
Chapter 19

Competitive and Intelligent
Foraging



Chapter Contents

19.1 Competition and Fighting in Nature . . . . . . . . . . . . . . . . . . . 831

19.1.1 Foraging Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832

19.1.2 Intelligent Foragers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833

19.1.3 Evolution and Foraging . . . . . . . . . . . . . . . . . . . . . . . . . . . 834

19.2 Introduction to Game Theory . . . . . . . . . . . . . . . . . . . . . . . 834

19.2.1 Strategies and Information for Decisions . . . . . . . . . . . . . . . . . . 835

19.2.2 Nash, Minimax, and Stackelberg Strategies . . . . . . . . . . . . . . . . 840

19.2.3 Cooperation and Pareto-Optimal Strategies . . . . . . . . . . . . . . . . 847

19.3 Design Example: Static Foraging Games . . . . . . . . . . . . . . . . 855

19.3.1 Static Foraging Game Model . . . . . . . . . . . . . . . . . . . . . . . . 855

19.3.2 Competition and Cooperation for a Resource . . . . . . . . . . . . . . . 858

19.3.3 Energy Constraints and Multiple Resources . . . . . . . . . . . . . . . . 862

19.4 Dynamic Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863

19.4.1 Modeling the Game Arena and Observations . . . . . . . . . . . . . . . 865

19.4.2 Information Space and Strategies . . . . . . . . . . . . . . . . . . . . . . 866

19.4.3 Decision and Action Timing . . . . . . . . . . . . . . . . . . . . . . . . . 868

19.5 Example: Dynamic Foraging Games . . . . . . . . . . . . . . . . . . . 868

19.5.1 Dynamic Foraging Game Model . . . . . . . . . . . . . . . . . . . . . . . 868

19.5.2 Biomimicry for Foraging Strategies . . . . . . . . . . . . . . . . . . . . . 874

19.6 Challenge Problems: Intelligent Social Foraging . . . . . . . . . . . . 877

19.6.1 Intelligent Foraging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 878

19.6.2 Intelligent Social Foraging . . . . . . . . . . . . . . . . . . . . . . . . . . 881

19.7 Exercises and Design Problems . . . . . . . . . . . . . . . . . . . . . . 892



19.1 Competition and Fighting in Nature 831

Foraging sometimes involves simply going out and finding nutrients, but
often a key aspect of foraging is competing for resources with other foragers.
This can involve trying to find resources before another forager. In other cases,
it could involve issues in fighting other animals for a resource, or perhaps one
forager is the nutrient source for another forager and then there may be issues of
pursuit and evasion. Clearly, as for the case of noncompetitive foraging, many
aspects of the environment affect competitive foraging behavior and as always,
evolution plays a fundamental role in foraging strategy design.

In this chapter, characteristics of competitive and cooperative foraging in na-
ture are modeled using a game-theoretic perspective. The basic definitions and
rules in game theory are introduced by showing how to set up and solve static
finite two-player games (matrix games) for security and saddle point strategies.
Then, it is shown how to define and solve bimatrix and infinite competitive
(adversarial) games for Nash equilibria, minimax solutions, and Stackelberg so-
lutions. Pareto-optimal solutions for cooperative games are discussed to help
clarify the relationships between competitive and cooperative games. We apply
the methods to the study of adversarial foraging games that involve resource
competition, and then resource allocation when there is cooperation among play-
ers and hence, social foraging. Next, we define a model for a dynamic game,
and discuss aspects of strategies and the information space.

This chapter complements the last one. We treat cooperative foraging here,
but only to show another way to view social foraging, and with the intent of
contrasting it with competitive foraging. This chapter is also important in that
each forager views all the other foragers as part of its environment (plant) and
tries to take actions (generate control inputs) in order to succeed. The other
foragers are not simply treated as uncertainty (a disturbance). Certain aspects
of the other foragers are modeled (e.g., the assumption that they are rational
and hence, will try to maximize their own returns).

In the last section of this chapter, we introduce “intelligent” foraging which
is one example of how other aspects of intelligence affect foraging (e.g., planning,
attention, and learning). The last section is meant to challenge you to think
about how to integrate all the methods of this book, and indeed, its main
objective is to provide a “challenge problem” that you can help define and then
solve (e.g., as a final project in a class).

19.1 Competition and Fighting in Nature

Competition for resources that are critical for survival affects many aspects of
animal behavior and evolution. Some animals use poisoning for self-defense.
Some evolve armor or grow spines. Some fight other animals for food resources

Competition encountered
in an environment
affects organism
evolution.

or mates. Others simply seek to eliminate their competitors. Some recruit
predators of their predators to obtain a defense. Some guard a resource-rich
territory. Complex behaviors of groups of animals have evolved for self-defense.
For instance, when a predator approaches a prey group, the normal response of
the group of prey is to tighten and this can have an effect of maximizing mes-



832 Competitive and Intelligent Foraging

sage transmission speed by increasing an ability to detect low strength signals.
Essentially, the size of the group of organisms can change based on actions of
predators, so that a group-level distributed yet coordinated defensive action can
be taken. There is a vast diversity of behaviors that have evolved to ensure that
animals get the resources they need. Here, we will model and analyze some of
these in a game-theoretic framework and hence, will refer to them as “foraging
games.”

19.1.1 Foraging Games

Here, we will model certain aspects of both competitive and cooperative be-
havior via a game theoretic approach. We are not concerned here with the
dynamics and small time-scale strategies of one-on-one “battles” between two
animals (e.g., how a lion may capture, handle, kill, and eat an antelope). Our

Limitations in
availability of resources
naturally leads to
competition in foraging.

focus will be on foraging for resources via the study of “foraging games.” What
is a foraging game? It is a game where players (animals, humans) seek and con-
sume (capture, occupy) “resources” (e.g., food, prey, territory, shelter, mates).
In a foraging game, the “players” from classical game theory are referred to as
“foragers.” The foragers in such games are typically mobile and decide “where
to go and what to do” (e.g., go to a certain location and consume a certain
resource type). There are many types of foraging games, which can arise in
nature and we outline some characteristics of these as follows:

• Environment and resource characteristics: Different types of games arise
depending on characteristics of the environment, resources, and foragers.
Some resources may be higher priority than others and these priorities may
depend on the forager and its current needs (e.g., its diet). Some resources
are static in the sense that they do not move, while others may be able
to move quickly. Other resources are only available for a limited amount
of time, and then they naturally dissipate. The foraging environment
(where the forager forages) affects resource availability and likelihood of
the location of resources.

• Forager characteristics: Forager capabilities significantly affect the char-
acteristics of the game. For example, how fast a forager can move, how
efficient it can move in different environments, its consumption capabili-
ties, fighting capabilities, and cognitive capabilities (e.g., memory, learn-
ing, and reasoning) all affect its ability to forage successfully. Moreover,
foraging games are sometimes dominated by whether there is competition

Foragers may compete
for food, and one forager
may be food (prey) for
the other.

for resources between foragers, or cooperation between multiple foragers
to obtain resources (“social foraging”). Such cooperation requires com-
munication or use of shared information in some way and hence, demands
that a forager has certain capabilities.

• Competitive foraging: A competitive foraging game is one in which the
foragers compete with each other in an adversarial relationship in order
to obtain resources (e.g., if one forager gets the resource, it is no longer



19.1 Competition and Fighting in Nature 833

available for the other forager). In the case where one forager is the
predator and the other is its prey, we have a special foraging game that
may be a “pursuit evasion game.” We can then think of one forager as
being a resource for another and one tries to capture or consume the other.
It can also be the case that each forager is a resource for the other. Then,
each tries to achieve a competitive advantage to capture and consume the
other.

• Cooperative foraging is social foraging: A cooperative foraging game is one
where foragers may share information to try to optimize resource acquisi-
tion for the group (or variance reduction in resource acquisition rates); the
idea is that by working together, every forager does better. Cooperative
foraging is the essence of “social foraging.” A key concept in such coopera-
tion is the “allocation” (distribution of a pattern) of activities that results
in an allocation of resources to each group member (forager) to ensure
that the group does as good as possible. This may involve, at times, sacri-

Cooperative and
competitive foraging
coexist in some foraging
scenarios.

fices by one group member to increase the group’s performance; however,
over the long run it should be better, perhaps in an evolutionary sense,
for the group to cooperate rather than compete. A group of coopera-
tive foragers may compete with another group of cooperative foragers so
that both elements of cooperative and competitive foraging are present.
Indeed, there are often some elements of competition even in groups of
cooperative foragers.

19.1.2 Intelligent Foragers

Attention, learning, and planning may help an individual forager increase energy
intake per unit time spent foraging. Paying attention to the proper aspects of an
environment can help the forager find nutrients and avoid predators. Learning

“Intelligent” foraging
involves the use of
higher-level cognitive
functions such as
planning, attention, and
learning.

helps you not to go back to places where you cannot find food (since it may
not be likely that some food moved there). It helps the organism to remember
where it has not yet gone for food (related to attention), where a past food
source is, or what types of environmental “signs” typically indicate the presence
of a good food source. Such learned information can be used by a planning
system to further improve foraging performance. Planning involves reasoning
over learned information, setting priorities, and optimizing choices locally (e.g.,
it allows the organism to actually perform an optimization of E/T over a short
period of time, using less-than-certain learned information). Via learning and
planning together, the forager can directly try to make locally optimal decisions,
at least for the learned information.

Another relevant topic from planning theory, is the concept of “retrospec-
tive” and “prospective” coding, where it is thought that we recall where we
have been and know where we have not been and use this to plan our activities.
There is some evidence that when we begin planning, we use a retrospective
encoding and then at some point, switch to a prospective encoding since then,
we do not have to hold as much in short-term memory. Basically, early in the



834 Competitive and Intelligent Foraging

process, we may be taking actions that help us to learn about the environment,
while later, after we have learned a significant amount about the environment, it
may be best to use the learned information to decide what actions to take, and
to take actions that may not be directed towards learning more, but towards
other objectives.

Some learning theorists have thought of learning as foraging for information
that is then stored in “cognitive maps.” For example, they may think of operant
conditioning as foraging for reinforcement. Particularly relevant is the concept of
“sign tracking” that has been used by learning theorists to explain foraging, and
this approach motivates the use of smooth cost functions that represent where
food is, and where risks are. The theory of “behavioral regulation” proposes
that there are homeostatic mechanisms for behavior, where an organism tries
to choose an optimal distribution of activities for survival. It is thought that
if the balance of activities is upset, behavior is assumed to change to correct
the deviation from the homeostatic level (this is the “behavioral bliss point
approach”).

19.1.3 Evolution and Foraging

Foraging strategies are fine-tuned by evolution since more successful foragers
tend to have more offspring that possess aspects of their successful foraging
strategies. In a sense, evolution seeks to perform a robust optimization of a
forager’s strategy in the face of the following constraints:

Foraging strategies
evolve, and there is a
complex dynamic
interaction between
environmental and
forager changes.

• Environment and resource characteristics (e.g., a typical environment where
the forager lives, along with a typical spread of the resources).

• Forager capabilities (e.g., motor and cognitive).

The environment and resources can change. Indeed, in a predator-prey situa-
tion, both the predator and the prey are evolving and hence, “coevolution” can
occur, which in some cases can be thought of as a type of “arms race.”

Anyone familiar with evolutionary optimization will quickly see how it can
be used for robust foraging strategy design. Hence, we will not concern our-
selves with that here. Another area of relevant study from theoretical biology
is “evolutionary game theory.” See the “For Further Study” section at the end
of this part.

19.2 Introduction to Game Theory

In this section, we introduce basic definitions for concepts that form the foun-
dation for the game-theoretic view of competition and cooperation, and show
how to compute several types of player strategies.



19.2 Introduction to Game Theory 835

19.2.1 Strategies and Information for Decisions

We start by defining a simple “matrix game” and explaining how it is played.
This leads us to define strategies and a discussion on what information is used
in making decisions.

Players, Rules, and Payoffs

Suppose that we have two “players” (“decision-makers”) that we denote by P1

and P2. Let θ1 and θ2 denote the “decision variables” of the two players, respec-
tively. Let J1 and J2 denote the cost functions of the players (i.e., what they
gain or lose for a given set of decisions). The cost J1 could represent, for exam-
ple, a payment in cash from P1 to P2. In this case P1 (P2) wants to minimize
(maximize) J1. The problem will be, however, that P1 (P2) cannot unilaterally
minimize (maximize) the cost. Each player’s losses and gains are also influenced
by the actions of the other player; that is the essence of a competitive game.

If
J1(θ1, θ2) + J2(θ1, θ2) = 0

for all θ1 and θ2, then we have a “zero sum game” so that gains of one player
are losses of the other and they are in an adversarial relationship. If J1(θ1, θ2)+
J2(θ1, θ2) = c for some known constant c, then we can simply redefine the cost
functions to incorporate the value of c to obtain a zero sum game.

To keep things simple, initially suppose that

θ1 ∈ {1, 2, . . . , D1}
and

θ2 ∈ {1, 2, . . . , D2}
so that there are only a finite number of D1 decisions for P1 and D2 decisions
for P2. For simplicity, we will refer to the different decisions (which sometimes
we will call “strategies”) as θ1 = i and θ2 = j for P1 and P2, respectively. We
then denote the costs by J1(i, j) and J2(i, j).

Here, we will often think of J1(i, j) as being a cash payoff (clearly, many
other interpretations for cost are possible) of P1 to P2 given the decisions i
and j by P1 and P2, respectively. In the zero sum case J1(i, j) = −J2(i, j)
(player 2 gets all the payoff of player 1 and vice versa) and if J1(i, j) ≤ 0,
this represents that player 2 pays player 1 if P1 uses a decision i and P2 uses
a decision j. In the two-player case, it is sometimes convenient to represent
the payoff functions J1(i, j) and J2(i, j) as D1 × D2 matrices, J ij

1 and J ij
2 ,

Each player tries to
maximize its own gains
in a competitive game,
possibly at the expense
of the other player.

respectively (then J1(i, j) = J ij
1 , an element of the matrix, for all i and j). This

will be especially useful below when we consider “matrix games” where J ij
1 and

J ij
2 will be called “payoff matrices.”

Suppose that the game is only played once (i.e., P1 and P2 only make de-
cisions once). The players make decisions with full information about payoffs,
they make their decisions simultaneously, and are “rational.” Assuming that
P1 and P2 are “rational” players, means that P1 tries to minimize J1(i, j) and



836 Competitive and Intelligent Foraging

P2 tries to maximize it. Particular values of θ1 and θ2 are called “actions.” A
“strategy” is an established way of acting that depends on the possible actions of
another player (e.g., if the player’s decisions depended on gathered information
about the decision process).

Generally, players are concerned with what strategies to use in playing a
game. A pair of decision strategies for a two-player finite game is denoted by
(i, j). The “outcome” of the game is J ij

1 . An “optimal” strategy, or simply one
that we choose from a fixed set of possibilities, will be something that will be
denoted by (i∗, j∗).

Security Strategies, Saddle Point Strategies, and Information

Let D1 = 5 and D2 = 3. Suppose that

J ij
1 =

⎡
⎢⎢⎢⎢⎣

−3 4 4
0 −5 2

−2 1 −4
2 3 −4
2 −2 −5

⎤
⎥⎥⎥⎥⎦ (19.1)

Note that rows of this matrix correspond to P1 decisions and columns correspond
to P2 decisions.

In a “security strategy,” a player makes decisions to secure losses against
whatever the other player might do (i.e., it minimizes its maximum possible
loss). Hence, P1 picks row i∗ such that any value in any column of this row is

For a security strategy, a
player chooses so as to
minimize its maximum
loss.

no bigger than the largest value of any other row i �= i∗ (i.e., pick the row that
minimizes the maximum size column value). For low values of D1 and D2, it is
possible to specify the solution by inspection of the matrix in Equation (19.1)
above. For larger values of m or n, you may want to write a computer program
to solve for the security strategy.

For Equation (19.1), the list of maximum values for each row is

4
2
1
3
2

and so the security strategy is for P1 to pick i∗ = 3 to minimize what it has to
pay to P2. The “loss ceiling” (i.e., the most it can lose) is 1, which is less than
the other possible losses, and this is called the “security level” of P1. Similarly,
P2 can adopt a security strategy by choosing the column j∗ whose row values
are smaller than the smallest value found for another column j �= j∗. In this
case, the list of minimum values is

−3 −5 −5

so that the security strategy for P2 is j∗ = 1 and P2 secures gains at the “gain
floor” (its security level) of −3 (i.e., he pays no more than 3). Clearly the



19.2 Introduction to Game Theory 837

security level of P1 is never below the security level of P2. The “outcome” of
the game, which in this case is

J i∗j∗
1 = J31

1 = −2

will lie between the two security levels.
In the special case where the security levels of the two players are the same,

the security strategies of the two players are in “equilibrium” with each other
since they are “optimal” with respect to each other; in this case, they are called
“saddle point strategies.” A pair of strategies is said to be in a “saddle point
equilibrium” if unilateral deviations by one player from its strategy will not
benefit that player. In general, for a D1 ×D2 matrix game if (i∗, j∗) is the pair
of chosen strategies, and if

J i∗j
1 ≤ J i∗j∗

1 ≤ J ij∗
1

for all i ∈ {1, 2, . . . , D1} and j ∈ {1, 2, . . . , D2}, then (i∗, j∗) constitutes a saddle
point equilibrium. The value of J i∗j∗

1 is called the “saddle point value.” Is there
a saddle point equilibrium for the above example matrix game?

Next, we discuss the issue of the quantity and type of information that is
used by a player for its strategy, but only via our above simple example for
security strategies. Note that if in the example above we changed the game so

Strategies depend
critically on what
information is available
to a player.

that P1 plays first, then P2, with P2 knowing what P1 had chosen, then the
outcome will be different. We can actually deduce the outcome of the game by
simple inspection of the matrix in Equation (19.1). First, note that it makes
sense for P1 to use a security strategy, since we assume that it does not know
anything about the decision tendencies of P2. This gives i∗ = 3 just like above.
If P2 is informed of this choice, then it would pick j∗ = 2 to get a gain of 1,
which is more than what it got with a security strategy. This simple example
shows that the best strategy to use depends on what information is available to
the player, and when it is available. This is a fundamental principle that drives
the design of strategies. Games of the type where players can use information
from the process of the evolving game are called “dynamic” games, whereas the
above example is called a “static game,” since only a priori information is used
to play it.

The development of strategies above assumes that each player is rational
and that each player knows this about the other player. If we assume that
a probability distribution is known by one player P1 about the other player’s
decisions (i.e., that it knows the probability that it will make each decision),
then we can design a so-called “mixed strategy” (as opposed to the cases above,
which are sometimes called “pure strategies”), where the decisions each player
makes are based on the outcome of random events (i.e., a derived probability
distribution on P1 decisions, given the information on P2). For example, the
design of the strategy of P1 could involve choosing a probability distribution on
its decisions so that it would be most likely to minimize what it pays to P2.

The security strategy concept extends to having more than two players and
then results in a multidimensional matrix game. For instance, we could imagine



838 Competitive and Intelligent Foraging

adding a third player to the above game (which we could call “nature”) that
makes random decisions, and then develop security strategies for P1 and P2.
The above example, and several others in this section, are “noncooperative
games,” where there is a clear adversarial relationship between the players (e.g.,
one’s losses are the other’s gains). There are also games where there is not a
diametrically opposed relationship between the two players or where they are
truly “cooperative” and try to help each other achieve their goals (so long as they
also do well). Some such games are called “cooperative games” and typically,
they involve sharing information so that each gains as much as possible. These
will be discussed below when we discuss the Pareto-optimal solution.

Extensive Forms and Decision Trees

The matrix form of a game is called its “normal form.” The normal form does
not depict a complete representation of a game, for example, if there are repeated
steps of play where players use different information from past player decisions.
An “extensive form” of a game involves creating a type of labeled “decision tree”
to represent the game. We discuss the extensive form via a simple example.

The game we consider is depicted in Figure 19.1. Figure 19.1(a) shows
the extensive form representation for the matrix game in Equation (19.1), so
consider it first. The game starts at the “top” of the (upside down) tree and
evolves to the tip of one of its branches by a sequence of decisions starting
with P1 in “level 1” of decision-making and then P2 at level 2. In level 1, P1

chooses among its five alternatives, each represented with a separate labeled
branch, and in level 2, P2 chooses among its three alternatives, represented by
the three labeled branches. The outcomes for the various decisions are shown
at the tips of the branches. For example, in the security strategy case, we
had (i∗, j∗) = (3, 1) so we get an outcome of −2 as shown in Figure 19.1(a).
The dashed line encirclement of the “decision nodes” at level 2 depicts the
“information set” of P2. It represents that in Figure 19.1(a), P2 does not know
which branch (decision) P1 has chosen. This is then equivalent to the two players
simultaneously making their decisions (how we interpreted the matrix game).

Figure 19.1(b) shows the case discussed in the last subsection where P1 makes
the decision first, then P2 makes its decision, knowing the choice of P1. The
information sets in this case are again shown with the dashed encirclements
of the decision nodes at level 2. As we noted above, due to the change in
available information, there is a change in strategy and hence, outcome. The
dashed encirclements clearly represent the inherent difference in the two games
in Figure 19.1, whereas the normal form representation does not. This is one
more reason why the extensive form is a convenient and intuitive representation
for games, at least finite games without too many decision alternatives so that
the trees are not too “bushy.”

Finally, note that in general, decision trees may have many levels (multiple
decisions), for example, with P1 and P2 taking turns so that at odd levels, P1

would act and at even levels, P2 would act. Moreover, it should be clear how to
make an extensive form for the case where there are more than two players.



19.2 Introduction to Game Theory 839

1

2 3 4
5

1

2

3 1

2

3 1

2

3 1

2

3 1

2

3

-3 4 4 -5 2 -20 1 -4 2 3 -4 2 -2 -5

1

2
P

P
Level 1

Level 2

1

2 3 4
5

1

2

3 1

2

3 1

2

3 1

2

3 1

2

3

-3 4 4 -5 2 -20 1 -4 2 3 -4 2 -2 -5

1

2
P

P

Outcome using
security strategies

Outcome when layer 1 uses security 
strategy, player 2 knows its choice

(a) (b)

"top"

Outcomes
(payoff to player 2)

Figure 19.1: Example of an extensive representation, in this case in (a) for the
matrix game in Equation (19.1) and in (b) for the same payoff matrix, but when
P1 chooses first and then P2 knows its decision before choosing.

Decisions Versus Strategies

Figure 19.1 allows us to define the concept of a “strategy” relative to a “deci-
sion” more clearly. Suppose that we let Gi(·) denote the strategy for player i,
where “·” is the information that is available for decision-making. Note that
the security strategies for P1 and P2 in Figure 19.1(a) are simply

G1 = 3, G2 = 1

(Note that there is no argument for the Gi functions, since there is no in-
formation from the decision-making process, in addition to available a priori
information that is used to make the choices.)

The player strategies for the game in Figure 19.1(b) are G1 = 3 (the security
strategy), and the strategy of P2 is what we might call “pick the best payoff
given the decision of P1.” The representation for this strategy could be

G2(i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 if i = 1
3 if i = 2
2 if i = 3
2 if i = 4
1 if i = 5

(Of course, we could use G2(1) = 3 also, since it results in the same payoff to
P2.) Note that since there is information used from the decision-making process,
particularly the decision of P1 at level 1, the strategy is defined in terms of what
decision i that P1 might use.

The definition of a strategy is in general quite different from the meaning
of a “decision” (action) as long as there is more than one “information set”
(i.e., a dashed encirclement in Figure 19.1). The strategy is a mapping that
specifies what action to take (decision to make) depending on what is known,
as specified via an information set. If a player has an ability to distinguish
something about a decision process as it evolves, then to keep the strategy of



840 Competitive and Intelligent Foraging

the player independent of what the other player does, it must have different
ways of reacting, depending on what the other player did. For example, this is
perhaps clarified if we considered a strategy for P1 that was simply based on a
random choice for its options. In this case, P2 would have to be ready to react
no matter what P1 did, and the above strategy G2(i) would define that.

Finally, note that if there are multiple levels, with many players, there are
many options for how to define information sets, and hence, strategies for games.
Finding strategies for the case where there are such dynamic games is, in general,
a challenging problem.

19.2.2 Nash, Minimax, and Stackelberg Strategies

In this section, we introduce the Nash equilibrium strategy and provide an
example of how to compute it. Moreover, we introduce infinite games (i.e., ones
where there are an infinite number of strategies by at least one player), the
concept of a reaction curve, and use an example to illustrate the basic ideas.
This is followed by an introduction to minimax and Stackelberg strategy design.

Nash Equilibrium Strategies

Up till now, we had considered the zero sum case, and now we move beyond
that to consider the nonzero sum case, that is, when it can be that

J1(i, j) + J2(i, j) �= 0

Now, we have two payoff matrices J ij
1 and J ij

2 denoting losses of P1 and P2,
respectively. Assume that both players are rational, so they try to minimize
their losses. Unless otherwise stated, we assume that there is no cooperation
and decisions are made independently.

The basic problem for each player is that the outcome resulting from their
decision also depends on what the other player decides. So, what strategies
should the players use? Recall that a pair of strategies is said to be in a “saddle
point equilibrium” if unilateral deviations by one player from its strategy will
not benefit that player. There are actually a variety of “equilibrium” solutions
for a pair of strategies of a game.

A strategy pair (i∗, j∗) is a noncooperative (Nash) equilibrium solution to a
If players use the Nash
equilibrium solution,
then they have no reason
after playing the game to
regret their decisions.

“bimatrix” game (J ij
1 , J ij

2 ) if the inequalities

J i∗j∗
1 ≤ J ij∗

1 (19.2)

and
J i∗j∗

2 ≤ J i∗j
2 (19.3)

are both satisfied for all i ∈ {1, 2, . . . , D1} and all j ∈ {1, 2, . . . , D2}. The pair
(J i∗j∗

1 , J i∗j∗
2 ) is the noncooperative (Nash) equilibrium outcome of the game.

For a given bimatrix game, there can be no Nash solutions, one Nash solu-
tion, or many Nash solutions. If J ij

1 = −J ij
2 for all i and j, then we have a zero

sum game, and a Nash solution is a saddle point equilibrium for the game.



19.2 Introduction to Game Theory 841

As an example, let D1 = 5 and D2 = 3. Suppose that

J ij
1 =

⎡
⎢⎢⎢⎢⎣

−1 5 −3
−2 5 1

4 3 −2
−5 −1 5

3 0 2

⎤
⎥⎥⎥⎥⎦ , J ij

2 =

⎡
⎢⎢⎢⎢⎣

−1 2 −3
2 −3 1

−2 3 1
−1 1 −1

4 −4 1

⎤
⎥⎥⎥⎥⎦ (19.4)

To solve for the Nash equilibria, consider candidate (i∗, j∗) pairs in turn and
test if they satisfy both the inequalities in Equations (19.2) and (19.3). To do
this, consider (1, 1) and see if J11

1 is less than all other row elements of column
one to test Equation (19.2). Since it is not, (1, 1) cannot be a Nash solution.
If you test (1, 2), you will also find it is not a Nash solution. However, if you
test (1, 3), you will see that J13

1 ≤ J i3
1 for all i so it is a candidate, so test the

inequality in Equation (19.3) and you will find that J13
2 ≤ J1j

2 for all j; hence,
(i∗, j∗) = (1, 3) is indeed a Nash equilibrium. The Nash equilibrium outcome is
(−3,−3) so that both players gain 3. Show that (4, 1) is also a Nash solution,
with an outcome of (−5,−1), but that all others are not.

Note that a Nash equilibrium solution is special since, if the players adopt it,
then they have no reason after playing the game to regret their decisions. Note,
however, that there can be more than one Nash equilibrium so the question of
which one to use arises. However, it is not possible to totally order the Nash
strategies according to the values of their outcomes, because they are defined
by pairs of numbers. We can, however, say that “one Nash strategy is better”
than another if both outcomes are better than the other. Then, we will call a
Nash strategy “admissible” if there is no better Nash strategy. For the above
example, there were two Nash solutions and each one is admissible since one
is not better than the other. Note that in this case, if P1 picks (1, 3) and P2

picks the other Nash solution (one thinks that the other is picking the other
strategy to play by, since there is no reason to think that they would definitely
pick the same Nash strategy to play without some type of cooperation), then
the strategy pair that is employed is (1, 1), which as the above example showed,
is not a Nash solution. In fact, (1, 1) results in an outcome of (−1,−1), which
is worse for both players. This creates a problem with implementing a Nash
solution for a noncooperative game when the Nash solution is not unique.

If there is only one (admissible) Nash solution, this problem will not arise.
However, if the two payoff matrices are the same, this problem can still arise.
Why? There are then many cases where the situation can arise where there
are multiple Nash equilibria, so that the players cannot use the solutions ef-
fectively without some type of cooperation. Essentially, this problem with the
Nash solutions arises, since bimatrix games may not be “antagonistic,” so that
a noncooperative solution concept can be inappropriate (i.e., elements of coop-
eration can be reflected in the payoff matrices). We will revisit this issue when
we discuss Pareto-optimal solutions below.



842 Competitive and Intelligent Foraging

Infinite Games and Reaction Curves

An infinite game is one in which there are an infinite number of strategy choices
by one or both of the players. The concept of Nash equilibria is also valid for
this case, and we illustrate this via a simple example here.

First, suppose that the actions of P1 can be

θ1 ∈ [−4, 4]

and for P2 they can be
θ2 ∈ [−5, 5]

Suppose that cost functions for the two players are

J1(θ1, θ2) = − exp
(
− (θ1 − 2)2

8
− (θ2 − 4)2

2

)

and

J2(θ1, θ2) = − exp
(
− (θ1 − 1)2

1
− (θ2 + 1)2

6

)
each of which has one global minimum, and also for which, if you fix θ1 (θ2),
there is a unique minimum point in the other value. (This will simplify the
discussion.)

Define the “reaction curve” of P1 to be

R1(θ2) = argmin
θ1

J1(θ1, θ2)

where we are using the assumption of uniqueness of the minimum point, so that
there is only one point at which the minimum is achieved. The reaction curve
R1(θ2) defines how P1 should react for every possible action of P2 in order to
minimize its losses. Similarly, the reaction curve of P2 is

R2(θ1) = argmin
θ2

J2(θ1, θ2)

and it defines how P2 should react for every possible action of P1 in order to
minimize its losses. Contour plots of J1 and J2 are shown in Figure 19.2(a) for
the above loss functions, along with the reaction curves R1(θ2) and R2(θ1).

It is interesting to note that any intersection point of the two curves in Fig-
ure 19.2(a) is a Nash equilibrium, so (2,−1) is the unique Nash equilibrium. For
other cost functions, it is possible that the curves take on different shapes and
have multiple intersection points, with each intersection point corresponding to
a Nash equilibrium. It is also possible that the reaction curves do not intersect,
indicating that there are no Nash equilibria. In the case where there are multiple
minimum points for each fixed value of θ1 (or θ2), we may not have connected
“curves,” but more generally reaction “sets” and in this case, it should be clear
that there can be multiple or no intersection points. Figure 19.2(b) shows a dif-
ferent set of cost functions and reaction curves, but with one Nash equilibrium



19.2 Introduction to Game Theory 843

-5 0 5
-4

-3

-2

-1

0

1

2

3

4

θ2

θ1
(a) J

1
, J

2
, reaction curves R

1
 (-) and R

2
 (--)

-5 0 5
-4

-3

-2

-1

0

1

2

3

4

θ2

θ1

(b) J
1
, J

2
, reaction curves R

1
 (-) and R

2
 (--)

Figure 19.2: (a) Contour plots of J1 and J2 and reaction curves R1 (solid) and
R2 (dashed); (b) same but for different cost functions J1 and J2.

corresponding to the intersection point (2, 0). Note that the reaction curve for
P1 is the locus of points that is tangent to lines corresponding to fixed values of
θ2 across a range of such fixed values. Clearly, adjustment of the shape of these
functions can easily result in an intersection point that lies outside the allowed
ranges of decisions for the players and this would correspond to the case where
there are no Nash equilibria.

Finally, note that since the plots in Figure 19.2 were generated on a digital
computer, we actually discretized each of the axes and computed a finite number
of cost values and points on the reaction curves (as is usual, discrete points are
connected by lines in the plots to give a visual effect of continuity when it does
not actually exist). Hence, we are actually discussing finite bimatrix games, but
ones with many possible actions for each player.

Stable Nash Equilibria

It is possible to further refine the characterization of Nash equilibrium solutions
and we do this in this section via a simple example. Suppose that for the
game pictured in Figure 19.2(b), we have P1 play first, then P2, followed by
P1, and so on; hence the players alternate moves with P1 going first. Suppose
that we number the moves with an index k so that at k = 1, P1 moves, at
k = 2, P2 moves, and so on. Suppose that each player knows the other’s last
move, and takes an action that minimizes its losses given this past move. For



844 Competitive and Intelligent Foraging

an arbitrarily chosen first decision by P1, the “trajectory” in decision-space is
shown in Figure 19.3. Since the reaction curves were already computed for this
case, it is easy to construct the trajectory since, once P1 makes a decision θ1(k)
at iteration k (k odd), we have

θ2(k + 1) = R2(θ1(k))

and once P2 makes a decision θ2(k) at iteration k (k even), we have

θ1(k + 1) = R1(θ2(k))

It is this iterative sequence that results in the trajectory. Clearly, if we have
nonuniqueness of minimum points and hence, reaction sets rather than simple
curves, then appropriate adjustments to this discussion would be needed.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

θ
2

θ1

J
1
, J

2
, R

1
 (-), R

2
 (--), and iteration trajectory

Figure 19.3: Contour plots of J1 and J2, reaction curves R1 (solid) and R2

(dashed), and iteration trajectory (arrows indicate direction of time).

If for every initial choice by P1 (i.e., θ1(1)), the trajectory in the decision
space moves to the point (2, 0), then the point (2, 0) is said to be a “stable
Nash equilibrium.” If only small variations in θ1(1) from 2 (its ultimate value
for the Nash equilibrium) are possible for it to still converge to 2, then (2, 0)
is said to be a “locally stable Nash equilibrium.” If a Nash equilibrium point
is not stable, it is said to be an “unstable Nash equilibrium.” Different cost
functions generally result in different reaction curves (sets), which in turn result
in different trajectories and hence, different types of stability.



19.2 Introduction to Game Theory 845

Note that stability is a qualitative property of the trajectories, whose gen-
eration depends on the given iteration method. Hence, we generally speak of
stability relative to the given iteration method. Clearly, the ideas extend to
the multiplayer case and then the iteration method depends on that, too. For
example, the iteration may involve taking turns in some fixed or dynamically
changing order so that the choice by one player at a current time may depend
on the movements of some players at the last time instant, and the decisions
others made at perhaps random points in the past.

Minimax Strategies

Next, we develop security strategies for each player of a bimatrix game which
we will call “minimax strategies” (solutions). These solutions may or may not
be the same as a Nash solution.

To find the minimax strategy, you simply find the security strategy for P1

based on J ij
1 and the security strategy for P2 based on J ij

2 and then, taken to-
gether, these directly provide a strategy pair that is the “minimax” strategy for
the bimatrix game. (Of course, here, since we view the payoff matrices J ij

1 and
J ij

2 as “loss” matrices, there is a slight difference in the mechanics of finding a
security strategy for P2, since now it also tries to minimize its loss under all pos-
sible actions of P1, where before it tried to maximize its gain.) It is interesting
to note that P1 (P2) does not need knowledge of J ij

2 (J ij
1 ) to compute its strat-

egy. Moreover, the minimax concept essentially ignores whether the opponent
is rational or not. These facts can be important in practical applications.

The security levels of the players are called the minimax values of the bima-
trix game. These minimax values are not better than those of a Nash equilibrium
outcome, even if the Nash and minimax strategies are the same. Why? Also,
note that if a minimax strategy is not a Nash strategy (i.e., not an equilibrium),
it can still be quite useful in games where there are multiple Nash equilibria,
when a player is not completely certain about values of the cost matrix, or
whether the other player will be rational. On the other hand, these features
can lead to very conservative strategies in some applications. Clearly, minimax
strategies can be extended to a multiplayer game in an obvious way.

As an example, show that the minimax strategy for the cost matrices in
Equation (19.4), where we had two Nash equilibria, is (5, 3) with an outcome
(2, 1). Recall that for this case, the Nash solutions were (1, 3) and (4, 1) with
outcomes (−3,−3) and (−5,−1). Note that the minimax strategy is not as good
as either Nash solution. Note, however, that for the cost matrices

J ij
1 =

⎡
⎢⎢⎢⎢⎣

4 1 −4
−2 5 3
−3 2 −1

4 4 4
−3 −5 2

⎤
⎥⎥⎥⎥⎦ , J ij

2 =

⎡
⎢⎢⎢⎢⎣

2 −1 0
−2 4 0
−3 0 −1
−3 3 4
−3 0 −5

⎤
⎥⎥⎥⎥⎦

there is one Nash solution and it is also a minimax solution. Show this.



846 Competitive and Intelligent Foraging

As another example, consider the game in Figure 19.2(a). Show that the
Nash equilibrium is a minimax solution. However, show that for the game of
Figure 19.2(b), a minimax solution is (4,−1). In this case, is the Nash solution
a minimax solution? Is the minimax solution unique?

Stackelberg Strategies

Until now, for our solution concepts we had a type of symmetry where no one
player dominated the decision process. What if one player can enforce her or
his strategy on the other players? With this approach we get a “hierarchical
equilibrium solution” concept introduced by Stackelberg. For such games, the
“policy enforcer” will be called the “leader” and the other player(s) will be called
follower(s). We assume that the players act rationally. We could have multiple
levels of leaders and followers, but here we just consider the case where we have
one leader and one follower.

The basic idea is that P1 tries to pick i∗ to minimize its loss, assuming
that with i∗ enforced on P2, P2 will pick its strategy in a rational way (by
minimizing its losses), and then this choice defines the outcome, and hence,
allows P1 to rank its alternatives. In summary, P1 evaluates its m alternatives
by considering what P2 will pick in response to each one. There is, however, an
added complication. There may be more than one P2 strategy that minimizes
its losses for a given P1 strategy. This creates the possibility that P1 has more
than one different possible loss for each enforced strategy, since P2 can react in
different (rational) ways. Here, we will adopt the convention that we will use
a security strategy approach to resolve the ambiguity (i.e., P1, in the face of
several possible answers from P2, will pick the alternative that will minimize its
maximum possible losses).

To compute a strategy pair (i∗, j∗) that is a Stackelberg solution, we execute
the following two steps:

1. Compute Follower Reactions: For each possible strategy choice i by P1,
compute the set of rational reactions by P2 as

R(i) =
{

j∗(i) : j∗(i) = arg min
j

J ij
2

}
This is done by having P2 execute an optimization over its responses for
each given i. Note that |R(i)| ≥ 1 and if, for example, |R(i)| = 2 for some
i, then there are two possible rational strategies for P2 which give P2 the
same loss (i.e., two optima).

2. Leader Finds Best Strategy: The leader, taking into account the follower
reactions, chooses its strategy via

i∗ = arg min
i

max
j∈R(i)

J ij
1

which is the P1 strategy that achieves the lowest loss considering rational
P2 reactions, and which is secure against ambiguities in the response of



19.2 Introduction to Game Theory 847

P2 represented in R(i). Note that in finding the “max” and “min” in the
computations for i∗, it is possible that there is more than one maximizer
and minimizer. For each case, however, it does not matter which you
choose, since the “Stackelberg cost” (defined next) is the same. Hence, a
normal approach is to resolve ties with an arbitrary choice.

The “Stackelberg strategy” of P1 is i∗. The Stackelberg solution strategy pair
is (i∗, j∗(i∗)) and the “Stackelberg cost” for the leader is J

i∗j∗(i∗)
1 . Finally, it is

interesting to note that the leader P1 never does worse in a Stackelberg game
relative to if it had played a Nash game. Why?

As an example, to find the Stackelberg solution for the cost matrices in
Equation (19.4), with P1 as the leader and P2 as the follower, we find that:
if i = 1, R(i) = {3}; if i = 2, R(i) = {2}; if i = 3, R(i) = {1}; if i = 4,
R(i) = {1, 3}; and if i = 5, R(i) = {2}. The loss to P1 in each case is then (this
takes into account the security component for the i = 4 case): if i = 1, P1 loses
−3; if i = 2, P1 loses 5; if i = 3, P1 loses 4; if i = 4, P1 loses 5 = max{−5, 5}; and
if i = 5, P1 loses 0. Hence, the Stackelberg solution is (i∗, j∗) = (1, 3) and the
Stackelberg cost for P1 is −3. Note that if we had, for the computation of the
P1 losses, found equal values for more than one i, then there would have been
more than one valid Stackelberg solution (but this does not create the problems
that we found when we had multiple Nash solutions, since the Stackelberg costs
would be the same).

As another example, consider the game in Figure 19.2(b). Clearly the Stack-
elberg solution will lie on the curve R2(θ1). Why? Show in this case that the
Stackelberg solution is (3.45, 0.75), which can be roughly approximated from
the plots in Figure 19.4. How? To see how, note that the Stackelberg solution
is the pair (θ1, θ2) such that θ1 minimizes J1(θ1, R2(θ1)) and this is simply the
point where the R2(θ1) curve is tangent to the contour plot of J1.

19.2.3 Cooperation and Pareto-Optimal Strategies

In the cases above, we generally considered the games to be noncooperative
so we assumed that there was a type of adversarial relationship between the
two players. In the Nash game, each player is trying to do as well as possible,
taking into consideration the other player’s actions. In a minimax game, each
player assumes the worst possible reactions of the other player (i.e., a highly
adversarial, perhaps irrational, opponent) to pick the strategy. There are, how-
ever, games where the two players may be able to share information to try to
do better; that is, they may cooperate. In a certain sense, the leader-follower

In a cooperative game, a
player may give up some
gains so that the group
it is collaborating with
gains more.

game with Stackelberg solutions can be considered a type of cooperative game,
if you view the leader-enforced strategy as information that is used by the fol-
lower. Whether a Stackelberg game is truly cooperative depends, however, on
the application domain and particularly on whether the cost functions of the
players have relationships such that the leading actions by P1 and the subse-
quent following actions by P2 are achieving (or trying to achieve) the same type
of goal.



848 Competitive and Intelligent Foraging

-5 -4 -3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

θ2

θ1

J
1
, J

2
, R

1
 (-), R

2
 (--), "x" marks Stackelberg solution

Figure 19.4: Contour plots of J1 and J2, reaction curves R1 (solid) and R2

(dashed), and “×” marks the Stackelberg solution.

At the other end of the spectrum, there are games that can be considered to
be “cooperative” in the sense that each player is willing to share all information
and help every other player do as well as possible, so long as it does not degrade
its gains too much. A key concept for such games is the idea of a Pareto-
optimal (equilibrium) solution, where no other such joint decision exists that
can improve the outcome for P1 or P2 without degrading the outcome of the
other.

Multiobjective Optimization and Pareto Optimality

Here, we begin by defining Pareto optimality in a general setting and then dis-
cuss its use in games via some examples. A multiobjective optimization problem
is in the form of

minimize: {J1(θ), . . . , JN (θ)}
subject to: θ = [(θ1)�, . . . , (θN )�]� ∈ Θ

Here, we want to simultaneously minimize a set of cost functions (called a “cost
function vector”) by changing the same parameter vector θ. You can think of
this as a type of general optimization problem, where you want to minimize not
one cost function, but many, each representing the desire to achieve a different
objective. Here, we assume that θi = [θi

1, . . . , θ
i
n]�, i = 1, 2, . . . , N , so that

decisions are n × 1 vectors, rather than just scalars, and there are N costs to



19.2 Introduction to Game Theory 849

minimize (e.g., in a two-player game, we will have N = 2). Also, Θ is used to
represent constraints on the decisions (e.g., constraints on the size of the values
of the elements of θi, often characterized via functions and inequalities).

A decision vector θ∗ ∈ Θ is Pareto optimal if there does not exist any other
θ ∈ Θ such that

Ji(θ) ≤ Ji(θ∗)

for all i = 1, 2, . . . , N , and at the same time

Jj(θ) < Jj(θ∗)

for at least one index j. A cost function vector is called Pareto optimal, if
the corresponding decision vector is Pareto optimal. Hence, intuitively, a cost
function vector is Pareto optimal, if you cannot improve one cost value without
degrading others.

It should be clear that there can be many Pareto optimal solutions. In
multiobjective optimization, there is a need to specify preferences to be able to
pick which Pareto optimal solution specifies an acceptable solution (e.g., one
that balances the wins and losses of two players). In many approaches, it is
hypothesized that there is a “decision maker” who will specify these preferences
in some manner. Sometimes the decision maker will specify a “value function”
that can be viewed as a specification of what the decision maker wants in terms
of the minimizations of each of the cost functions (i.e., it specifies the trade-offs
between players), and other times the decision maker has to be repeatedly asked
for its preferences. There are many ways to define such value functions for the
decision maker, and the examples below will discuss one way.

Before turning to games, to illustrate the idea of Pareto-optimal solutions,
consider the case where θ1 and θ2 are scalars, so that θ is a 2×1 vector. Assume
that we have quadratic costs so they are convex. Suppose in particular that we
have

J1(θ) = J1(θ1, θ2) =
(
θ1 − 2

)2
+
(
θ2 − 3

)2
J2(θ) = J2(θ1, θ2) =

(
θ1 + 2

)2
+
(
θ2 + 2

)2
Contour plots of these two functions are shown in Figure 19.5. In this case,
it is possible to determine Pareto-optimal solutions by inspection. To do this,
ignore the plotted Pareto points in Figure 19.5 and note that the (unique global)
minimum points on the two cost functions are at the centers of the two sets of
concentric circles. Next, note that if a line on this contour plot is tangent to
a contour of both costs, then the point of tangency for both costs is a Pareto-
optimal solution. (Of course, there are only a finite number of contour lines
drawn on the plot so you must imagine where the other ones are.) Where are
these “tangency points”? Simple inspection shows that they are at the “×”
marks on the plot. Why are these Pareto-optimal solutions? Note that the
gradient at such a point θ∗ is ∂J1

∂θ

∣∣
θ=θ∗ and suppose this is pointing in the same

direction as − ∂J2
∂θ

∣∣
θ=θ∗ . Imagine that you are at some Pareto-optimal solution

θ∗ in Figure 19.5. The direction of the negative gradient is the direction to move



850 Competitive and Intelligent Foraging

from θ∗ in order to get a steepest amount of decrease in the value of one cost
function (the basic idea behind steepest descent gradient optimization). The
key observation is that if you perturb θ∗ along the gradient in direction of the
minimum point for J1 (J2), the cost for J1 (J2) goes down, but the cost for
J2 (J1) goes up. So, we cannot reduce one cost without increasing the other,
which is the very definition of Pareto optimality. Note that there are actually
an infinite number of points that lie on a line that is tangent to the contour
of the two costs, and hence, an infinite number of Pareto-optimal solutions in
this case, all of which lie on the line between the minimum points of the two
cost functions. The set of all Pareto-optimal solutions is sometimes called the
“family” of Pareto-optimal solutions.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

θ2

θ1

J
1
, J

2
, R

1
 (-), R

2
 (--), "x" marks Pareto solution

Figure 19.5: Example family of Pareto-optimal points for two quadratic cost
functions (“×” marks Pareto solutions).

It is interesting to note that, for this example, if we define a “Pareto cost”
to be

The scalarization
approach is only one
way to define the Pareto
cost.

Jp(θ) = pJ1(θ) + (1 − p)J2(θ)

for p ∈ [0, 1] (this is called the “scalarization” approach to constructing the
Pareto cost), then the family of Pareto points is the set of (unique) global min-
ima for Jp(θ) as p varies from zero to one, which is just the equation for the
line between the two minimum points in Figure 19.5. Hence, we can view this
Pareto cost as a “value function” for the underlying multiobjective optimiza-
tion problem; it is, however, a special one, since it shows how, for this special
quadratic case, it is possible to find all Pareto-optimal solutions via standard



19.2 Introduction to Game Theory 851

optimization of one cost function. Intuitively, note that the value of p scales
the depth of one minimum and (1 − p), the depth of the other. We can think
of the above weighting scheme via p as interpolating between the two minimum
points on the two cost functions, with a specific value of p providing more value
to minimizing one cost function over the other.

Pareto-Optimal Solutions for Games

Motivated by the above example, a standard way to define Pareto optimality
for two-player bimatrix games is to define a new loss matrix (sometimes called
the Pareto cost) that represents a combination of the losses for the two players,

J ij
p = pJ ij

1 + (1 − p)J ij
2

for p ∈ [0, 1]. This Pareto cost can be thought of as a “value function” for the
decision maker in a multiobjective minimization problem. Any minimum point
in the matrix J ij

p is called a Pareto-optimal solution for the bimatrix game (and
note that there may be several minimum points for any one value of p). If p = 1
(p = 0), all the emphasis is placed on the two players collaborating to minimize
the losses of P1 (P2). With appropriate values for the cost functions, the value
of p = 1

2 may represent equal emphasis on minimizing the losses of the two
players.

As an example, suppose that we use the bimatrix game with payoff matrices
in Equation (19.4). Note that these cost values are not specified via a convex
function, so there are additional complexities that arise here with uniqueness of
the Pareto solutions for fixed values of p. Also, in general, finding a minimum
of the Pareto cost J ij

p for all values of p may not provide all possible Pareto-
optimal solutions. Why? Returning to our example, note that the minimum
element in J41

1 is −5, which is also the minimum of Jp for the case where p = 1.
The minimum element J52

2 = −4, which corresponds to the minimum of Jp for
p = 0. As p varies from zero to one, the minimum point (points?) of Jp will
move. Assuming Jp always has a unique minimum point for every value of p, as p
varies continuously from zero to one, the minimum point will move continuously
from J52

2 to J41
1 . (If there are multiple minimum points for different values of p,

then clearly the situation can be significantly more complex and the family of
Pareto points may not all lie on a trajectory.) This is depicted in Figure 19.6,
where the indices and outcomes for a set of Pareto-optimal points are shown for
this case (note, however, that here we are ignoring the possibility of multiple
optima and just finding one for each value of p). Also shown are the losses
that result for each player due to the choice of a Pareto-optimal strategy; due
to the way that the p parameter results in an interpolation between J ij

1 and
J ij

2 elements, the Pareto value will lie between the two costs as shown for this
example.

It should be clear that it is not possible for the outcome to go below the
minimum of the two smallest values in the two payoff matrices; hence, the
very fact that cooperation is taking place means that one of the two players is



852 Competitive and Intelligent Foraging

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-6

-4

-2

0

C
os

ts

J
p
 (o), J

1
 (-), and J

2
 (--) for Pareto points

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

i*

Decision of player 1 (x)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3

Pareto parameter, p

j*

Decision of player 2 (*)

Figure 19.6: Example family of Pareto-optimal points for a bimatrix game (bot-
tom two plots provide the indices of the points), and the resulting outcome (top
plot).

sacrificing by losing more than if they were able to minimize their own loss. In
applications, however, we are most often interested in the manner in which the
Pareto-optimal solution “balances” the optimization to achieve a compromise
that is the true goal (cooperation is for achieving a higher goal than individual
selfish ones).

Finally, it is interesting to note that (1, 3) and (4, 1) are strategy pairs that
we found earlier to be Nash equilibrium solutions for a noncooperative game.
Recall that in our analysis of nonunique Nash equilibria, the essential problem
was that bimatrix games could exhibit elements of “cooperation.” Note that
here for a cooperative version of the same bimatrix game, as seen in Figure 19.6,
we find that for some values of p, the Pareto-optimal solution corresponds to
each of the two Nash solutions. This shows in another way that the Nash
solutions required cooperation of a certain type. For some ways of balancing
objectives (values of p), cooperation results in one Nash solution, and for other
values of p, it characterizes a different type of cooperation and hence, a different
Nash solution.

Defining the Pareto Cost and Finding Pareto Solutions

In this section, we will outline a few problems that you encounter in trying to
define Pareto costs and compute Pareto solutions. We will do this via the game



19.2 Introduction to Game Theory 853

in Figure 19.2(b) and, analogous to the above example, let

Jp(θ1, θ2) = pJ1(θ1, θ2) + (1 − p)J2(θ1, θ2)

for p ∈ [0, 1]. To give insight into the shape of the cost surface Jp, see Figure 19.7,
which is the case for p = 0.5. Clearly there are multiple local minima so finding
the global one can be challenging. Also, note that the p parameter will in this
case scale the “depth” of the two minima.

Figure 19.7: Pareto cost Jp(θ1, θ2) for p = 0.5.

Problems with Forming Pareto Costs via Scalarization: Figure 19.8
shows two possible Pareto solutions for this case, which are (0,−1) (roughly
for p ∈ [0, 0.455]) and (0.55, 2.99) (roughly for p ∈ (0.455, 1]). Neither of these

It can be difficult to pick
an appropriate Pareto
cost for an application.

Pareto solutions corresponds to a Nash, minimax, or Stackelberg solution for
this game. Intuitively, as p varies from zero to one, there is a point at which
the deepest “well” in Figure 19.7, switches from one well to another. The
“family” of Pareto solutions lies only on two isolated points. Hence, in this
special case, there is the curious property that the Pareto points lie on the
reaction curve of one or the other player. Hence, for some values of p, even with
cooperation, P1 (P2) ends up gaining significantly and P2 (P1) loses significantly
(i.e., cooperation here entails sacrifice by one player for the other). For some
applications this may be satisfactory; however, for others, you may need to
choose a different form for Jp(θ1, θ2) that allows for a smooth balancing between
the selfish objectives of P1 and P2.



854 Competitive and Intelligent Foraging

-5 -4 -3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

θ2

θ1

J
1
, J

2
, R

1
 (-), R

2
 (--), "x" marks Pareto solution

Figure 19.8: Contour plots of J1 and J2, reaction curves R1 (solid) and R2

(dashed), and “×” marks the two Pareto solutions.

The Family of Pareto Points—Other Ways to Balance Cooperation:
By inspection, it should also be clear that there are many other Pareto-optimal
solutions. Can you sketch additional Pareto-optimal points on Figure 19.8?

Choice of Pareto cost
affects how cooperation
between players is
achieved.

Would a point such that the gradients of both cost functions point in opposite
directions be a Pareto point? If it were, then, where are such points on Fig-
ure 19.8? How would you compute all Pareto-optimal solutions for this case? A
computationally intensive approach to approximating the set of all Pareto points
is to simply directly apply the definition of Pareto optimality (given m and n,
how many comparisons are needed to compute all Pareto solutions for a bima-
trix game?). When we do this, we get all the Pareto points shown in Figure 19.9
(notice the rough edges on the contour plot due to the coarse discretization).
Of course, these points include the ones that result from the scalarization ap-
proach of the above example. The others represent other ways to balance the
two performance objectives. Notice that the family of Pareto points is not a
point or a curve, but a set. In general, it is difficult to characterize or compute
the entire set of Pareto points, except in certain special cases (e.g., like the one
we examined earlier).

Essentially, the definition of our value function Jp via scalarization results in
missing all these other Pareto-optimal points. Is this good or bad? If you con-
sider the value function found via scalarization to specify your true preferences,
then missing other Pareto-optimal solutions is not a problem. If, however, other



19.3 Design Example: Static Foraging Games 855

-5 -4 -3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

θ2

θ1
J

1
, J

2
, R

1
 (-), R

2
 (--), "x" marks a Pareto solution

Figure 19.9: Family of Pareto points.

types of preferences are needed, it may be difficult to know how to parameterize
and define the Jp function, so that conventional optimization can be used to find
what you consider to be good Pareto points. One other way to parameterize
the above function would be to have p and (1− p) scale the minimum points of
the functions; however, in practical examples you may not know the minimum
points a priori. In short, this example shows some of the problems one can
encounter by using a simple weighting scheme to turn a multiobjective opti-
mization problem into a conventional single-objective optimization problem to
find a Pareto-optimal solution. Other ways of forming the Pareto cost can result
in a better balancing and hence, a more “fair” cooperation may be obtained.

19.3 Design Example: Static Foraging Games

In this section, we study the basics of competition and cooperation in foraging
games by considering a static, full-information, one-stage (i.e., one decision)
game to illustrate the Nash, minimax, Stackelberg, and Pareto solution concepts
of Section 19.2.

19.3.1 Static Foraging Game Model

We start by formulating a very simple model of a foraging game; after its de-
velopment it will become clear how to extend this model to more general cases.



856 Competitive and Intelligent Foraging

We consider a two-forager (N = 2), static, discrete, full-information “foraging
game on a line.” This is the one-dimensional case, where we consider multiple
resources to be distributed over the real line and the foragers move on that line
to get the resources.

Foraging games have
foragers as players and
nutrients as payoffs.

Suppose that the resources are distributed in “cells” (bins) along the real
line. Suppose that there are M different types of resources in Q cells and denote
the initial distribution of resources of type m to be rm(q), q = 1, 2, . . . , Q, m =
1, 2, . . . , M . Here, we assume that rm(q) ≥ 0, q = 1, 2, . . . , Q, but the model is
easily extended to the negative resource case (where one could think of moving to
avoid regions where resources are lost). Let D1 (D2) be the number of decisions
that forager 1 (2) can make and θ1 ∈ {1, 2, . . . , D1} (θ2 ∈ {1, 2, . . . , D2}) be
those decisions, which correspond to forager 1 (2) moving to a cell q if θ1 = q
(θ2 = q), q = 1, 2, . . . , Q. We assume that D1 = D2 = Q, so that each forager
can move to any available cell.

Effort and Resource Consumption

Let z1 (z2) denote the effort allocated by forager 1 (2) to consume resources.
For simplicity, we assume that the same amount of effort is expended for con-

Effort expenditure can be
counted against nutrient
returns in computing
payoff.

sumption of each resource type m = 1, 2, . . . , M when a forager goes to a cell.
Let P (q) be the set of foragers that decides to go to the same position q to
consume resources there; hence,

P (q) =
{
i : θi = q

}
Notice that 0 ≤ |P (q)| ≤ N for all q and

∑
i∈P (q) zi, the total consumption

effort at q, is zero if |P (q)| = 0.
Assume that αm, m = 1, 2, . . . , M , is used to model the depletion rate of

resource m in the presence of consumption effort. We model the amount of
resource of type m remaining at cell q after one play (one unit of expenditure
of effort) as

rm(q)e−αm
∑

i∈P (q)
zi

This type of model, which is used in foraging theory, represents that initial
expenditures of effort in a cell yield more resources than later ones. Hence, as
resources diminish in a cell, there is a need for increasing amounts of effort to
get the same return. With the exponential model, effort expenditure always
provides a return on the investment; other models could represent complete
depletion of a resource after a finite amount of effort.

Next, we define the amount of consumption given that a strategy pair (θ1, θ2)
is played by foragers 1 and 2. To do this, note that if both foragers are in the
same cell expending effort to consume the same resource, then they have to
split the resource, since there is a type of competition for it. Here, we simply
assume that if two foragers are at the same cell, then they split the resources
evenly. Let the amount of consumption of resource m for decision pair (θ1, θ2)
for foragers 1 and 2 be defined as follows:



19.3 Design Example: Static Foraging Games 857

1. Foragers at different locations: If θ1 �= θ2, then for i = 1, 2,

Cm
i (θ1, θ2) = rm(θi)

(
1 − e−αmzi

)
2. Foragers at the same location: If θ1 = θ2 = θ̄, then for i = 1, 2,

Foragers going to the
same location results in
a type of competition.Cm

i (θ1, θ2) =
1

|P (θ̄)|r
m(θ̄)

(
1 − e

−αm
∑

i∈P (θ̄)
zi

)
=

1
2
rm(θ̄)

(
1 − e−αm(z1+z2)

)
(19.5)

So, in cases where forager 1 (2) goes to a cell that forager 2 (1) does not go to,
rm(θ1) (rm(θ2)) is the initial amount of resource of type m and rm(θ1)e−αmz1

(rm(θ2)e−αmz2) is the amount remaining after consumption. When both for-
agers go to the same cell, then they both expend effort, but they have to split
the returns in half. This results in a resource conservation property of: “all that
is consumed plus what is remaining is equal to what was initially there.”

Forager Payoffs: Consumption, Energy, and Danger Avoidance

We assume that each forager has certain priorities to consume different re-
sources. We denote these by pm

1 (pm
2 ) for forager 1 (2), m = 1, 2, . . . , M . You

can think of these priorities as representing preferences or “tastes” for resources.
One aspect of the cost to forager 1 (2) that it wants to minimize is given by the
negative total consumption weighted by the priorities

J ij
1c = J1c(θ1, θ2) = −

M∑
m=1

pm
1 Cm

1 (θ1, θ2)

J ij
2c = J2c(θ1, θ2) = −

M∑
m=1

pm
2 Cm

2 (θ1, θ2)

where θ1 = i, θ2 = j, and J ij
1c and J ij

2c constitute a matrix representation of the
game. So the problem for forager 1 (2) is how to pick θ1 (θ2). The adversarial
nature of the foraging game will dictate what to choose (e.g., in a competitive
game, each forager may get less than if they cooperate).

Foraging often requires energy consumption to go to a cell from some initial
location (e.g., for locomotion). Here, we will think of the foragers as being
located at position “0” (i.e., on one edge outside the foraging area) initially.
Then, we model the cost to move along the line to go to position i (j) for
forager 1 (2) as

J i
1e = J1e(θ1) = we1i

(
Jj

2e = J2e(θ2) = we2j
)

where θ1 = i, θ2 = j, we1 ≥ 0 and we2 ≥ 0 represent the unit amount of energy
expenditure to move one unit (e.g., from cell 1 to cell 2), and we assume that



858 Competitive and Intelligent Foraging

energy expenditure is not affected by the actions of the other forager. When
the energy to conduct foraging is taken into account, then it may be possible
that even though a resource is plentiful, a forager may choose a closer one that
would provide less return on its effort investment, so that it tries to maximize its
amount of resource return for a certain investment in foraging energy. Clearly,
there are many ways to model this basic aspect of foraging.

For many foragers, there are areas of the foraging environment that are
more “dangerous” than others. This may be due to a predator who is trying
to consume the forager, or other environmental characteristics (e.g., presence of
a noxious chemical). Clearly, one could model the situation where one forager
“consumes” the other. Here, we consider a simple model of location-dependent
danger for forager 1 (2) with

J i
1d ≥ 0

(
Jj

2d ≥ 0
)

where bigger values of the costs represent worse areas to be in and actions of
the other forager do not affect the danger to a forager.

A forager generally wants to get as many high priority resources for a given
energy investment, while avoiding as many dangers as possible. Hence, we can
think of forager 1 (2) trying to minimize

J ij
1 = J ij

1c + J i
1e + J i

1d

(
J ij

2 = J ij
2c + Jj

2e + Jj
2d

)
so that it maximizes the amount of resources it gets and minimizes the energy
expenditure and exposure to dangers to get them. With this, if J ij

1c = J ij
2c = 0,

J i
1e > 0, and Jj

2e > 0 for all i and j, and J i
1d > 0 and Jj

2d > 0 for all i and j,
then the foragers would not even want to move to a location, since there would
be no return of resources for an energy expenditure and exposure to danger
(however, for our model we force them to move, so they are not able to choose
the option of not playing the game). Generally, the foragers will move farther
for resources that are more important to them, but that assumes there is not
too much danger.

Notice that we have set this up as a static bimatrix game. Hence, each
forager knows everything about the game (e.g., the payoffs, costs of movement,
dangers, the other forager’s objectives, etc.). Next, for the sake of illustration,
we will provide a numeric example.

19.3.2 Competition and Cooperation for a Resource

Choose D1 = D2 = Q = 21, M = 1, z1 = z2 = 1, α1 = 1, p1
1 = p1

2 = 1, and
we1 = we2 = 0 (no energy required for foraging). Assume that J i

1d = Jj
2d = 0

for all i and j. The initial resource distribution is shown in Figure 19.10.
The cost functions J ij

1 and J ij
2 are plotted in Figures 19.11 and 19.12. No-

tice in Figure 19.11, that if you hold j constant, then forager 1 generally gets
more consumption and hence, more payoff if it moves to where there are more
resources; however, if both foragers move to the same location, they get less,



19.3 Design Example: Static Foraging Games 859

0 5 10 15 20 25
0

2

4

6

8

10

12

Cell number

R
es

ou
rc

e 
am

ou
nt

Initial resource distribution

Figure 19.10: Example initial resource distribution.

since they will then compete for resources at that cell. This competition is rep-
resented by the ridges of increased cost (a competition cost) that cut diagonally
through Figures 19.11 and 19.12.

First, suppose that we have an adversarial (noncooperative) game, so that
In competitive foraging,
forgers may gain less
than if they foraged
cooperatively.

the foragers do not coordinate where to go to forage. There are four Nash
solutions

(10, 11), (11, 10), (11, 12), (12, 11)

Does this make sense? From Figure 19.10, the cell with the most resources is
cell 11. In the presence of competition, one forager gets the most resources
and the other gets the second highest amount possible and these are the four
strategy pairs that represent this. Note, however, that the problem of nonunique
Nash solutions arises. Forager 1 may pick 11, and with no communication and
coordination, forager 2 may also pick that point and there will then be less payoff
than if the above solutions were chosen. In fact, the minimax solution in this case
is (11, 11), since if each forager tries to minimize its maximum possible losses,
then it will go to the location with a maximum number of possible resources,
since if it goes to a cell with fewer resources, then the other forager can go
there also and both would get even fewer resources. A Stackelberg solution
with forager 1 as the leader is (11, 12). Why?

Next, consider a cooperative foraging game. First, suppose that the two
foragers cooperate by using a Pareto cost found via scalarization as J ij

p = pJ ij
1 +

(1−p)J ij
2 with p as the Pareto parameter that balances the cooperation. Pareto



860 Competitive and Intelligent Foraging

0
5

10
15

20
25

0

5

10

15

20

25
-7

-6

-5

-4

-3

-2

-1

0

Player 2 decision, j

Cost function for player 1

Player 1 decision, i

J 1

Figure 19.11: Cost for forager 1, J ij
1 .

0
5

10
15

20
25

0

5

10

15

20

25
-7

-6

-5

-4

-3

-2

-1

0

Player 2 decision, j

Cost function for player 2

Player 1 decision, i

J 2

Figure 19.12: Cost for forager 2, J ij
2 .



19.3 Design Example: Static Foraging Games 861

points found in this case are shown in Figure 19.13. We get Pareto points (which
are also Nash solutions) (10, 11) or (11, 10), depending on the Pareto parameter
p so long as p ∈ (0, 1). The two foragers would communicate to decide who
goes to which location, which, as opposed to the Nash game, is possible since
the two foragers are cooperating. The one that goes to position 11 will get the
most resources. When p is close to zero, it favors forager 2, so forager 2 goes to
position 11, and when p is close to one, it favors forager 1, so forager 1 goes to
position 11. The p parameter can be used to balance the cooperation to favor
one forager or the other. What happens in the case where p = 0? Then, the
J ij

1 cost does not enter into J ij
p since it is multiplied by p = 0. This means that

forager 2 makes its best decision and goes to position 11, and forager 1 can go
anywhere else. In Figure 19.13, it goes to position 1, simply due to how the
code was written. The case for p = 1 is explained similarly.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-8

-6

-4

-2

0

C
os

ts

J
p
 (o), J

1
 (-), and J

2
 (--) for Pareto points

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

i*

Decision of player 1 (x)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

Pareto parameter, p

j*

Decision of player 2 (*)

Figure 19.13: Set of all Pareto points for a cooperative foraging game, scalarized
Pareto cost.

The scalarization approach is, however, only one way to form the Pareto cost.
The set of all Pareto points for the game is shown in Figure 19.14, and you can
see that the ones that arise from the above scalarization approach are a subset
of all possible Pareto points. These other Pareto points represent different ways
to balance the payoffs to each of the two foragers. First, notice that all the
Nash solutions are a subset of the Pareto points. Why do the other Pareto
points make sense (e.g., the one at (11, 20))? What type of Pareto cost might
be used for those cases?

It is interesting to note that you can view a cooperative foraging game as one



862 Competitive and Intelligent Foraging

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

j

i

J
1
, J

2
, "x" marks a Pareto solution

Figure 19.14: Set of all Pareto points for a cooperative foraging game.

where you try to allocate resources to all the foragers so that everyone “wins,”
with the relative payoffs given by which Pareto points you choose. In this case,
scalarization provides a nice way to balance the allocation.

19.3.3 Energy Constraints and Multiple Resources

Energy expenditure
considerations
drastically influence
foraging decisions.

Choose M = 2, p1
1 = p2

1 = 1, p1
2 = 1, and p2

2 = 2, so that forager 2 places a
high priority on getting resource 2. We let we1 = we2 = 0.1, so that moving
to cell locations with higher values of q costs more energy. As before, we have
D1 = D2 = Q = 21, z1 = z2 = 1, α1 = α2 = 1, and J i

1d = Jj
2d = 0 for all i and j.

The initial resource distribution for the two resources is shown in Figure 19.15.

The cost functions J ij
1 and J ij

2 are plotted in Figures 19.16 and 19.17. The
“ridge” arises as in the last section and it represents the case where the two
foragers choose the same cell and hence, compete. Focus on Figure 19.16, and
notice that, even though it sets an equal priority for both resources, the costs
generally increase as i increases (ignoring the ridge) due to the presence of the
J i

1e term that represents the energy needed to forage at each position. This
raises the cost of the second resource. Notice that in Figure 19.17, we have the
presence of this same effect, and the effect of the higher priority of resource 2
for forager 2 so that for forager 2, even though it has to travel farther to get
resource 2, since it is higher priority, it may be willing to do that.

Consider the competitive case first. The unique Nash solution is (5, 14).



19.4 Dynamic Games 863

0 5 10 15 20 25
0

1

2

3

4

5

6

Cell number

R
es

ou
rc

e 
am

ou
nt

Initial resource distribution

Figure 19.15: Initial resource distribution (darker shaded bars on the right are
the second resource) with an “overlap” of resources in the middle designated by
“stacking” the plots).

Essentially, with the above choices, forager 1 chooses resource 1 since it is close,
but forager 2 picks resource 2, since its level of priority is high, so it is willing to
expend the energy to get it. Notice that the maximum for the second resource is
achieved at three contiguous positions, but forager 2 picks the smallest of these
to minimize energy. The minimax and Stackelberg strategies are both (5, 14).
Why?

If the foragers enter into a cooperative game, with a scalarized Pareto cost
Cooperative foraging
strategies can be viewed
as a type of allocation of
foragers to resources to
maximize payoff to the
group.

J ij
p = pJ ij

1 + (1 − p)J ij
2 , then we get the Pareto solutions all at (5, 14) for all p.

In this case, the two foragers’ objectives are so different that there is nothing to
be gained by cooperation (and nothing to be lost by competition) and hence,
there is really no need for communication.

19.4 Dynamic Games

Dynamic games are ones where players use information about how the game has
Dynamic games consider
repeated decisions,
actions, and
observations by the
players.

evolved in order to make decisions. This notion is perhaps closer to the common
notion of a game, where there are repeated observations, decisions, and actions
by each player, and a resulting dynamic interaction between players in some
“arena.”



864 Competitive and Intelligent Foraging

0
5

10
15

20
25

0

5

10

15

20

25
-3

-2

-1

0

1

2

Player 2 decision, j

Cost function for player 1

Player 1 decision, i

J 1

Figure 19.16: Cost for forager 1, J ij
1 .

0
5

10
15

20
25

0

5

10

15

20

25
-7

-6

-5

-4

-3

-2

-1

0

1

2

Player 2 decision, j

Cost function for player 2

Player 1 decision, i

J 2

Figure 19.17: Cost for forager 2, J ij
2 .



19.4 Dynamic Games 865

19.4.1 Modeling the Game Arena and Observations

We assume that there are N players and use a discrete-time formulation. To
define the dynamic game, we will produce a model of the game, including all
the players, rules, and payoffs. First, let

x(k) ∈ X ⊂ 	nx

denote the state of the game at time k, k ≥ 0. The admissible controls (actions)
by player i are for k ≥ 0

ui(k) ∈ U i(k) ⊂ 	nu

The outputs (measurements of what is happening in the game) are, for k ≥ 0,

yi(k) ∈ Y i(k) ⊂ 	ny

Let
u(k) =

[
(u1(k))�, (u2(k))�, . . . , (uN (k))�

]�
and

y(k) =
[
(y1(k))�, (y2(k))�, . . . , (yN (k))�

]�
Define the “arena” in which the game is played as f where

x(k + 1) = f(x(k), u(k), k) (19.6)

and suppose that the initial state of the game is x(0) ∈ X . This is a deterministic
game model, but it can be time-varying. A stochastic game could be represented
with x(k + 1) = f(x(k), u(k), w(k), k) where w(k) is used to model stochastic
effects.

The observations that player i can make about the arena of the game are
specified by the function yi(k) = hi(x(k), k) for k ≥ 0, and if we let h(x(k), k) =[
(h1)�, (h2)�, . . . , (hN )�

]�, then

y(k) = h(x(k), k) (19.7)

You could view h as part of the representation of the arena of the game as it
models what can be observed by each player while the game is played. The
dynamic game evolves by players iteratively making a sequence of decisions and
taking a sequence of actions. Observations lead to decisions, which lead to
actions, which lead to observations, and so on.

Let Ji(x(k), u(k)) denote the loss (cost) function of the ith player at the
kth stage of play. When there are multiple stages of play (e.g., Ns stages), one
typical choice for the loss of each player is the additive one,

JNs

i =
Ns−1∑
k=0

Ji(x(k), u(k)) (19.8)



866 Competitive and Intelligent Foraging

Hence, each player tries to choose a sequence of ui(k) that will minimize its own
loss JNs

i after Ns actions, within the constraints of the game listed above. One
other typical choice for the loss function is

JNs

i =
Ns−1∑
k=0

Ji(x(k + 1), x(k), u(k)) (19.9)

so that losses are assigned based on the type of change in the state and the
player actions, for Ns actions. Note that in general, player i does not know its
own cost function Ji(x(k), u(k)) since it may not know x(k) and u(k). Moreover,
use of other players’ cost functions Jj(x(k), u(k)), j �= i, in the strategy of a
player i requires special assumptions.

19.4.2 Information Space and Strategies

How are player’s strategies defined? This is a bit more complicated than in the
static game case. Why? Because, now each player may make decisions based
on “what they know and when they know it” and hence, it is not assumed that
each player knows everything at one time and only one action is taken by each
player at that time. To make this more precise, it should be clear that if a player
has memory, it can store and recall past observations. Then, for any player i,
at the kth stage of play, it may base its decisions to choose ui(k) on a subset of{

y1(0), . . . , y1(k); · · · ; yN (0), . . . , yN (k);

u1(0), . . . , u1(k − 1); · · · ; uN (0), . . . , uN(k − 1)
}

(clearly the elements of the subset are defined by what information is available
to each player i and when it is available). Note that ui(k), i = 1, 2, . . . , N , is
not allowed in the above set, since these are the decisions that the players are
trying to reach based on the available information at time k. Also, if k = 0, then
there are no ui elements available. Each such subset is called an “information
structure” and the information structure of the game is the set of all such subsets
that are used. Let

Ii(k) ⊂ (Y 1(0) × · · · × Y 1(k)) × · · · × (Y N (0) × · · · × Y N (k)) ×
(U1(0) × · · · × U1(k − 1)) × · · · × (UN (0) × · · · × UN (k − 1))

denote the “information space” of player i at time k ≥ 0 (again, for k = 0,
the information space along the ui dimensions collapses, since there is no past
decision information).

Note that the information space Ii(k) is implemented via an appropriately
defined communication network between the players and memory within each
player to store past values. In an adversarial game, there may be no communi-
cation links between the players, but there may need to be memory to hold past
information that was encountered. However, in a cooperative game, the sharing
of information that is necessary for real-time cooperation comes via commu-
nication. A communication network has a “topology” of communication links



19.4 Dynamic Games 867

between players, each of which may provide for uni- or bi-directional transfer of
information between players. (It is sometimes useful to think of the communi-
cation network as a graph with nodes as players, arcs as communication links,
and the topology as being defined via the interconnection pattern of the nodes.)
There can be bandwidth constraints and random but bounded communication
delays on any link. Moreover, the topology may be “dynamic,” in that it may
change based on aspects of the environment or player actions.

In some cases, the constraints of the game may specify Ii(k), but other times,
the designer may be able to choose it. For example, if all players only make
decisions based on their own current observations of the arena of play and the
previous actions of all other players and itself, then

Ii(k) ⊂ (Y i(k)) × (U1(k − 1) × · · · × UN (k − 1))

A strategy for a player i at the kth stage of play is Gi
k, k ≥ 0,

Gi
k : Ii(k) → U i(k)

The design of strategies involves designing both Ii(k) and Gi
k. For example, if

each player i can observe at stage k, only yi(k) (i.e., its only observation) and
all actions ui(k−1), i = 1, 2, . . . , N , the strategies of the players are defined via
a Gi

k mapping for each player that specifies its actions,

ui(k) = Gi
k(yi(k), u1(k − 1), . . . , uN(k − 1))

(and at k = 0, there are no elements in the ui slots). The “full state feedback”
case is when yi(k) = x(k) for all i and k and is the case where each player has
“perfect information” about the arena of play. Note that for each fixed initial
state x(0) and fixed player strategies, unique sequences of ui(k), x(k), and yi(k)
and loss values are generated.

The standard concepts of saddle point, Nash, and Stackelberg equilibrium
solutions can be extended to dynamic games. For instance, if the initial state
is known, the strategies are fixed, and there are a fixed number of stages of
play, then the above provides a normal form description. For this case, we get
unique loss values for all the players for a given strategy. Note, however, that
there are additional solution concepts, depending on the information space that
is assumed. For instance, depending on whether you know the initial state, the
sequence of states up to the current one, or only the current state, you get dif-
ferent solution concepts (e.g., the “feedback Nash solution”). Here, we will not
consider these additional solution concepts and methods for solving for strate-
gies for those cases. Our focus will be on using only the basic game concepts of
the last section, but within the context of dynamic games. This choice is driven
by practical issues, such as a desire not to consider only the well-understood
“linear system with quadratic cost” case (it is covered in detail elsewhere), yet
the need to avoid very general dynamic game formulations that cannot be solved
analytically, or that sometimes demand computationally intractable solutions.



868 Competitive and Intelligent Foraging

19.4.3 Decision and Action Timing

It is useful to clarify some issues related to timing of when decisions (actions)
are taken in a dynamic game. First, we think of the game as proceeding over a
finite number of Ns stages (time steps), or in some cases it may be appropriate
to consider k → ∞. Second, while we use a discrete-time model, the actions
need not be synchronous, in the sense that you think of the index k as being
associated with real time t = kT and t′ = kT + T for a fixed sampling period T
for all k. The actions of the players may occur asynchronously, in the sense that
the real time duration between indices k and k + 1 may be nondeterministic.
Third, note that for the above model, all players act at each stage k. We
can often, however, for specific applications, define a “null play” choice that
corresponds to an action that is equivalent to doing nothing. Fourth, in some
games, “simultaneous play” by two or more players may be possible.

Combining these four points, we see that we can represent a dynamic game
where players can independently act at random points in time and do not have
to be in “lockstep” with each other (e.g., in a two-player game with the two
players taking turns). There is a new index k + 1 whenever any player acts. If
at that time no other player acts, we represent this via using their null plays.
These issues of representation can be important in practical games, where the
timing of play is a critical aspect of the arena of play.

19.5 Example: Dynamic Foraging Games

We begin by using the model of a dynamic game to represent a foraging game.
Next, we use biomimicry of foraging in nature to specify some candidate foraging
strategies.

19.5.1 Dynamic Foraging Game Model

To define the model of a dynamic foraging game, we explain each part of the
dynamic game model in the last section.

State and Inputs

We have N ≥ 2 foragers. The state x ∈ 	nx is composed of aspects of the forag-
ing environment and the positions of the foragers in that environment. Assume
that you have a two-dimensional foraging environment (a “foraging plane”).
Extension to the three-dimensional case is straightforward. The position of the
ith forager is given by

The state holds
information on the
environment and
foragers.

xi(k) =
[
xi

1(k), xi
2(k)

]� ∈ {1, 2, . . . , Q1} × {1, 2, . . . , Q2} = F

with xi
1(k) its horizontal and xi

2(k) its vertical position on a discrete grid. Here,
Q1 (Q2) sets the upper boundary for horizontal (vertical) movements. The
variable F is used here to denote the set of all points in the foraging environment.



19.5 Example: Dynamic Foraging Games 869

The decisions by forager i are commands to move itself to each of the cells
that are adjacent to the current position, and which resource type to consume
there. That is, at time k, so long as the movement is in the valid foraging region
so that xi(k) ∈ F , we have that ui

p(k) is in the set{[
xi

1(k), xi
2(k)

]�
,
[
xi

1(k) + 1, xi
2(k)
]�

, . . . ,
[
xi

1(k) + 1, xi
2(k) + 1

]�}⋂
F

which we will denote by U i
p(k). Here U i

p(k) is then the set of feasible moves at
time k by forager i. The first element in the above set indicates that the forager
should stay at the same location, the second indicates that it should move to
the right horizontally, and not vertically, and so on (to all positions around the
current one). Clearly, in this case, there are nine possible locations that any
forager can move to at each step, provided that the forager is well within the
region F . Disallowing movements outside the foraging region F is represented
by the intersection with F . In particular, if a forager is at the upper horizontal
boundary and tries to move to the right, we will say that it stays at the same
place, thereby employing the basic idea of “projection” used in optimization
theory. For convenience, we let up(k) =

[
(u1

p(k))�, (u2
p(k))�, . . . , (uN

p (k))�
]�.

Assume that there are M resources that are indexed with the variable m. We
represent the choice of resource by player i at time k as ui

r(k), i = 1, 2, . . . , N ,
where

ui
r(k) ∈ U i

r(k) ⊂ {1, 2, . . . , M}
represents the resource type m that forager i chooses to consume at time k,

The input holds the
decision of the foragers,
where to go and what to
do.

and U i
r(k) can be used to model the set of resources that it can choose from

(extension to the case where each player can consume more than one resource
at a time is straightforward). Define ur(k) =

[
u1

r(k), u2
r(k), . . . , uN

r (k)
]�. The

decision ui(k) of forager i at time k is composed of a position choice and resource
choice. In particular, we let

ui(k) =
[
(ui

p(k))�, ui
r(k)
]� ∈ U i

p(k) × U i
r(k)

and u(k) =
[
(u1(k))�, (u2(k))�, . . . , (uN (k))�

]�.
The distribution of resources is also part of the state. Extending the devel-

opment of the static case, let

q = [q1, q2]� ∈ F

denote a cell in the foraging plane. Let zm
i denote the effort allocation to

consume resource m by forager i. Let

Pm(q) =
{
i : ui

p = q, ui
r = m

}
be the set of foragers that decide to go to position q to consume resource m at
time k. Notice that 0 ≤ |Pm(q)| ≤ N , but below, we will only use Pm(q) for
q = ui

p for some i = 1, 2, . . . , N , so |Pm(q)| > 0.



870 Competitive and Intelligent Foraging

We use the depletion rate αm, m = 1, 2, . . . , M , for the mth resource. The
amount of resource at time k of type m at cell q is rm(q, k) with rm(q, 0) the
initial distribution. The resources change over time due to growth (e.g. plants),
weather, disease, farming, and foraging. For foraging, resources may diminish
due to consumption, and in some cases, such consumption may result in the
increase of other resources (e.g., since the resources may be living, so foraging
influences their competitive balance). In other cases, foraging for one type of
resource at one time may make it possible to forage for other resources later (e.g.,
if one forager eats one type of resource and this gives rise to other resources due
to, for example, a forager leaving behind remains). Suppose that we consider
the effects due to foraging where resources diminish according to

rm(q, k + 1) = rm(q, k)e−αm
∑

i∈Pm(q)
zm

i (19.10)

for all q ∈ F . For this equation, notice that Pm(q) is a function of u. Let
Forager actions affect
the environment and
hence, subsequent
decisions.

xp(k) =
[
(x1(k))�, (x2(k))�, . . . , (xN (k))�

]�
denote the vector of places where the foragers are located. Let

xr(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1([1, 1]�, k)
...

r1([Q1, Q2]�, k)
...

rM ([1, 1]�, k)
...

rM ([Q1, Q2]�, k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

be a vector that holds a vectorized representation of the resource distribution
(maps). The state of the game is

x(k) =
[

xp(k)
xr(k)

]
Finally, we need to define how to generate the next state (to define f in the

game model in Equation (19.6)). First, note that xp(k + 1) = up(k), so that at
Foragers naturally
operate somewhat
independently of each
other, at least with
respect to some of their
decisions and timing of
actions.

the next time instant, each forager will have moved to the position that it was
commanded to move to at the current time step. This represents that we are
assuming no dynamics and kinematics for our forager (e.g., constraints on how
fast it can move, turn, etc.), or at least, that the time scale is sufficiently slow
relative to such physical phenomena. Second, note that xr(k + 1) is defined via
Equation (19.10). This completes the definition of how to generate the next
state given the current state and the current input to the game; however, we
still need to clarify issues related to the timing of decisions by the players.

First, we assume that the real time between k and k + 1 is fixed so that the
real time is t = kT , where T is a sampling period. Then, the real time at the next



19.5 Example: Dynamic Foraging Games 871

sampling instant is t′ = kT + T . So, we require that time proceeds according
to a clock with a certain tick-length. This is necessary, due to how we model
depletion of resources. Why? Because, it makes the effort allocation taken at
each step for each resource by each player a constant as we had specified. (If we
had random time lengths between decision times, then the fact that one forager
makes a decision would affect the consumption rate of other foragers.) We have,
however, still created a type of asynchronous game model, in the sense that if a
forager does not make a move at time k, then it “chooses” its next position to
be the same as its current one (the “null play” discussed in Section 19.4.2), so
that it continues to forage at the same position. Additionally, the model allows
for multiple (up to N) players to simultaneously take actions at each time step
and the above formulas define how the state evolves with such simultaneous
actions. So, our decisions occur asynchronously, but only at times given by the
tick of some clock. If the clock period T is very small, then we can approximate
fully asynchronous behavior.

Sensing and Outputs

The observations that forager i can make about the foraging environment at
time k are denoted by yi(k). Clearly, the physiology of the animal constrains
what sensing is possible. For instance, some animals can only sense via sampling
chemicals in their immediate surrounding environment (e.g., certain bacteria),
while others can sense light or sound and hence “see” for long distances. In
terms of the mathematical representation, some possibilities for representing
the feasible observations are the following:

1. Full observations: If for each forager, i = 1, 2, . . . , N , and time k,

yi(k) = x(k) (19.11)

then each forager can sense the distribution of all the resources over the
entire foraging environment and the positions of all the other foragers at

Sensing is never perfect,
so foragers always make
decisions under
uncertainty.

each time step k.

2. Resource observations and own position: If

yi(k) = hi(x(k), k) =
[

xi(k)
xr(k)

]

then each forager knows its own position and where all the resources are,
but does not know the positions of the other foragers.

3. Range-constrained sensing: Let S(q) denote the set of cell locations that
a forager can sense resources in, or other forager positions, when it is
located at cell q. This set can be used to specify characteristics of the
sensing capabilities of the foragers. For example, suppose that foragers
have constraints on how far they can sense resources that are independent
of time and resource type (you could also make sensing range depend on



872 Competitive and Intelligent Foraging

resource type and time). Then, as the forager moves, the set of cells that it
can sense resources in changes. Suppose that this set of cells is defined via
a circular region with radius Rs about the current location of the forager,
provided that this sensing region is within the foraging region F . In this
case, we could define

S(q) =
{

q̄ :
√

(q − q̄)�(q − q̄) ≤ Rs

}⋂
F

First, form a vector of the forager locations, for foragers that can be sensed,
from elements of xp, as xsi

p with elements xj(k), where xj(k) ∈ S(xi(k))
for all j = 1, 2, . . . , N . Second, form a new vector of the currently sensed
cells from elements of xr, as xsi

r with elements rm(q, k), where q ∈ S(xi(k))
for all m = 1, 2, . . . , M . If

yi(k) = hi(x(k), k) =
[

xsi
p

xsi
r (k)

]

then the forager can sense resources in a region around its current location
and it knows its own position, and the positions of the other foragers within
its sensing range. If Rs is large enough, so that the forager can sense the
whole environment no matter where it is in the environment, then this
reduces to case 1 above.

Clearly, there are many other possible sensor models. For instance, sensing
quality could depend on the resource, forager type, position in the environment,
or time (e.g., to represent aging effects). The size of the sensing range may
change over time. Different foragers may have different sensing capabilities.

Consumption, Energy, and Payoff to Foragers

Next, we must define the payoff for each forager. To do this, first define the
amount of consumption of resource m by forager i, i = 1, 2, . . . , N , at time k
for a set of forager decisions u1, u2, . . . , uN , as

Cm
i (u1(k), u2(k), . . . , uN (k))

=
1

|Pm(ui
p(k))|

(
rm(ui

p(k), k) − rm(ui
p(k), k + 1)

)
=

1
|Pm(ui

p(k))|r
m(ui

p(k), k)
(

1 − e
−αm

∑
i∈P m(ui

p(k))
zm

i

)

Notice that |Pm(ui
p(k))| > 0. The factor 1

|P m(ui
p(k))| is used to represent that if

there are |Pm(ui
p(k))| foragers at location ui

p(k) foraging for resource m at time
k, then the returns from foraging are split evenly among those foragers. (Other
definitions of splitting the resource returns could represent more capable foragers
winning more returns when they forage next to some less capable forager.)



19.5 Example: Dynamic Foraging Games 873

The cost due only to consumption for one move is, given that forager i has
priority pm

i for resource m,

Jic(x(k + 1), x(k), u(k)) = −
M∑

m=1

pm
i Cm

i (u1(k), u2(k), . . . , uN(k))

Each forager must expend energy to forage, and we define this via

Jie(x(k + 1), x(k)) = wie

(
xi(k + 1) − xi(k)

)� (
xi(k + 1) − xi(k)

)
where wie ≥ 0 sets the amount of energy needed to move a certain distance. We
assume that energy is independent of resource type being sought and consumed.
The “danger” aspect could be modeled as in the last section, but we ignore this
possibility here. Our total payoff to forager i at time k is

Ji(x(k + 1), x(k), u(k)) = Jic(x(k + 1), x(k), u(k)) + Jie(x(k + 1), x(k))

If there are Ns steps in the game, we have a payoff JNs

i for playing the entire
multistage game as given in Equation (19.9). Each forager wants to minimize
JNs

i and thereby maximize consumption with minimal energy expenditure. This
can require considerable finesse, as it may be a good strategy to give up payoffs
at some points in time in order to realize more benefits at some other later time.

Information Space and Strategy Design Challenges

Designing a strategy involves picking the information space Ii(k) and strategy
Gi

k, and of course, there are many possibilities. Here, for the remainder of this
section, we pick one simple approach and invite you to consider others. Suppose
that Equation (19.11) holds and each forager only uses yi(k) so

Ii(k) = Y i(k)

and we need to choose Gi
k where ui(k) = Gi

k(x(k)). This corresponds to allowing
each forager to observe all forager positions and resources in all cells at each time
k. The forager does not, however, have memory so it cannot store, for example,
sequences that characterize the pattern of resource depletion or motion of the
other players (which could be useful in estimating the intent of other players).

Who knows what and
when they know it
significantly affects
distributed
decision-making.

Recall that the information space is also defined via specification of a com-
munication network between the players. In an adversarial game, there may be
no communications or communications may be present, but the adversaries may
try to mislead each other so that they can gain more themselves. However, in
many cooperative games, there may be significant sharing of information over
the network. Recall that the network may be defined via a communication
topology that says who can communicate with whom. (Think of the topology
as a directed graph with nodes as the foragers and arrows pointing from any
forager to a forager that can receive or sense information about it.) There can
be bandwidth constraints for the communication links, or random but bounded



874 Competitive and Intelligent Foraging

delays in transmitting/sensing information. The topology and communication
network characteristics may depend on the locations of the foragers (e.g., if two
foragers move too far away from each other, then their communication link may
get “broken” and, if two other foragers get close enough to each other, they may
be able to “create” a communication link). Moreover, activities of the group of
foragers may dictate how the topology should be configured and dynamically
reconfigured. Here, we will assume that the communication topology enables
the sharing of sensed information for Ii(k) above. This will allow each forager
to compute all the decisions of all the other foragers, so that they do not need
to share information on u(k).

19.5.2 Biomimicry for Foraging Strategies

Biomimicry may provide
a way to define practical
(computationally feasible
and scalable) distributed
and cooperative
controllers for
autonomous vehicles.

Here, we introduce the idea of using biomimicry of foraging strategies found in
nature.

Rules, Planning, Learning

How do we define Gi
k? There are many approaches. One, which may corre-

spond to how simply organisms find food in some environments, would be to
use simple “rules” to search for and find food. For instance, such rules may use
environmental cues to tell them where to move to be likely to find food.

Another more sophisticated approach is to observe the environment and use
past information about how a typical environment holds food, and then to use
this model in a planning strategy. The traditional approach in game theory
in engineering is in fact to assume some ordering for player decisions and to
then use dynamic programming to find optimal paths for Ns steps. Clearly,
this can be computationally prohibitive, especially for high values of N , Qi, L,
and Ns. So typically, one approach is to use a “receding horizon” controller
(i.e., a planning system), where you use a (perhaps simplified) model of the
plant and simulate ahead in time, find the best input sequence, implement the
first decision in each sequence, and then repeat. Clearly, this can also have
computational problems, except perhaps for the case where you look ahead
only one or two steps, or where the model used to simulate ahead in time
has appropriate simplifications that reduce complexity, yet still lead to good
decisions. (It is generally quite difficult to balance these objectives to get a
good simplified model.) This is, moreover, the common approach that has been
investigated in many contexts for many problems in the past (e.g., for linear
systems with quadratic costs, “model predictive control” (MPC), and more
general decision-making systems).

Some animals actually learn the strategy of their opponent, then take ap-
propriate actions in order to optimize their gains. For this, they may have a
model of a typical opponent and then observe their actions to guess what type of
strategy they are currently using. Then, if they assume that the opponent will
not switch strategies soon, they may be able to work more effectively against
the opponent.



19.5 Example: Dynamic Foraging Games 875

A Generic Saltatory Strategy

In order to be more concrete about biomimicry of competitive and cooperative
foraging, suppose that we want to model “saltatory search” and foraging, where
an animal alternates moving and thinking about where to move next. This takes
into account physiological constraints for many animals, where they alternate
between moving and stopping to sense and decide where to move next.

The set of steps we use to model a “saltatory strategy” is the following:

1. Play a static matrix game of the type studied in the last section at k = 0
to determine where each forager should seek to go. Call the resulting goal
position xi

∗(k̄), where k̄ is the index of the times when the forager stops
to sense and decide where to go next. Hence, the game played at k = 0
results in xi

∗(0) for all i = 1, 2, . . . , N and these specify the first set of goal
positions that the foragers try to move to. (Issues in path choice from the
current forager position to the goal position are discussed below.)

2. If player i gets to xi
∗(k̄) at time k′, it plays a matrix game with all other

players even if they did not get to their goal positions that time. This
gives us xi

∗(k̄ + 1), the next set of goal positions. This can result in some
foragers switching from one goal position to another if they evaluate that
to be profitable.

3. Go back to step 2 if the termination condition (e.g., Ns time steps) is not
achieved.

This is a type of “asynchronous” saltatory strategy, where the time it takes
between decisions in the m index depends on how far it decides to move each
time. How do the foragers move from xi

∗(k̄) to xi
∗(k̄ + 1) (i.e., what path do

they take)? This depends on many factors. If the foragers can sense and make
decisions during movement, then they may try to move towards the new goal
position along a path that will maximize their consumption. Depending on the
forager’s goals, it may be willing to make significant deviations from a straight-
line path between xi∗(k̄) and xi∗(k̄ + 1), where the goal is simply to minimize
energy consumption to get to the goal position. For instance, the forager may
compute a type of optimal path, one that minimizes energy consumption while
maximizing resource consumption, between xi

∗(k̄) and xi
∗(k̄ + 1), and thereby

obtain more resources (i.e., it tries to do some consumption along the way to
its goal cell). It should be clear that overall this strategy could be viewed as
a type of planning (or receding horizon) strategy, since it does involve looking
ahead in time; however, it is only using very simplified information to decide
successive goal positions. Moreover, extension to the case where it looks ahead
more than one step across the k̄ index should be clear.

The type of game that is played at the times k̄, k̄ + 1, . . . depends on what
information is used to play the game. For instance, a forager may inherently
know that another forager will go to some region and then spend significant time
there, since it will minimize its energy expenditures by staying in that region
for some time. A forager may then try to “keep its distance” from another



876 Competitive and Intelligent Foraging

forager and pick a “foraging region” rather than a point (of course, this depends
on the physical dimensions that correspond to our cell sizes). How can we
represent this? One approach would be to define an “abstraction” of the resource
distribution part of the state, where elements of the abstraction correspond to,
for example, sums of resources of a certain type in sets of contiguous cells.
Then decisions about where to go can depend on “super-cells” created by the
abstraction. This will result in a computationally simpler game, since there
are fewer super-cells to consider moving to. Moreover, it is possible to define a
“nested” strategy where once a region is chosen, a game is played between all
players that decide to go to that region (and multiple levels of abstraction, and
hence, nested games can be played).

It is also the case that some types of foragers know what type of separation to
keep with other foragers, especially in the case of cooperative (social) foraging.
They do not want to be too close, so they crowd each other and each forager
does not get enough resources to survive, but they do not want to be so far
from each other that they cannot benefit from communicating with the other
foragers so they can be led in the best directions towards the most profitable
sites.

Coping with Complexity: Space and Time Abstractions

So, what are the basic concepts employed in foraging in nature that allow an-
imals to overcome computational complexity in deciding how to forage? First,
there is the prevailing fact that while foragers do not want to die, the overall
species has extraordinary reproductive capability so if they do die, they can be
replaced. This is a basic fact of life, but it may not have too much relevance in
the case, where we use biomimicry to design automated systems in engineering
(e.g., for cooperative robotics). Second, evolution essentially generates practical
and robust foraging strategies by optimizing them in the face of complexity con-
straints (e.g., forager physiology that dictates how much memory it can have).
Again, however, at the present time in engineering, it is often impractical to use
such a fact. At other times, such as in the area of “evolutionary cooperative
robotics,” researchers try to evolve good behavior over time. Certainly, there
may be the possibility that such evolution could take place a priori and in sim-
ulation rather than in actual hardware. Regardless, the problem is that there
may be little guidance on how successful such an evolutionary foraging strategy
design approach will be.

Here, we simply assume that we will observe existing foraging strategies and
use biomimicry to capture the essential principles of their operation that help

We cope with complexity
via hierarchies and space
or time abstractions.

the forager cope with complexity. While it is clear that there are many principles
used to cope with complexity, and that it may be difficult to observe the basic
principles used to cope with complexity for any given species, here we will focus
on the principles that seem to arise when one studies how saltatory strategies
operate as we discussed. There seem to be at least the two following general
principles:

• Spatial abstraction: Decision-making often involves having animals “group”



19.6 Challenge Problems: Intelligent Social Foraging 877

aspects of the foraging environment in order to make decisions. For in-
stance, an animal may look in a few directions and pick the general direc-
tion that seems to have the most resources. In this way, it avoids being too
greedy by favoring resource “peaks” that may have few resources around
them, and hence, does a type of prediction since it knows that it will con-
tinue to forage and try to minimize energy consumption by not moving
out of a region.

• Time abstraction: Next, there is a type of “asynchronous time decima-
tion,” where the animal does not decide what it will do at each small time
step, but only where it should be (or what it should be doing) at certain
future times. As they move toward their current goals, they solve the
problem of what to do along the way.

These seem to be fundamental principles driving the design of practical foraging
strategies, and how to cope with complexity in decision making.

Finally, note that complexity presents significant challenges in distributed
decision making. Even for the simple strategy defined in the past section, com-
plexity can be significant, especially for large N . For instance, for a full informa-
tion cooperative game, there are three decision variables (horizontal and vertical
position to move to and nutrient to seek there) for each of the N players and so
computing the cost involves finding and computing an optimal value for a very
large matrix game. (How large is the matrix for the case described above?)

19.6 Challenge Problems: Intelligent Social For-
aging

Bacteria forage according to relatively simple rules that dictate how they climb
up nutrient surfaces, or aggregate for the purpose of survival. Their biochemical
“brain” is very simple, essentially a bag of molecules where chemical reactions
implement foraging “decisions.” Recall that we assume that there is a “cogni-
tive spectrum” of intelligence in making foraging decisions. For instance, some

Multiple vehicle guidance
and decentralized
decision-making
problems provide nice
classes of applications to
integrate the methods of
this book.

higher animals have central nervous systems and via these they can achieve
planning, attention, and learning. We can think of such animals as “intelligent
foragers.” Intelligent foragers typically also have an ability to communicate so
that they can achieve “social foraging.” For instance, they may work together
as a group to improve their foraging success and survival chances. Some ani-
mals are of relatively low intelligence, but enhance their foraging success with
communications (e.g., bacteria and ants) to gain an “emergent” intelligence
for the group. Other animals have significant intelligence but may not exploit
their communication capabilities to a great extent, since a “loner” approach in
foraging in their environment is more successful.

Here, we first focus on intelligent individual (i.e., nonsocial) foraging by ex-
plaining how to use planning, attention, and learning methods for foraging. To
do this, and in order to be concrete, we discuss yet another nongradient opti-
mization method that is based on the use of “surrogate models” (in a foraging



878 Competitive and Intelligent Foraging

problem, a model of the foraging landscape that includes information about
where predators and prey are). We challenge the reader to solve a particular
type of intelligent foraging problem with a surrogate model method, by present-
ing it as a “design challenge problem” for students, where they can integrate
earlier methods from this book. (For this problem, there may or may not be
multiple foragers and competition.) Next, we discuss the social foraging prob-
lem by introducing it as a second design challenge problem, which also requires
the use of coordination (and hence communications) among multiple agents.
The main challenge is to implement distributed rule-based, planning, attention,
or learning strategies in order to coordinate the behavior of a group of foraging
agents. Varying levels of intelligence, distribution, and communications are dis-
cussed. Aspects of competition are discussed, and in general, there are multiple
teams of foragers that compete for various resources in the environment.

Finally, note that other problems not related to foraging could be used in
place of the problems defined in this section to provide a challenge problem for
the student (e.g., process-wide control/automation for a factory).

19.6.1 Intelligent Foraging

In this section, we explain how to develop a nongradient optimization method
that relies on planning, attention, and learning and hence, provides an algo-
rithmic approach to intelligent (nonsocial) foraging. This is only one of many
possible methods that can be envisioned for the solution of this problem. We
discuss intelligent foraging in the context of this method simply to be concrete
about the ideas, the connections to optimization, and how a simulation might
be constructed.

Surrogate Model Method Representation of Intelligent Foraging

For some optimization problems, it is not only the case that it is impossible
to compute or know the analytical gradient, but it can also be the case that it

A surrogate model
method simultaneously
learns an approximation
to the cost function and
uses it to guide where to
search the cost function.

is very expensive to compute a value of the cost function for each point in the
optimization space (e.g., if the computation requires extensive simulations using
a very complex model, use of experimental apparatus, or physical rearrangement
of physical elements in an environment to determine the value). One approach
to such problems is to use a “surrogate model” to represent the cost function.
The idea is that each time you compute a value of the cost function, you use the
pairing between the test point in the optimization domain and the cost function
value that is computed to form a training data pair, and then construct an
approximator for the cost function (perfectly analogous to how we did this in
Part III, but here the focus is on learning the mapping implemented by the cost
function). How could an approximation of a cost function be useful? The key
is to note that it can be difficult to compute points on the actual cost function,
but it can be very easy to compute test points on the approximation to the
actual cost function. (If the approximation is good, the values will be close.)
Moreover, if the approximation is reasonably good, it can suggest points that



19.6 Challenge Problems: Intelligent Social Foraging 879

are good candidates for testing on the actual cost function. Remember the
response surface methodology of Section 15.2, where we approximated a cost
function with an approximator and used it to pick an optimal design point.
The difference here is that our surrogate model method will operate in real time
via sequential acquisition of information (not in the “batch-mode” that RSM
typically uses).

The surrogate model method proceeds as follows:

1. Pick a test point (or set of test points) for J and compute J at this
point (these points). Note that the method can be “set-based” so that
it computes in parallel the cost function at several test points (e.g., via
parallel processing).

2. Store the pairing(s) between the test point(s) and value(s) of J in a train-
ing data set G for an approximator f for J .

3. Construct an approximator (interpolator) for the data in G (perhaps re-
moving some points as others are added). This approximator retuning
can be achieved via repeated application of recursive least squares over a
linear in the parameters approximator, or via application of a Levenberg-
Marquardt method to training a nonlinear in the parameter approximator.

4. Perform an optimization over the approximator surface (not the cost func-
tion) to find a minimum point on that surface. (You may use gradient
methods or pattern search methods to perform this optimization.) Call
this a new test point, compute J at this point (and for a set-based method,
perhaps at a pattern of points around it), and add this (these) to the train-
ing data set. Go back to step 3.

You can think of this as constructing an approximation of the cost function to
guide you to make choices about where to explore the cost function to find the
minimum (the “search” proceeds via the optimization over the learned surface
with periodic updates via sampling the actual cost function and updating the
approximation surface). You can think of the optimization process over the
approximator surface as providing a strategy for picking points to include in the
training data set G. Clearly, when applied to specific problems, the strategy for
picking points to include in G may be constrained by the problem at hand (e.g.,
if applied to a foraging problem, the surrogate model may be a representation
of some aspect of the environment and you may be constrained in choosing
candidate points on the surrogate model by how fast the vehicle can move and
what sensing resources it has—e.g., whether it can sense at a distance).

If you use a pattern search method, it may make sense to think of points on
A surrogate model
method can be thought of
as a method for
integrated learning and
planning.

the pattern as predictions about J , and the selection of points as a selection of
a plan, and the approximation process as learning. In this way, you can think of
the surrogate model method as defining a class of learning-planning methods,
where it is possible to choose a whole variety of pattern search methods as the
basis for planning and gradient optimization methods as a basis for learning (of



880 Competitive and Intelligent Foraging

course, as pointed out in the last section, it is possible to use the pattern search
methods as a basis for learning).

Example: Intelligent Foraging Over Nutrient Surfaces

Here, we provide a brief explanation of one way to define aspects of the envi-
ronment as a cost function that can then be used in a surrogate model method
to emulate intelligent foraging.

• Define a nutrient surface, analogous to how we did it for bacteria. This is
the surface that we want to learn about and plan over.

• Add an attentional map defined over that same domain that simply says
where we have searched and where we have not (so if we have visited one
region, then change the map to indicate that, and make it so that climbing
down the attentional map surface corresponds to looking in unexplored
areas; in the theory of surrogate optimization, this is sometimes called a
“merit function”).

• Add the nutrient surface to the attentional map and call that the cost
function. Use planning over the currently learned map so that there is a
type of look-ahead for the forager to decide where to move; however, it
can only make its decisions on the learned map, not the actual one (but it
does know the entire attentional map). This way, in seeking to minimize
the cost, it will try to achieve competing objectives: (i) try to find the
lowest point which corresponds to good food, and (ii) try to search the
entire surface (as dictated by the attentional map). It balances a desire to
search far and wide, possibly finding a better food source, with the desire
to eat now. The attentional map helps it to avoid getting stuck in a local
minimum.

What are the key elements to coding this? First, it seems logical to use a
set-based method, some pattern of sensed points of the nutrient cost function,
placed around the current position of the forager. Second, vehicle dynamics
should be kept simple but must be present in some form (e.g., it cannot be
that you can move the vehicle in one time step an arbitrary distance across
the optimization domain—this is a key difference from standard nongradient
optimization methods). One way to model this is to use a “momentum-term”
(see gradient methods) in the optimization algorithm update formula. Third,
it seems logical to use a linear in the parameter approximator for the nutrient
function, perhaps with RLS to compute the approximator update at each step
(so run RLS for each point in the pattern, at every time step). Fourth, an
RBF could be used for the attentional map, with a simple strategy to update
it based on where the forager actually visits (e.g., it could simply change the
map to represent that the pattern of sensed points was there). Fifth, we see
then that planning corresponds simply to the optimization over the surrogate
model (which here would be the approximation of the nutrient cost function,
plus the attentional map), and since you want the planning method to consider



19.6 Challenge Problems: Intelligent Social Foraging 881

many directions from the current forager position, it seems logical to try a
pattern search method (e.g., simple coordinate search or multidirectional search
over the combined approximator/attentional map). It should be possible to
show a movie of learning a nutrient map, the updates to the attentional map,
and it should be that these maps would give good insights into design of the
strategy. How computationally complex will the method be? Well, this depends
on the resolution you choose for your approximator for the nutrient map, and
the attentional map. Also, it depends on the optimization method that you use
for the approximator surface, how big the set is in the set-based method, and
how long your planning horizon is.

19.6.2 Intelligent Social Foraging

In this section, you are asked to consider the wide range of possibilities for
how to design the control and guidance algorithms for automating a group
of intelligent social foraging vehicles. Hence, this section serves to specify a
“capstone” design problem for this book that challenges the student to integrate
the various methods to solve a particularly challenging problem. The design
challenge problem of the previous subsection is relatively simple compared to
the one discussed here (and is included as only a part of the more general
problem here).

The intelligent social vehicular foraging problem also provides a glimpse
into potential topics for further investigation. For instance, there has been
little discussion on the relevance of language and communications in groups of
intelligent systems, let alone aspects related to learning language. There has
been little discussion of distributed learning by groups, distributed planning,
distributed attention, etc. Moreover, there has been little discussion on learning
and evolution of the structure of controllers and estimators. This challenge
problem provides a framework to study such issues (of course, you may want
to start by more thoroughly studying each of these topics in isolation, before
confronting the more challenging social foraging problem).

The main problem for the student will be how to even attack this problem,
provide a solution that shows you understand the basic methods of this book,
and yet integrate the methods to solve a meaningful problem. This is a design
problem where you help design the problem! Perhaps your instructor will help
you, but this still makes the problem more challenging, since your objectives
will not be explicitly listed. You will have to invent them, and the very design
of the objectives is something you will be graded on. You should be careful to
adopt a scientific approach to solving this problem. You should not simply con-
struct some ad hoc combination of earlier methods, so that you can get lucky
in simulation to show that it works. You must evaluate the methods fairly,
provide biological motivations if appropriate (and if you like doing that), and
it would be especially nice if you can augment your study with mathematical
analysis that verifies the operation of the system (e.g., in the spirit of the stabil-
ity analysis that we have studied for neural/fuzzy control, attentional systems,
adaptive control, or swarm cohesion). If you have the opportunity to implement



882 Competitive and Intelligent Foraging

your methods on a group of vehicles, this can provide another way to study the
validity of your approach. Keep in mind that standard engineering/scientific
principles apply here, as they were discussed in Part I.

The problem statement, which is very simple, is given in Design Prob-
lem 19.5. So, what is the first step to solve this problem? Read this section as
its basic focus is to give you ideas on how to integrate methods and concepts
from this book to specify decision-making strategies for foraging. It may also
give you ideas for how to extend some of the methods in the book, and you
may be particularly attracted to doing so for a method that you were particu-
larly intrigued with. Next, study the current literature. See the “For Further
Study” section at the end of this part for some ideas on where to start; however,
you should search the library or Internet for other current literature. Next, see
the Web site for this book where some relevant literature and ideas are posted.
Finally, work hard and have fun!

Vehicles, Environment, and Objectives

Here, we define the challenge problem.

Groups of Vehicles—Dynamics, Communications, and Control Struc-
ture: The first challenge is to define the type of vehicle that you will use. In
particular, you need to define the following:

• Vehicle dynamics: For instance, if you use an automobile as your vehi-
cle, what are the differential equations that you will use to simulate its
motion? You can choose the vehicle type. It could be any type of au-
tonomous land (e.g., automobile, truck, cross-country), water (surface or
underwater), air (e.g., helicopter or airplane), or space vehicle (e.g., mobile
satellite, explorer vehicle, etc.). You probably want to pay attention to
the complexity of the dynamics. If you use extremely complex dynamics,
and later try to define a sophisticated control strategy with many vehicles,
your simulation may be too computationally complex. Hence, it is likely
that you will want to use simple point-mass dynamics for your vehicle,
and perhaps saturations on turn rates and velocity.

• Vehicle sensors/actuators: You will need to define which sensors and ac-
tuators you need for “inner-loop” control (e.g., in order to force the vehicle
to track a trajectory that it chooses to follow; for example, doing heading
regulation for the tanker ship). Moreover, you need to define what it can
sense about its environment (e.g., types of prey, elevation of the earth,
motion of predators, etc.), and how it can change its environment (e.g.,
by killing a prey, or building a bridge to be able to cross a river).

• Vehicle communications: You need to define the characteristics of the com-
munications that each vehicle is capable of. Do they all have the same
capabilities? Are the communications noisy or bandlimited? Are there



19.6 Challenge Problems: Intelligent Social Foraging 883

random but bounded communication delays? Are the communication ca-
pabilities range-limited, so that if one vehicle moves too far away, it will
not be able to communicate with some other vehicles (e.g., simply due to
the distance, or possibly due to being behind some obstacle)?

• Hierarchy and distribution in the group of vehicles: Building on the last
point, you need to define the allowable communication channels between
vehicles, whether the structure of these channels (i.e., the topology of the
interconnections between all vehicles) can change over time, and whether
there is a type of hierarchy where some vehicles command others to per-
form tasks. For example, there may be no leaders in the group and all the
vehicles may be able to communicate. Perhaps there is a single leader who
is not endowed with any special communication capabilities, but who may
behave differently. Perhaps there is a leader with special communication
capabilities, multiple leaders with different objectives, or a hierarchy of
leaders and followers for command and control. In some problems, you
may be able to design the hierarchy or change it during operation of the
system, and in others you may be given the hierarchy and have to work
with it with no changes.

What types of vehicles are actually used in groups to achieve some objective?
While there are clearly military applications, there are also commercial ones.
For example, an “automated highway system” can be viewed as a group of au-
tonomous vehicles that operate within a type of command and control structure
(see Figure 1.13 on page 40). Or, groups of autonomous vehicles could be used in
pollution clean-up, farming, exploration, or inventory control in manufacturing
systems.

Environment Model and Goals: Your vehicles need to operate in some
environment and hence, your simulation will need to represent its characteristics.
For instance, you may want to consider the inclusion of the following:

• Media: What media do your vehicles move through? Air, water, out-
erspace? Are there disturbances that affect the motion of the vehicle?
Solar pressure? Wind or water currents? For land vehicles, are there hills
and roads?

• Predator/prey (or noxious substance/nutrient) characteristics: If your ve-
hicles seek to consume prey while avoiding predators, what are the char-
acteristics of your predators and prey? How fast can they move? What
types of evasive or pursuit strategies do they use? What is their energy
value if they are consumed? What is the probability that you will en-
counter them? What are the predator/prey densities? You could set this
up as a game, where two students design teams of predators to operate
in a single environment and compete for food sources. Alternatively, each
predator could be prey for the other. Regardless, other predator and prey
strategies help to define the environment for a set of vehicles.



884 Competitive and Intelligent Foraging

• Environmental changes: Do the characteristics of the environment change
over time? Do the characteristics of the media change? Does preda-
tor/prey density change? Do predator and prey strategies change?

What is the overall goal of the group of vehicles? The goal may involve
characteristics, such as the following:

• Energy consumption: Find and ingest as much energy as possible (in the
form of prey or nutrients of some type), while avoiding getting killed and
eaten by some predator.

• Achieving goal positions: In some problems, the goal is simply for the
group of vehicles to navigate their environment and achieve some goal
positions.

• Gathering information: The group of vehicles may simply want to create
as accurate a picture as possible about the environment that they operate
in. For example, such an objective may be useful in space exploration via
a set of vehicles.

• Changing the environment: There may be a collective goal to modify
the environment that the group of vehicles operate in. For instance, in
cooperative robotics, the problem of how to use a group of autonomous
vehicles to move an object has been studied. For other problems, there
may be a desire to eliminate targets, cultivate land, build a home, or
gather food into a certain location.

It should be clear that there are certain principles that govern trade-offs in
achieving goals. For example, typically the desire to achieve a wide-area search
(e.g., to find prey) competes with a desire to focus activities in a single local
region (e.g., in consuming prey). You should focus on uncovering such funda-
mental principles/trade-offs and illustrating them via simulations.

As an example, in the IVHS application the media is air, friction with a road
that may turn, wind can influence dynamics, and there are hills and valleys.
Temperature, snow, and rain may also affect vehicle dynamics. Destinations
can be thought of as goal positions.

Elements of Distributed Decision-Making

While each of the foraging vehicles could have neural networks that implement
various control functions, and hence, there would be a distributed neural net-
work for instinctual control, here, we discuss the cases where groups of vehicles
share information and implement distributed rule-based, planning, or atten-
tional schemes for cooperative control that are not necessarily implemented by
neural networks. In a sense, this section indicates how methods of Part II can
be extended to the social foraging problem. Hence, the focus is not on use of the
methods there for the development of controllers for a single control loop, but
how to coordinate the use of information to meet the objectives of the group of



19.6 Challenge Problems: Intelligent Social Foraging 885

vehicles (for “outer-loop” control, or guidance) that possibly has an opposing
team (or teams) of vehicles.

A key component of the problem of foraging for many organisms is the
search for food, and hence, this can be a key component for the case where
groups search for food. Hence, in all the elements of decision-making, there is an
element of distributed search. There are, however, several other key components
including cooperative identification of prey, cooperative avoidance of predators,
and cooperative attack of prey. The approaches outlined below show different
ways to look at these basic elements of the group foraging problem.

Distributed Rule-Based Foraging: Some organisms (e.g., ants) actually
use simple rules to specify how to forage for food, and when taken together, a
group of such organisms seems to have an “emergent intelligence.” For example,
such rule-based behavior can indicate when to move in certain directions, and
when all the organisms follow such simple rules, the group appears to move with
purposeful behavior, acting as if they were a single organism rather than many
individual ones. The key difference, compared with the rule-based systems
in Part II, is that communications with other organisms are possible. Rules
basically have two parts: antecedents and consequents. Each of these can be
different for rule-based cooperative control in the following manner:

• Using neighbor’s information in rule antecedents: The type of information
that arrives for use by each organism depends on what type of communi-
cations the organism is capable of achieving. How should the information
from other group members be used? Sometimes it simply would be used
as an additional term in the antecedent of the rules for behavior of an
organism. For instance, without communications, an organism may sim-
ply move greedily about looking for food so its rules’ antecedents simply
depend on direct sensing of environmental variables. If there are commu-
nications from neighbors, this may modify the behavior. How? It could
be there are rules that indicate that the organism is supposed to look for
food, but also follow its neighbors. If such a desire is followed by many
organisms in a group, swarm behavior may emerge (individual rules can
lead to interesting higher-level emergent patterns of behavior). Notice
that in this case, the organism is using rules that depend not only on
the environment, but also on communications from neighbors (e.g., a rule
might say to move towards food, if you do not crowd a neighbor).

• Rules for sending information to neighbors: Rule consequents may con-
tain not only information about which direction to move to get food, but
also a specification of what to communicate to your neighbors about your
experiences, actions, or goals. For instance, if a forager decides to pursue
some prey, it may send a signal to some of its neighbors to come help it
(e.g., in the case of some fish when they try to kill and ingest a much
larger animal). Alternatively, an organism may communicate its intent to
search some region for food and rules in other organisms may then trigger



886 Competitive and Intelligent Foraging

to indicate that they should not also look there (e.g., based on expected
prey densities).

This provides a simple introduction as to how rules could be used in coop-
erative control (e.g., we did not discuss the fact that inference strategies could
be communicated and shared between organisms). It is important to emphasize
that even a set of simple rules implemented on each organism (identical or dif-
ferent rules) can lead to seemingly intelligent emergent behavior. That is why,
by working together in simple ways, great things can be achieved. In this case,
it can be that they simply enjoy greater foraging success. But, it is important
to recognize that even what are thought of as higher-level cognitive capabilities
can be achieved as the result of many simple communicating organisms (e.g.,
think of trail-laying by ants as implementing a type of learning to improve the
success of the colony of ants). Moreover, note that rule-based strategies may
be employed in hierarchies, and in conjunction with the planning and attention
methods discussed below.

Distributed Planning for Foraging: You should think of distributed plan-
ning as an advanced form of distributed rule-based cooperative control, where
models are used for prediction, and optimization is used for plan selection. To
fully exploit the capabilities of distributed planning you may need higher band-
width communication channels, since you may want to communicate models,
plans, or plan selection strategies between organisms. The following show some
ideas for how to achieve distributed planning:

• Sharing models: While operating independent of others, an organism that
employs planning would use its own model to decide the best way to forage.
In a cooperative strategy, an organism could get model information from
other organisms in the group. For example, the model may indicate where
other organisms have searched or what they have found. Sharing of model
information between organisms essentially results in a type of adaptive
planning, since models can be updated online while the planning by a
single organism that uses that model is taking place. (Again, we see that
learning emerges via the cooperation.)

• Sharing plans or sets of plans: It is also possible that an organism may
share its current plan, or set of possible plans, with other organisms in
the group. These may indicate where it intends to move, or the set of
possible places that it intends to move. Or, it may indicate its strategies
for attacking a prey or avoiding a predator.

• Sharing plan selection strategies: The cost function that is minimized in
order to select plans could be communicated to other organisms to indicate
aspects of the planning strategy that an organism is using (e.g., to indicate
its intent to try to minimize the use of a certain resource).

Clearly, distributed planning can become very complex and complex behav-
ior can emerge from even simple planning strategies. It should be clear that



19.6 Challenge Problems: Intelligent Social Foraging 887

hierarchical planning strategies may be useful, with similar sharing of informa-
tion between planning strategies, and the possibility that subordinates execute
steps of plans specified by higher-level organisms.

Distributed Attention for Foraging: If one organism is given the task
of attending to a set of mobile objects, it allocates its cognitive resources by
dynamically refocusing its attentional focus (and perhaps the field of view of
its sensors). Suppose that we want a group of social foraging vehicles to attend
to a group of mobile predators/prey. Consider the following approaches to this
problem:

• Distributed agreement on focus regions: One approach is to try to develop
a strategy to divide the region into subregions and have each organism
focus only in that subregion. This is, however, a difficult problem since
the foraging group can move and there may be less than perfect commu-
nications between the organisms. This can result in one organism being
responsible for attending to a subregion with too many mobile preda-
tors/prey to cope with (i.e., the capacity condition for that organism may
not be satisfied so that there is no way it can succeed in its task). Or, it
could be that there are too many organisms focusing on one subregion so
that their cognitive resources are essentially wasted.

• Leaders and hierarchical strategies: For the above case, our intent was to
consider a predator/prey focused on if any organism focused on it. This
did not require global communications. What can we achieve if we have
global communications? First, this enhances the possibilities to allocate
organisms to groups of predators and prey. (We think of allocating whole
organisms that in turn allocate their cognitive resources over time to at-
tending to certain predators/prey; notice that the global communications
enables the implementation of a type of hierarchy in the group’s atten-
tional strategy.) Second, this enables the group of organisms to construct a
composite “snapshot” of its predator/prey environment for use in making
foraging decisions.

Clearly, it may be possible to enhance the effectiveness of the attentional
strategies with rule-based, planning, and learning capabilities (e.g., via dis-
tributed adaptive model predictive control as an attentional strategy). We will
discuss distributed learning in more detail in the next section.

Distributed Learning

This section indicates how methods of Part III could be used to augment the
strategies in Part II for use in the social foraging problem. The focus here is
again on the distributed implementation of the methods, where special problems
arise due to, for instance, the lack of global information.



888 Competitive and Intelligent Foraging

Distributed Learning in Groups of Foragers: Learning can affect all
aspects of each of the strategies discussed in the last section, from the func-
tionalities that focus on the search for prey to ones concerned with cooperative
avoidance of predators. Learning should be thought of as gathering and storing
information to change future behavior. Hence, rather than try to list all the
ways that learning can be used in social foraging, we will focus on what types
of information can be learned, and why it might be useful in enhancing foraging
success. Some ideas include the following:

• Learning characteristics of the environment: Individuals or the group may
try to learn as much about the environment as possible. For instance, they
may remember locations and quality of food sources, evasive maneuvers of
prey, attack patterns of predators, etc. Learning of these characteristics
may be facilitated by certain instincts in each of these cases (e.g., built-in
expectations about food distribution and density or understanding typical
rates of movement of predators and prey).

• Learning foraging strategies from other group members: It may be possible
for one forager to cooperatively forage with other foragers and at the same
time learn how its neighbors (or predators) succeed at foraging to improve
its own performance, and at the same time improve the performance of
the group (i.e., it may obtain gains that are not at the expense of others
in the group).

• Learning how to communicate: It may be possible that a forager may learn
how to communicate with the group to enhance foraging success.

To make these ideas more concrete, we briefly discuss a specific example of
how learning can be integrated with planning and attention in foraging.

Distributed and Integrated Planning, Attention, and Learning: You
can imagine that there are many ways to combine learning, planning, and at-
tention to achieve effective group foraging strategies. Here, only one is outlined,
essentially expanding a bit on the concepts in Section 19.6.1. You could certainly
generate many more; in the next section, we will discuss the issue of ranking the
quality of such proposed group foraging strategies via an evolutionary perspec-
tive. Here, we ignore the quality of the resulting strategy and simply outline a
way that what you might call “intelligent” social foraging could be achieved.

Suppose that we have a group of foragers searching on an (x, y) plane for
nutrients. Consider an individual forager. Suppose that this forager has a
dynamical “attentional map” that indicates, for instance, where the forager has
not looked for food (i.e., where it needs to pay attention in case there is food
present), and where it has (and hence, where it may have found food and need to
have a mechanism to track it). Corresponding concepts work for predators. The
attentional map amounts to a type of memory, and hence, its dynamic updating
corresponds to a type of learning. The forager can use this map to try to focus
its attention in the proper way to make sure that it has as accurate a view as



19.6 Challenge Problems: Intelligent Social Foraging 889

possible of the predator/prey environment, where this process is basically driven
by the inherent goal of survival and reproduction.

Next, suppose that the forager maintains a “cognitive map” of its envi-
ronment that it learns while moving throughout the environment. It stores
information about physical characteristics of its environment (e.g., locations of
rivers or forests), and perhaps also the location and characteristics of predators
and prey. Next, suppose that we endow our forager with an ability to plan using
both its cognitive map of the environment, and its attentional map. That is,
think of the maps as constituting a type of model of the foraging environment
that is learned during the foraging activity, or during the lifetime of the forager.
Now, with a planning capability, the forager can use its current best information
about the environment in order to project into the future and pick the best way
to forage (e.g., it may predict how a prey will react to its movements or how a
predator may behave). Clearly, this predictive capability depends critically on
the quality of the learned information (and hence on the process of learning),
and its own abilities to simultaneously consider a large number of possible predi-
cations and responses by the environment and predators/prey (e.g., the amount
of memory and computational throughput of the forager directly constrain the
plan generation and selection process).

Now, suppose that each forager has the attention, learning, and planning ca-
pabilities, and it has a certain type of ability to communicate with its neighbors.
For example, suppose that each forager can communicate its own attentional
and cognitive map to any other forager that is within a fixed distance from its
current position. Can the group achieve more effective foraging? This seems
quite plausible, since foragers will generally have more accurate attentional and
cognitive maps without expending more energy (i.e., if the communications are
cheaper than gathering information independently). This improved information
should directly affect the quality of the attentional strategies and predictions
made in planning, and hence, the quality of the foraging decisions that are
made. It should be clear that if you increase the allowable range of communica-
tions, there should be corresponding improvement in the quality of information
in each forager, and hence, an overall improvement in the quality of foraging by
the group (assuming of course, that intergroup competition does not dominate).
Clearly, it is also the case that if a forager has a poor sensor or is not honest,
then if this information is passed to other team members, the overall foraging
success could degrade. Indeed, when there are two teams, a key strategy may
be how to deceive the opponent so that they make bad decisions.

Evolution of Foragers

In this final section, we make a few remarks about the relevance of evolution
as discussed in Part IV to the intelligent social foraging problem (Chapter 18
serves as a concrete introduction to this rather philosophical section, since it
integrates foraging concepts and evolution for E. coli).



890 Competitive and Intelligent Foraging

Evolving Foraging Strategies: A key idea here is that via natural selection,
the environment both influences an organism’s physiology, and helps to define
foraging success. Hence, the environment dictates what is an optimal group
foraging strategy via the process of evolution. It should be the case then that
optimal social vehicular foraging can only be achieved by careful consideration of
vehicular “physiology” (e.g., amount of computing resources and communication
capability) and the vehicle’s environment.

It should be immediately clear that it is possible to simulate the effects of an
evolutionary process on the design (redesign, “tweaking”) of a social foraging
strategy, and even the communications infrastructure that is used by the group
of foragers. Clearly, foraging success would be a part of the fitness function,
and neural, rule-based, planning, attentive, and learning strategies could all be
encoded and evolved. Just because this is possible, does not mean that it is easy
to do. Moreover, the focus in such studies should be on uncovering principles,
rather than on the ad hoc construction of complex simulations that loosely
emulate biological processes, but which may perhaps get lucky and provide an
occasional good solution.

What principles? We must recognize that the design of social foraging strate-
gies can be very difficult. Hence, it would be nice if we had some design principles
for social foraging vehicles. Consider the following ways to uncover intuitions
about design principles:

• Designing parameters of the decision-making elements: The complexity of
the social foraging problem can make it quite difficult to pick some design
parameters of the decision-making strategies, ones that may be relatively
easy to pick in a single-forager problem. For instance, there should be an
evolved optimal prediction horizon for planning strategies, and optimal
resolution needed for the attentional and cognitive maps discussed in the
last section.

• Achieving balance between decision-making functionalities: It is very diffi-
cult to know how much sophistication is needed for each type of decision-
making mechanism (e.g., planning, learning, attention), and whether it is
possible to use a complex learning strategy, but a simple planning strategy.

• Evolving simple designs: There should be a way to optimize the “cognitive
complexity” (onboard computational resources) of the vehicle, to provide
an effective yet simple engineering design. The question is whether we can
use evolutionary design principles to realize the “keep it simple” principle
in engineering design.

• Studying trade-offs between computational and communication resources:
Could we study questions about whether it is possible to evolve a balance
between how many communications are needed (e.g., bandwidth, commu-
nication range, level of locality) and how many learning, planning, and
attentional capabilities are needed? Is it better to use lots of commu-
nications with simple decision-makers, or limited communications with



19.6 Challenge Problems: Intelligent Social Foraging 891

sophisticated decision-making? Clearly, some aspects of such a study may
be constrained by the particular vehicular problem being studied.

• Coevolution: What we call the “environment” includes intelligent adver-
saries (predators and prey) and for some organisms, a type of “arms race”
occurs where one predator evolves some capability, then another evolves
a way to counteract it, and so on. This is called coevolution. Suppose
that you work on a student team, where each student designs an artifi-
cial organism that is both a predator and prey for ones designed by other
students. Could we evolve an “evolutionary stable strategy” (see the “For
Further Study” section at the end of this part) for these organisms? Could
you do this for two groups of vehicles that compete?

• Darwinian design of the software: Could an analogous approach to the
one described in Section 15.7.2, be used to synthesize/tune the software
for cooperative foraging strategies (i.e., where the software is constructed
via implementation in a test bed and evolution)?

Evolving Vehicular Hardware: Suppose that the actual robot or vehicular
hardware can evolve. What are the implications? Here, we simply ask the
following questions:

• How do you make the hardware replicate itself with fecundity and vari-
ation, and instill inheritance into the process? How do you implement
(un)natural selection via environmental influences? A central problem is
one of available resources to support the fecundity and the waste that re-
sults from selection. Biological evolution is based on selection of a few of
many to be the ones that reproduce; the rest are in a sense “wasted.” This
resource/waste problem may be a key limitation that may drive any truly
evolutionary strategy to exist on the molecular scale. But, considering
nanotechnology advances, molecular vehicles or robots may not be out of
the question.

• Could you make this emulate evolution of biological organisms, however
simple they might be?

• Would this be useful for understanding biological evolution?

• Could you argue that your hardware is alive?

• What is the engineering utility of performing hardware evolution for pop-
ulations? Could it be a way to make a group of vehicles or robots more
adaptable to changes in its environment?

• If you can achieve some of these objectives, then will biological evolution
have spawned another type of evolution? Or is this just a natural pro-
gression that is expected from evolution that can be thought of as being
subsumed in what we now think of as evolution? Evolution did spawn



892 Competitive and Intelligent Foraging

many other types of optimization processes as we have discussed in this
book, so why not another? It would seem that if it could, it would con-
stitute an important event in evolutionary time.

Via combined hardware-software evolution, learning, planning, attention, rule-
based, and neural systems approaches, could you implement a truly “intelligent”
system?

19.7 Exercises and Design Problems

Exercise 19.1 (Properties of Static Games): This problem provides ex-
ercises to support the tutorial introduction to game theory in this chapter.
You may use the code available at the Web site for the book to solve the
problems.

(a) Using the examples given in the chapter, define a bimatrix game that
has no Nash solution.

(b) Find a bimatrix game that has two Nash solutions.

(c) Find a game that has a Nash solution that is not stable.

(d) Find a bimatrix game where a Nash solution is the same as the
minimax solution.

(e) Find a two-player game that has only one Pareto solution.

Exercise 19.2 (Static and Iterative Foraging Games): For the static
foraging game studied in the chapter:

(a) Investigate the effect of changing the amount of energy it takes to
travel to get a resource. (To do this, assume it is zero and show the
results, then slowly increase the cost of travel to get a resource and
each time, study the choices made in foraging.)

(b) Add a third resource type and develop a simulation to illustrate prop-
erties of the Nash, minimax, and Pareto solutions.

(c) Iterate the static foraging game and show how the resource profiles
decrease. Study the effects of parameters of the costs on the rate of
decrease (i.e., the rate that resources are eliminated from the envi-
ronment).

Design Problem 19.1 (Static Foraging Games—Extensions):

(a) Extend the model developed in the chapter to a two-dimensional
foraging plane. Define all details of the model.

(b) Introduce a way for each animal to find its path in the plane (e.g.,
via a shortest path method over the cells, with a cost from the energy
to travel). Simulate to show that it finds the shortest path.



19.7 Exercises and Design Problems 893

(c) Define foraging strategies, both cooperative and competitive, and
evaluate their performance in simulation. Study the “iterated” case
where multiple steps are taken.

Design Problem 19.2 (Evolution of Cooperation and the Iterated
Prisoner’s Dilemma)�: Read [35] and the chapter on evolution of strate-
gies in [36].

(a) Produce a mathematical model of a two-person iterated prisoner’s
dilemma. Explain clearly what the allowable costs are for the game
to represent an iterated prisoner’s dilemma and why it is representa-
tive of some of the typical problems found in cooperation (and give
specific examples of where iterated prisoner’s dilemmas arise, not just
in prisons).

(b) Using the “tit-for-tat,” “tit-for-two-tats,” and random strategies [35],
plus two others of your choice, simulate 200 iterations of the strategies
playing against each other. Compare. Discuss.

(c) Develop, using the ideas from [35, 36], an evolutionary algorithm for
the strategies (i.e., one that in some way eliminates, after a certain
number of iterations, strategies that are not performing well and
generates extra copies of ones that perform well). Run the algorithm
in a Monte Carlo simulation and explain the results. Which strategy
wins? What does it mean for a strategy to be an “evolutionary stable
strategy”?

(d) Explain the relevance of the theory of cooperation from [35, 36] on co-
operation in multivehicle applications. Develop a specific simulation
to illustrate your ideas.

Design Problem 19.3 (Evolutionary Stable Strategies)�: Read the parts
of [245, 534, 213] relevant to evolutionary stable strategies and evolution-
ary dynamics. Write a brief introduction to evolutionary stable strategies
using a matrix games approach to introduce the main ideas. Develop a
simple example and simulation to illustrate the key ideas. Repeat, but for
evolutionary dynamics. Explain the relevance of these ideas to engineering
applications in general, and vehicular applications in particular.

Design Problem 19.4 (Challenge Problem: Foraging Games)�: De-
velop a dynamic foraging game, in two or more dimensions (i.e., it cannot
be a foraging game on a line, like the one we studied in the chapter).
Write out the full details of the mathematical model and strategies that
you choose. The foraging strategy could involve the use of rules, planning,
attention, or learning. Justify the choice for your strategy and quantify
its computational complexity. Evaluate the performance of the strategy
in simulation. Depending on your strategy (e.g., how it is parameterized),
you may also want to study its evolution via a genetic algorithm.



894 Competitive and Intelligent Foraging

Design Problem 19.5 (Challenge Problems: Design of Intelligent So-
cial Foraging Strategies)�: The problems below are designed to inte-
grate a number of the methods studied in this book.

(a) Develop a surrogate model method for intelligent foraging and eval-
uate its performance in simulation. Clearly, a key aspect of this
challenge problem is how to formulate a problem that you can solve,
and one that is amenable to at least simulation-based analysis of
performance. You may need to consider nontraditional performance
measures.

(b) Define a foraging problem (nonsocial) different from (a), and design
a decision-making strategy for each forager. Include aspects of com-
petition by having more than one noncooperative forager. Evaluate
the design in simulation.

(c) Define a social vehicular foraging problem and design a decision-
making strategy for each vehicle that leads to foraging success for
the group. Include two opposing (adversarial) teams. Evaluate the
design in simulation. Several approaches to this problem are dis-
cussed in Section 19.6.2.




