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In the second chapter of this part we studied how fuzzy or expert systems
could be used to represent human knowledge about how to perform control tasks.
Essentially, they represent control software by emulating cognitive functional-
ities. Here, we focus on how to emulate the “software” functionality of more
sophisticated reasoning strategies that use planning in order to decide how to
control a plant. Since planning requires an ability to form representations (mod-
els) in the brain, exercise these representations to generate predictions about
how the environment will react to various plans, choose among alternative plans,
and execute a sequence of actions, it is only found in higher organisms (e.g.,
humans). While it certainly requires a neural network for implementation we
do not focus on that; our focus here is on the functionalities basic to planning
systems, and in particular, planning capabilities of humans as understood by
psychologists.

Why is planning useful for control? Essentially, it is one approach that al-
lows for more than simple reactions to what is sensed. It utilizes information
about the problem and environment, often in the form of some type of model,
and considers many options and chooses the best one to achieve the closed-loop
control objectives. Planning provides for a very general and broadly applica-
ble methodology and it has been exploited extensively in conventional control
(e.g., in receding horizon control and model predictive control). As compared
to the fuzzy and expert system approaches, it exploits the use of an explicit
model to help it decide what actions to take. Like the fuzzy and expert sys-
tem approaches, it is still, however, possible to incorporate heuristics that help
to specify what control actions are the best to use. Hence, in a broad sense,
planning approaches attempt to use both heuristic knowledge and model-based
knowledge to make control decisions; this may be the fundamental reason for
selecting a planning strategy over a simple rule-based one. It is often bad engi-
neering practice to only favor the use of heuristics and ignore the information
provided by a good mathematical model; planning strategies provide a way to
incorporate this information.

6.1 Psychology of Planning

At an intuitive level, via introspection, you already understand what planning
is. We plan our activities for the weekend, we plan a shopping trip, or plan how
to solve a problem. A plan is a sequence of steps to achieve a goal, perhaps by
performing tasks to achieve subgoals that then lead to the achievement of an
overall goal.

Plans are typically
hierarchical in that each
task in sequence can
often be viewed as a goal
with a sequence of tasks
to achieve it.

6.1.1 Essential Features of Planning

We often form “action plans” to try to achieve specific goals. For instance,
consider Figure 6.1 where an “action hierarchy” is given as one type of action
plan. Here, at the highest level there is the goal “eat lunch.” Suppose that the
person who is hungry, a professor who just got a job teaching at a university,
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develops a plan for how to achieve the goal to eat as the lunch hour approaches.
The goal motivates the professor to pay attention to his hunger and pay attention
to, and construct, a plan to meet his goal. This plan is formed using his past
knowledge of what was successful for him when he was in graduate school,
but modified somewhat due to his new role as a faculty member in a different
university. In order to achieve his goal of eating lunch, he decides that he should
consult the telephone directory given to him when he arrived since this may give
him an idea of what restaurants are nearby. Next, since he is not familiar with
any of the restaurants he found in the phone book, he asks some students and
colleagues which restaurants have good food, are inexpensive, and yet have
fast service. Notice then that some blocks in Figure 6.1 can be thought of as
goals and tasks. Also, some of the blocks may need to be broken down further
into tasks and goals. Next, the professor must pick a restaurant (based on
personal tastes and priorities), find directions, choose a mode of transportation
and route, and then travel to the restaurant. Hence, while a plan hierarchy may
be conceptual, and as it is executed you may abstractly traverse the hierarchy,
it may be that a subplan involves executing movements over a route that itself
may be thought of as a planned path (e.g., the route to the restaurant). Clearly,

Learning and use of
models for prediction is
central to the activity of
planning.

there also may be a need for replanning, for example, if the planned route is
unexpectedly blocked, or if the initial plan was in error due to someone providing
bad directions. After arriving at the restaurant, the professor may execute a
standard plan (a “script” available from his experience of eating at restaurants
before) where he orders, eats, pays, and then returns to his office.

Eat lunch

Consult phonebook
Ask students

and colleagues
Choose restaurant

Get directions
Choose route and

transportation
Go to restaurant

Order food, drink Eat Pay Return to office

Figure 6.1: Action plan as an action hierarchy, an example.

Notice that the next day the professor’s high-level goal may be the same
near noon when he gets hungry, but he is likely to modify the plan based on
his experience from the previous day. He may be inclined to return to the
same restaurant if it was good, but may also want to sample others in order
to learn whether others may be better (i.e., he may plan to try to learn more).
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Clearly learning influences how we plan, and hence how the action hierarchy is
formed and executed. For instance, as we learn the various routes to different
restaurants, we essentially develop a “cognitive map” of the streets to get to
the restaurants, and we use this map in the future (e.g., we plan over that map
to minimize our travel time). We think of this “map” as a type of model that
we learned that allows us to predict how a variety of plans will work, and hence
it allows us to optimally achieve our goals by choosing the plan that minimizes
travel time. This feature of exploiting past knowledge to predict (plan) ahead,
and the process of choosing the “best plan,” are essential features of successful
planning, and flexible intelligent behavior. Moreover, the focus of attention is

Optimization is essential
to choose which plan is
best.

essential to planning, both the “internal focus” on traversing the action hier-
archy, and the focus during execution of the plan to detect plan failures (e.g.,
observing a blocked street). Due to the hierarchical nature of the process, it
seems that both planning and attention have hierarchical characteristics, and
there is neurophysiological evidence of this intuition.

6.1.2 Generic Planning Steps

While the above example serves to illustrate some of the essential features of
how a human plans in one situation, it is useful to consider the following generic
planning steps:

1. Represent the problem (“planning domain”): In order to plan, you must
have some type of representation (model) of the problem that must be
solved. This model could be in the form of a road map if you are trying to
plan a route to get somewhere, or it could be a more conceptual map of the
structural-functional characteristics of a problem. We generally think of
these models as being acquired via experience (i.e., via learning), however,
it is certainly the case that instincts (models passed to us via evolution)
affect planning. For instance, we have certain “hard-wired” knowledge
that can be thought of as aspects of models that influence planning (e.g.,
tendency to have a fear of snakes and some insects). Our performance
in planning is critically dependent on our model of the problem. A poor
model will generally lead to a bad plan, or at least to one that soon fails,
thus requiring replanning. A high quality model that allows us to project
far into the future (or down a hierarchy of tasks and subgoals), may lead to
better plans. However, characteristics of the problem domain may make
it impossible to specify a good model. For instance, time varying and
stochastic features of some problem domains may make it impossible to
predict into the future with any accuracy, and hence make it a waste of
time to predict too far into the future. The difficulties in developing or
generating a model include many of the same ones discussed in Part I for
design and truth models. Differences arise however, since in planning we
often learn the model as we plan.

2. Set goal: Setting goals is essential to planning, since without goals there
is no purposeful behavior. Goals can be very different for different people,
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environments, and times. Goals are driven by evolutionary characteristics
(e.g., the goal of survival, the goal of reproduction), but in humans such
goals can also be significantly affected by our values and ideals (e.g., ones
set by culture). Goals can be learned, and can consist of a time-varying
hierarchy or sequence of subgoals.

3. Decide to plan: Sometimes humans simply react to situations without con-
sidering the consequences of their actions. Other people decide to develop
a plan since they may think that this will allow them to more successfully
reach their goals. There are many issues that affect the decision of whether
or not to plan (e.g., physiological and cultural). Many lower animals (e.g.,
some bacteria) cannot plan; they simply react to stimuli.

4. Build a plan (select a strategy): Normally the selection of a plan first
involves projecting into the future using a model (e.g., in path planning
on streets), and often involves considering a variety of sequences of tasks
and subgoals to be executed (as in the action plan discussed above). In
terms of a graph-theoretic view, you may think of this as a “tree” of plans
where the nodes of the tree are tasks or subgoals, and links between these
indicate plans (a path in the tree is a candidate plan). See Figure 6.2. How
“deep” a tree to generate (e.g., how far to plan into the future) depends
on the quality of the model, characteristics of the environment, and how
much time or resources you have to plan. The second key component of
selecting a plan is the solution of an optimization problem. For instance,
suppose that the links on the “tree” that represents the set of possible
plans are each labeled with integer values that represent the “cost” of
performing the task represented by going in that direction in the tree.
For instance, the cost may represent distance traveled or time to execute

It is useful to view plan
generation as forming a
“tree” of possible
behaviors for each plan.
Plan selection involves
ranking the quality of the
behaviors and choosing
the plan that produces
the best behavior
according to the model.

the task, and the characteristics of the cost are typically dictated by the
goal. Next, suppose that the tree represents a finite number of possible
plans, and that the cost of a plan is represented by summing the costs
of each link that represents a step in the plan. We can then order the
plans according to cost and perform minimization by picking the lowest
cost plan (the “best” plan). Again, see Figure 6.2. For example, this may
be the shortest route to the restaurant in the above example, if we are
solving the subtask of route planning to the restaurant.

5. Execute plan, monitor, and repair/replan: After selecting a plan you must
decide how to execute that plan. While we execute the plan, we monitor
it by detecting deviations from what is expected to make sure that all is
going well. Then, especially in an uncertain problem domain, it could be
that there is a “plan failure” so that there is a need to repair the current
plan, or to develop a completely new plan (the frequency of replanning
is generally proportional to the amount of disturbances you have in the
plant). The decision of whether to simply “tweak” the current plan, or
develop a completely new one is difficult and can involve assessments of
available resources (e.g., time), and the extent to which goals are being
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Figure 6.2: Tree representation of the alternative plans that can be considered
at some point in time, along with the costs of executing such plans.

met. Some problem domains are particularly difficult to monitor and
hence there may need to be a parallel process operating that estimates the
“state” of the domain from available sensed information (this is sometimes
called “situation assessment”). Our ability to do this depends on the
“observability” properties of the problem domain (i.e., whether we can
compute the state of the plant from measured inputs and outputs). When
using such estimates, you may need to guess whether the plan is succeeding
and subsequently replan.

Next, it is important to note that there are many cognitive factors that can
influence how we plan. For instance, the amount of knowledge we have and
our ability to learn is critical. Our current stress level, emotions, coping skills,
personality, values, and self-confidence all affect our performance in planning.
Moreover, the capabilities of our biological neural network in working memory
affect the complexity of plans we can consider, and rate at which we can develop
plans. Our attentional skills play a key role in ensuring that we stay focused on
our goals, and on the most important planning task at hand.

6.2 Design Example: Vehicle Guidance

In this section we will develop a simple planning strategy for control of the
position of an autonomous vehicle to move it toward a goal position (i.e., to
guide the vehicle). This example only illustrates the first of several ways in
which we use planning concepts for control in this book. It is primarily used to
give intuitive insights into how planning strategies operate. In the next section
we will explain more advanced concepts on how to design planning strategies for
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nonlinear dynamical systems. In Section 9.4.5 we will discuss how learning and
planning can be combined in adaptive control. In Chapter 16.5 we will use basic
ideas from planning systems to formulate an approach to evolutionary adaptive
control. Finally, in Section 19.6 we will discuss how biomimicry of learning and
planning of social foraging animals can be used in distributed coordination and
control for vehicles.

6.2.1 Obstacle Course and Vehicle Characteristics

The particular type of vehicle guidance problem we will consider will be one
where we seek to guide the vehicle from some initial position to a goal position
while avoiding collisions with obstacles. For example, you might think of trying
to guide a vehicle through the halls of your building without running into walls.
We will assume that we have perfect information about where obstacles are, and
for convenience we assume that the vehicle is in a rectangular room and that
the obstacles are poles with known (x, y) positions. In particular, we consider a
room such that the x-coordinate, x ∈ [0, 30], and the y-coordinate, y ∈ [0, 30],
with the poles shown from a top view in Figure 6.3. We assume that the initial
vehicle position is (5, 5) and that the goal position is (25, 25) as shown in the
figure via the square and “×” respectively.

0 5 10 15 20 25 30
0

5
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15

20

25

30

x

y

Obstacles (o), initial vehicle (square), and goal (x) positions

Figure 6.3: Initial vehicle position, goal position, and obstacles.

We assume that our vehicle is as shown in Figure 6.4 and that each side of
the cubical vehicle measures 2.5 units so that it cannot fit in between the three
poles shown in Figure 6.3 that are at positions (8, 10), (10, 10), and (10, 12),
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but it can fit in between the other obstacles. We assume that the vehicle knows
its own position (e.g., via an overhead computer vision system) and the goal
position that it seeks to move to.

One sensor focus

x

y

Driven wheels (4)

Vehicle
top
view

Obstacle to be 
avoided

r

Wall (to be avoided)

θλ

Figure 6.4: Autonomous vehicle guidance problem.

We will essentially ignore vehicle dynamics and assume that when a vehicle
decides to move from one position to another position, it can approximately do
so in one time step (but we do not put explicit units on distance or length of the
time step). The “approximate” part is due to the fact that we assume it may
not reach the precise desired position (e.g., due to inaccuracies in the vehicle
drive system). In particular, if the vehicle’s current position is (x(k), y(k)) and
the onboard computer commands it to move at an angle θ a distance of λ (see
Figure 6.4), it does so according to[

x(k + 1)
y(k + 1)

]
=
[

x(k)
y(k)

]
+ λ

[
cos(θ)
sin(θ)

]
+ ∆λ

[
cos(∆θ)
sin(∆θ)

]

where the sum of the first two terms on the right side of the equation represent
the desired position. Here, we choose λ = 0.1. The last term is a noise term
that represents effects of uncertainty that result in the vehicle not perfectly
achieving the desired position. We choose ∆λ to be a random number chosen
at each time step uniformly on [−0.1λ, 0.1λ] representing that there is a 10%
uncertainty in achieving the commanded radial movement. Also, we assume that
∆θ is uniformly distributed on [−π, π]. Hence, when the vehicle is commanded
to go to a particular position in one time step, all we know is that it ends
up somewhere in a circular region of radius 0.1λ around the desired position.
Notice that in order to make such movements, the vehicle needs to sample its
own position at each time step. Hence, feedback control is used in the following
way for guidance: the current position is sensed, and the command is made to
move the vehicle to the new position. The vehicle may not end up where it
was commanded to go, but at the next time instant, we will sense the vehicle’s
position and make adjustments from that point, and so on.
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6.2.2 Path Planning Strategy

The assumption that we know exactly where all the obstacles are greatly sim-
plifies the planning problem and allows us to focus only on some basic features
of planning strategies; later we will remove this assumption and discuss how
a vehicle could learn where obstacles are, plan based on that information, and
even cope with moving obstacles. It should be clear that since we assume that
we know where the vehicle and all the obstacles are, there is no need for a sensor
that measures proximity to, or characteristics of obstacles. In a certain sense
we have a perfect model of a part of our environment. We do not have a perfect
model of the entire environment due to the uncertainty in reaching a desired
commanded position that was discussed above.

Obstacle and Goal Functions

How can we represent and utilize the information given in Figure 6.3 about
where the vehicle starts, where it should go, and where the obstacles are? First,
since we are using a planning strategy, it is critical to realize that we need to
formulate the path-finding problem as an optimization problem. To do this, we
take the simple approach of constructing a surface (sometimes called a “potential
field”) that represents where the obstacles are. In particular, to represent the
obstacles in Figure 6.3, we take Gaussian functions of unity height and center
them at each of the obstacles and compute an “obstacle function” Jo(x, y) that
is the maximum value of each of those functions at each point (x, y) as shown in
Figure 6.5 (the use of the maximum of the six Gaussian functions representing
the six obstacles, rather than, for instance, simple addition of the six Gaussian
functions, ensures that each obstacle position is represented independent of the
others). In Figure 6.6 we show the contour plot of Jo(x, y) along with the initial
vehicle position and goal position. The contour nicely shows the “spreads”
(variances) of the Gaussian functions and that there is a type of overlap such
that values of Jo(x, y) are at least a bit above zero for any position where the
vehicle should not be in order to avoid collision with obstacles. Also, we will
scale the obstacle function with a positive constant w1 > 0 in our planning
strategy below; however, here we choose w1 = 1. Note that if you moved the
vehicle about the environment in a way that the vehicle position is moved to
points that try to minimize Jo(x, y) (e.g., via hill climbing), then the vehicle
will avoid the obstacles, due to the tails of the Gaussian functions. For many
vehicle initial positions, the vehicle would move to the edge of the region, and
when it arrives there, we always keep it on the edge.

Next, we show how to represent the goal of being at the position (25, 25).
To do this, suppose that we think of penalizing not being at this position by
placing the minimum point of a quadratic (bowl) function

w2Jg(x, y) = w2

[
[x, y]� − [25, 25]�

]� [
[x, y]� − [25, 25]�

]
where w2 > 0 is a scale factor we choose as w2 = 0.0001 (we will explain
this below) that will multiply this function. The scaled function is shown in
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Figure 6.5: Obstacle function Jo(x, y) (scaled by w1).
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Figure 6.6: Obstacle function Jo(x, y) (scaled), contour form, with initial vehicle
position and goal position.
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Figure 6.7 as a contour plot. If at each time step the vehicle moved to go down
the surface, it will move toward the goal, but it may run into an obstacle.
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Figure 6.7: Goal function w2Jg(x, y), contour form, with initial vehicle position
and goal position.

Plan Generation and Selection

How does the planning strategy generate, evaluate, and select plans so that
it can select which direction to move? To explain this, we first form our cost
function for the planning strategy.

Multiobjective Cost Function: From the discussion in the previous subsec-
tion, it should be clear that if you commanded the vehicle to move a distance of
λ in a direction θ that is chosen by simply moving in the “direction of steepest
descent” on the function Jo(x, y), then the vehicle would avoid obstacles but not
reach the goal position and stay there. Similarly, if the direction was chosen to
be the one with steepest descent for the Jg(x, y) function, then it would move
to the goal position but may collide with some obstacle for some initial vehicle
positions.

Multiple goals can be
represented by a
multiobjective cost
function.

To solve this problem we will use a “multiobjective cost function” (actually
a special case where a “scalarization” approach is used to form a multiobjective
cost, which is one of many ways to generate a Pareto cost)

J(x, y) = w1Jo(x, y) + w2Jg(x, y)
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shown in Figure 6.8 where the weights w1 and w2 specify the relative importance
of achieving obstacle avoidance and reaching the goal (but you must take into
consideration the magnitudes of the values of each term in selecting these).
Our choices of the weight values above represent that obstacle avoidance is
important, but you must also keep moving toward the goal position. The choice
of the weights will affect the shape of the trajectory that the vehicle will move
on toward the goal position.
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Figure 6.8: Multiobjective cost function J(x, y) for evaluating plans.

Plan Generation and Selection: We take a very simple approach to plan
generation and evaluation. If the vehicle is at a position (x, y), we simply
compute the value of J at Ns values (xi, yi), i = 1, 2, . . . , Ns, regularly spaced
on a circle of radius r around the vehicle position (see Figure 6.4, where we
have Ns = 8). Here, we will use r = 1 and Ns = 16. This generates 16 plans,
where we “predict” one step ahead (clearly we could compute more values of J
that are along other longer paths). We view the set of plans as “the vehicle is
at (x, y), move it to (xi, yi).” We choose the plan to execute by finding a value
i∗ such that

J(xi∗ , yi∗) ≤ J(xi, yi), i = 1, 2, . . . , Ns

(i.e., by finding the direction which will result in minimization of the multiob-
jective cost function). We then call this direction θ(k) and command the vehicle
to take a step of length λ in the direction θ(k).
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Notice that the above approach will approximate the “steepest descent ap-
proach” (hill-climbing) discussed above but we do not need analytical gradient
information since we do not explicitly compute the gradient of the multiobjective
cost function. Higher values of Ns cost more computations in plan generation
and evaluation, but they also provide for more precise directional commands.
Notice that using the above strategy, we expect that for any initial position
on Figure 6.8, the vehicle will navigate so as to avoid the obstacles and move
toward the goal by simply moving down the surface. Finally, notice that there
is nothing special about the circular “pattern” of points that are evaluated on
the J function. Other choices could work equally well. In fact, in Part V we will
consider many other choices for the pattern of points that are used in deciding
which direction to move to find the minimum point of a function (e.g., via pat-
tern search methods), some of which are motivated by how animals search for
food (a goal).

6.2.3 Simulation of the Guidance Strategy

Using the planning strategy, obstacle course, and vehicle, we get the trajectory
shown in Figure 6.9. Clearly, the vehicle moves so as to avoid the obstacles (via
the effect of Jo) but tries to stay on course to the goal (via the effect of Jg). The
effects of the uncertainty in reaching commanded positions is seen by the small
deviations on the trajectory that are “corrected” at each step since we assume
that the vehicle gets a measurement of its own position at each time step. Other
vehicle paths result from other choices of obstacle and goal functions and their
scale factors (e.g., for this example, higher weight on the goal function tends to
reduce deviations away from obstacles). Moreover, a different pattern of points
where the multiobjective cost function is evaluated can result in a different path.
For instance, using fewer points on the circular pattern results in trajectories
that are not as smooth.

6.2.4 More Challenges: Complex Mazes, Mobile Obsta-
cles, and Uncertainty

In this section we have studied a highly idealized planning problem. For in-
stance, the assumption of perfect knowledge of the obstacle positions will not
hold in any real obstacle avoidance problem. Removing the assumptions can
quickly complicate the use of planning strategies, as we will see next.

Dead Ends and Circular Loops

Above, our type of obstacle course is quite simplistic. In some environments
it is better to think of the obstacle course as a type of complex “maze” with
many possible paths, many of which may not lead to the ultimate goal position
(i.e., there may be “dead ends” or circular loops). See Figure 6.10(a). Suppose
that we use the same basic approach as for our obstacle course in Figure 6.3
where we place functions that indicate that we should stay away from obstacles.
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Figure 6.9: Vehicle path for obstacle avoidance and goal seeking.

How? While you could invent many types of functions, you could simply use
a fine grid of appropriate Gaussian functions to get the proper shape for the
Jo(x, y) surface. A problem arises, however, with specifying the goal function
and hence the multiobjective cost function. Suppose that we choose it as we
did for the above example to be a simple quadratic function with a minimum
point at the goal position. To see where the problem arises, suppose that we use
the same planning strategy as in the previous subsection. In this case, it should
be clear that for that obstacle course, with reasonable choices for the obstacle
function and multiobjective cost function weights, the vehicle trajectory would
move roughly diagonally (e.g., on paths 2, 3, or 4 in Figure 6.10(b)) toward the
goal position similar to how it did in Figure 6.9 until it got to the curved wall
in the “northeast” part of the maze. There, provided that r (the radius of the
circular pattern of points where J is computed) is relatively small and we do not
predict ahead more than one step, the vehicle will get stuck against the curved
wall since it will listen to the goal function, but still try to avoid hitting the
curved wall. It will get stuck at a “local minimum” on the multiobjective cost
function. Notice that it does this even though if it could simply “see a little
farther,” it could navigate around the curved wall by going northwest, then back
to the east to the goal position.

How can we solve this problem? One way is to use the a priori knowledge
of the obstacle course and design the multiobjective cost function so that there
is only one minimum, the global one, at the goal position. Another way is
to design the obstacle and goal functions in a simplistic way as we did in the
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Figure 6.10: (a) Obstacle path viewed as a maze (notice dead ends), (b) Possi-
ble paths through the maze as computed by prediction in a planning strategy
(numbered 1–6).

last section, then to exploit the “look-ahead” capabilities of planning strategies
to find local minima on the multiobjective cost function that result in dead
ends. To do this, suppose that at each step, the vehicle computer computes
a tree of paths rooted at the current vehicle position (where it is assumed in
the generation of that tree that the vehicle actually reaches the position desired
on each move even though this will not be the case according to our model).
For instance, suppose that it is constrained so that as shown in Figure 6.10(b),
it computes six potential paths of the same length (length is not given by the
physical length of the path, but by how many steps are taken, so in the figure
each of the cases, 2–6, shows paths where the vehicle is stuck up against a
wall for some time). It may come up with these potential paths by sampling the
known multiobjective function, and some strategies even use minimization in the
choice to limit the number of potential paths. For instance, in Figure 6.10(b)
we show only six potential paths, not the many possible small deviations from
these six. Next, we have to choose the best path. For this, we may use some
method to detect when a plan will result in deadlock (no progress for a fixed
number of steps), or we may try to minimize the number of required steps to
get to the goal. The paths that are clearly unsuccessful can be eliminated from
consideration and the first step suggested by the most successful plan can be
taken. In the case where the maze is known perfectly and there is no uncertainty
in reaching a desired position, there is no need for replanning at each step. You
just follow the generated plan. However, in our model when we do not reach the
commanded desired position, replanning (regeneration of plans and selection of
new plans) is needed. How much replanning needs to be done? It depends on
the magnitude of the uncertainty. Large uncertainty will lead to the need for
frequent replanning.
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Mobile Obstacles and Uncertainty

Next, note that if the obstacle environment is dynamic in the sense that, for
instance, obstacles can move, our approaches require extensions. For instance,
if some obstacle suddenly appeared at some position and we did not know about
it, our vehicle can simply collide with it. Or if the walls and obstacles in Fig-
ure 6.10(a) moved in predictable ways, it should be clear that a “look-ahead
strategy” may be needed. If the obstacles moved in unpredictable ways, then
our model may not be able to accurately represent this so the vehicle will need
to sense the environment while it navigates it and try to learn about obsta-
cle positions and movements. Clearly this creates a very challenging obstacle
avoidance problem.

6.3 Planning Strategy Design

Next, we distill the essential ideas from the psychology of planning in Section 6.1,
some of which were explained via the path planning example of the last section,
and show more clearly how they can be utilized in controllers for dynamical
systems. Our focus here is on plants of the type that are typically considered in
conventional control. First, we will think of planning systems as being computer
programs that emulate the way experts plan to solve a control problem; notice
the connection to how we thought of the heuristic design process for fuzzy and
expert controllers. Note, however, there is an essential difference from how we
thought of fuzzy and expert control: a planning system uses an explicit model
of the plant. We will discuss several issues surrounding the choice of this model,
plan generation, and selection. For simplicity, we will first ignore the hierarchical
issues involved in planning and simply focus on how to plan at one “node” of an
action hierarchy to achieve what might be a sequence of changing goals. Later
in this section, however, we will discuss hierarchical planning.

6.3.1 Closed-Loop Planning Configuration

A generic planning system can be configured in the architecture of a standard
control system as shown in Figure 6.11. In the context of human planning prob-
lems, the problem domain is the plant and environment. There are measured

Planning (and
replanning) often utilizes
feedback to correct for
prediction model errors.

outputs y(k) at step k (variables of the problem domain that can be sensed in
real time), control actions u(k) (the ways in which we can affect the problem
domain), disturbances d(k) (which represent random events that can affect the
problem domain and hence the measured variable y(k)), and goal r(k) (what
we would like to achieve in the problem domain) which is called the reference
input in conventional control terminology. There are closed-loop specifications
that quantify performance specifications and stability requirements.

The types of plants we consider in this section are those with

y(k + 1) = f(x(k), u(k), d(k)) (6.1)
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Figure 6.11: Closed-loop planning system.

where y(k) is the measured output and f is a generally unknown smooth function
of the state u(k) and measurable state x(k),

x(k) = [y(k), y(k − 1), . . . , y(k − n), u(k − 1), u(k − 2), . . . , u(k − m)]� (6.2)

Let
e(k + 1) = r(k + 1) − y(k + 1)

be the tracking error. Generally, our objective here will be to make the tracking
error as small as possible for all time, and in particular, we would like it to
asymptotically approach zero so that the output follows the reference input.

Consider a plan to be a sequence of possible control inputs, where the ith

plan of length N at time k is denoted by

ui[k, N ] = ui(k, 0), ui(k, 1), . . . , ui(k, N − 1)

Our objective is to develop a controller that is based on a planning strategy. To
do this, we will use a model and an optimization method to evaluate the quality
of each plan. This will provide a ranking of the quality of the plans. After that
we will choose the plan that is best (call it plan i∗), and let the control input
at each time instant k be

u(k) = ui∗(k, 0)

That is, at each time k we choose the best plan ui∗ [k, N ], then use the first input
from the control sequence as the input to the plant. The process is repeated
at each time instant. Clearly, you could use a lower frequency of replanning,
where, for example, you could generate a new plan every other sampling instant,
and execute the first two inputs from the optimal plan each time.

6.3.2 Models and Projecting into the Future

There are a wide range of possibilities for the type of model that is used, and
Good models lead to good
plans; bad models can
lead to unstable behavior
and poor performance.

the type depends on the problem domain, the capabilities of the planner to store
and use the model, and also the goals. For instance, a model used for planning
could be continuous or discrete (e.g., a differential or difference equation), and
it could be linear or nonlinear. It may be deterministic, or it may contain an
explicit representation of the uncertainty in the problem domain so that plans
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can be chosen taking the uncertainty into account. In industrial practice, in the
so-called “model-predictive control” (MPC) method, linear models are often
used for the plant and this approach is considered in Design Problem 6.2.

Just like the design model used for control design, it will always be the
No model is perfectly
accurate; hence,
predictions based on it
are always in error.

case that the model will not be a perfect representation of the plant and the
environment. This implies that there will always be uncertainty in planning, and
hence there will always be a bound on the amount of time that it makes sense
to project (simulate the model) into the future. Projecting into the future too
far becomes useless at some point since the predictions will become inaccurate
at some point, and hence provide no good information on how to select the best
plan. The difficulty is knowing how good your model is and how far to project
into the future. Finally, note that you may actually want your model to be able
to predict what goal is going to occur in the future since in the formulation in
this section we could have a time-varying goal. If the goal can be predicted,
contingencies can be developed, and earlier plans may be modified to try to
ensure success for not only the current goals, but anticipated ones.

Here, we use a general nonlinear discrete time model

ym(j + 1) = fm(xm(j), u(j))

with output ym(j), state xm(j), and input u(j) for j = 0, 1, 2, . . . , N −1. Notice
that this model can be quite general if needed; however, in practice, sometimes
a linear model is all that is available and this may be sufficient. Let yi

m(k, j)
denote the jth value generated at time k using the ith plan ui[k, N ]; similarly
for xm(k, j). In order to predict the effects of plan i (project into the future) at
each time k you compute for j = 0, 1, 2, . . . , N − 1,

yi
m(k, j + 1) = fm(xm(k, j), ui(k, j))

At time k to simulate ahead in time, for j = 0 you initialize with xm(k, 0) =
x(k). Then, generate ym(k, j + 1), j = 0, 1, 2, . . . , N − 1, using the model (note
that you will need to appropriately shift values in xm at each step) and generate
values of ui(k, j), j = 1, 2, . . . , N − 1, for each i.

6.3.3 Optimization Criterion and Method for Plan Selec-
tion

Next, the set of plans (strategies) is “pruned” to one plan that is the best
one to apply at the current time (where “best” can be determined based on,
e.g., consumption of resources). Hence, optimization is central to the activity of
planning (just as we will later see that optimization is central to the activities of
attention, learning, evolution, and foraging). The specific type of optimization
approach that is used for plan selection depends on the goals, cost function,
and type of model that is used to predict into the future. For instance, if the
model of the plant is a finite automaton the optimization problem can in some
cases be formulated as a “shortest path” problem where you choose the plan
(sequence of actions) that results in minimizing a cost function (e.g., the sum
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of the costs for the steps of a candidate plan) in a manner similar to how we
choose the best plan for Figure 6.2. Such a shortest path problem can be solved
with a number of methods. For instance, you could use dynamic programming
or standard combinatorial optimization methods. Alternatively, when the state
space is large it may be advantageous to use some “heuristic search” methods,
such as the A∗ algorithm. For more details on such approaches, see the “For
Further Study” section at the end of this part.

Criteria for Selecting Plans

We need a criterion to decide which plan is the best. Here, we will use a cost
function J(ui[k, N ]) that quantifies the quality of each candidate plan ui[k, N ]
using the fm model. First, assume that the reference input r(k) is either known
for all time, or at least that at time k it is known up till time k + N . Generally,
you want the cost function to quantify over the next N steps how well the
tracking objective is met. One cost function that we could use would be

J(ui[k, N ]) = w1

N∑
j=1

(
r(k + j) − yi

m(k, j)
)2

+ w2

N−1∑
j=0

(
ui(k, j)

)2
(6.3)

where w1 > 0 and w2 > 0 are scaling factors that are used to weight the im-
portance of achieving the tracking error closely (first term) or minimizing the
use of control energy (second term) to achieve that tracking error. Other cost
functions could use the output of a “reference model” as we do for several adap-
tive control approaches in Part III (see “For Further Study” for more details),
an error measure on the other past values of the inputs and outputs, or an
error measure on some other system variable. The choice of the cost function
for evaluating the quality of the plans is application-dependent. To specify the
control at time k you simply take the best plan, as measured by J(ui[k, N ]),
and call it plan ui∗ [k, N ] and generate the control using u(k) = ui∗(k, 0) (i.e.,
the first control input in the sequence of inputs that was best).

Note that this specifies a variety of methods to achieve what is called “model
predictive control” (or “receding horizon control”) in conventional control the-
ory. Clearly, different models, cost functions, and optimization methods will
lead to different closed-loop system performance characteristics. It can be diffi-
cult to know which optimization method to choose for a particular application.
Often, however, practical aspects of the problem govern many aspects of the
choice as we discuss next.

Nonlinear Optimization for Plan Selection

The challenge is to pick an optimization method that will converge to the op-
timal plan, and one that can cope with the complexity presented by the large
number of candidate plans. Why is this a “challenge”? First, focusing on the
complexity aspect, note that the inputs and states for the plant under consid-
eration can in general take on a continuum number of values (i.e., an infinite
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number of values, with as many possibilities as there are real numbers), even
though in particular applications they may only take on a finite number of
values. This is the case in analog control systems even considering actuator
saturation. For digital control systems you may have a data acquisition system
that results in a certain quantization and hence, theoretically speaking there
are a finite number of inputs, states, and outputs, for the model specified by
fm since it is typically simulated on a digital computer. However, this number
can be very large! There is then, in general, an infinite (continuum) number of
possible plans that you must compute the cost of (in a brute-force approach) in
order to form the ranking of plans according to cost, and select the best plan.

But, in the conventional model predictive control approach that is widely
successful in industrial applications, this problem has been solved. How? There,
most often linear plant models are used, a manageable size is chosen for the
prediction horizon N (and perhaps a longer sampling interval is used for the
model, than for the digital controller), and it then becomes feasible to specify
an analytical solution to finding the optimal plan (sequence of inputs). The
optimization approach can actually choose the best plan from the infinite set of
plans. That analytical solution is the so-called “least squares” solution that is
only possible due to the use of the linear model. But, of course, no real plant is
linear (even though it may act as though it is almost linear in some situations).

What if the nonlinear and uncertain characteristics dominate to the extent
that a linear model is not sufficient for generating plans? Then, we could use a

Nonlinear or
combinatorial
optimization can be used
for plan selection.

nonlinear model in the planner and try to employ some type of nonlinear opti-
mization method where the “parameters” that are adjusted by the optimization
method are ones that parameterize the infinite set of possible plans. Practically
speaking, however, this can become problematic since if you use a nonlinear
model for plan generation, you are confronted with a nonlinear optimization
problem for which there is generally no analytical solution. There are, how-
ever, many algorithms that one could employ to try to solve this problem (e.g.,
steepest descent, Levenberg-Marquardt, etc., that are discussed in Part III).
The problem is that none of these methods guarantees convergence to an opti-
mal plan. They could even diverge and provide no solution, but typically they
will converge to a local minimum. The plan that results from such a nonlin-
ear optimization process cannot then be guaranteed to be the optimal one, and
closed-loop performance can suffer. Having said all that, it is worthy to note,
however, that in some practical industrial problems, engineers have managed to
develop effective solutions via such a nonlinear optimization approach.

Brute-Force Approach to Plan Selection

Next, suppose that you do not want to take the standard nonlinear optimization
approach, yet you want to use a nonlinear model since its use seems essential
to represent the salient features of your plant. Is there another approach? One
standard approach is to discretize the input, state, and output spaces, generate
all possible plans and compute the cost of each of them explicitly (sometimes
it is even possible to simultaneously generate plans and evaluate costs, and
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thereby greatly reduce the number of potential plans since ones that are of very
high cost may not need to be generated). Creating such a discrete model is
not a trivial exercise since you want it to be not only discrete in time, but also
in space. The discretization typically (virtually always) leads to the creating
of a less accurate model so that in taking this approach you are trading off
complexity management and optimization ease with accuracy in evaluating the
plans. Also, unless you use a very coarse quantization you may still end up with
too many plans to consider. Why? Suppose that there are Nu possible input

Creation and evaluation
of all possible plans is
often computationally
prohibitive.

values obtained via discretization, and that the model is deterministic so that
one control input leads to only one possible state, then there are

(Nu)N

possible plans at each time k. Suppose that we simulate ahead in time N =
100 steps, and Nu = 1000 (not unreasonable considering the types of levels
of discretization that could be accurate for many plants). Clearly, due to the
exponential growth in the number of plans, we can quickly encounter problems
with computational complexity if we take the brute-force approach of generating
all possible plans. Moreover, even if we generate all the plans, we will also have
to evaluate the cost of each one. And, this must be done at each sampling
instant. Having said all that, however, there are classes of problems where a
discrete model provides a reasonably good representation of the plant, even with
a small Nu, and sometimes only a small N is needed to evaluate the quality of
a plan. In this case, the brute-force approach may work very well. Besides,
specific application-dependent characteristics often allow you to “prune” the
tree of possible plans. For instance, if you have rate constraints on your plant,
then typically for every state only certain inputs are possible, since the input
cannot change too much from what it was the last time. Moreover, sometimes
coarser quantizations in time and space may work adequately for some plants.

There are ways to trade
off computational
complexity for the
quality of plan selection
and ultimately,
performance.

6.3.4 Planning Using Preset Controllers and Model Learn-
ing

Next, we will discuss another approach to solve the complexity and optimization
challenges involved in plan generation and selection. This approach can be
thought of as a method to prune the tree of possible plans that is generated at
each sampling instant.

Planning Using Multiple Controllers

Consider a specific controller (a “preset” controller) applied to the current state
and reference input to be a type of “plan template” in that it specifies one way to
respond for a sequence of times into the future, but the precise manner in which
it generates inputs depends on what occurs over time as the plan is implemented.
There is an analogy with how humans plan. In some problem domains we may
have learned a finite set of possible approaches to solve a problem and we start
solving it, picking what seems to be the best approach at each step.
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Suppose that there are S such plan templates, which have the form of func-
tions F i

u

ui(k, j) = F i
u(x(k, j), r(k + 1)) i = 1, 2, . . . , S

where we assume we can measure r(k + 1). Hence, at each step we take each
of these S plans and project into the future how each will perform, pick the
best one, then let the control input be ui∗(k, 0) where i∗ is the best plan as
measured by some cost function. For some practical applications the value of
S need not be too large, and hence, if we take the “brute-force” approach of
the last section, we overcome the problems discussed there in complexity and
optimization.

In a related approach, it is also possible to use planning systems as general
supervisory controllers in a similar manner to how expert controllers are used
for supervision. In this case, the planner will, for instance, coordinate the use
of a set of controllers where different controllers are used for different operating
conditions. We will discuss such methods in Sections 9.4.5 and 16.5.

Planning Using Multiple Models or Tuned Models

Suppose that upon entering some problem domain you know that it is best
modeled by one of S models that you have learned. Suppose that as you begin
taking actions in the problem domain, you gather information that tells you
which model is most appropriate at the current time. If you enter it at a different
time, a different model may be more appropriate. Also, some environments are
dynamic in that their characteristics change over time so that as you are taking
actions in the domain with one model, you continually monitor the quality of
the predictions it makes, and if appropriate, you can switch to another model.
How do you plan with the model possibly switching at each time? You can do
it just the same as discussed above. You simply change the model that you
predict with over time. You can think of this as learning the appropriate type
of model and using it to plan (the optimization method employed to select the
model is implementing a type of learning).

Other planning systems may perform “world modeling,” where a model of
the problem domain is developed or modified (tuned) in an online fashion (simi-
lar to online system identification), and “planner design” uses information from
the world modeler to tune the planner (so that it makes the right plans for the
current problem domain). The reader will, perhaps, think of such a planning
system as a general adaptive controller. It integrates learning of models directly
into the planning process, in a manner reminiscent of how humans learn while
planning. While we will not illustrate the operation of such strategies in this
chapter, in Part III and Part IV we will discuss how to use such strategies in
adaptive control.

6.3.5 Hierarchical Planning Systems

First, suppose that there is a hierarchy of models available for generating plans.
To provide a simple illustration of some key ideas in hierarchical planning, sup-
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pose that we are performing route planning for a mobile robot at an industrial
complex that has several buildings. Moreover, suppose that we organize our
planner according to the description of the hierarchy in Figure 1.11 where we
have a higher-level management level, and lower-level coordination and execu-
tion levels.

Suppose that we have several models, detailed ones of each room in every
building, maps of each building that simply show how the rooms are connected
via hallways, and maps of possible connection routes between the buildings.
Suppose that we want to plan how to move the mobile robots around the indus-
trial complex. Suppose that at the highest level the human operator specifies
that the robot should go to building 3, room 416, to deliver a part that is needed
in some manufacturing process. A planner at the management level could gen-
erate a set of routes between buildings and pick the best one considering other
traffic and minimization of time of travel. A planner at the coordination level
could be used to plan how to move to the desired room once the building is
reached, and the planner at the lower level could specify how to navigate the
room.

There are other types of hierarchical planners that will use multiple planners
at the coordination and execution levels. For instance, sometimes the goals
specified by the human can be broken down into multiple sequences of tasks at
the management level, each one representing a different way to reach the human-
specified goal. One approach could be selected and passed to the coordination
level. At the coordination level we could view the sequence of tasks chosen at the
management level as a sequence of goals, and each planner at the coordination
level may then develop sequences of operations to try to achieve those (sub)goals.
Clearly this sets up a recursion and we can view the chosen coordination level
as plans, and the execution level can view those as goals and develop plans to
meet them. Implementation is achieved by executing the low level sequences
that try to meet the subsubgoals, and thereby the subgoals, and hence the goal
specified by the human.

There are many design issues involved in constructing such a hierarchical
planning system. For instance, the accuracy of the models at the various levels
and the form of the cost functions used will significantly affect the performance
of the system. Computational complexity is affected by the choice of the plan-
ning horizons at the various levels, and the lengths of these horizons is in turn
affected by the quality of the models we use in planning (and uncertainty in
the environment). Moreover, one approach to coping with computational com-
plexity in some planning applications is to split the planning problem into a
hierarchical functionality, since sometimes this can simplify plan generation and
evaluation. Finally, we note that it is possible to incorporate adaptation and
learning into the planning processes at the various levels.

6.3.6 Discussion: Concepts for Stable Planning

It is possible to perform stability analysis of control systems whose controller
uses a planning strategy; in such cases you may study, for example, convergence
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of tracking error. For instance, there has been extensive work on the study
of stability conditions (e.g., in terms of horizon length) for conventional linear
model predictive control methods. Moreover, there has been other work focus-
ing on stability of planning systems for plants with a discrete event character
(see Design Problem 6.3). These studies show that there are several essential
characteristics that affect stability properties, several of which can be thought
of in terms similar to the discussion in Section 6.2.4, where we discussed dead
ends, circular loops, obstacle mobility, and obstacle position uncertainty:

Stability analysis of
closed-loop planning
strategies depends
critically on model
accuracy, plant
uncertainty, and plant
nonlinearities.

• Model accuracy: The accuracy of the model used to project into the future
significantly affects the analysis. In most analysis it is assumed that a
perfect model is known or that the model perfectly represents all possible
ways that the plant will respond to inputs.

• Navigating through uncertainty: Your ability to achieve a goal state in a
tree of possible paths that are simulated (e.g., as shown in Figure 6.2)
depends on the uncertainty present in the plant. You can think of the
uncertainty as a type of adversary, and that your objective is to keep
moving in directions so that the uncertainty will not over time conspire
to make it impossible for you to navigate to your goal state (in terms of
Figure 6.2, the actual structure of the tree is random so at some points in
time some paths may lead to the goal with a certain cost, while at other
times the cost may increase/decrease, or may not even lead to the goal
state). The planning strategy tries to navigate the tree in a way so that
even though the plant may make unpredictable moves, it will not be able
to make moves that will make it impossible to reach the goal. Clearly, the
number of steps you project in the future can critically affect your ability
to navigate through the uncertainty. If you do not look far enough into
the future, for some plants it may be possible that you will enter a region
of the state space such that the effects of the uncertainty dominate and
there is no way to navigate out of that region and to the goal state (e.g.,
in Figure 6.2, note that there are some “dead-ends” in the tree that is
shown). On the other hand, it may not make sense to project more than
one or two steps into the future for some plants since longer projections
may neither result in better plans, nor help navigate through the space.

• Avoiding traps: For some plants, without projecting far enough into the
future, it may be possible to get “trapped” in a cycle where you repeatedly
visit a finite sequence of states on a loop. Moreover, it is of course possible
that such circular traps arise in a nondeterministic manner, essentially
combining the concerns of the last point with those of this one (i.e., random
dead-ends and cyclical traps can arise).

The above discussion is simply intended to provide the interested reader
with some intuitions about some issues that significantly affect our ability to
perform stability analysis of planning systems for some classes of plants. For
further study on this topic, see Design Problem 6.3 and the “For Further Study”
section at the end of this part.
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6.4 Design Example: Planning for a Process Con-

trol Problem

In this section we will develop a planning strategy for a very simple yet repre-
sentative process control problem. We begin by introducing the control problem
and then we design and test a planning strategy.

6.4.1 Level Control in a Surge Tank

Consider the “surge tank,” shown in Figure 6.12, that can be modeled by

dh(t)
dt

=
−d̄
√

2gh(t)
A(h(t))

+
c̄

A(h(t))
u(t)

where u(t) is the input flow (control input), which can be positive or negative
(it can both pull liquid out of the tank and put it in); h(t) is the liquid level
(the output of the plant); A(h(t)) = |āh(t) + b̄| is the cross-sectional area of the
tank and ā > 0 and b̄ > 0 (their nominal values are ā = 0.01 and b̄ = 0.2);
g = 9.8; c̄ ∈ [0.9, 1] is a “clogging factor” for a filter in the pump actuator where
if c̄ = 0.9, there is some clogging of the filter and if c̄ = 1, the filter is clean so
there is no clogging (we will take c̄ = 1 as its nominal value); and d̄ > 0 is a
parameter related to the diameter of the output pipe (and its nominal value is
d̄ = 1). We think of all these plant parameters as being fixed (but unknown)
for a particular surge tank; however, we could consider other values for these
parameters and test the controller for these. This models the situation where
you want to develop one controller for many different surge tanks.

h(t)

u(t)

Figure 6.12: Surge tank.

Let r(t) be the desired level of the liquid in the tank (the reference input) and
e(t) = r(t) − h(t) be the tracking error. Assume that you know the reference
trajectory a priori and assume that r(t) ∈ [0.1, 8] and that we will not have
h(t) > 10. Assume that h(0) = 1.

To convert to a discrete-time approach, use an Euler approximation to the
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continuous dynamics to obtain

h(k + 1) = h(k) + T

(
−d̄
√

19.6h(k)
|āh(k) + b̄| +

c̄

|āh(k) + b̄|u(k)

)

where T = 0.1. We assume that the plant input saturates at ±50 so that if the
controller generates an input ū(k), then

u(k) =

⎧⎨
⎩

50 if ū(k) > 50
ū(k) if −50 ≤ ū(k) ≤ 50
−50 if ū(k) < −50

Also, to ensure that the liquid level never goes negative (which is physically
impossible), we simulate our plant using

h(k + 1) = max

{
0.001, h(k) + T

(
−d̄
√

19.6h(k)
|āh(k) + b̄| +

c̄

|āh(k) + b̄|u(k)

)}

Note that all the simulations in this section will include these constraints.

6.4.2 Planner Design

Here, for the sake of illustration we will use a nonlinear discrete-time model for
the nonlinear discrete-time plant (the “truth model”). We will generate candi-
date plans using this model using the “preset controllers” approach discussed
in the last section.

Taking the model of the last subsection as the truth model for the plant, the
model that we will use in our planning strategy will have

A(h(t)) = ām(h(t))2 + b̄m

with ām = 0.002 and b̄m = 0.2. For the model we use the same nonlinear
equations as given in the last section, but we do not assume that we know the
values of c̄ and d̄, so for these we use c̄m = 0.9 and d̄m = 0.8. It is interesting
to note that if you plot the cross-sectional area of the actual plant, and the one
used in the model, you get Figure 6.13, so you can see that they are somewhat
different so that our model is clearly not the same as the plant (model).

So, is the model accurate enough to be used in projection? To answer this
question we develop a simple controller and test it on the plant and controller.
We use a proportional integral (PI) controller as the “plan template.” In par-
ticular, if e(k) = r(k) − h(k), we use

u(k) = Kpe(k) + Ki

k∑
j=0

e(j) (6.4)

Suppose that the goal is to get a reasonably fast response, with no overshoot in
the tracking error e(k).



252 Planning Systems

0 1 2 3 4 5 6 7 8 9 10
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

C
ro

ss
-s

ec
tio

na
l a

re
a

Height

Cross-sectional area for plant (solid) and model (dashed)

Figure 6.13: Cross-sectional area A(h) for the plant (solid) and model to be
used for projection (dashed).

Suppose that via experience in designing PI controllers for surge tanks with
various cross-sectional areas, you know that typically

Kp ∈ [0, 0.2]

and
Ki ∈ [0.15, 0.4]

For instance, if you pick Kp = 0.01 and Ki = 0.3 and use the PI controller
in Equation (6.4), you get the response in Figure 6.14. Notice that while the
response is relatively fast, there is overshoot and that is undesirable.

You actually get a similar response if you use the same gains for the above
model that will be used for projection in our planning strategy. To see this
consider Figure 6.15, where we see that the difference between the regulated
heights for the cases where we use the truth model for the plant, and where
we use the projection model, are relatively small (there is more overshoot when
the controller is used for the model rather than the plant). This gives us some
confidence that our model is reasonably accurate; but of course to properly
evaluate its accuracy, we need to consider how good a performance we can
obtain when we use the model in a planning strategy for projection, and at the
same time, use the truth model in the closed-loop.

We use the cost function in Equation (6.3) with N = 20 (for two seconds
projection into the future), w1 = 1, and w2 = 1. Also, we assume at each
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Figure 6.14: Closed-loop behavior of the surge tank using a PI controller.
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Figure 6.15: Error between cases where the truth model and projection model
are used as the plant.
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time instant that the reference input remains constant while we project into the
future; this is equivalent to assuming that our evaluation of which controller is
best is based on the reference input being constant.

Our plan templates are the PI controllers, with different values of Kp and Ki.
In fact, we simply create a grid on the above ranges for the gains by considering
all possible combinations of

Kp ∈ {0, 0.05, 0.1, . . . , 0.2}

and
Ki ∈ {0.15, 0.2, . . . , 0.4}

Hence, in this case there are 5 × 6 = 30 different plans (controllers) that are
evaluated at each time step. To do this evaluation, we simulate using the pro-
jection model into the future two seconds for each PI controller. We initialize
the simulations into the future with current error, and integral of the error.

6.4.3 Closed-Loop Performance

To see how the planning strategy operates, see Figure 6.16. Here, we see that
we get a slower rise-time than in Figure 6.14 when we used the PI controller,
but that we were able to tune the planning strategy (by adjusting w1, w2, and
the grid on the PI gains) so that there is no overshoot, and still a reasonably
good rise-time, and that was our main objective.
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Figure 6.16: Closed-loop behavior of the surge tank using a planning strategy.



6.4 Design Example: Planning for a Process Control Problem 255

How does it achieve this performance? It switches controllers online and
to see this, consider Figure 6.17. Note that we define the indices so that they
are proportional in size to the Kp and Ki values (e.g., the (1, 1) controller
has Kp = 0 and Ki = 0.15) so that it seeks to increase the Kp value to reduce
tracking error and get a good rise-time, and lowers the Ki value to try to reduce
overshoot. If you choose different values of the planning horizon N , you will get
different switching sequences.
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Figure 6.17: Indices of PI controllers that are used at each time step for the
tank.

Similar performance to that shown above is found if you perturb some of
the plant parameters. For example, if for the plant you let c̄ = 0.8 (representing
more clogging), you get similar results to the above. Or, if you use the nominal
value for c̄ and use ā = 0.05, you get the cross-sectional area shown in Figure 6.18
and we get the closed-loop response in Figure 6.19.

Notice that while we still get an adequate rise-time, for this plant the plan-
ning strategy results in a small amount of overshoot; hence, you may want to
tune the planner in order to improve the response. This shows that while the
planning strategy may provide good performance for some plants, for some oth-
ers the performance can degrade (not surprising). How robust is the controller
to plant perturbations? It can be a challenging problem to design a single plan-
ning strategy that will perform adequately for all plants of a certain class (e.g.,
for a known set of structured perturbations about the nominal plant).
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Figure 6.18: Cross-sectional area A(h) for the plant (solid) and model to be
used for projection (dashed).

6.4.4 Effects of Planning Horizon Length

Next, we return to using the parameters for the nominal plant and study the
effect of changing the projection length N with all the same choices as in the
previous subsection. In particular, we plot the tracking energy

1
2

∑
k

(e(k))2

and control energy
1
2

∑
k

(u(k))2

vs.
N ∈ {1, 5, 10, 15, 17, 20, 25, 30, 33, 35, 36, 37, 38, 39, 40, 45, 50}

as shown in Figures 6.20 and 6.21. This range of N was chosen by adding more
points where the values of the tracking and control energy changed fast.

These plots show some justification for the choice of N = 20 in our earlier
simulations. This choice did not cost too much computational complexity in
projecting into the future, and yet gave a low tracking error (our main objec-
tive), with a reasonable amount of control energy. If you are not concerned
about computational complexity, you may want to further increase the plan-
ning horizon, to get a similar value for the tracking energy, but with even lower
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Figure 6.19: Closed-loop behavior of the surge tank using a planning strategy
(different cross-sectional area).

control energy. Why did the values of the control energy change so quickly
around the value of N = 37? Why does the tracking energy increase in the
region from N = 20 to N = 33? Why is it the case that the control energy
increases from N = 1 to N = 10? In general, how do you change the shape of
the plots? Clearly, changing the w1 and w2 weights will change the shape, and

Prediction horizon
choice is difficult.
Prediction too far into
the future is
computationally
expensive and sometimes
not useful due to plant
uncertainty.

hence, what choices you might make for what you call a “best” value of N . The
model used for prediction, and the types of controllers that are simulated into
the future will also change the shape. Moreover, the reference input can change
it. Even though the generation of such plots can help you choose the planning
horizon, it does not completely solve the problem. It simply provides insights.

Finally, in some cases it is possible that longer planning horizons can actu-
ally degrade performance since the longer you simulate into the future with an
inaccurate model, the less reliable the predictions tend to be. Hence, the opti-
mization for plan choice can become inappropriate for selecting a good plan.

6.5 Exercises and Design Problems

Exercise 6.1 (Planning for Obstacle Avoidance):

(a) For the path planning problem in the chapter, use the simulation
to generate plots that explain the effect of increasing the amount
of uncertainty in where the vehicle ends up after a single step (i.e.,
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Figure 6.20: Tracking energy vs. projection length N .
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explain the qualitative effects of the noise on the quality of planning).
Can you choose the noise large enough so that the planning strategy
fails to guide the vehicle to the goal after 500 steps?

(b) Next, study the effects of changing the value of r, the sensing radius.
What happens if it is chosen smaller? Larger? If its value is too
large, can the guidance algorithm fail? Illustrate your answer with a
simulation.

(c) Illustrate the effects of changing Ns. What happens if Ns = 4? Il-
lustrate with a simulation and explain how the movements of the
vehicle change. What is the effect of using large values for Ns? Dis-
cuss smoothness of trajectories and computational complexity issues.

Exercise 6.2 (Model Predictive Control for a Simple Process Control
Problem):

(a) For the MPC for the surge tank problem in the chapter, investigate
the robustness of the strategy to measurement noise. To do this,
you should precisely define what you mean by good performance,
and investigate in simulation the effects of characteristics of noise
(e.g., mean and standard deviation) on performance for a fixed MPC
strategy.

(b) For the MPC for the surge tank problem in the chapter, investigate
the robustness of the strategy to unknown characteristics of the tank
cross-sectional area A(h(t)) (but for reasonable physical choices of the
cross-sectional area). To do this, you should precisely define what
you mean by good performance, and investigate in simulation the
effects of characteristics of shape of the tank (e.g., if you characterize
the shape with some nonlinear function, vary the parameters of the
function) on performance for a fixed MPC strategy.

Design Problem 6.1 (Planning Ahead for Obstacle Avoidance):

(a) Simulate the obstacle avoidance problem in the chapter using the
guidance algorithm defined there, but study a different placement of
obstacles in the environment. Show a placement that the guidance
strategy can successfully navigate, and one that it cannot successfully
navigate.

(b) Repeat (a), but for a guidance strategy that predicts into the future
multiple steps. Invent a placement of obstacles in the environment
for which multistep prediction into the future allows successful nav-
igation, where the strategy used in (a) does not. Hint: Consider a
strategy that generates a tree of points with a root at the current
position. For example, one approach would be to generate a circular
pattern, pick the best point on that circle, then generate a circle of
points around that point, and so on. The “best” plan is the path
of best points found. You could experiment with different planning
horizons and the frequency of replanning.
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(c) Invent a placement of obstacles such that the strategy that you de-
signed in (b) will fail in the sense that the robot will get stuck at
a location other than the goal position. Redesign the look-ahead
strategy so that it can successfully navigate it. Hint: Make the plan-
ning horizon vary with time in a way so that if it detects that it is
“stuck,” it lengthens its planning horizon until it finds its way around
the obstacle (out of the local minimum). Illustrate the performance
of the algorithm in simulation. Clearly explain your strategy and its
operation. Discuss algorithm complexity.

Design Problem 6.2 (Model Predictive Controller Design for Tanker
Ship Steering)�: In this problem you will study “model predictive con-
trol” (MPC) [192] for tanker ship steering. The tanker ship model that
you will use as the truth model (to represent the plant) in all simula-
tions should be the one given in Equation (4.5) that is simulated with a
Runge-Kutta method in Section 4.3.1.

(a) For planning (prediction), use the linear model in Equation (4.4).
Suppose this model is used with parameters specified for nominal
conditions for the tanker ship; however, suppose that you use a dis-
cretized version of this model with a sampling period of T = 1.
Hence, your discrete time model transfer function is

(−5.58e − 05)z3 − (5.635e − 05)z2 + (5.469e − 05)z + 5.524e− 05
z3 − 2.97z2 + 2.939z − 0.9696

which is obtained via a Tustin (bilinear) transformation when the
nominal parameters (“ballast” conditions) are used and T = 1. Ver-
ify this. How accurate is this model? Simulate this linear discrete
model and the nonlinear one. Highlight the similarities and differ-
ences in how the two models behave. In making this comparison
induce disturbances in the nonlinear model (e.g., weight changes,
wind, sensor noise, and speed variations) and explain how the plant
differs from the linear discrete model in each case.

(b) Next, develop a method to project into the future and determine
which sequence of inputs is best, then pick the first one to input to
the plant for the current sampling instant. Let N denote the number
of sampling instants that you simulate into the future. Suppose that
you use a linear batch least squares approach (see Section 10.1 and
in particular Equation (10.2)) to pick the best sequence of inputs to
the plant, based on the linear discrete model. The key to solving
this problem is to assume that the reference input trajectory is a
constant, and to formulate the optimization problem as a linear least
squares optimization problem. Show how to formulate the problem,
and give an example where you code the example and actually find
an optimal sequence of inputs to the plant. That is, simulate the
closed-loop system when the MPC is used.
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(c) Evaluate the performance of the MPC. Use similar reference inputs,
and a similar sequence of investigations into the effects of distur-
bances, to what we did for the neural and fuzzy control methods.
Develop a single numeric measure of performance (e.g., some quan-
tification of tracking and control energy) and study how this measure
changes for a range of values of the planning horizon N (make a plot).
Repeat this for each disturbance condition. What is the best value
to choose for N?

Design Problem 6.3 (Stability Analysis of Planning Systems)�: In
this problem you will study stability analysis of planning strategies for
two different plants that were studied in [196].

(a) Tank: Stability in the presence of uncertainty. Simulate, prove the
strongest type of stability property possible.

(b) Load balancing in flexible manufacturing systems: Stability in the
presence of traps. Repeat (a).




