Figure 7.19.
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Figure 7.19: Multisensor integration and fusion (adapted from [339], c© IEEE,
used with permission).

Sensor fusion and
integration are closely
related to key
functionalities in
attentional systems.

Here, we see that there are N sensors, each possibly of a different type, or
copies of one type of sensor (e.g., for reliability purposes). There is a sensor
selector that decides which sensors should be enabled. Then, there is a sensor
fusion strategy. In Figure 7.19, we show one strategy where information from
sensor 1 is fused with information from sensor 2, and then that fused information
is fused with the information from sensor 3, and so on. Other strategies are also
possible (e.g., having two fusion strategies combine information from two sensors
each, then you could have another fusion approach for the fused information
from those). There are a wide variety of methods for multisensor fusion (e.g.,
Kalman filtering, Bayesian estimation, etc.), world modeling, sensor selection,
and data transformation. The interested reader should consult the references in
the “For Further Study” section at the end of this part.

The fusion strategies may have guidance from the higher level functional-
ity. The fused information is passed to the higher level and may be stored in a
“world model” (a representation of aspects of the environment that are useful
for decision-making to reach the goals, but which may also help guide the overall
strategy as to how to fill information that is needed). To achieve world model-
ing and ultimately sensor integration, we will often have to also perform data
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transformations. Ultimately then, multisensor integration systems do possess
some key features of learning, and that topic is covered in Part III. Next, note
that there is a general process of filtering that is naturally involved in sensor
fusion where some information is discarded and other information is derived
by combining data. This results in a “low” level of representation early in the
fusion process and a “high” level of representation at the end where the most
useful information has been obtained.

There are several possible advantages to integrating information from mul-
tiple sensors. For instance, some sensors may provide redundant information
which can reduce overall uncertainty about what is being sensed, or it can
provide for fault tolerance in case a sensor fails. Sometimes information is com-
plementary in the sense that it may allow, via appropriate processing, for the
perception of some objects that could not be perceived otherwise. Sometimes,
multisensor integration can speed up the overall process of decision-making by
providing the proper information faster. Other times, it may be possible that
using multisensor integration strategies will result in a less-expensive system.

Finally, we note that the focus in this chapter is largely not on attentional
strategies for control or on multisensor integration, but on how to use control
concepts (scheduling for resource allocation) for attentional strategies.

7.7 Exercises and Design Problems

Exercise 7.1 (Simulation of Attentional Strategies):

(a) Simulate all the attentional strategies in Section 7.4, reproducing the
results found there.

(b) Let N = 3 and use

δ1 = 0.9, δ2 = 1, δ3 = 1.2

Synthesize sequences similar to those shown in Figure 7.7 that satisfy
these constraints (make the appearances periodic). Choose δs = 0.03
and

a1 = 0.3, a2 = 0.2, a3 = 0.1

Simulate the three attentional strategies studied in Sections 7.4.2
and 7.4.3 and evaluate the performance of each attentional strategy.
Tune the wi parameters to obtain as good performance as you can
via manually tuning these parameters.

Exercise 7.2 (Stability Analysis of Priority-Based Attentional Strate-
gies): Prove that the policy defined by embedding priorities via the ap-
proach in Section 7.3.4 into the strategy defined by Equation (7.1) is stable
if appropriate conditions are met (state these, and show each step in your
proof). Provide explicit ultimate bounds on the Ti values.
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Exercise 7.3 (Stability Analysis of an Attentional Strategy): Prove
that the attentional strategy defined in Equation (7.8) is stable if appro-
priate conditions are satisfied (specify the conditions and show each step
in your proof). Provide explicit ultimate bounds on the Ti values.

Design Problem 7.1 (Tuning Attentional Strategies with Priorities):
This problem focuses on how to tune attentional strategies to improve their
performance.

(a) Specify priority parameters pi ∈ P and explain how to embed a
priority scheme into the attentional strategy in Section 7.3.2 using
the ideas in Section 7.3.4. For a specific set of priority parameters,
develop a simulation of the priority attentional strategy and evaluate
its performance for the scheduling problem defined in Section 7.4.
Tune the priority parameters to try to improve performance, where
you measure performance by the time average of the average values
of the lengths of times waited.

(b) Next simulate the strategy given by Equation (7.8) and tune the wi

parameters to obtain better performance, as measured by the time
average of the average values of the lengths of times waited, than
what we obtained in the chapter. Compare the performance that
you obtained to that which you obtained in (a).

Design Problem 7.2 (Stable Attentional Strategy Design):

(a) Suppose that you consider the set P of labels for the predators/prey
as specifying the sequence that they should be focused on (and sup-
pose that this sequence is fixed a priori by the labeling). Suppose that
you define a policy that at each decision point simply picks preda-
tor/prey 1, 2, . . . , N in sequence, and after it finishes with preda-
tor/prey N , it returns to predator/prey 1 and repeats the process.
Will this result in a stable attentional strategy? Why? Why not?
Can you generate a counterexample to stability, or provide a proof
of stability that does not use the USM?

(b) Can you define an attentional strategy that will result in stable op-
eration, but is different from the others discussed in this chapter and
does not use the USM? Specify the strategy and prove stability.

Design Problem 7.3 (Design of Universal Stabilizing Mechanisms):
For the scheduling problem in Section 7.4, employ the attentional strategy
defined in Design Problem 7.2(a). Augment the strategy with the USM.
Simulate the strategy for various choices of USM parameters and explain
the effects of these parameters on attentional strategy behavior and perfor-
mance (measure performance by the time average of the average values of
the lengths of times waited). Be sure to simulate the attentional strategy
for a sufficient period of time so that the performance measures represent
the long-term performance of the attentional strategy. To get accurate
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performance measures, do you need to repeat the simulation many times
with different sequences of choices of predators/prey to focus on?

Design Problem 7.4 (Design of “Optimal” Attentional Strategies):
This problem builds on Design Problem 7.1 by exploring systematic ways
to pick the best attentional strategy parameters. Choose a stable atten-
tional strategy (you may use the USM) that seems to have the potential
to obtain a better value for the time average of the average values of the
lengths of times waited than the one in Section 7.4.2. One approach to this
is to tune the priority or weighting parameters for the attentional strate-
gies in Design Problem 7.1 to try to obtain better performance. Tune the
parameters of the attentional strategy with a goal of obtaining a better
value for the time average of the average values of the lengths of times
waited than the one in Section 7.4.2. Hint: You may want to produce a
systematic approach to tuning the parameters of the scheduler rather than
just manually tuning them. One approach to do this is to use ideas from
the “response surface methodology” discussed in Chapter 15. A simple
version of this approach is to simply create a grid of attentional strategy
parameters and simulate the strategy for each point on the grid (which
can take significant computational resources) and pick the parameters that
correspond to the best performance. Another approach would be to use
the “simultaneous perturbation stochastic approximation” algorithm that
is studied in Chapter 15.

Design Problem 7.5 (Neural Models of Attentional Systems)�: There
is research in the literature on how to develop neural network models of
attentional mechanisms and this problem studies the simulation of atten-
tional systems via such models.

(a) For background reading, read the article [372]. Search the literature
on this topic to supplement this study.

(b) Implement code necessary to study the attentional system and re-
produce the simulations shown in [372]. Focus on the simulation of
the “spotlight” view of attention.

(c) Explain how such an attentional mechanism may be useful in a con-
trol system. Identify at least two ways in which it can be used.

Design Problem 7.6 (Attentional Strategies Based on Planning and
Learning)�: In Section 7.5.3 we introduced two ways to use planning
concepts in attentional strategies. Here, you will completely specify such
a strategy, simulate it, and evaluate its performance.

(a) Using the ideas in Section 7.5.3, develop an attentional strategy that
incorporates planning concepts. You do not have to precisely fol-
low the methodologies specified earlier; you can invent your own
method. Specify the attentional strategy, explain what environmen-
tal/organism information it needs in order to predict how the atten-
tional strategy will operate, explain what cost function will be used
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to select a single sequence of predator/prey focuses (plan) from the
set that is generated, and explain how the overall approach seeks to
improve attentional performance. Specify the strategy in a way that
will ensure that it is stable (you may use the USM).

(b) Specify a single performance measure that you would like to optimize.
Develop a simulation of the attentional strategy that you specify in
(a) and tune the strategy to try to optimize your chosen performance
measure. You should use a scheduling problem and performance
measure similar to the ones in Section 7.4.

(c) Next, expand on your strategy by incorporating a method to learn
the model that is used by your planning strategy to predict. Repeat
(b) for this strategy.

Design Problem 7.7 (Cooperative Attentional Systems)�: Suppose that
there are M agents, each with an attentional system given by the model
used in the chapter. Suppose that they are seeking predators and prey, but
that they do so cooperatively in the sense that they identify N predators or
prey and then cooperate on paying attention to them. With cooperation
we expect that there will be an increased “capacity” to pay attention.

(a) Define two cooperative attention strategies. For instance, suppose
that the M < N agents act autonomously but share an “unattended”
set of things that are not paid attention to at the current time. There
is then a corresponding set of predators/prey that the group of M
agents is attending to. A decision strategy can be defined in terms
of what each agent does at its decision times. For instance, it may
“check out” (using a mutual exclusion strategy) the unattended set
and pick a particular predator/prey to focus on; then it can “return”
the new unattended set to the others. It can then focus on that
predator/prey until it is detected. The agents would then make all
their decisions asynchronously. What predator/prey should be cho-
sen from the unattended set? Mathematically define two strategies
for the agents to make these choices.

(b) Simulate the cooperative attentional strategy and show plots as we
did in the chapter to evaluate their performance (e.g., relative to the
M = 1 case).

(c) Augment your strategies with the learning/planning methods you
studied in Design Problem 7.6 and then evaluate their performance
in simulation.

(d) Find conditions under which the strategies of (a) will result in sta-
bility in the sense that it was studied in the chapter.




