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We first provide examples of how biological neural networks help to imple-
ment instinctual control functionalities in some simple organisms. Then, depart-
ing somewhat from biology, we introduce two types of neural network models
that ignore many details of real neurons and their interconnections (e.g., volt-
age spikes and dynamics) to produce “firing rate models” with specific forms
for “tuning curves.” In this chapter we also ignore learning and evolution and
thereby only model a special type of control instinct with limited functional
capabilities (e.g., the functions and parameters of our models will not change
over time). Also, we only model functionality of the neural network, and not the
many other sensory and actuation functions needed for an organism to achieve
control.

Next, we explain how our neuron models can be viewed as building blocks
(sets of tuning curves) for creating a neural network that can implement a
complex input-output mapping. To do this, we show how to take the map-
pings implemented by neurons and build by hand (“design”) a controller for
a specific engineering application. In biological systems, over long time peri-
ods, this “design” is a task of evolution; over short time periods such as a life
time, it is the task of learning. Aside from ignoring learning and evolution,
this design approach will at the same time represent an even more significant
departure from biology as we ignore whether it has a biological basis (e.g., in
development) and whether the constructed neural networks bear any similarity
to those in any biological system. We only concern ourselves with construct-
ing input-output mappings that will lead to the performance objectives being
met. Biology provides building blocks with basic functionalities, and we pay no
respect to whether we use these building blocks as biology would.

For specific engineering applications, we show how to simulate the neural
network controlling the plant and evaluate whether the closed-loop system meets
performance objectives. This will provide insights into neural network stimulus-
response characteristics and their effect on closed-loop behavior. Moreover, it
will serve as an introduction on how to evaluate control systems in simulation.
Ultimately, however, certain difficulties in the design process, and the need for
controllers with more sophisticated functionalities that will be highlighted in the
simulations, will motivate the need to study learning in Part III and evolutionary
methods in Part IV that automate the construction of neural networks.

4.1 Biological Neural Networks and Their Role
in Control

First, we briefly outline some basics of how biological neural networks operate,
specifically in controlling functions of a few simple organisms.

4.1.1 Neurons and Neural Networks

An invertebrate motor neuron was shown in Figure 2.3. There are, however,
many different types of neurons, with, for example, the cell body at different
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locations. The “multipolar” configuration shown in Figure 2.3(a) is the one that
There are massively
interconnected networks
of neurons of many
forms in organisms;
engineering models often
use the invertebrate
motor neuron connected
in special topologies.

is often modeled and then used in control engineering (and indeed, it underlies
many other studies of neural networks in other engineering areas). Each neuron
is composed of “dendrites” which allow for connections to the cell body, an
“axon” which allows for connections to other neurons, and the connection points
are called the “synapses.” Generally, the cell body performs a type of summing
and thresholding operation on signals obtained via the dendrites and provides
an electrical signal (actually it is typically a sequence of pulses that are often
called “spikes”) that travels along the axon to other neurons. When such a
signal is transmitted on the axon, the neuron is said to “fire.” The inputs to
the neuron on the dendrites can be “excitatory” (having a tendency to cause
the neuron to fire) or “inhibitory” (having the tendency to restrict the firing of
the neuron).

The human brain is composed of a large, massively interconnected biolog-
ical network of about 1011 neurons, each of which may have as many as 103

or 104 connections to other neurons (for a total of up to 100, 000 miles of neu-
ron connections). These neurons dynamically interact with each other, change

It is via the massive
neural interconnectivity
that complex reasoning
and intelligence
emerges.

their properties over time (e.g., via learning), and even grow new connections
to each other (e.g., during fetal development), to act as a sophisticated bio-
electrical “computer” of sorts. While the interconnection of neurons in humans
is extremely sophisticated (see Figure 4.1), here we only consider simple inter-
connections. For instance, the three neurons in Figure 4.2 are connected in
a “feedforward” fashion (i.e., without connecting an axon of one neuron back
to another neuron that has a path to that neuron), since this is a common
interconnection strategy used in engineering applications.

Processing
characteristics of
individual neurons and
network
interconnections, and
hence topology of the
network, change via
learning.

Figure 4.1: Network of motor neurons in the spinal cord, photograph taken
through a microscope (figure taken from [223], c© 1991, 1994, and 1999 by
Worth Publishers Inc., and used with permission).

There are a number of neurons in our body and in other organisms that are
“hard-wired” in the sense that their properties are fixed in a specific manner
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Figure 4.2: Three connected neurons, a simple biological neural network.

such that they have no ability to learn. For example, certain motor reflexes are
implemented this way, and the functions that they implement are then some-
times said to be “instinctual” (i.e., they do not need to be learned). While there
are a variety of functions in a human (or other organisms) that are instinctual
or automatic, a perhaps more interesting case is when a neural network devel-
ops and neurons have an ability to learn. For instance, when humans are born
they have very low neural network connectivity in their brain. As they develop
and learn, the brain forms interconnections between different neurons and the
resulting network defines the functional properties of the brain (yes, the envi-
ronment does affect the actual connection structure in our brain). Moreover, to
memorize information it is said that the interconnections between the neurons
are modified and then fixed so that the information can later be recalled. This
learning capability will be more fully investigated in Part III; here, the focus is
on “instinctual” control functions, examples of which are given next.

4.1.2 Example: Instinctual Neural Control Functions in
Simple Organisms

“Command systems” of neurons are used in biological systems for a variety
of tasks, such as control of motion, locomotion, digestion, etc. Many animal
behaviors, such as walking or swimming, result from a network of neurons called
a “central pattern generator” that produces a pattern of signals that results in
a rhythmic contraction and relaxation of muscles. More generally, instinctive
responses are sometimes called “fixed action patterns” that are evoked by a
“sign stimulus.” Such behaviors can be quite complex, but are thought of as
being rigidly evoked by a certain type of stimulus (i.e., the animal does not learn
these responses, or forget them).

In this section we will show how in one organism, neurons can control move-
ment and in another organism, how the neural network can respond to stimuli
to produce movement. The goal here is simply to show neurons and neural
networks “at work” in acting as controllers in biological systems.
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Neurons That Control Swimming in a Clione

A simple neural “circuit” (interconnection of neurons) that can produce alter-
nating contraction and relaxation in two different muscles that move “wing-like”
structures called parapodia in the Clione (a small marine mollusc), is shown in
Figure 4.3. There are two neurons for moving each wing, one for “upswing” and
the other for “downswing.” Each neuron has an inhibitory effect on the other
so that when one is active, the other is not (i.e., it is inhibited by the other).
The signals on the right show the basic electrical pattern between the neurons
where when the voltage in the upswing neuron spikes (and actuates a muscle for
moving the wing up), it inhibits the other neuron. However, after the upswing
spike has decreased, the downswing neuron voltage increases and then spikes,
which signals the muscle to move the wing down. The firing of one neuron to
actuate the upswing inhibits the firing of the downswing neuron, and vice versa.
This is called “reciprocal inhibition” and it is the key feature that allows the
command system of neurons to generate rhythmic movement.

Neural networks with
only a few neurons can
control movements in
simple organisms that
are very useful for
survival (e.g.,
locomotion for foraging
or predator avoidance).

Figure 4.3: Command system of neurons (neural controller) for swimming in
a Clione (figure taken from [312], c© Oxford University Press, reproduced by
permission).

Neuron Stimulus-Response Actions to Achieve Control in a Swim-
ming Leech

The medicinal leech Hirudo medicinalis swims by making undulating motions
The pulse-type voltage
patterns (“spikes”) in
Figures 4.3 and 4.4 are
typical for neurons;
however, most
engineering models do
not represent neuron
behavior to this level of
detail.

with its body, somewhat like a snake or some fish (see Figure 4.4). The move-
ments result from alternating contraction and relaxation of muscles that are
located in the body wall of the leech. When it swims, there are rhythmic bursts
from a central pattern generator that produce a “wave” of contraction that
travels from the front to the rear of the leech. Reciprocal inhibition is used to
produce the rhythmic motion in the leech, just as it was in the clione discussed
in the last subsection.

The leech will start swimming if there is a brief strong mechanical stimulus
applied to the body of the animal as shown in Figure 4.4. There, a sensory
neuron detects the stimulus and starts firing (in the figure the “firing” is char-
acterized by the spikes in the signal voltage of the sensory neuron). This sets off
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Figure 4.4: Neuron signaling connecting stimulus to swimming response in a
medicinal leech Hirudo medicinalis (figure taken from [312], c© Oxford Univer-
sity Press, reproduced by permission).

a “trigger neuron” that in turn starts a “gating neuron” to fire, and the firing
of that gating neuron persists even when the stimulus is removed. When the
gating neuron is active (i.e., when it fires), it sustains the rhythmic activity of
the central pattern generator. The gating neuron makes a motor neuron active
at regular one second intervals and these signal the muscle for swimming.

4.2 Multilayer Perceptrons

Next, we will explain how we model the physiological system of the neural
network. It must be emphasized that the models here are not meant to be
precise models of parts of a biological brain or neurons in any other organism.
Essentially, they are “firing rate models” since they do not model voltage spikes,
but have outputs that are thought of as being proportional to the frequency of
the spikes. Moreover, they are “static” since they do not include, for example,
dynamic systems to represent that currents or voltages in a neuron cannot
change instantaneously. First, we consider a multilayer perceptron which is
a feedforward neural network (e.g., it does not use past values of its outputs
to compute its current output). It is composed of an interconnection of basic
neuron processing units.
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4.2.1 The Neuron

For a single neuron, suppose that we use xi, i = 1, 2, . . . , n, to denote its inputs
and suppose that it has a single output y. Figure 4.5 shows the neuron. Such a
neuron first forms a weighted sum of the inputs

x̄ =

(
n∑

i=1

wixi

)
+ b

where wi are the interconnection “weights” and b is the “bias” for the neuron.
The signal xi is the input to the ith dendrite and wi > 0 represents an excitatory
connection with larger wi values representing dendrites that “amplify” their
input signals more. Conversely, wi < 0 represents an inhibitory input. The
signal x̄ represents a signal in the biological neuron that represents the combined
effects of all the inputs from the dendrites.

The processing that the neuron performs on this x̄ signal is represented with
The stimulus-response
characteristics of a
neuron can be changed
by adjusting the weights
wi, bias b, or by using
different types of
activation functions f .

an “activation function.” This activation function is represented with a function
f , and the output that it computes is

y = f(x̄) = f

((
n∑

i=1

wixi

)
+ b

)
(4.1)

Basically, the neuron model represents the biological neuron that “fires” (turns
on and passes an electrical signal down the axon so that it can go to other
neurons as shown in Figure 4.2) when its inputs are significantly excited (i.e., x̄
is big enough). Normally, Equation 4.1 is represented as shown in Figure 4.5.

f(x)
yx

x

x

x

Activation function

w

w

w

1

1

2

n

2

n

Weights

Bias

b

Figure 4.5: Single neuron model.

The manner in which the neuron fires is defined by the activation function
f . There are many ways to define the activation function:

• Threshold function: For this type of activation function, we have

f(x̄) =
{

1 if x̄ ≥ 0
0 if x̄ < 0
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so that once the input signal x̄ is above zero the neuron turns on (see
Figure 4.6).

• Linear function: For this type of activation function, we simply have

f(x̄) = x̄

and we think of the neuron being on when f(x̄) > 0 and off when f(x̄) ≤ 0
(see Figure 4.6).

• Logistic function: For this type of activation function, which is a type of
“sigmoid function,” we have

f(x̄) =
1

1 + exp(−x̄)
(4.2)

so that the input signal x̄ continuously turns on the neuron an increasing
amount as the input increases as shown in Figure 4.6 (note that for the
logistic function f(0) = 0.5 �= 0 but f(0) − 0.5 = 0 where 0.5 can be
modeled by another bias so that you can think of the logistic function as
“turning on” in a similar way to how the other functions in Figure 4.6
turn on).

• Hyperbolic tangent function: There are many functions that take on a
shape that is sigmoidal. For instance, one that is often used in neural
networks is the hyperbolic tangent function

f(x̄) = tanh(x̄) =
1 − exp(−2x̄)
1 + exp(−2x̄)

which is shown in Figure 4.6.

Equation (4.1), with one of the above activation functions, represents the
“computations” made by one neuron in a neural network. Notice that the
input-output characteristics of a neuron in a multilayer perceptron are quite
different from the biological neurons discussed in the last section. Along with
the assumption that the weights, a bias, and a summing operation represent part
of what happens in the dendrites and cell body, the activation function output
(and hence firing of the neuron) is not represented as a voltage spike that travels
down the axon, or a sequence of such spikes (such as in Figure 4.4) that might
be frequency modulated by the overall activation level of the neuron (e.g., have
higher frequency spikes for greater activation levels as is sometimes found in a
biological neuron). Essentially, a larger input to the activation function here
(for a sigmoid function) simply turns the neuron on to a greater extent; the
neuron here is a very simple (abstract) model of the behavior of some biological
neurons called a “firing rate model.” It is interesting to note, however, that the
specific shapes for the above activation functions (and some others) have been
experimentally demonstrated for firing rate models of real neurons, so there is
some biological justification for the form or the model we use here. The specific
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Figure 4.6: Activation functions for neurons.

shapes of the mappings produced by individual neurons are sometimes called
“tuning curves” or “tuning functions” (they show how the neuron is “tuned” to
a stimulus by showing for a whole range of stimulus inputs what the firing rate
output of the neuron will be). Some neurons have tuning curves in the shape of
sigmoids so that for some stimuli they are not on but as the stimulus changes,
the neuron starts firing at a high rate above some threshold, if the slope of the
sigmoid near the threshold is steep. Other neurons to be modeled in Section 4.4
have tuning curves in the shape of Gaussian functions so that they are “on” the
most for a specific range of stimuli. See the “For Further Study” section at the
end of this part.

Next, we define how we interconnect neurons to form a neural network—in
particular, the feedforward multilayer perceptron.

4.2.2 Feedforward Network of Neurons

The basic structure for the multilayer perceptron is shown in Figure 4.7. There,
the circles represent the neurons (weights, bias, and activation function) and the
lines represent the connections between the inputs and neurons, and between
the neurons in one layer and those in the next layer. This is a three-layer
perceptron since there are three stages of neural processing between the inputs
and outputs. The layer connected to the output is called the “output layer,”
and all the other ones are called “hidden” layers since they do not connect to
the output.
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The multilayer perceptron has inputs xi, i = 1, 2, . . . , n, and outputs yj ,
j = 1, 2, . . . , m. The number of neurons in the first hidden layer (see Figure 4.7)
is n1. In the second hidden layer there are n2 neurons, and in the output layer
there are m neurons. Hence, in an N layer perceptron there are ni neurons in
the ith hidden layer, i = 1, 2, . . . , N − 1.

(1)

x 1

x 2

xn

.

.

.

x 1

x 2

.

.

.

x 1

x 2

2
xn

.

.

.

y

y

y

(1) (2)

m

1

2

(1)

(2)

xn 1
(2)

First
hidden
layer

Second
hidden
layer

Output
layer

Figure 4.7: Multilayer perceptron model.

The neurons in the first layer of the multilayer perceptron perform compu-
tations, and the outputs of these neurons are given by

x
(1)
j = f

(1)
j

((
n∑

i=1

w
(1)
ij xi

)
+ b

(1)
j

)

with j = 1, 2, . . . , n1. The neurons in the second layer of the multilayer percep-
tron perform computations, and the outputs of these neurons are given by

x
(2)
j = f

(2)
j

((
n1∑
i=1

w
(2)
ij x

(1)
i

)
+ b

(2)
j

)

with j = 1, 2, . . . , n2. The neurons in the third layer of the multilayer perceptron
perform computations, and the outputs of these neurons are given by

yj = fj

((
n2∑
i=1

wijx
(2)
i

)
+ bj

)

with j = 1, 2, . . . , m.
The parameters (scalar real numbers) w

(1)
ij are called the weights of the first

hidden layer. The w
(2)
ij are called the weights of the second hidden layer. The
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wij are called the weights of the output layer. The parameters b
(1)
j are called

the biases of the first hidden layer. The parameters b
(2)
j are called the biases

of the second hidden layer, and the bj are the biases of the output layer. The
functions fj (for the output layer), f

(2)
j (for the second hidden layer), and f

(1)
j

(for the first hidden layer) represent the activation functions. The activation
functions can be different for each neuron in the multilayer perceptron (e.g., the
first layer could have one type of sigmoid, while the next two layers could have
different sigmoid functions or threshold functions).

The simulus-response
characteristics of a
neural network can be
changed via neuron
parameters or their
interconnections.

For convenience, we sometimes use

y = Fmlp(x, θ)

to denote the multilayer perceptron where θ is a parameter vector that holds
all the tunable weights and biases of the multilayer perceptron.

This completes the definition of the multilayer perceptron. Next, we will
show how a multilayer perceptron’s stimulus-response characteristics can be
designed so that it can be used to regulate the heading of a ship.

4.3 Design Example: Multilayer Perceptron for

Tanker Ship Steering

Here, we show how a neural network can be used to steer a ship that is traveling
on the ocean. To do this, we first define the ship model and heading regula-
tion problem. Next, we define the neural network, design its stimulus-response
characteristics, and then evaluate how it performs in its ship steering task.

4.3.1 Tanker Ship Model and Heading Regulation

Our tanker ship heading regulation problem is shown in Figure 4.8. Here, the
ship is moving forward in the indicated x direction at a nominal speed u, ψ
denotes the heading angle (in radians), and δ is the rudder input (in radians).
We will use ψr to denote the desired ship heading that is specified, for instance,
by the captain (or route planner). The goal is to develop a control system that
will ensure that ψ tracks ψr.

It is very important to achieve good heading regulation for ships since this
reduces consumption of fuel. Steering performance can be affected by a variety of
variables. It is known that the ship can travel at different speeds and this affects
how the ship is steered (the rudder becomes less effective at very low speeds),
that in general the ship weighs different on different trips (and heavy ships turn
slower), that wind can be encountered on some trips and when wind hits the side
of the tanker this can affect heading regulation, that water currents can affect
steering, and that the sensor for ship steering provides a noisy measurement.
Also, the rudder will only move between ±80 degrees and this affects our ability
to steer the ship.
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Figure 4.8: Tanker ship steering problem.

Ship Model

In order to study the behavior of the system, we will simulate it on a digital
computer. To do this, we need to develop a computer program that is based
on a nonlinear model of the ship; we will develop this model next. Often, ship
dynamics are obtained by applying Newton’s laws of motion to the ship. For
very large ships, the motion in the vertical plane may be neglected since the
“bobbing” or “bouncing” effects of the ship are small for large vessels. The
motion of the ship is generally described by a coordinate system that is fixed to
the ship [30] as shown in Figure 4.8.

A simple model of the ship’s motion is given by

...

ψ (t) +
(

1
τ1

+
1
τ2

)
ψ̈(t) +

(
1

τ1τ2

)
ψ̇(t) =

K

τ1τ2

(
τ3δ̇(t) + δ(t)

)
(4.3)

where ψ is the heading of the ship and δ is the rudder angle. Assuming zero
initial conditions, we can write Equation (4.3) as

ψ(s)
δ(s)

=
K(sτ3 + 1)

s(sτ1 + 1)(sτ2 + 1)
(4.4)

where K, τ1, τ2, and τ3 are parameters that are a function of the ship’s constant
forward velocity u and its length l. In particular,

K = K0

(u

l

)
τi = τi0

(
l

u

)
i = 1, 2, 3

where we assume that for a tanker ship under “ballast” conditions (a very
heavy ship), K0 = 5.88, τ10 = −16.91, τ20 = 0.45, τ30 = 1.43, and l = 350
meters [30]. For “full” conditions (a lighter ship), K0 = 0.83, τ10 = −2.88,
τ20 = 0.38, τ30 = 1.07. If we do not say otherwise, we will simulate the tanker
ship under ballast conditions. Also, we will assume that nominally the tanker
ship is traveling in the x direction at a velocity of u = 5 m/s.
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In normal steering, a ship often makes only small deviations from a straight-
line path. Therefore, the model in Equation (4.3) was obtained by linearizing
the equations of motion around the zero rudder angle (δ = 0). As a result, the
rudder angle should not exceed approximately 5 degrees, otherwise the model
will be inaccurate. For our purposes, we need a model suited for rudder angles
that are larger than 5 degrees; hence, we use the model proposed in [51]. This
extended model is given by

...

ψ (t) +
(

1
τ1

+
1
τ2

)
ψ̈(t) +

(
1

τ1 τ2

)
H(ψ̇(t)) =

K

τ1 τ2

(
τ3 δ̇(t) + δ(t)

)
(4.5)

where H(ψ̇) is a nonlinear function of ψ̇(t). The function H(ψ̇) can be found
from the relationship between δ and ψ̇ in steady state such that

...

ψ= ψ̈ = δ̇ =
0. An experiment known as the “spiral test” has shown that H(ψ̇) can be
approximated by

H(ψ̇) = āψ̇3 + b̄ψ̇

where ā and b̄ are real-valued constants and ā is always positive. We choose the
values ā = b̄ = 1. Also, we assume that the maximum deviation of the rudder
angle is ±80 degrees (or 80π/180 radians).

Simulation of Nonlinear Systems

The ship model is nonlinear; hence, in order to simulate its behavior on a
digital computer we need to discuss how to simulate nonlinear systems. In
this subsection we give a brief overview of how to simulate general nonlinear
systems. In the next subsection, we will return to the ship example and show
how to develop a simulation for its behavior.

Suppose that the system to be simulated can be represented by the ordinary
differential equation

ẋ(t) = f(x(t), r(t), t) (4.6)
y = g(x(t), r(t), t)

where x = [x1, x2, . . . , xn]� is a state vector, f = [f1, f2, . . . , fn]� is a vector of
nonlinear functions, g is a nonlinear function that maps the states and reference
input to the output of the system, and x(0) is the initial state. Note that f
and g are, in general, time-varying functions due to the explicit dependence on
the time variable t. To simulate a nonlinear system, we will assume that the
nonlinear ordinary differential equations are put into the form in Equation (4.6).

Euler’s Method: Now, to simulate Equation (4.6), we could simply use Eu-
ler’s method to approximate the derivative ẋ in Equation (4.6) as

x(kh + h) − x(kh)
h

= f(x(kh), r(kh), kh) (4.7)

y = g(x(kh), r(kh), kh)
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Here, h is a parameter that is referred to as the “integration step size.” Notice
that any element of the vector

x(kh + h) − x(kh)
h

is simply an approximation of the slope of the corresponding element in the
time varying vector x(t) at t = kh (i.e., an approximation of the derivative).
For small values of h, the approximation will be accurate provided that all the
functions and variables are continuous. Equation (4.7) can be rewritten as

x(kh + h) = x(kh) + hf(x(kh), r(kh), kh)
y = g(x(kh), r(kh), kh)

for k = 0, 1, 2, . . . . The value of the vector x(0) is the initial condition and is
assumed to be given. Simulation of the nonlinear system proceeds recursively
by computing x(h), x(2h), x(3h), and so on, to generate the response of the
system for the reference input r(kh).

Note that by choosing h small, we are trying to simulate the continuous-
time nonlinear system. If we want to simulate the way that a digital control
system would be implemented on a computer in the laboratory, we can simulate
a controller that only samples its inputs every T seconds (T is not the same as
h; it is the “sampling interval” for the computer in the laboratory) and only
updates its control outputs every T seconds (and it would hold them constant
in between). Normally, you would choose T = αh where α > 0 is some positive
integer. In this way, we simulate the plant as a continuous-time system that
interacts with a controller that is implemented on a digital computer.

The Runge-Kutta Method: While Euler’s method is easy to understand
and implement in code, sometimes to get good accuracy the value of h must
be chosen to be very small. Most often, to get good simulation accuracy, more
sophisticated methods are used, such as the Runge-Kutta method with adap-
tive step size or predictor-corrector methods. In the fourth-order Runge-Kutta
method, we begin with Equation (4.6) and a given x(0) and let

x(kh + h) = x(kh) +
1
6

(k1 + 2k2 + 2k3 + k4) (4.8)

where the four vectors

k1 = hf(x(kh), r(kh), kh)

k2 = hf

(
x(kh) +

k1

2
, r

(
kh +

h

2

)
, kh +

h

2

)

k3 = hf

(
x(kh) +

k2

2
, r

(
kh +

h

2

)
, kh +

h

2

)
k4 = hf (x(kh) + k3, r(kh + h), kh + h)
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These extra calculations are used to achieve a better accuracy than the Euler
method. We see that the Runge-Kutta method is very easy to use; it simply
involves computing the four vectors k1 to k4, and plugging them into Equa-
tion (4.8). Suppose that you write a computer subroutine to compute the output
of a fuzzy controller given its inputs (in some cases these inputs could include
a state of the closed-loop system). In this case, to calculate the four vectors, k1

to k4, you will need to use the subroutine four times, once for the calculation of
each of the vectors, and this can increase the computational complexity of the
simulation. The complexity is reduced, however, if you can simulate the fuzzy
controller as if it were implemented on a digital computer in the laboratory with
a sampling interval of T = αh (see the discussion above). Also, sometimes r(kh)
is used in place of r(kh + h/2) and r(kh + h) in the above equations; this can
be a reasonable approximation if r is constant most of the time and f and g are
not time-varying functions (i.e., they do not have t as one of their arguments).

Generally, if the Runge-Kutta method has a small enough value of h, it
is sufficiently accurate for the simulation of most control systems (and if an
adaptive step size method is used, then even more accuracy can be obtained if
it is needed). For more details on numerical simulation of nonlinear differential
equations, see [332, 217, 508].

Simulating the Ship and a Digital Controller

Next, we need to convert the nth-order nonlinear ordinary differential equa-
tions representing the ship to n first-order ordinary differential equations; for
convenience, let

a =
(

1
τ1

+
1
τ2

)

b =
(

1
τ1τ2

)

c =
Kτ3

τ1τ2

and
d =

K

τ1τ2

We would like the model in the form

ẋ(t) = f(x(t), δ(t))
y(t) = g(x(t), δ(t))

where x(t) = [x1(t), x2(t), x3(t)]� and f = [f1, f2, f3]� for use in a nonlinear
simulation program. We need to choose ẋi so that fi depends only on xi and δ
for i = 1, 2, 3. We have

...

ψ (t) = −aψ̈(t) − bH(ψ̇(t)) + cδ̇(t) + dδ(t) (4.9)
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Choose
ẋ3(t) =

...

ψ (t) − cδ̇(t)

so that f3 will not depend on cδ̇(t) and

x3(t) = ψ̈(t) − cδ(t)

Choose ẋ2(t) = ψ̈(t) so that x2(t) = ψ̇(t). Finally, choose x1(t) = ψ. This gives
us

ẋ1(t) = x2(t) = f1(x(t), δ(t))
ẋ2(t) = x3(t) + cδ(t) = f2(x(t), δ(t))
ẋ3(t) = −aψ̈(t) − bH(ψ̇(t)) + dδ(t)

But, ψ̈(t) = x3(t) + cδ(t), ψ̇(t) = x2(t), and H(x2) = x3
2(t) + x2(t) so

ẋ3(t) = −a (x3(t) + cδ(t)) − b
(
x3

2(t) + x2(t)
)

+ dδ(t) = f3(x(t), δ(t))

Also, we have ψ = g(x, ψr) = x1. This provides the proper equations for
the simulation. Next, suppose that the initial conditions are ψ(0) = ψ̇(0) =
ψ̈(0) = 0. This implies that x1(0) = x2(0) = 0 and x3(0) = ψ̈(0) − cδ(0) or
x3(0) = −cδ(0).

For the ship steering problem, we let the integration step size be h = 1 sec.
and α = 10 so that T = αh = 10 sec. (i.e., the controller is implemented on
a digital computer with a sampling period of T = 10 sec. so that a new plant
input is calculated every 10 sec. and applied to the rudder). We will use this
same approach for all the simulations for the tanker ship in this book.

4.3.2 Construction of a Multilayer Perceptron for Ship
Steering

Here, we construct a simple multilayer perceptron for steering the ship. To do
this, we must first choose the controller inputs and outputs. We will assume
that the only input for steering is the rudder angle δ (we will not consider
the speed u to be an input; it will be fixed). Hence, δ is the only output of
the multilayer perceptron. The choice of inputs to the multilayer perceptron
depends on what variables of the tanker can be sensed. It is assumed that the
reference input ψr is given (e.g., if you use a neurophysiological view you may
think of it as being provided by the frontal lobes in the brain that perform
route planning functions). To keep things simple we will assume that we can
only sense the ship heading ψ (if you took a neurophysiological view, this would
then have to be provided by visual processing or some other sensory input that
is then connected to the neurons that make the steering decisions). With these
choices, the control system block diagram for the ship steering problem is shown
in Figure 4.9.
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Tanker
ship

r Multilayer
perceptron
neural controller

δ ψψ

Figure 4.9: Control system for using a multilayer perceptron for tanker ship
steering.

Structure Choice and The First Hidden Layer

From Figure 4.9, we see that the multilayer perceptron is a mapping from ψr

and ψ to δ, the input to the ship. Suppose we denote the multilayer perceptron
as δ = Fmlp(ψr, ψ) (note that for convenience we omit the arguments indicating
the dependence on the parameters of the network). Our objective is to specify
the mapping Fmlp(ψr, ψ) by picking the number of layers of neurons, the number
of neurons in each layer, and the specific weights, biases, and activation func-
tions for all the neurons (from a neurophysiological view, it is evolution that
specifies this mapping and we will simply construct one that we hypothesize
evolution could have constructed). To do this, we will simply show one possible
choice for the multilayer perceptron and explain some of the reasoning behind
its construction. Consider Figure 4.10. There, we use a four layer perceptron
with both linear and logistic sigmoidal activation functions. First, consider the
first hidden layer. For this we choose w

(1)
11 = 1, w

(1)
21 = −1, and b

(1)
1 = 0. Hence,

we see that the output of the first layer is the heading error
A neural network can be
designed to compare
signals for use in
“decision-making” (e.g.,
comparing a desired
value to a sensed one).

e = ψr − ψ

To a control engineer this may seem to be an odd approach to implement a
simple summing junction to provide the heading error; however, it is interesting
that a neuron can provide a method to compare two signals, something that
is certainly of fundamental importance in making control decisions for tracking
and regulation.

Choosing Weights and Biases: Building Nonlinearities with Smooth
Step Functions

Next, we explain how to pick the weights and biases for the remaining layers. To
do this, view the perceptron in Figure 4.10 as having two “paths” of processing
from the signal e that is the output of the first hidden layer to the output δ.
Imagine that you remove the path on the bottom and first focus on constructing
the path on the top. We will think of the top path as being used to regulate
the ship heading when

e = ψr − ψ ≥ 0

In this case, we want to have a negative rudder input. To see this, consider
Figure 4.8 where you can see that a positive rudder input results in a decrease



4.3 Design Example: Multilayer Perceptron for Tanker Ship Steering 123

f

f

= linear activation function

Σ

Σ

Σ

Σ

Σ Σ

ψ

ψ

r
w

11
(1)

w21
(1)

b
(1)
1

First hidden
layer

Second hidden
layer

Third hidden
layer

Output layer

w
11
(2)

w
12
(2)

b
(2)
1

b
(2)
2

f = logistic sigmoidal activation function

e

w
11
(3)

w
22
(3)

w
11

w
21

b
(3)
1

b
(3)
2

b1

δ

Figure 4.10: A multilayer perceptron for tanker ship steering.

in the heading ψ and a negative rudder input results in an increase in the
heading ψ. Hence, if ψr − ψ ≥ 0, we have ψr ≥ ψ so that we want to increase
the size of ψ, so we use a negative rudder input δ. Next, note that for larger
values of |e| = |ψr − ψ|, we will generally want larger values of δ since larger
heading errors generally require larger rudder inputs to reduce them quickly.
How do we choose the weights and biases in the top path to implement this

Neural network
construction can be
viewed as “building”
stimulus-response
characteristics from
basic neuron building
blocks that are
deformable via their
parameters (here, we
build functions from
“smooth steps”).

type of control action?
To specify values for the weights and biases, we think of each neuron as

providing a type of “smooth switching” (a smooth step function as shown in
Figure 4.6, e.g., for the logistic function) and tune the weights and biases to
adjust these and build nonlinear control mappings. Note that when only the
top path is considered, we have

δ = w11

(
w

(3)
11

1 + exp(−x̄)
+ b

(3)
1

)
+ b1

where
x̄ = b

(2)
1 + w

(2)
11 e

The parameters in these equations affect the shape of the nonlinearity from e
to δ in the following manner:

• b1, b
(3)
1 : Shift the mapping up and down.

• w11, w
(3)
11 : Scale the vertical axis.

• b
(2)
1 : Shifts the smooth step (logistic function) horizontally, with b

(2)
1 > 0

shifting it to the left.
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• w
(2)
11 : Scale the horizontal axis (you may think of this as a type of gain for

the function, at least locally).

Using these ideas, choose

b1 = b
(3)
1 = 0

w11 = 1

w
(3)
11 = −80π

180

b
(2)
1 = −200π

180
w

(2)
11 = 10

With these choices we get the nonlinear mapping shown in the top plot of Fig-
ure 4.11. The general shape of the function is appropriate to use as a controller
for e > 0 since it provides negative rudder input values for positive values of
error, and it provides a type of proportionality between the size of e and the size
of δ. Notice that the choice of w

(3)
11 results in the perceptron providing a maxi-

mum negative rudder deflection of −80 degrees. The choice of b
(2)
1 simply shifts

the function to the right, so that the value of the function near e = 0 provides
δ ≈ 0. The value of w

(2)
11 affects the slope of the function as e > 0 increases in

size; if w
(2)
11 were chosen to be larger, then it would reach the maximum nega-

tive value of −80 degrees quicker as the size of e increases. This completes the
construction of the perceptron for the top path, which is dedicated to control
for the case where e ≥ 0.

Next, consider the bottom path of Figure 4.10 (imagine disconnecting the
top path) which is dedicated to the case e < 0. Using the same ideas for the
choice of the parameters above, select

b
(3)
2 =

80π

180
w21 = 1

w
(3)
22 = −80π

180

b
(2)
2 =

200π

180
w

(2)
12 = 10

The resulting nonlinearity implemented by the bottom path is shown in the
middle plot of Figure 4.11. First, note that its general shape is appropriate to
use as a controller for the case where e < 0; as the size of e increases in the
negative direction, increasingly positive values of a rudder input δ are provided
to try to decrease the value of ψ to the given ψr. The values of w

(3)
22 , b

(2)
2 ,

and w
(2)
12 were chosen in a similar way as the corresponding values for the top

path were chosen. The value of b
(3)
2 was chosen to shift the nonlinearity up
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Figure 4.11: Multilayer perceptron mappings, top plot is for the top path of the
perceptron from e to δ, middle plot is for the bottom path of the perceptron
from e to δ, bottom plot is for the entire perceptron from e to δ.

by 80 degrees. The choice for w21 completes the specification of the output
layer, which simply sums the functions generated by the top and bottom paths,
and results in the overall mapping from e to δ shown in the bottom plot of
Figure 4.11 (i.e., when both the top and the bottom paths in Figure 4.10 are
used). Notice that due to the symmetry in our choices, e = 0 implies that
δ = 0 so that if the ship is going in the right direction, the rudder does not
try to correct for the heading direction. This completes the construction of the
multilayer perceptron for regulating the ship heading.

4.3.3 Multilayer Perceptron Stimulus-Response Charac-
teristics

The multilayer perceptron construction procedure in the last subsection showed
how to construct the controller

δ = Fmlp(ψr , ψ)

Given a stimulus represented by particular values of ψr and ψ, the perceptron
will react and provide a response δ according to how the function Fmlp(ψr, ψ) is
shaped. In this way the Fmlp(ψr, ψ) nonlinearity implements a “control surface,”
which in this case has the shape shown in Figure 4.12.
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Figure 4.12: Control surface implemented by the multilayer perceptron for
tanker ship steering.

Figure 4.12 summarizes the input-output behavior of the multilayer percep-
tron. Consider some examples of how it behaves. Notice that if e = ψr −ψ = 0,

The neural network
stimulus-response
mapping is generally
nonlinear so it
implements a nonlinear
controller. To
understand how this
nonlinear controller
might affect closed-loop
behavior, it is important
to have insights into the
shape of the
nonlinearity.

the ship is heading in the correct direction, and the mapping in Figure 4.12
shows that the perceptron chooses δ = 0 (i.e., it does not make any course cor-
rections); this is due to the symmetry in our parameter choices for the top and
bottom paths. If, on the other hand,

ψr = 50

degrees and
ψ = −50

degrees, then δ is at its maximum negative deflection so that it is trying to
increase the heading angle ψ to get it pointed in the direction specified by
ψr. Other combinations of values for ψr and ψ can be viewed in an analogous
manner.

4.3.4 Behavior of the Ship Controlled by the Multilayer
Perceptron

To evaluate how a neural network can regulate the ship heading, we will use
simulation studies for a variety of operating conditions for the ship.
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Closed-Loop Response, Nominal Conditions

If we use “nominal conditions,” where we have “ballast” conditions, no wind,
no sensor noise, and a speed of 5 meters/sec., we get a closed-loop response
shown in Figure 4.13. For this, we use the multilayer perceptron in Figure 4.10
in the control system in Figure 4.9. Notice that the reference input ψr is set
to zero for 100 sec. and then 45 degrees until t = 2000 sec. when it returns
to a zero value. The actual ship heading responds quickly, but there is some
overshoot past the desired value, some oscillations, and then the heading settles
to the desired value. Note that the result of using a digital controller that only
updates the control input every 10 sec. manifests itself as the “staircase” signal
in the bottom plot of Figure 4.13. The middle plot also has a staircase form
since we only stored and plotted one of every 10 values. The top plot appears
smooth since we plot values each second.
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Figure 4.13: Closed-loop response resulting from using the multilayer perceptron
for tanker ship steering.

This response may not be considered to be very good; however, for a first
design it is reasonable. How do you improve the response? You tune the shape
of the nonlinearity pictured in Figure 4.12 by tuning the weights and biases of
the network, and possibly its structure (e.g., the number of layers, neurons, and
types of activation functions). Another option would be to use more inputs to
the controller, but we will consider this option when we study the use of a radial
basis function neural network for this same application in Section 4.5.

For now, we will assume that this is a reasonably good design, at least for
illustration purposes, and test its performance for other conditions.
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Effects of Wind on Heading Regulation

Next, consider the effects of a wind disturbance on the ship. Suppose that the
Simulation-based
evaluations of control
systems should consider
effects of a variety of
adverse influences.

wind is gusting. It hits the side of the ship and moves the ship a bit, which then
pushes the rudder against the water which induces a torque to move the rudder.
To model this, we add a disturbance onto the rudder angle input by adding

0.5
( π

180

)
sin (2π(0.001)t)

to what the multilayer perceptron controller commands as an input to the tanker
ship (this is an additive sinusoid disturbance with an amplitude of 0.5 degrees
and a period of 1000 sec.). In this case, we get the response in Figure 4.14. We
see that the wind affects our ability to achieve very good regulation of the ship
heading. In particular, it adversely affects the “steady-state behavior” of the
control system (i.e., when the value of ψr is held constant for a long period of
time, such as the times leading up to t = 2000 sec.) since the heading ψ does
not properly converge to the desired heading ψr.
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Figure 4.14: Closed-loop response resulting from using the multilayer perceptron
for tanker ship steering, with wind.

Effects of Speed Changes on Heading Regulation

Next, consider the effect of a speed change on our ability to steer the ship.
Generally, if you speed up the ship it is easier to steer, while if you slow it down,
it becomes more difficult to steer because the rudder becomes less effective. If
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we use a speed of u = 3 meters/sec. (i.e., a decreased speed compared to the
previous simulations), then we get the response in Figure 4.15. We see that the
speed decrease causes a general slowing of the response since the rudder is not
as effective in influencing the ship heading.
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Figure 4.15: Closed-loop response resulting from using the multilayer perceptron
for tanker ship steering with speed of 3 meters/sec.

Effects of Sensor Noise and Weight Changes on Heading Regulation

If you use an additive sensor noise uniformly distributed on [−0.01, 0.01], there
is little effect on the response so we do not show the plot. Of course, if you use
a sensor with worse performance characteristics, then you will expect tracking
errors to arise in an analogous manner to results for the wind.

Note that on different journeys, ships will weigh different amounts and the
Careful evaluations may
uncover conditions for
which the control system
performs poorly.

amount a ship weighs affects your ability to steer it. For the simulations up till
now we have studied the case for “ballast” conditions. Next, we will consider
the case of how the ship steers when it is under “full” conditions. In this case,
when we use the multilayer perceptron that we tuned for ballast conditions on
the full ship, we get the response in Figure 4.16. This shows how the multilayer
perceptron controller, which was tuned for ballast conditions, performs quite
poorly for full conditions. Why does it fail? It responds with too large of inputs
for errors in the heading. In the beginning of the simulation when ψr first
switches to 45 degrees at t = 100 sec. there is suddenly a positive error of e = 45
degrees, and the multilayer perceptron quickly reacts by putting in a maximum
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negative value for the rudder to try to get it moving in the right direction.
After a time it succeeds, but in doing this it has the ship heading moving too
fast and it overshoots in the opposite direction. The multilayer perceptron then
responds by putting a maximum positive value into the plant, which after an
even longer period of time than in the case where the ψ value swung too far
positive, it manages to move the ship heading in the opposite direction. This
process repeats with the controller inducing a growing heading oscillation that
results in the heading growing excessively large (which we intuitively think of as
going “unstable,” but of course strictly speaking, a simulation cannot generally
prove instability since simulations run for a finite length of time while stability
is an asymptotic property).
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Figure 4.16: Closed-loop response resulting from using the multilayer perceptron
for tanker ship steering, full rather than ballast conditions.

Clearly, the multilayer perceptron is not equipped for this condition. From
a neurophysiological view, we could say that evolution has not encountered this
situation frequently enough to result in a good design for the stimulus-response
characteristics of the perceptron. From a control engineering perspective, we
see that we need to reshape the nonlinearity Fmlp(ψr , ψ) in Figure 4.12 so that
the closed-loop response is adequate for all the possible conditions. For now, we
will not consider performing such a design iteration. Instead, we will show how
to use a different type of neural controller to regulate the ship heading using a
different strategy.
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4.4 Radial Basis Function Neural Networks

A locally tuned overlapping receptive field is found in parts of the cerebral
cortex, in the visual cortex, and in other parts of the brain. The radial basis
function neural network model is based on these biological systems (but once
again, the model is not necessarily accurate, just inspired by its biological coun-
terpart).

A radial basis function neural network is shown in Figure 4.17. There,
the inputs are xi, i = 1, 2, . . . , n, and the output is y = Frbf (x) where Frbf

represents the processing by the entire radial basis function neural network. Let
x = [x1, x2, . . . , xn]�. The input to the ith receptive field unit (sometimes called
a radial basis function) is x, and its output is denoted with Ri(x). The receptive
field unit has what is called a “strength” which we denote by bi. Assume that
there are nR receptive field units. Hence, from Figure 4.17,

y = Frbf (x, θ) =
nR∑
i=1

biRi(x) (4.10)

is the output of the radial basis function neural network, and θ holds the bi

parameters and possibly the parameters of the receptive field units.
Stimulus-response
characteristics of the
radial basis function
neural network are tuned
by changing the bi, Ri

parameters, or the
structure (e.g., Ri

definitions and how they
are combined).
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Figure 4.17: Radial basis function neural network model.

There are several possible choices for the “receptive field units” Ri(x):

1. We could choose

Ri(x) = exp
(
−|x − ci|2

(σi)2

)
(4.11)

where ci = [ci
1, c

i
2, . . . , c

i
n]�, σi is a scalar, and if z is a vector then |z| =√

z�z. For the case where n = 1, c1 = [c1
1] = [2], and σ1 = 0.1, R1(x) is

shown in Figure 4.18(a). As x moves away from c1
1, R1(x) decreases with

the rate of decrease dictated by the size of σ1 (a smaller value of σ1 results
in a steeper slope on the function, and so its value will decrease quicker
as x moves away from c1

1).
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2. We could choose
Ri(x) =

1

1 + exp
(
− |x−ci|2

(σi)2

)
where ci and σi are defined in choice 1. For the case where n = 1, c1 =
[c1

1] = [2], and σ1 = 0.1, R1(x) is shown in Figure 4.18(b). Here, we see
that the receptive field unit values are small where the values for choice 1
above are large, and vice versa.

3. In each of the above cases you can choose to make the σi also depend
on the input dimension (which makes sense if the input dimensions are
scaled differently). In this case for 1 above, for example, we would have
σi = [σi

1, σ
i
2, . . . , σ

i
n]� and

Ri(x) = exp

⎛
⎝−

n∑
j=1

(xj − ci
j)

2

(σi
j)2

⎞
⎠

where σi
j is the spread for the jth input for the ith receptive field unit.

This is the approach that we will use in the example in the next section.
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Figure 4.18: Example receptive field units.

There are also alternatives to how to compute the output of the radial basis
function neural network. For instance, rather than computing the simple sum
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as in Equation (4.10), you could compute a weighted average

y = Frbf (x, θ) =
∑nR

i=1 biRi(x)∑nR

i=1 Ri(x)
(4.12)

It is also possible to define multilayer radial basis function neural networks.
Finally, note that our radial basis function neural network model is developed

in an analogous way to what our multilayer perceptron was, relative to biological
neurons. It is a “firing rate model” that has had the receptive field unit function
shapes experimentally validated by finding the “tuning curve” for an individual
neuron (e.g., in the visual cortex). See the “For Further Study” section at the
end of this part for more details.

4.5 Design Example: Radial Basis Function Neu-

ral Network for Ship Steering

This section parallels Section 4.3, but we will design a radial basis function
neural network for ship heading regulation.

4.5.1 A Radial Basis Function Neural Network for Ship
Steering

We will design the radial basis function neural network, study its stimulus re-
sponse characteristics, and then show via simulations how it regulates the tanker
ship heading.

Controller Input Choice and Control System Structure

Note that for the multilayer perceptron, we used ψr and ψ as inputs to the
controller and then in the first layer, we formed the error e that served as an
input to the second layer. Here, taking a more standard control engineering
approach, we will use the error e as one input to the radial basis function neural
network, and we will also use the derivative of that error. Hence, our inputs to
the radial basis function neural network will be

e = ψr − ψ

and
ė = ψ̇r − ψ̇

We will, however, use a backward difference approximation to the derivative
which we will denote by c(kT ),

ė ≈ e(kT ) − e(kT − T )
T

= c(kT )

where T = 10 sec. and k is an index for the time step (this is an Euler approx-
imation of the derivative and T is the sampling period of the digital controller



134 Neural Network Substrates for Control Instincts

on which we will implement the controller). As is standard in discrete-time
systems, for convenience we will often use “k” rather than “kT” as the argu-
ment for the signals. With this, we can denote the radial basis function neural
network for the ship by

δ(k) = Frbf (e(k), c(k))

(we omit parameter vector argument for convenience) and use it in the control
system shown in Figure 4.19.

Tanker
shipd

dt

Σ
r e

Radial basis
function neural
controller

+

δ ψ
ψ

Replace with backward difference and 
denote controller input as c(k)

Figure 4.19: Radial basis function neural network used as a controller for ship
heading.

Design of a Radial Basis Function Neural Network for Steering

Next, we construct a radial basis function neural network of Equation (4.10)
with n = 2 inputs, and nR = 121 so we will have to pick 121 strengths bi,
i = 1, 2, . . . , 121. For the Ri(e(k), c(k)) we use Equation (4.11) and create
a uniform grid for the ci centers, i = 1, 2, . . . , 121. To pick the grid points,
assume that e(k) lies in the range

e(k) ∈ [−π

2
,
π

2
]

(which will hold if we do good regulation and do not get fast changes in ψr).
Via simulations of the ship, the angular rate of movement is often such that

c(k) ∈ [−0.01, 0.01]

so we will make that assumption to guide our design choices. For convenience,
we simply create a uniform grid with its four outer corners at (−π

2 ,−0.01),
The parameters of
receptive field units are
often chosen via
“gridding” the input
space; this ensures that
the controller will have a
response for each input.

(−π
2 , 0.01), (π

2 , 0.01), and (π
2 ,−0.01) with nR = 121 centers uniformly placed at

the grid points (i.e., with 11 points along each input dimension). We show the
centers of the receptive field units in Figure 4.20.

For the receptive field units we use spreads σi
j (i.e., so that the size of the

spread depends on which input dimension is used) with

σi
1 = 0.7

π√
nR
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Figure 4.20: Receptive field unit centers.

and
σi

2 = 0.7
0.02√

nR

for i = 1, 2, . . . , 121. For σi
1, the π

11 factor makes the spread size depend on the
number of grid points along the e input dimension (similarly for σi

2), and the
0.7 factor was chosen to get a smooth interpolation between adjacent receptive
field units (see more discussion on this point below). With these choices, as an
example, consider the shape of receptive field unit R73(e, c) shown in Figure 4.21
(note that the receptive field unit index is found by starting in the lower left-
hand corner of Figure 4.20 with 1, and counting up for the point directly above
it, then when you reach the top of the first column, you go to the bottom of
the next column). Notice that it simply has the shape of a Gaussian function.
The center of this particular receptive field unit is the upper right-hand darkly
shaded circle in Figure 4.20. (When comparing Figures 4.20 and 4.21, be careful
to mentally rotate Figure 4.20 so that the plane appropriately aligns with the
R73(0, 0) = 0 plane in Figure 4.21.)

We can view
construction of a radial
basis function neural
network as building a
stimulus-response
characteristic from
tunable “spatially local”
functions (e.g.,
Gaussian functions).

Next, we will consider how the input-output mapping of the radial basis
function neural network is shaped by the choice of the scaling parameters bi.
For instance, note that b73 would simply scale the height of the receptive field
unit in Figure 4.21. Consider the scaling and summation of the receptive field
units with centers at the four darkly shaded circles in Figure 4.20 (the indices
for these are 61, 62, 72, and 73). In particular, we compute

2R61(e, c) + R62(e, c) + 2R72(e, c) + R73(e, c)
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Figure 4.21: Mapping implemented by receptive field unit R73(e, c).

and plot it vs. e and c in Figure 4.22. Note that we scaled two of the receptive
field units by 2 and in this way, we obtain a small region (near the center of
the four darkly shaded circles in the (e, c) plane) that has a slope fixed by the
parameters that we have chosen. In essence, we have designed a neural controller
for this small region.

To design a radial basis function neural network for the ship steering prob-
lem, we simply need to choose the bi, i = 1, 2, . . . , 121, parameters to shape the
mapping in the appropriate way. Suppose that we view the parameters as being
loaded in a matrix⎡

⎢⎢⎢⎣
b1 b12 b23 b34 b45 b56 b67 b78 b89 b100 b111

b2 · · · b112

... · · · ...
b11 b22 b33 b44 b55 b66 b77 b88 b99 b110 b121

⎤
⎥⎥⎥⎦

and then choose this matrix to be

Columns 1 through 7

1.3963 1.3963 1.3963 1.3963 1.3963 1.3963 1.3963

1.3963 1.3963 1.3963 1.3963 1.3963 1.3963 1.0472

1.3963 1.3963 1.3963 1.3963 1.3963 1.0472 0.6981

1.3963 1.3963 1.3963 1.3963 1.0472 0.6981 0.3491

1.3963 1.3963 1.3963 1.0472 0.6981 0.3491 0

1.3963 1.3963 1.0472 0.6981 0.3491 0 -0.3491
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Figure 4.22: Scaling and addition of several receptive field units (i.e., 2R61(e, c)+
R62(e, c) + 2R72(e, c) + R73(e, c)).

1.3963 1.0472 0.6981 0.3491 0 -0.3491 -0.6981

1.0472 0.6981 0.3491 0 -0.3491 -0.6981 -1.0472

0.6981 0.3491 0 -0.3491 -0.6981 -1.0472 -1.3963

0.3491 0 -0.3491 -0.6981 -1.0472 -1.3963 -1.3963

0 -0.3491 -0.6981 -1.0472 -1.3963 -1.3963 -1.3963

Columns 8 through 11

1.0472 0.6981 0.3491 0

0.6981 0.3491 0 -0.3491

0.3491 0 -0.3491 -0.6981

0 -0.3491 -0.6981 -1.0472

-0.3491 -0.6981 -1.0472 -1.3963

-0.6981 -1.0472 -1.3963 -1.3963

-1.0472 -1.3963 -1.3963 -1.3963

-1.3963 -1.3963 -1.3963 -1.3963

-1.3963 -1.3963 -1.3963 -1.3963

-1.3963 -1.3963 -1.3963 -1.3963

-1.3963 -1.3963 -1.3963 -1.3963

Notice the pattern of elements in the matrix. For instance, for R61, the
receptive field unit in the center of the grid, we have a strength b61 = 0. Why?
Because at this point e = c = 0 so the ship is on the proper heading and it
is not deviating from that heading; hence, we do not make any corrections to
the rudder angle. It is a useful exercise for you to consider another element in
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the above matrix and convince yourself that it is a good choice via relating its
choice to what the controller should do for a particular (e, c) combination.

4.5.2 Stimulus-Response Characteristics

The stimulus-response characteristics of the radial basis function neural network
Frbf (e, c) that we just designed are shown in Figure 4.23 in the form of a control
surface, similar to how we illustrated the mapping for the multilayer perceptron
(note that here the inputs are different).

Different inputs and
neural networks lead to
different
stimulus-response
characteristics for the
controller.
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Figure 4.23: Stimulus-response characteristics of the radial basis function neural
network for tanker ship heading regulation.

Note that the plot nicely summarizes the “decisions” that the neural network
will make. Notice that if e = c = 0, the ship is heading in the proper direction
and it is not deviating from that direction; hence, the controller sets δ = 0.
If, however, the ship heading error e is near 90 deg., with positive values of ψ
and ψr, we know that the heading ψ is pointed about 90 deg. counterclockwise
of the desired heading ψr. If along with this condition for e, we have that c
is positive and near a value of 0.5 deg./sec., then the heading is moving to
become even worse than it currently is. In this situation, the neural network
will choose the largest possible negative rudder angle so that the heading will
move clockwise towards the desired heading, counteracting the effects of having
a rate of rotation in the wrong direction. For practice, it would be useful for
you to consider other (e, c) values and explain why the decisions made by the
neural controller are appropriate.



4.5 Design Example: Radial Basis Function Neural Network for Ship Steering 139

4.5.3 Behavior of the Ship Controlled by the Radial Basis
Function Neural Network

To study how a radial basis function neural network can operate to regulate the
ship heading, we will use simulation studies for a variety of operating conditions,
the same ones as used in Section 4.3.

Closed-Loop Response, Nominal Conditions

If we use “nominal conditions,” where we have “ballast” conditions, no wind, no
sensor noise, and a speed of 5 meters/sec., we get a closed-loop response shown
in Figures 4.24 and 4.25 when we use the radial basis function neural network
developed in the last section in the control system in Figure 4.19. The ship
heading ψ responds quickly, and while there is some overshoot past the desired
value, the response settles to the proper value relatively quickly.
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Figure 4.24: Closed-loop response resulting from using the radial basis function
neural network for tanker ship steering.

While the response is generally superior to what we found for the multilayer
perceptron, it is not appropriate to compare the two approaches. Why? Differ-
ent inputs are used for the neural networks, there are far fewer parameters in
the multilayer perceptron (how many were used in each case?), and we may have
simply gotten lucky in our tuning for the radial basis function neural network.
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Figure 4.25: Closed-loop response resulting from using the radial basis function
neural network for tanker ship steering.

Effects of Wind, Speed Changes, Sensor Noise, and Weight Changes
on Heading Regulation

Next, consider the effects of a wind disturbance on the ship. In this case, we get
the response in Figure 4.26. We see that the wind affects our ability to achieve
very good steady-state regulation of the ship heading.

Next, consider the effect of a speed change on our ability to steer the ship.
If we use a speed of u = 3 meters/sec. (i.e., a decreased speed compared to the

Using different inputs
and a different neural
network
stimulus-response
characteristic, we
generally obtain different
closed-loop responses.

previous simulations), then we get the response in Figure 4.27. We see that
compared to the nominal conditions, the speed decrease causes more overshoot
of the response since the rudder is not as effective in influencing the ship heading.

As before, the sensor noise has little effect on the response. When there is a
weight change and the ship is now full, we get the response in Figure 4.28. Notice
that we get more overshoot than we did for nominal conditions; this is because
a lighter ship is easier to steer so that the actions taken are too extreme and
this results in the overshoot (you can think of the rudder as being more effective
at steering for a light ship; hence, it generally needs smaller rudder inputs for
a full ship). While the multilayer perceptron performed quite poorly for this
condition, the radial basis function neural network performs reasonably well;
however, just like for the nominal conditions above, it would be inappropriate
to draw many conclusions from a comparison without more study. It would be
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Figure 4.26: Closed-loop response resulting from using the radial basis function
neural network for tanker ship steering, with wind.

especially inappropriate to try to conclude that the radial basis function neural
network is generally superior to the multilayer perceptron.

4.6 Stability Analysis

For some applications, the designer is first concerned about investigating the
stability properties of a control system, since it is often the case that if the
system is unstable, there is no chance that any other performance specifications

Lyapunov stability
analysis is an approach
to verifying the correct
operation of a control
system.

will hold. For example, if the control system for ship steering is unstable,
you would be more concerned with the possibility of unsafe operation than
with how well it regulates the heading to the desired angle. Fortunately, there
has been significant attention given to the mathematical analysis of stability
of nonlinear control systems, and certain results from that theory apply here.
Here, we overview Lyapunov’s direct method. For more complete introductions
to stability analysis, see the “For Further Study” section at the end of this part.

4.6.1 Differential Equations and Equilibria

Suppose that a dynamic system is represented with

ẋ(t) = f(x(t)) (4.13)
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Figure 4.27: Closed-loop response resulting from using the radial basis function
neural network for tanker ship steering, speed of 3 meters/sec.

where x ∈ 	n is an n vector and f : D → 	n with D = 	n or D = B(h) for
some h > 0 (h here is not to be confused with the integration step size used in
the Runge-Kutta method) where

B(h) = {x ∈ 	n : |x| < h}
is a ball centered at the origin with a radius of h and | · | is a norm on 	n (e.g.,
|x| =

√
(x�x)). If D = 	n, then we say that the dynamics of the system are

defined globally, while if D = B(h), they are only defined locally. Assume that
for every x0, the initial value problem

ẋ(t) = f(x(0)), x(0) = x0 (4.14)

possesses a unique solution φ̄(t, x0) that depends continuously on x0 (φ̄(t, x0) is
a “solution” of Equation (4.13) if ˙̄φ(t, x0) = f(φ̄(t, x0)) where φ̄(0, x0) = x0). A
point xe ∈ 	n is called an “equilibrium point” of Equation (4.13) if f(xe) = 0
for all t ≥ 0. An equilibrium point xe is an “isolated equilibrium point” if there
is an h′ > 0 such that the ball around xe,

B(xe, h
′) = {x ∈ 	n : |x − xe| < h′}

contains no other equilibrium points besides xe. As is standard, we will assume
that the equilibrium of interest is an isolated equilibrium located at the origin
of 	n. This assumption results in no loss of generality since if xe �= 0 is an
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Figure 4.28: Closed-loop response resulting from using the radial basis function
neural network for tanker ship steering, full rather than ballast conditions.

equilibrium of Equation (4.13) and we let x̄(t) = x(t) − xe, then x̄ = 0 is an
equilibrium of the transformed system

˙̄x(t) = f̄(x̄(t)) = f(x̄(t) + xe)

To illustrate how to transform the equilibrium, we use a simple model of the
pendulum shown in Figure 4.29 that is given by

ẋ1 = x2

ẋ2 = − g
� sin(x1) − k

mx2 + 1
m�2 T

(4.15)

where g = 9.81, � = 1.0, m = 1.0, k = 0.5, x1 is the angle (in radians) shown
in Figure 4.29, x2 is the angular velocity (in radians per second), and T is the
control input.

If we assume that T = 0, then there are two distinct isolated equilibrium
points, one in the downward position [0, 0]� and one in the inverted position
[π, 0]�. Suppose we are interested in the control of the pendulum about the
inverted position; hence, we need to translate the equilibrium by letting x̄ =
x − [π, 0]�. From this we obtain

˙̄x1 = x̄2 = f̄1(x̄)
˙̄x2 = g

� sin(x̄1) − k
m x̄2 + 1

m�2 T = f̄2(x̄)
(4.16)

where if T = 0, then x̄ = 0 corresponds to the equilibrium [π, 0]� in the original
system in Equation (4.15), so studying the stability of x̄ = 0 corresponds to
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Figure 4.29: Pendulum.

studying the stability of the control system about the inverted position. Now,
it is traditional to omit the cumbersome bar notation in Equation (4.16) and
study the stability of x = 0 for the system

ẋ1 = x2 = f1(x)
ẋ2 = g

� sin(x1) − k
mx2 + 1

m�2 T = f2(x)
(4.17)

with the understanding that we are actually studying the stability of Equa-
tion (4.16).

4.6.2 Stability Definitions

The equilibrium xe = 0 of Equation (4.13) is “stable” (in the sense of Lyapunov)
if for every ε > 0 there exists a δ(ε) > 0 such that |φ̄(t, x0)| < ε for all t ≥ 0
whenever |x0| < δ(ε) (i.e., it is stable if when it starts close to the equilibrium,
it will stay close to it). The notation δ(ε) means that δ depends on ε. A system
that is not stable is called “unstable.”

The equilibrium xe = 0 of Equation (4.13) is said to be “asymptotically
stable” if it is stable and there exists η > 0 such that limt→∞ φ̄(t, x0) = 0
whenever |x0| < η (i.e., it is asymptotically stable, if when it starts close to the
equilibrium, it will converge to it).

The set Xd ⊂ 	n of all x0 ∈ 	n such that φ̄(t, x0) → 0 as t → ∞ is called
the “domain of attraction” of the equilibrium xe = 0 of Equation (4.13). The
equilibrium xe = 0 is said to be “globally asymptotically stable” if Xd = 	n

(i.e., if no matter where the system starts, its state converges to the equilibrium
asymptotically).

As an example, consider the scalar differential equation

ẋ(t) = −2x(t)
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which is in the form of Equation (4.14). For this system, D = 	1 (i.e., the
dynamics are defined on the entire real line, not just some region around zero).
We have xe = 0 as an equilibrium point of this system since 0 = −2xe. Notice
that for any x0, we have the solution

φ̄(t, x0) = x0e
−2t → 0

as t → ∞ so that the equilibrium xe = 0 is stable since, if you are given any
ε > 0, there exists a δ > 0 such that if |x0| < δ, |φ̄(t, x0)| < ε. To see this,
simply choose δ = ε for any ε > 0 that you choose. Also note that since for
any x0 ∈ 	n, φ̄(t, x0) → 0, the system is globally asymptotically stable. While
determining if this system possesses certain stability properties is very simple
since the system is so simple, for complex nonlinear systems it is not so easy. One
reason why is that for complex nonlinear systems, it is difficult to even solve the
ordinary differential equations (i.e., to find φ̄(t, x0) for all t and x0). However,
Lyapunov’s direct method provides a technique that allows you to determine
stability properties without solving the ordinary differential equations.

4.6.3 Lyapunov’s Direct Method for Stability Analysis

The stability results for an equilibrium xe = 0 of Equation (4.13) that we provide
next depend on the existence of an appropriate “Lyapunov function”

V : D → 	

where D = 	n for global results (e.g., global asymptotic stability) and D = B(h)
for some h > 0, for local results (e.g., stability in the sense of Lyapunov or
asymptotic stability). If V is continuously differentiable with respect to its
arguments, then the derivative of V with respect to t along the solutions of
Equation (4.13) is

V̇(4.13)(x(t)) = ∇V (x(t))�f(x(t))

where

∇V (x(t)) =
[

∂V

∂x1
,

∂V

∂x2
, . . . ,

∂V

∂xn

]�
is the gradient of V with respect to x. Using the subscript on V̇ is sometimes
cumbersome, so we will at times omit it with the understanding that the deriva-
tive of V is taken along the solutions of the differential equation.

Lyapunov’s direct method is given by the following:

1. Let xe = 0 be an equilibrium for Equation (4.13). Let V : B(h) → 	
be a continuously differentiable function on B(h) such that V (0) = 0 and
V (x) > 0 in B(h)−{0}, and V̇(4.13)(x) ≤ 0 in B(h). Then xe = 0 is stable.
If, in addition, V̇(4.13)(x) < 0 in B(h)−{0}, then xe = 0 is asymptotically
stable.
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2. Let xe = 0 be an equilibrium for Equation (4.13). Let V : 	n → 	 be
a continuously differentiable function such that V (0) = 0 and V (x) > 0
for all x �= 0, |x| → ∞ implies that V (x) → ∞, and V̇(4.13)(x) < 0 for all
x �= 0. Then xe = 0 is globally asymptotically stable.

As an example, consider the scalar dynamical system

ẋ = −2x3

that has an equilibrium xe = 0. Choose

V (x) =
1
2
x2

With this choice we have

V̇ =
∂V

∂x

dx

dt
= xẋ = −2x4

so that clearly if x �= 0, then −2x4 < 0, so that by Lyapunov’s direct method
xe = 0 is asymptotically stable. Notice that xe = 0 is in fact globally asymp-
totically stable.

While Lyapunov’s direct method has found wide application in conventional
control, it is important to note that it is not always easy to find the “Lyapunov
function” V that will have the above properties so that we can guarantee that
the system is stable.

4.6.4 Stability of Discrete Time Systems

Consider the nonlinear discrete time system

x(k + 1) = f(x(k)) (4.18)

where k is the discrete time index, x ∈ 	n is an n vector and f : D → 	n (with
D = 	n or D = B(h) for some h > 0), and the equilibrium xe ∈ 	n is defined
the same as in the continuous time case. Let φ̄(k, x0) denote a solution to the
nonlinear discrete time system where x0 = x(0).

Stability in the sense of Lyapunov, (global) asymptotic stability, and regions
of asymptotic stability are defined the same as in the continuous time case,
except the time index “t” is replaced with the index “k.”

Stability conditions for the discrete-time direct method of Lyapunov are
slightly different from the continuous time case. We will only discuss asymptotic
stability, as that property will be the one we are most interested in for our
applications. According to Lyapunov’s direct method, the equilibrium xe = 0
of the system in Equation (4.18) is globally asymptotically stable if there exists
a function V (x) such that the following hold for all x ∈ 	n:

1. V (x) ≥ 0 except at x = 0 where V (x) = 0,

2. V (x) → ∞ if |x| → ∞, and
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3. V (x(k + 1)) − V (x(k)) < 0.

If these conditions only hold locally, then we only obtain asymptotic stability.
If they only hold on a region, that region is the region of asymptotic stability.
Also, if xe is an invariant set (i.e., where if we let x0 ∈ xe, f(x0) ∈ xe), then
the same types of results hold (we will give an example of how to perform such
analysis in the examples to follow).

As an example, consider

x(k + 1) = ax(k)

where a is a fixed scalar and x(k) is a scalar also. Notice that xe = 0 is
an isolated equilibrium. Suppose we want to find the conditions under which
xe = 0 is a globally asymptotically stable equilibrium. Choose V = x2. Notice
that the first two conditions above are satisfied for this choice. Next, notice
that

V (x(k + 1)) − V (x(k)) = x2(k + 1) − x2(k) = a2x2 − x2 = (a2 − 1)x2

Hence, if a2 − 1 < 0, we have V (x(k + 1)) − V (x(k)) < 0. In other words,
if a2 < 1, or if a ∈ (−1, 1), then xe = 0 is a globally asymptotically stable
equilibrium.

4.6.5 Example: Stable Instinctual Neural Control

Suppose you are given the differential equation

ẋ = f(x) + gu

where x(t) is a scalar, g > 0 is an unknown but fixed scalar (the following
Lyapunov stability
analysis is useful to
verify the correct
operation of a control
system using an
instinctual neural
controller.

analysis works in a similar way if we know that g < 0), f is smooth (so solutions
to the differential equation exist and are unique), and f(0) = 0. We will assume
that while we do not know the exact form of f(x), we do suppose that for some
α > 0,

|f(x)| < α|x|
We emphasize, however, that there is uncertainty present in this control problem
in the sense that we do not know the value of g and we do not know the specific
form of the nonlinearity f , just that it satisfies the above inequality.

We seek to design a neural controller

u = F (x)

so that the equilibrium xe = 0 is globally asymptotically stable. First, pick

V (x) =
1
2
x2

so that
V̇ = xẋ
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and so
V̇ = xf(x) + gxu = xf(x) + gxF (x)

Notice that
V̇ ≤ |x||f(x)| + gxF (x) ≤ αx2 + gxF (x)

We want to design the neural controller F (x) so that the second term in the
above V̇ equation is negative since then we will have V̇ < 0 for x �= 0 and then
xe = 0 will be a globally asymptotically stable equilibrium. To do this, suppose
that we design the controller so that F (0) = 0, F (x) is smooth, and for some
scalar β > 0,

F (x) > −βx, x < 0 (4.19)
F (x) < −βx, x > 0

which simply constrains the nonlinear surface of the neural controller. Now, if
x > 0, F (x) < −βx, so

V̇ ≤ αx2 + gx(−βx) = (α − gβ)x2

Also, if x < 0, F (x) > −βx, so once again

V̇ ≤ αx2 − gβx2 = (α − gβ)x2

Hence, if we have α − gβ < 0 or β > α/g, then xe = 0 will be globally asymp-
totically stable.

So, intuitively, why does our neural controller stabilize this uncertain non-
linear plant? Basically, when x > 0, F (x) < 0 so the neural controller seeks to
make the derivative ẋ negative to get the state x to move toward xe = 0. Simi-
larly, if x < 0, F (x) > 0 so the neural controller seeks to make the derivative ẋ
positive to get the state to move toward xe = 0. It should be clear that it is not
necessary for F (x) to be a neural controller to achieve the stabilization task;
any controller that satisfies the conditions in Equation (4.19) (and the other
constraints) will adequately perform the task.

All of this analysis is based on our ability to synthesize a neural controller so
that Equation (4.19) is met. To do this, you would need to write out the mathe-
matical form of F (x) and prove that it satisfies Equation (4.19); perhaps in this
simple case, you could use a somewhat heuristic graphical technique where you
construct the neural controller and plot its surface to check Equation (4.19).
Notice that for many neural controllers, the output saturates for some large
magnitude values of x so that Equation (4.19) will often not be satisfied glob-
ally. In this case, the analysis is not global, but only for an interval of the x axis,
so we can only conclude that xe is asymptotically stable (i.e., a local property)
or that there is some region of asymptotic stability.

4.7 Hierarchical Neural Networks

There are a variety of methods that can be employed to construct hierarchical
neural networks. Here, we provide an example of how such hierarchies occur in
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nature, then discuss how multilayer perceptrons and radial basis function neural
networks can be organized in a hierarchical fashion.

It is natural to view
some neural networks as
hierarchical.4.7.1 Example: Marine Mollusc

In the marine mollusc, Pleurobranchaea, behaviors are organized hierarchically
as dictated by the cellular arrangement of their neurons [312]. The arrangement
(see Figure 472 in [312]), shows that the “swimming escape response” inhibits
the other behaviors. Also, egg laying inhibits feeding, which in turn takes
precedence over mating. The actual neural “circuitry” has been traced in these
molluscs and this research has shown that when activated, command systems
of neurons that are responsible for feeding and egg laying inhibit the neural
networks dedicated to mating and locomotion.

The behavior of the mollusc is directly dictated by the underlying hierar-
chical organization of its neural network. Evolution has shaped a hierarchical
arrangement in the neural network so that the behaviors that are exhibited
increase the reproductive success of the mollusc.

4.7.2 Hierarchical Neural Structures

Here, we simply provide some ideas on how to structure neural networks in
a hierarchical fashion. First, you could use a multilayer perceptron to turn on
and off different parts of another multilayer perceptron. For example, the higher
layer could simply output zeros and ones and these could multiply activation
function outputs so that the lower level perceptron is reconfigurable based on
different conditions.

For radial basis functions you may have a two-level hierarchical network
with the higher layer defined on a coarse grid and the lower layer on a fine
grid. Then, when a region is activated in the higher level network, that could
activate a radial basis function neural network that is defined on a fine grid.
This provides a type of “nesting” and focusing, and at times can provide for
savings in computational complexity since only those radial basis functions with
fine grids that are activated need to be stored in memory and computed.

4.8 Exercises and Design Problems

Exercise 4.1 (Building Multilayer Perceptrons): In this problem you
will focus on constructing, “by hand,” multilayer perceptrons to match
certain functions.

(a) Construct two different multilayer perceptrons that try to match (ap-
proximate) the input-output properties of y = f(x) = 2x where x
and y are scalars over the range x ∈ [−10, 10]. In the first case you
may use a linear activation function, and any combination of other
neurons. In the second case, use a linear activation function in the
output layer and a single hidden layer of no more than five logistic
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activation functions. Try to tune the parameters of the network by
hand to make the mapping that is implemented by the neural network
as close as possible to f over its entire domain. Do not use the neural
network training methods that are introduced later in the book. Plot
f vs. x and the mapping implemented by the neural network on the
same plot in order to illustrate how close the network approximates
the function.

(b) Repeat (a) but for y = f(x) = 2x2. You may use any type of
multilayer perceptron, with any number of neurons you would like.

(c) Repeat (a) but for y = f(x) = 2 sin(x). You may use any type of
multilayer perceptron, with any number of neurons you would like.

Exercise 4.2 (Building Radial Basis Function Neural Networks):

(a) Repeat Exercise 4.1 (a), but only construct one radial basis function
neural network with no more than five receptive field units.

(b) Repeat Exercise 4.1 (b), but only construct one radial basis function
neural network with no more than five receptive field units.

(c) Repeat Exercise 4.1 (c), but only construct one radial basis function
neural network and you may use any number of receptive field units
for it.

Exercise 4.3 (Lyapunov’s Direct Method): Suppose that you are given
the plant

ẋ = ax + bu

where b > 0 and a < 0 (so the system is stable) and x is a scalar. Suppose
that you design an instinctual neural controller F that generates the input
to the plant given the state of the plant (i.e., u = F (x)). Assume that you
design the controller so that F (0) = 0 (so that x = 0 is an equilibrium)
and so that F (x) is continuous in x (so that a unique solution exists to
the differential equation describing the closed-loop system).

(a) Use Lyapunov’s direct method to show that if x and F (x) always
have opposite signs, then x = 0 is stable.

(b) What types of stability does x = 0 of the control system possess for
part (a)? List all types of stability that it possesses.

(c) Design a (SISO) instinctual neural controller that satisfies the con-
dition stated in (a) (and so that F (0) = 0 and F (x) is continuous)
and simulate the closed-loop system to help illustrate the stability
of the neural control system. Choose the initial condition x(0) = 1,
a = −2, and b = 2. Of course, the simulation does not prove that
the closed-loop system is stable—it only shows that for one initial
condition, the state appears to converge but cannot prove that it
converges since the simulation is only for a finite amount of time.
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Exercise 4.4 (Multilayer Perceptron for Tanker Ship Steering): Pro-
duce simulations to reproduce the results where we used a multilayer per-
ceptron for tanker ship steering in the chapter (all the conditions). Add
more comments to the code and produce a flowchart to demonstrate that
you understand its operation.

Exercise 4.5 (Radial Basis Function Neural Network for Tanker Ship
Steering): Produce simulations to reproduce the results where we used a
radial basis function neural network for tanker ship steering in the chapter
(all the conditions). Add more comments to the code and produce a
flowchart to demonstrate that you understand its operation.

Design Problem 4.1 (Design of a Multilayer Perceptron for Tanker
Ship Steering):

(a) Redesign the multilayer perceptron from Exercise (4.4) to improve
performance of the closed-loop system for nominal conditions. Con-
strain the way that you perform the redesign to simply tuning of
parameters, not changing the number of layers or neurons. Show
plots to support your conclusions.

(b) Repeat (a) but design a multilayer perceptron that has two inputs,
e and ė (that you may approximate using an Euler approximation
to the derivative), and one output δ. Hint: Build on the multilayer
perceptron that was used in (a). Tune the multilayer perceptron
so that it obtains “better” performance (you define precisely what
this means for your study) than in (a). Plot the three-dimensional
input-output map of the resulting tuned controller.

(c) Repeat (a) but you may use any type of multilayer perceptron (i.e.,
you choose the inputs, number of layers, and neurons). Try to achieve
the best possible performance for all the different conditions consid-
ered in the chapter. You define what you mean by good performance,
and you decide what an appropriate balance is in the quality of the
results between the different conditions.

Design Problem 4.2 (Design of a Radial Basis Function Neural Net-
work for Tanker Ship Steering):

(a) Redesign the radial basis function neural network from Exercise (4.5)
to improve performance of the closed-loop system for nominal con-
ditions. Constrain the way that you perform the redesign to simply
tuning of parameters, not changing the number of receptive field
units. Show plots to illustrate better performance. Plot the three-
dimensional input-output map of the resulting tuned controller.

(b) Repeat (a), but you may use any radial basis function neural network
(i.e., you choose the inputs and number of receptive field units).
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(c) Repeat (a) with the modification in (b), but try to achieve the best
possible performance for all the different conditions considered in the
chapter. You define what you mean by good performance, and you
decide what an appropriate balance is in the quality of the results
between the different conditions.




