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For many organisms, the survival-critical activity of foraging involves trying
to find and consume nutrients in a manner that maximizes energy obtained
from nutrient sources per unit time spent foraging, while at the same time
minimizing exposure to risks from predators. If the organism has a decision-
making mechanism (e.g., a brain), then we can view this mechanism as the
controller and the remainder of the organism and environment as the “plant”
(process to be controlled). “Decisions” involve where and when to move, what to
eat, and so on. Decision heuristics, planning, attention, and learning can all play
a role in foraging (if the organism is endowed with such capabilities). Moreover,
evolution can be viewed as a process that optimizes the foraging strategy; it
redesigns (tunes) all supporting physiology and the foraging decision-making
strategy.

In this chapter, we outline the foundations of foraging and basic concepts
related to how animals work together to “socially” forage. We do this by model-
ing the foraging process of a species of bacteria as optimization processes. You
will see that they use elements of gradient-type search (e.g., approximations
of gradients) without relying on explicit gradient information. Hence, foraging
methods naturally build on the gradient optimization methods of Part III. How-
ever, they also incorporate evolutionary aspects, and are nongradient methods,
so they provide a natural bridge between the optimization methods of Part III
and Part IV, by giving ideas for how the various types of optimization algo-
rithms can be merged (e.g., viewing learning as gradient-based and occurring
over a lifetime, and evolution as nongradient, population-based, and occurring
over long time epochs). You will also see relationships between the foraging
algorithms and the pattern search and SPSA methods of Part IV. Later in
the chapter, we show how to model swarms, characterize their cohesiveness as
a stability property, and provide conditions under which they will converge to
maintain a cohesive group. In simulation, we will study how stable swarms
forage. Moreover, we show how a cooperative robotics problem of guiding a
group of robots around some obstacles to a goal position in a factory can be
formulated and solved via the ideas from foraging swarms.

Broadly speaking, you could simply view this chapter and the next as build-
ing on all the earlier chapters in the sense that the focus here is on the devel-
opment of control strategies for guidance of an organism (e.g., the last section
of this chapter will show a firm connection to Chapter 6, where we study path
planning for obstacle avoidance by an autonomous vehicle) or a group of organ-
isms. Here, however we add details on how specific animals forage (i.e., how
they solve the control problem of guiding themselves successfully through their
environment) and the relevant connections to optimization theory. We study
the case of cooperative foraging, where animals work together in this chapter,
and in the next, we study the case where they compete. Moreover, the final sec-
tion in the next chapter serves to challenge the reader to develop an intelligent
foraging team, and to do this, many of the concepts developed in this and the
next chapter will be quite useful, not to mention the rest of the book.
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18.1 Foraging Theory

In this section we outline the basic principles of foraging theory and highlight
aspects of social foraging where animals cooperate in foraging activities.

18.1.1 Elements of Foraging Theory

A large portion of foraging theory is based on the assumption that animals
search for and obtain nutrients in a way that maximizes their energy intake E
per unit time T spent foraging. Hence, some animals try to maximize a function

Foraging is an
optimization process
created by evolution.

like
E

T

Maximization of such a function gives them the nutrient sources to survive and
additional time for other important activities (e.g., fighting, fleeing, mating,
reproducing, sleeping, or shelter-building). Other possible currencies may be
used in foraging such as “energetic efficiency,” which is the net energy gained,
divided by the energy invested to get it. Some animals seem to switch between
optimizing the net rate of energy gain E/T to optimizing energetic efficiency.
Sometimes variance in energetic gain is the primary variable that drives foraging
behavior (e.g., when there is a need to meet a daily energetic intake requirement
before nightfall), while other times, predation is a significant factor. Regard-
less, most biologists argue that animals seek to optimize some variable that is
correlated with fitness.

Clearly, foraging characteristics can be very different for different species.
Herbivores generally find food easily, but must eat a lot. Carnivores generally
find it difficult to find food, but do not have to eat as much, since their food is
of high energy value. Some other activities are related to foraging. For instance,
seeking favorable environments and avoiding harmful ones (e.g., finding shelter
from the weather), or searching for a suitable mate, are both related to foraging.

The “environment” of the animal establishes the pattern of nutrients that are
available (e.g., via what other organisms and nutrients are available, constraints
such as rivers and mountains, and weather patterns), and it places constraints
on obtaining that food (e.g., small portions of food may be separated by large
distances). It also affects the availability of resources (e.g., weather). Some
foragers have a search rhythm (e.g., daily, nightly, etc.), but others forage op-
portunistically and, depending on their needs, independent of such a rhythm.
During foraging there can be risks due to predators, the prey may be mobile
so it must be chased, and the physiological characteristics of the forager con-
strain its capabilities and ultimate success. Often, in biology, researchers think
of evolution as having optimized the foraging behavior of a species for an eco-
logical niche and within its physiological constraints (which may change due to
evolution also).

For some animals, there are multiple prey types that could be chosen, and the
choice may depend on its diet, the abundances of the prey types, and how easy
they are to find. For other animals, nutrients are distributed in “patches” (e.g.,
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a lake, a meadow, a bush with berries, a group of trees with fruit). Foraging
involves finding such patches, deciding whether to enter a patch and search for
food, and whether to continue searching for food in the current patch or to find
another patch that, hopefully, has a higher quality and quantity of nutrients
than the current patch. Patches or prey are generally encountered sequentially
and sometimes great effort and risk is needed to travel from one patch or prey
to another. Some patches of food or prey naturally appear and disappear, and
appearance can “trigger” certain foraging behavior (as can hunger). Generally,

Decision-making in
foraging is a control
strategy for organism
guidance.

if an animal encounters a nutrient-poor patch or undesirable prey, but based on
past experience it expects that there should be a better patch or prey, then it
will consider risks and efforts to find another patch or prey and, if it finds them
acceptable, it will seek another patch or prey. Also, if an animal has been in a
patch for some time, it can begin to deplete its resources, so there should be an
optimal time to leave the patch and venture out to try to find a richer one. It
does not want to waste resources that are readily available, but it also does not
want to waste time in the face of diminishing energy returns.

Optimal foraging theory formulates the foraging problem as an optimization
problem and via computational or analytical methods, can provide an opti-
mal foraging “policy” that specifies how foraging decisions are made. There are
quantifications of what foraging decisions must be made, measures of “currency”
(the opposite of cost), and constraints on the parameters of the optimization.
For instance, researchers have studied how to maximize long-term average rate
of energy intake, where only certain decisions and constraints are allowed. Con-
straints due to incomplete information (e.g., due to limited sensing capabilities),
predation, and risks (e.g., due to predators) have been considered.

Here, the interesting fact is that the foraging problem can be formulated
as an optimization problem that results in an optimal decision policy, if the
optimization problem can be solved (traditionally, dynamic programming for-
mulations have been used [490]). Essentially, these optimization approaches
seek to construct an optimal controller (policy) for making foraging decisions.
Some biologists have questioned the validity of such an approach, arguing that
no animal can make optimal decisions. However, the optimal foraging formu-
lation is only meant to be a model that explains what optimal behavior would
be like. Biologists have shown that foraging decision heuristics are used very
effectively by animals to approximate optimal policies, given the physiological
(and other) constraints that are imposed on the animal. Such an approach is
quite rational, even in engineering applications. In the construction of a com-
puter decision-making system, dynamic programming is sometimes found to be
impractical due to computational complexity issues. Heuristics and approxima-
tions are then sometimes used to try to provide a suboptimal solution, but one
that is as good as possible, given the available computing resources.

18.1.2 Behavioral/Sensory Ecology of Search

Foraging has been studied for many years from both experimental and theo-
retical perspectives. One aspect of foraging that is particularly relevant here is
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the search strategy (an optimization process) that is employed in finding food.
Here, we outline some relevant theory pertaining to search strategies for forag-
ing. Later, we briefly discuss how nongradient optimization methods might be
useful in modeling some search strategies in foraging.

Cruise, Saltatory, and Ambush Search

In one approach to the study of foraging search strategies [390], predation is
broken into components that are similar for many animals. First, predators
must search for and locate prey. Next, they pursue and attack the prey. Finally,
they handle and ingest the prey. The importance of various components of the
foraging behavior depends on the relationship between the predator and the
prey. If the prey is larger than the predator, then the pursuit, attack, and
handling can be most important. The prey may be easy to find, but the prey’s
size gives it an advantage. If the prey are smaller than the predator, then
generally the search component of foraging is most important. Small size can
be an advantage for the prey. Since prey are often smaller than predators, for
many animals they must be consumed often and in large numbers; this makes
the search time limit other components of the predation cycle. Here, suppose we
consider cases where the searching behavior is the dominant factor in foraging.
This is the case for foragers, such as many birds, fish, lizards, and insects.

Animals use a variety of
search strategies in
foraging that are each
optimization methods.

Some animals are “cruise” or “ambush” searchers. For the cruise approach to
searching, the forager moves continuously through the environment constantly
searching for prey at the boundary of the area being searched (tuna fish and
hawks are cruise searchers). In ambush search, the forager sits and waits for
prey to cross into strike range (rattlesnakes are ambushers). The search strate-
gies of many species are actually in between the cruise and ambush extremes. In
particular, in “saltatory search strategies,” an animal will intermittently cruise
and sit and wait, possibly changing direction at various times when it stops
and possibly while it moves. To envision this strategy, consider Figure 18.1,
where distance traveled while searching is plotted versus time. In cruise search,
distance increases at a constant rate dictated by how fast the animal moves
in search. At the other extreme, the ambusher sits and waits for a long time,
then makes a move to try to obtain a prey. In between, there are many pos-
sible saltatory search strategies that are based on an alternating sequence of
cruising and waiting. Many animals’ foraging strategies seem to lie somewhere
on the continuum between ambush and cruise, and hence, are saltatory search
strategies.

While cruisers tend to search at the boundary of the search space and am-
bushers stay in one place, saltatory searchers generally move throughout the
search space. Saltatory search can be adjusted to suit the environment by chang-
ing rates of movement during cruises, and the lengths of cruises and waits. For
instance, some fish are known to pause more briefly and swim farther and faster
during repositioning when searching for large prey compared to small ones. This
is consistent with foraging theory in that the fish is willing to spend more effort
to obtain more food (energy).
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Figure 18.1: Illustration of the range of search strategies for foraging animals
(figure adapted from [390], c© Sigma Xi, The Scientific Research Society, and
used with permission).

Scanning and Repositioning Relationships

Studies of foraging for some fish have shown that they do not search for prey
while they are moving, but only during the stationary pause between reposition-
ing moves. They stop and look around. Hence, the repositioning moves serve
only to move the fish into regions where they have not looked before. Gener-
ally, if the animal searches only during pauses, then the repositioning moves
(length and direction) depend on the sensing capabilities of the animal. For
instance, consider Figure 18.2, where, at the top, the animal is imagined to be
at the center of the circle which represents a local scan range. Suppose that
for this particular animal, it can search in the pie-shaped region that is shaded.
(Other animals have different shaped regions, some that almost fill the entire
circle.) How large should the repositioning move be? As illustrated, if the move
is too short, then a significant portion of the search space is searched again
after the move and this is generally a waste of resources. If the move is too
large, then there is no overlap and there can be some part of the space that is
not searched, representing possible missed opportunities. For some intermediate
length moves, there will be some overlap but not too much search space ignored.
As illustrated on the bottom, changes in direction are dependent on the shape
of the scan area also. Finally, note that as the geometry of the shaded region
changes (e.g., the pie-shaped region becomes a larger piece of the pie), then
identical intermediate-sized moves result in larger overlap of the search space
(draw a figure and convince yourself of this). It has been shown that some fish
choose repositioning moves so as to maximize net energy gain, consistent with
basic ideas in foraging theory.

In many species the pauses are used for orienting the animal toward prey.
That is, they stop and change their direction based on their scan information.
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Figure 18.2: Illustration of trade-offs between repositioning and scanning; trying
to scan everywhere and not rescan already visited areas (figure adapted from
[390], c© Sigma Xi, The Scientific Research Society, and used with permission).

Then, for instance, if there is not an abundance of prey, in some species of fish,
fewer pursuits follow pauses. Also, in some fish, the length of the stop and wait
generally decreases when they are looking for large, easily located prey. Often
as the difficulty of the search increases, the pauses get longer. In environments
where there are few prey, the fish persistently search.

Finally, note that there are also effects of likelihood and frequency of en-
counter of prey that would influence repositioning and direction-changing be-
havior. Effects of risk of moving (e.g., from some predator) should also be
taken into consideration. All these aspects can result in the animal dynamically
adjusting its saltatory search strategy.

18.1.3 Cooperative/Social Foraging

The foraging concepts discussed above were for individual animals. Foragers,
however, live in environments with both a biotic and abiotic part, so a more
complete formulation includes the other foragers in the environment. There can
be advantages to group cooperative (or “social”) foraging. Some method of
sharing information is necessary for cooperative foraging. The shared informa-
tion could come in many forms. In humans, this could include language. In
other animals, it might be certain movements, noises, or “trail-laying” mecha-
nisms. Such information is in the form of cues or signals. Shared information
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could also arise via possession of shared genetic material.
The advantages of group foraging include:

Group foraging requires
group search strategies
and hence, distributed
cooperation within the
group.

• The per capita rate of energetic gain for each animal may be higher if the
animal is in a group. This can be the case even if the gains are not split
evenly in the group.

• In some cases, the net rate of energetic gain of each individual may go
down if it joins a group. However, it may still be a good strategy to join
a group if the variance in the rate of energetic gain is lower. Sometimes,
when there are more animals searching for nutrients, the likelihood of
finding nutrients may increase. When one animal finds some nutrients, it
can tell others in the group where the nutrients are. You may think of
joining a group as gaining access to an “information center” for helping
with survival.

• There may be increased capabilities to cope with larger prey. The group
can “gang up” on a large prey and kill and ingest it, while a single small
predator may not be able to do this.

• There may be protection from predators that can be provided by members
of the group (e.g., in some species of birds, the members in the middle of
the group are protected by the ones at the edges).

• In some cases, phenotypic diversity is profitably exploited by groups to
produce highly efficient coordinated group behavior (e.g., for some ants
and bees).

Sometimes it is useful to think of a group of animals as a single living creature,
where via grouping, each individual essentially gains additional physiological
capabilities that help it to succeed in foraging (and the gains may offset the
possibility of food-competition problems in groups). Some call this the “super-
organism” viewpoint.

For group foraging, you may think of how a pack of wolves hunts, or a flock of
birds, colony of ants, or school of fish behave. Connections between optimiza-
tion, engineering applications, and foraging behavior of colonies of ants have
been studied [73]. There, it is explained how colonies of ants can solve short-
est path problems, minimum spanning tree problems, and traveling salesperson
problems (all combinatorial optimization problems) among other engineering
applications. (The resulting computer algorithms are called, for instance, “ant
colony optimization” algorithms.) These ants use “indirect” communications
called “stigmergy,” where one ant can modify its environment and later, an-
other ant can change its behavior due to that modification. For instance, if an
ant goes out foraging, it may search far and wide in a relatively random pattern;
however, once it finds a food source, it goes back to the ant hill, laying a trail
of “pheromone” (that can evaporate, but normally stays in place, possibly up
to several months). Then, when other ants go out foraging, they tend to follow
the pheromone trail and find food more easily. You can then think of the first
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ant as having “recruited” additional foragers and the trails as a type of memory
for the whole ant colony (i.e., using communications and working together, they
gain the important physiological capability of learning). Viewed as a superor-
ganism, you may even detect elements of planning. Communications, memory,
and learning, result in more efficient foraging for the group. Other social insects
use other communication methods. For instance, after successful foraging, a bee
will come back to the hive and communicate the profitability and location of the
food source via a “dance.” These dances then proportionally recruit foragers
based on forage site profitability, and the result is a dynamic proportioning of
foragers across a wide area.

To be more concrete about the connections between foraging and optimiza-
tion, consider Figure 18.3. There, initially boxes 1 and 2 hold two colonies of

Social behavior enables
what can be thought of
as higher-level cognitive
functions of the group.

the Argentine ant Iridomyrmex humilis. These colonies interact via ants trav-
eling between the two colonies. Since trail densities on the shorter path tend to
grow faster, more and more ants tend to choose that path and thereby avoid the
longer path (the figure shows ants traveling after they have, as a group, found
the shortest path). A similar behavior is found when one box holds a colony of
ants and the other holds a food source [25] and this illustrates that in foraging,
the ants work together to find the shortest path to food sources.

Figure 18.3: Experiment showing that ants will select a shortest path between
two colonies (figure taken from [25], c© Springer-Verlag GmbH and Co., and
used with permission).

Finally, while we discuss “intelligent foraging” in more detail in Section 19.6,
we briefly note that the individual characteristics of the animal can significantly
affect its success in foraging. If an individual forager can pay attention to the
critical parts of the environment and learn about the environment (e.g., by de-
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veloping and storing a “cognitive map”) and characteristics of its prey, then it
can probably increase its foraging success. If, based on such learned information
it can plan its foraging, then it may gain further increases in efficiency. Fur-
thermore, if groups of foragers can learn and plan their activities together, it
is possible that even greater success might be obtained. Indeed, it seems that
humans often act as group foragers that can collectively learn and plan. We
can think of many individuals working together to achieve something that is
unachievable by any individual.

In the next section, we will consider individual and group foraging in bac-
teria, organisms that are much more simple than an ant or human, yet which
can still work together for the benefit of the group. First, however, we explain
some connections to nongradient optimization.

18.1.4 Nongradient Optimization Models

Before we turn to specific foraging models, it is important to point out that there
are close connections to some of the optimization methods considered earlier
in this book, both gradient and nongradient methods. First, note that it is
impossible for most animals (e.g., bacteria) to know an analytical expression for
the gradient of a nutrient concentration profile (i.e., a mathematical expression
for how the nutrient concentration will change as the bacterium makes small

Nongradient
optimization models can
form a set of tools for
modeling social foraging.

changes in its position). This is both because it does not have the memory to
store it, and also due to the high level of uncertainty about the environment it
lives in (e.g., time-varying and stochastic effects). Moreover, even with sufficient
physiology for remembering an analytical gradient, in general, it is impossible
for any animal (besides perhaps a human) to know an analytical form for the
gradient of the surface being searched (e.g., one that represented food locations,
predators, risk, etc.) with respect to its location in the search domain. Animals
sequentially decide where to explore, and in doing so they encounter new parts
of a search domain, and the environment has significant random effects. In
foraging, animals conduct an optimization process without use of an analytical
expression for the gradient and hence, we say that they perform nongradient
optimization or “search.”

Motivated by the earlier sections, and studies on search strategies for forag-
ing, in this section, we discuss several “conventional” (i.e., not biologically moti-
vated) deterministic and stochastic approaches to perform optimization without
the use of analytical gradient information or measures of the gradient. As you
read about the methods, it will be useful to draw analogies with the basic search
mechanisms of the bacteria discussed later in this chapter. For instance, in one
way or another, most nongradient methods use measurements of the cost func-
tion and form approximations to the gradient to decide which direction to move.
(Some of these are what might be called “regional” approximations, since they
use a pattern of points over possibly a large region to provide a gross approxi-
mation to the gradient.) In the context of foraging, you can then think of the
process of obtaining measurements and deciding where to move (i.e., the steps
of the algorithms we cover in this section) in one of three following ways:
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1. You can view the taking of a measurement of the cost function as a single
forager going to the location in the search domain and taking a single
measurement by using, for example, its vision to assess what food is at
that location (or the likelihood that it is there). The forager may make
several such local “exploratory” moves from its current position before it
tries to move in what it considers to be generally a good direction to find
food. (Of course, it may get lucky and get something worth stopping and
eating in this sampling process.)

2. You can think of the forager as being at a single location, taking several
local measurements at locations in the search domain, processing these,
and then deciding which direction to move. We think of the forager as
having sensors that it can focus on different nearby regions of the opti-
mization domain, and only moving after it has scanned its environment.
Some lower life forms (e.g., E. coli) cannot sense at a distance; they must
go to a position to find out if there is food there. Higher life forms can
generally sense at a distance and this saves them the energy needed to
travel to every position to find out if food is there.

3. You can view the algorithm as modeling a social foraging process, where
there are a finite number of foragers who each make measurements of the
cost function and then via communications decide how to move the entire
group of foragers. For example, in the “pattern search methods” of the last
part, we may think of each point in the pattern of (local) cost function
measurements as representing a location of a forager. We think of the
group as having a capability to communicate how well they are doing to
all the other members of the group, and come to an agreement on which
is the best way to move the group to ensure foraging success.

In a sense, you may ask yourself if biology mimics any of the conventional
strategies; is there an animal that forages according to a particular pattern
search method? If so, why did evolution create this search strategy? What
features of the environment drove the creation of the strategy?

18.2 Bacterial Foraging: E. coli

The E. coli bacterium is shown in Figure 18.4. It has a plasma membrane,
cell wall, and capsule that contain, for instance, the cytoplasm and nucleoid.
The pili (singular, pilus) are used for a type of gene transfer to other E. coli
bacteria, and flagella (singular, flagellum) are used for locomotion. (Only one is
shown, but in the actual cell there are as many as six.) The cell is about 1µm
in diameter, and 2µm in length. The E. coli cell only weighs about 1 picogram,

Think of the E. coli as a
small underwater
vehicle, a
nanotechnology.

and is composed of about 70% water. Salmonella typhimurium is a similar type
of bacterium.

The E. coli bacterium is probably the best understood microorganism. Its
entire genome has been sequenced; it contains 4,639,221 of the A, C, G, and
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Figure 18.4: E. coli bacterium (figure taken from [34], c© Pearson Education
Inc., used with permission).

T “letters”—adenosine, cytosine, guanine, and thymine—arranged into a total
of 4,288 genes. When E. coli grows, it gets longer, then divides in the middle
into two “daughters.” Given sufficient food and held at the temperature of the
human gut (one place where they live) of 37 deg. C, E. coli can synthesize and
replicate everything it needs to make a copy of itself in about 20 min.; hence,
growth of a population of bacteria is exponential with a relatively short “time
to double” the population size. For instance, following [61], if at noon today
you start with one cell and sufficient food, by noon tomorrow there will be
272 = 4.7 × 1021 cells, which is enough to pack a cube 17 meters on one side.
(It should be clear that with enough food, at this reproduction rate, they could
quickly cover the entire earth with a knee-deep layer!)

The E. coli bacterium has a control system that enables it to search for food
and try to avoid noxious substances (the resulting motions are called “taxes”).
For instance, it swims away from alkaline and acidic environments, and towards
more neutral ones. To explain the motile behavior of E. coli bacteria, we will
explain its actuator (the flagella), “decision-making,” sensors, and closed-loop
behavior (i.e., how it moves in various environments—its “motile behavior”).
You will see that E. coli perform a type of “saltatory search,” a concept that is
discussed in Section 18.1.2.

18.2.1 Swimming and Tumbling via Flagella

Locomotion is achieved via a set of relatively rigid flagella that enable it to
“swim” via each of them rotating in the same direction at about 100 − 200
revolutions per second (in control systems terms, we think of the flagella as
providing for actuation). Each flagellum is a left-handed helix configured so
that as the base of the flagellum (i.e., where it is connected to the cell) rotates
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counterclockwise, as viewed from the free end of the flagellum looking towards
the cell, it produces a force against the bacterium so it pushes the cell. You may
think of each flagellum as a type of propeller. If a flagellum rotates clockwise,
then it will pull at the cell. From an engineering perspective, the rotating shaft
at the base of the flagellum is quite an interesting contraption that seems to
use what biologists call a “universal joint” (so the rigid flagellum can “point”
in different directions, relative to the cell). In addition, the mechanism that
creates the rotational forces to spin the flagellum in either direction is described
by biologists as being a biological “motor” (a relatively rare contraption in
biology even though several types of bacteria use it) as shown in Figure 18.5.
The motor is quite efficient in that it rotates a complete revolution using only
about 1000 protons and thereby E. coli spends less than 1% of its energy budget
for motility.

Figure 18.5: E. coli bacterium, flagellar connection, and biological “motor”
(figure taken from [8], c© Garland Science/Taylor and Francis Books, Inc., used
with permission).

An E. coli bacterium can move in two different ways: it can “run” (swim for
a period of time) or it can “tumble,” and it alternates between these two modes
of operation its entire lifetime (i.e., it is rare that the flagella will stop rotating).
First, we explain each of these two modes of operation. Following that, we will
explain how it decides how long to swim before it tumbles.

If the flagella rotate clockwise, each flagellum pulls on the cell and the net
effect is that each flagellum operates relatively independent of the others and so
the bacterium “tumbles” about (i.e., the bacterium does not have a set direction
of movement and there is little displacement). See Figure 18.6(a). To tumble
after a run, the cell slows down or stops first; since bacteria are so small they
experience almost no inertia, only viscosity, so that when a bacterium stops
swimming, it stops within the diameter of a proton. Call the time interval
during which a tumble occurs a “tumble interval.” Under certain experimental
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conditions (an isotropic, homogeneous medium—one with no nutrient or noxious
substance gradients) for a “wild type” cell (one found in nature), the mean
tumble interval is about 0.14 ± 0.19 sec. (mean ± standard deviation, and it
is exponentially distributed) [61, 62]. After a tumble, the cell will generally be
pointed in a random direction, but there is a slight bias toward being placed in
a direction it was traveling before the tumble.

There are two modes of
operation of the
actuator: one leading to
swimming and the other
to tumbling.

Clockwise rotation of flagella, tumble

Counterclockwise rotation of flagella, swim

(a) (b)

(c)

Figure 18.6: Bundling phenomenon of flagella shown in (a), swimming and
tumbling behavior of the E. coli bacterium is shown in (b) in a neutral medium
and in (c) where there is a nutrient concentration gradient, with darker shades
indicating higher concentrations of the nutrient. (Note: Relative sizes of the
bacteria and lengths of runs are not to scale.)

If the flagella move counterclockwise, their effects accumulate by forming
a “bundle” (it is thought that the bundle is formed due to the viscous drag
of the medium) and hence, they essentially make a “composite propeller” and
push the bacterium so that it runs (swims) in one direction (see Figure 18.6(a)).
On a run, bacteria swim at a rate of about 10 − 20 µmeters/sec., or about 10
body lengths per second (assuming the faster speed and an E. coli that is 2 µ
meters long, a typical length), but in a rich medium they can swim even faster
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[335]. This is a relatively fast rate for a living organism to travel; consider
how fast you could move through water if you could swim at 10 of your body
lengths per second. (You would certainly win a gold medal in the Olympics!)
Call the time interval during which a run occurs the “run interval.” Under
certain experimental conditions (an isotropic, homogeneous medium—the same
as the one mentioned above) for a wild type cell, the mean run interval is about
0.86 ± 1.18 sec. (and it is exponentially distributed) [61, 62]. Also, under these
conditions, the mean speed is 14.2±3.4 µm/sec. Runs are not perfectly straight
since the cell is subject to Brownian movement that causes it to wander off
course by about 30 deg. in 1 sec. in one type of medium, so this is how much it
typically can deviate on a run. In a certain medium, after about 10 sec. it drifts
off course more than 90 deg. and hence, essentially forgets the direction it was
moving [61]. Finally, note that in many bacteria, the motion of the flagella can
induce other motions, e.g., rotating the bacteria about an axis.

18.2.2 Bacterial Motile Behavior: Climbing Nutrient Gra-
dients

The motion patterns (called “taxes”) that the bacteria will generate in the
presence of chemical attractants and repellents are called “chemotaxes.” For
E. coli, encounters with serine or aspartate result in attractant responses, while
repellent responses result from the metal ions Ni and Co, changes in pH, amino
acids like leucine, and organic acids like acetate. What is the resulting emergent
pattern of behavior for a whole group of E. coli bacteria? Generally, as a group
they will try to find food and avoid harmful phenomena, and when viewed
under a microscope, you will get a sense that a type of intelligent behavior has
emerged, since they will seem to intentionally move as a group (analogous to
how a swarm of bees moves).

Simple control rules are
used to decide whether
to swim or tumble.

To explain how chemotaxis motions are generated, we simply must explain
how the E. coli decides how long to run since, from the above discussion, we
know what happens during a tumble or run. First, note that if an E. coli is
in some substance that is neutral, in the sense that it does not have food or
noxious substances, and if it is in this medium for a long period of time (e.g.,
more than one minute), then the flagella will simultaneously alternate between
moving clockwise and counterclockwise so that the bacterium will alternately
tumble and run. This alternation between the two modes will move the bac-
terium, but in random directions, and this enables it to “search” for nutrients
(see Figure 18.6(b)). For instance, in the isotropic homogeneous environment
described above, the bacteria alternately tumble and run with the mean tumble
and run lengths given above, and at the speed that was given. If the bacteria
are placed in a homogeneous concentration of serine (i.e., one with a nutrient
but no gradients), then a variety of changes occur in the characteristics of their
motile behavior. For instance, mean run length and mean speed increase and
mean tumble time decreases. They do, however, still produce a basic type of
searching behavior; even though it has some food, it persistently searches for
more. As an example of tumbles and runs in the isotropic homogeneous medium
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described above, in one trial motility experiment lasting 29.5 sec., there were
26 runs, the maximum run length was 3.6 sec., and the mean speed was about
21 µm/sec. [61, 62].

Next, suppose that the bacterium happens to encounter a nutrient gradient
(e.g., serine) as shown in Figure 18.6(c). The change in the concentration of
the nutrient triggers a reaction such that the bacterium will spend more time
swimming and less time tumbling. As long as it travels on a positive concentra-
tion gradient (i.e., so that it moves towards increasing nutrient concentrations)
it will tend to lengthen the time it spends swimming (i.e., it runs farther). The
directions of movement are “biased” towards increasing nutrient gradients. The
cell does not change its direction on a run due to changes in the gradient—the
tumbles basically determine the direction of the run, aside from the Brownian
influences mentioned above.

The bacterial foraging
behavior results in a type
of hill-climbing
optimization algorithm.

On the other hand, typically if the bacterium happens to swim down a
concentration gradient (or into a positive gradient of noxious substances), it
will return to its baseline behavior so that essentially it tries to search for a
way to climb back up the gradient (or down the noxious substance gradient).
For instance, under certain conditions, for a wild-type cell swimming up serine
gradients, the mean run length is 2.19± 3.43 sec., but if it swims down a serine
gradient, mean run length is 1.40± 1.88 sec. [62]. Hence, when it moves up the
gradient, it lengthens its runs. The mean run length for swimming down the
gradient is the one that is expected, considering that the bacteria are in this
particular type of medium; they act basically the same as in a homogeneous
medium so that they are engaging their search/avoidance behavior to try to
climb back up the gradient.

Finally, suppose that the concentration of the nutrient is constant for the
region it is in, after it has been on a positive gradient for some time. In this case,
after a period of time (not immediately), the bacterium will return to the same
proportion of swimming and tumbling as when it was in the neutral substance so
that it returns to its standard searching behavior. It is never satisfied with the
amount of surrounding food; it always seeks higher concentrations. Actually,
under certain experimental conditions, the cell will compare the concentration
observed over the past 1 sec. with the concentration observed over the 3 sec.
before that and it responds to the difference [61]. Hence, it uses the past 4
sec. of nutrient concentration data to decide how long to run [459]. Considering
the deviations in direction due to Brownian movement discussed above, the
bacterium basically uses as much time as it can in making decisions about
climbing gradients [60]. In effect, the run length results from how much climbing
it has done recently. If it has made lots of progress and hence, has just had a
long run, then even if for a little while it is observing a homogeneous medium
(without gradients), it will take a longer run. After a certain time period, it
will recover and return to its standard behavior in a homogeneous medium.

Basically, the bacterium is trying to swim from places with low concen-
trations of nutrients to places with high concentrations. An opposite type of
behavior is used when it encounters noxious substances. If the various concen-
trations move with time, then the bacteria will try to “chase” after the more
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favorable environments and run from harmful ones. Clearly, nutrient and nox-
ious substance diffusion and motion will affect the motion patterns of a group
of bacteria in complex ways.

18.2.3 Underlying Sensing and Decision-Making Mecha-
nisms

Consider Figure 18.7, where a cross-section of one corner of the E. coli bacterium
is shown. The sensors are the receptor proteins, which are signaled directly by
external substances (e.g., in the case for the pictured amino acids) or via the
“periplasmic substrate-binding proteins.” The “sensor” is very sensitive, in
some cases requiring less than 10 molecules of attractant to trigger a reaction,
and attractants can trigger a swimming reaction in less than 200 ms. You can
then think of the bacterium as having a “high gain” with a small attractant
detection threshold (detection of only a small number of molecules can trigger
a doubling or tripling of the run length). On the other hand, the corresponding

The decision-making is
implemented by chemical
reactions driven by
sensing of chemicals in
the environment.

threshold for encountering a homogeneous medium after being in a nutrient rich
one is larger. Also, there is a type of time-averaging that is occurring in the
sensing process. The receptor proteins then affect signaling molecules inside
the bacterium. Also, there is in effect an “adding machine” and an ability
to compare values and to arrive at an overall decision about which mode the
flagella should operate in; essentially, the different sensors add and subtract
their effects, and the more active or numerous have a greater influence on the
final decision. Even though the sensory and decision-making system in E. coli
is probably the best understood one in biology, we are ignoring the underlying
chemistry that is needed for a full explanation (the interested reader can see
the “For Further Study” chapter at the end of this part to find references that
explain it in detail).

It is interesting to note that the “decision-making system” in the E. coli
bacterium must have some ability to sense a derivative, and hence, it has a type
of memory! At first glance it may seem possible that the bacterium senses con-
centrations at both ends of the cell and finds a simple difference to recognize a
concentration gradient (a spatial derivative); however, this is not the case. Ex-
periments have shown that it performs a type of sampling, and roughly speaking,
it remembers the concentration a moment ago, compares it with a current one,
and makes decisions based on the difference (i.e., it computes something like an
Euler approximation to a time derivative). Actually, in [553] the authors show
how internal bacterial decision-making processes involve some type of integral
feedback control mechanism.

In summary, we see that with memory, a type of addition mechanism, an abil-
ity to make comparisons, a few simple internal “control rules,” and its chemical
sensing and locomotion capabilities, the bacterium is able to achieve a complex
type of searching and avoidance behavior. Evolution has designed this control
system. It is robust and clearly very successful at meeting its goals of survival
when viewed from a population perspective.
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Figure 18.7: Sensing and internal mechanisms for control in the E. coli bac-
terium (figure taken from [8], c© Garland Science/Taylor and Francis Books,
Inc., used with permission).

18.2.4 Elimination and Dispersal Events

It is possible that the local environment where a population of bacteria lives
changes either gradually (e.g., via consumption of nutrients) or suddenly due
to some other influence. There can be events such that all the bacteria in a
region are killed or a group is dispersed into a new part of the environment. For
example, local significant increases in heat can kill a population of bacteria that
are currently in a region with a high concentration of nutrients (you can think
of heat as a type of noxious influence). Or, it may be that water or some animal
will move populations of bacteria from one place to another in the environment.
Over long periods of time, such events have spread various types of bacteria into
virtually every part of our environment, from our intestines, to hot springs and
underground environments, and so on.

Elimination and
dispersal of bacteria
should be thought of as a
component of their
overall motility.

What is the effect of elimination and dispersal events on chemotaxis? It
has the effect of possibly destroying chemotactic progress, but it also has the
effect of assisting in chemotaxis since dispersal may place bacteria near good
food sources. From a broad perspective, elimination and dispersal is part of the
population-level motile behavior.

18.2.5 Evolution of Bacteria

Mutations in E. coli occur at a rate of about 10−7 per gene, per generation. In
addition to mutations that affect its physiological aspects (e.g., reproductive ef-
ficiency at different temperatures), E. coli bacteria occasionally engage in a type
of “sex” called “conjugation,” where small gene sequences are unidirectionally
transferred from one bacterium to another. It seems that these gene sequences
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apparently carry good fitness characteristics in terms of reproductive capability,
so conjugation is sometimes thought of as a transmittal of “fertility.” To achieve
conjugation, a pilus extends to make contact with another bacterium, and the
gene sequence transfers through the pilus.

It is important to note that there are some very basic differences in evolu-
tion for higher organisms and bacteria. While conjugation apparently spreads
“good” gene sequences, the “homogenizing effect” on gene frequency from con-
jugation is relatively small compared to how sex works in other organisms. This
is partly since conjugation is relatively rare, and partly since the rate of repro-
duction is relatively high, on the order of hours depending on environmental
conditions. Due to these characteristics, population genetics for E. coli may
be dominated by selection sweeps triggered by the acquisition, via sex, of an
adaptive allele.

18.2.6 Taxes in Other Swimming Bacteria

While most bacteria are motile and many types have analogous taxes capabil-
ities to E. coli bacteria, the specific sensing, actuation, and decision-making
mechanisms are different [384, 24]. For instance, while the proton-driven motor

There are a wide range
of foraging behaviors in
bacteria, all of which
can be modeled as
optimization processes.

on E. coli rotates at a few hundred revolutions per second, Na+-driven motors
on some bacteria rotate at speeds up to 1000 revolutions per second, and on
some species, the motor can turn in either direction or stop. Different types of
bacteria can sense different phenomena and have different underlying decision-
making, so they may search for and try to avoid different phenomena. Some
bacteria can sense their own metabolic state and only respond to compounds
currently required for growth and their pattern of responses may change based
on their environment. Studies of the mechanisms for decision and control in var-
ious bacteria do, however, indicate that they have common features and hence,
some have suggested that there was a single early evolutionary event that re-
sulted in the swimming capability of bacteria. Swimming generally moves a
bacterium to a more favorable environment for growth, or it maintains it in its
current position, and hence, it gives the bacteria a survival advantage. Some
scientists have suggested that the shapes of motile bacteria developed to allow
efficient swimming. Some bacteria even change their shape to reduce the ad-
verse effects of moving through more viscous media. Even though there can
be significant differences between species, all swimming bacteria seem to have
similar swimming patterns, where there is an alternation between smooth swim-
ming and a change in direction (i.e., a type of saltatory search, a concept that
is explained in Section 18.1.2). Next, several examples of other types of sensing
and taxes in swimming bacteria are provided.

Some bacteria can search for oxygen, and hence their motility behavior is
based on “aerotaxis,” while others search for desirable temperatures resulting
in “thermotaxis.” Actually, the E. coli is capable of thermotaxis in that it
seeks warmer environments with a temperature range of 20 deg. to 37 deg.
C. Other bacteria, such as Thiospirillum jenense, search for or avoid light of
certain wavelengths and this is called “phototaxis” Actually, the E. coli tries to



18.2 Bacterial Foraging: E. coli 785

avoid intense blue light, so it is also capable of phototaxis. Some bacteria swim
along magnetic lines of force that enter the earth, so that when in the northern
hemisphere, they swim towards the north magnetic pole, and in the southern
hemisphere, they swim towards the south magnetic pole. (This is due to the
presence of a small amount of magnetic material in the cell that essentially acts
as a compass to passively reorient the cell.)

There are square-shaped bacteria that are propelled either forward or back-
ward via flagella, and when multiple such bacteria naturally collide, their flag-
ella can become “clumped,” and this seems to be responsible for their tumbling.
Hence, their motility behavior is characterized by forward movement, followed
by either forward or backward movement, and an intermittent change in di-
rection via tumbling [7]. Vibrio alginolyticus move differently when free-living
versus living on a surface. Free-living Vibrio alginolyticus swims using a Na+-
driven motor on its flagella but when it is on the surface of a liquid, it senses the
increased viscosity via the flagellar motor and then synthesizes many proton-
driven flagella, which then allow the cell to move over surfaces [24]. The cells
move as groups (“rafts”), since this is thought to help overcome viscous drag
and surface tension. In other bacteria, flagella can be synthesized and discarded
as they are needed.

18.2.7 Other Group Phenomena in Bacteria

A particularly interesting group behavior has been demonstrated for several
motile species of bacteria, including E. coli and S. typhimurium, where intricate
stable spatio-temporal patterns (swarms)1 are formed in semi-solid nutrient me-
dia [84, 71, 83, 544, 24] (see Figure 18.8). When a group of E. coli cells is placed
in the center of a semi-solid agar with a single nutrient chemo-effector (sensor),
they move out from the center in a traveling ring of cells by moving up the nu-

Swarms arise due to
communications, and
can lead to more
successful foraging
(optimization).

trient gradient created by consumption of the nutrient by the group. Moreover,
if high levels of the nutrient called succinate are used as the nutrient, then the
cells release the attractant aspartate, so that they congregate into groups and
hence, move as concentric patterns of groups with high bacterial density; see the
concentric pattern of dots in Figure 18.8. (Note that many cells in those groups
permanently lose motility.) The spatial order results from outward movement
of the ring and the local releases of the attractant; the cells provide an attrac-
tion signal to each other so they swarm together. Pattern formation can be
suppressed by a background of aspartate (since it seems that this will in essence
scramble the chemical signal by eliminating its directionality). The pattern
seems to form based on the dominance of two stimuli (cell-cell signaling and
foraging).

The role of these patterns in natural environments is not understood; how-
ever, there is evidence that stress to the bacteria results in them releasing chem-
ical signals that other bacteria are chemotactic towards. If enough stress is

1Actually, microbiologists reserve the term “swarming” for other characteristics of groups
of bacteria. Here, we abuse the terminology and favor using the terminology that is used for
higher forms of animals such as bees.
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Figure 18.8: Swarm pattern of E. coli (figure taken from [84], c© Macmillan
Magazines, used with permission from Nature).

present, then a whole group can secrete the chemical signal strengthening the
total signal, and hence, an aggregate of the bacteria forms. It seems that this
aggregate forms to protect the group from the stress (e.g., by effectively hiding
many cells in the middle of the group). It seems that the aggregates of the bac-
teria are not necessarily stationary; under certain conditions they can migrate,
split, and fuse. This has led researchers to hypothesize that there may be other
communication methods being employed that are not yet understood.

As another example, there are “biofilms” that can be composed of multi-
ple types of bacteria (e.g., E. coli) that can coat various objects (e.g., roots of
plants or medical implants). It seems that both motility and “quorum sensing”
are involved in biofilm formation. A biofilm is a mechanism for keeping a bac-
terial species in a fixed location, avoiding overcrowding, and avoiding nutrient
limitation and toxin production by packing them at a low density in a “polysac-
charide matrix.” Secreted chemicals provide a mechanism for the cells to sense
population density, but motility seems to assist in the early stages of biofilm
formation. It is also thought that chemotactic responses are used to drive cells
to the outer edges of the biofilm, where nutrient concentrations may be higher.

In a variety of bacteria, including E. coli, complex patterns result primarily
not from motility, but from reproduction [464]. In some bacteria, it seems
that there is a type of signaling that occurs and results in the formation of
regular patterns as the culture of bacteria grows. Formation of such patterns is
sometimes thought of as a type of multicellular “morphogenesis.” For example,
the formation of the “fruiting bodies” by Myxococcus xanthus can be viewed as
a type of morphogenesis, but one that seems to be primarily based on motility
and cell deaths rather than reproduction [467].
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Other types of bacteria exhibit group behaviors [334]. For instance, there
are luminous bacteria that will emit no light until the population reaches a
certain density. For instance, the bacteria Vibrio fischeri lives in the ocean at
low concentrations and its secreted “autoinducer” chemical signal is quite dilute.
However, the squid Euprymna scolopes selects these bacteria to grow in its light
organ. When a sufficiently large population is cultivated in its light organ, the
autoinducer chemical signals given off by each bacterium effectively add to result
in a high concentration of this chemical and, when it reaches a certain threshold,
each cell will switch on its luminescence property so that as a group they emit
a visible light [334]. The squid, which is a nocturnal forager, benefits since the
light camouflages it from predators below, since its light resembles moonlight
and hence, effectively eliminates its shadow. The bacteria benefit by getting
nourishment and shelter. The bacteria and squid are in a symbiont relationship
(i.e., they live together to benefit each other).

Also, the soil-dwelling streptomycete colonies can grow a branching network
of long fiber-like cells that can penetrate and degrade vegetation and then feed
on the resulting decaying matter. (In terms of combinatorial optimization, you
may think of finding optimal trees or graphs.) Under starvation conditions, they
can cooperate to produce spores on a structure called an “aerial mycelium” that
may be carried away.

As another example, in Proteus mirabilis the rod-shaped cells exist as “swim-
mers” that are driven by fewer than 10 flagella when they are in liquid media
and they have chemotactic responses analogous to those of E. coli. If, however,
these swimmers are placed on a solid surface, the swimmer cell “differentiates”
(changes) into a “swarmer cell” that is an elongated rod (of roughly the same
diameter) with more than 10, 000 flagella. On solid surfaces, the cells aggregate
and exhibit swarm behavior in foraging via group chemotaxis. If they are then
placed back in a liquid medium, there is a process of “consolidation” where
swarmer cells split into swimmer cells. Moreover, when swarming they exhibit
the “Dienes phenomenon,” where swarms of the same type of bacteria try to
avoid each other. (The mechanisms of this apparent territorial behavior are not
well-understood.)

18.3 E. coli Bacterial Swarm Foraging for Opti-

mization

Suppose that we want to find the minimum of J(θ), θ ∈ 	p, where we do not
have measurements, or an analytical description, of the gradient ∇J(θ). Here,
we use ideas from bacterial foraging to solve this “nongradient” optimization
problem. First, suppose that θ is the position of a bacterium and J(θ) repre-

The bacterial foraging
algorithm is a
nongradient stochastic
optimization method.

sents the combined effects of attractants and repellents from the environment,
with, for example, J(θ) < 0, J(θ) = 0, and J(θ) > 0 representing that the
bacterium at location θ is in nutrient-rich, neutral, and noxious environments,
respectively. Basically, chemotaxis is a foraging behavior that implements a
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type of optimization where bacteria try to climb up the nutrient concentration
(find lower and lower values of J(θ)) and avoid noxious substances and search
for ways out of neutral media (avoid being at positions θ where J(θ) ≥ 0).

18.3.1 An Optimization Model for E. coli Bacterial For-
aging

To define our optimization model of E. coli bacterial foraging, we need to define
a population (set) of bacteria, and then model how they execute chemotaxis,
swarming, reproduction, and elimination/dispersal. After doing this, we will
highlight the limitations (inaccuracies) in our model.

Population and Chemotaxis

Define a chemotactic step to be a tumble followed by a tumble or a tumble
followed by a run. Let j be the index for the chemotactic step. Let k be the
index for the reproduction step. Let � be the index of the elimination-dispersal
event. Let

P (j, k, �) =
{
θi(j, k, �)|i = 1, 2, . . . , S

}
represent the positions of each member in the population of the S bacteria at
the jth chemotactic step, kth reproduction step, and �th elimination-dispersal
event. Here, let J(i, j, k, �) denote the cost at the location of the ith bacterium
θi(j, k, �) ∈ 	p (sometimes we drop the indices and refer to the ith bacterium
position as θi). Note that we will interchangeably refer to J as being a “cost”
(using terminology from optimization theory) and as being a nutrient surface (in
reference to the biological connections). For actual bacterial populations, S can
be very large (e.g., S = 109), but p = 3. In our computer simulations, we will
use much smaller population sizes and will keep the population size fixed. We
will allow p > 3, so we can apply the method to higher dimensional optimization
problems.

Let Nc be the length of the lifetime of the bacteria as measured by the
number of chemotactic steps they take during their life. Let C(i) > 0, i =
1, 2, . . . , S, denote a basic chemotactic step size that we will use to define the
lengths of steps during runs. To represent a tumble, a unit length random
direction, say φ(j), is generated; this will be used to define the direction of
movement after a tumble. In particular, we let

θi(j + 1, k, �) = θi(j, k, �) + C(i)φ(j)

so that C(i) is the size of the step taken in the random direction specified by
the tumble. If at θi(j + 1, k, �) the cost J(i, j + 1, k, �) is better (lower) than
at θi(j, k, �), then another step of size C(i) in this same direction will be taken,
and again, if that step resulted in a position with a better cost value than at
the previous step, another step is taken. This swim is continued as long as it
continues to reduce the cost, but only up to a maximum number of steps, Ns.
This represents that the cell will tend to keep moving if it is headed in the
direction of increasingly favorable environments.
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Swarming Mechanisms

The above discussion was for the case where no cell-released attractants are
used to signal other cells that they should swarm together. Here, we will

Swarm optimization
exploits a regional
approximation to a
gradient and helps it to
climb over noise.

also have cell-to-cell signaling via an attractant and will represent that with
J i

cc(θ, θ
i(j, k, �)), i = 1, 2, . . . , S, for the ith bacterium. Let

dattract = 0.1

be the depth of the attractant released by the cell (a quantification of how much
attractant is released) and

wattract = 0.2

be a measure of the width of the attractant signal (a quantification of the dif-
fusion rate of the chemical). The cell also repels a nearby cell in the sense that
it consumes nearby nutrients and it is not physically possible to have two cells
at the same location. To model this, we let

hrepellent = dattract

be the height of the repellent effect (magnitude of its effect) and

wrepellent = 10

be a measure of the width of the repellent. The values for these parameters
are simply chosen to illustrate general bacterial behaviors, not to represent a
particular bacterial chemical signaling scheme. The particular values of the
parameters were chosen with the nutrient profile in mind, which we will use
later in Figure 18.10. For instance, the depth and width of the attractant is
small relative to the nutrient concentrations represented in Figure 18.10. Let

Jcc(θ, P (j, k, �)) =
S∑

i=1

J i
cc(θ, θ

i(j, k, �))

=
S∑

i=1

[
−dattract exp

(
−wattract

p∑
m=1

(θm − θi
m)2
)]

+
S∑

i=1

[
hrepellent exp

(
−wrepellent

p∑
m=1

(θm − θi
m)2
)]

denote the combined cell-to-cell attraction and repelling effects, where θ =
[θ1, . . . , θp]� is a point on the optimization domain and θi

m is the mth com-
ponent of the ith bacterium position θi (for convenience, we omit some of the
indices). An example for the case of S = 2 and the above parameter values is
shown in Figure 18.9. Here, note that the two sharp peaks represent the cell
locations, and as you move radially away from the cell, the function decreases
and then increases (to model the fact that cells far away will tend not to be
attracted, whereas cells close by will tend to try to climb down the cell-to-cell
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nutrient gradient towards each other and hence try to swarm). Note that as
each cell moves, so does its J i

cc(θ, θi(j, k, �)) function, and this represents that
it will release chemicals as it moves. Due to the movements of all the cells,
the Jcc(θ, P (j, k, �)) function is time-varying in that, if many cells come close
together, there will be a high amount of attractant and hence, an increasing like-
lihood that other cells will move towards the group. This produces the swarming
effect. When we want to study swarming, the ith bacterium, i = 1, 2, . . . , S, will
hill-climb on

J(i, j, k, �) + Jcc(θ, P )

(rather than the J(i, j, k, �) defined above) so that the cells will try to find
nutrients, avoid noxious substances, and at the same time try to move towards
other cells, but not too close to them. The Jcc(θ, P ) function dynamically
deforms the search landscape as the cells move to represent the desire to swarm
(i.e., we model mechanisms of swarming as a minimization process).

Figure 18.9: Cell-to-cell chemical attractant model, S = 2.

Reproduction and Elimination/Dispersal

After Nc chemotactic steps, a reproduction step is taken. Let Nre be the number
of reproduction steps to be taken. For convenience, we assume that S is a
positive even integer. Let

Sr =
S

2
(18.1)

be the number of population members who have had sufficient nutrients so that
they will reproduce (split in two) with no mutations. For reproduction, the
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population is sorted in order of ascending accumulated cost (higher accumu-
lated cost represents that it did not get as many nutrients during its lifetime of
foraging and hence, is not as “healthy” and thus unlikely to reproduce); then
the Sr least healthy bacteria die and the other Sr healthiest bacteria each split
into two bacteria, which are placed at the same location. Other fractions or
approaches could be used in place of Equation (18.1); this method rewards bac-
teria that have encountered a lot of nutrients, and allows us to keep a constant
population size, which is convenient in coding the algorithm.

Run length,
reproduction,
elimination, and
dispersal all help to
avoid local minima.

Let Ned be the number of elimination-dispersal events, and for each such
elimination-dispersal event, each bacterium in the population is subjected to
elimination-dispersal with probability ped. We assume that the frequency of
chemotactic steps is greater than the frequency of reproduction steps, which is
in turn greater in frequency than elimination-dispersal events (e.g., a bacterium
will take many chemotactic steps before reproduction, and several generations
may take place before an elimination-dispersal event).

Foraging Model Limitations

Clearly, we are ignoring many characteristics of the actual biological optimiza-
tion process in favor of simplicity and capturing the gross characteristics of
chemotactic hill-climbing and swarming. For instance, we assume that con-
sumption does not affect the nutrient surface (e.g., while a bacterium is in a
nutrient-rich environment, we do not increase the value of J near where it has
consumed nutrients) where clearly in nature, bacteria modify the nutrient con-
centrations via consumption. A tumble does not result in a perfectly random
new direction for movement; however, here we assume that it does. Brown-
ian effects buffet the cell, so that after moving a small distance, it is within
a pie-shaped region of its start point at the tip of the piece of pie. Basically,
we assume that swims are straight, whereas in nature they are not. Tumble
and run lengths are exponentially distributed random variables, not constant,
as we assume. Run-length decisions are actually based on the past 4 sec. of
concentrations, whereas here we assume that at each tumble, older informa-
tion about nutrient concentrations is lost. Although naturally asynchronous,
we force synchronicity by requiring, for instance, chemotactic steps of different
bacteria to occur at the same time, all bacteria to reproduce at the same time
instant, and all bacteria that are subjected to elimination and dispersal to do
so at the same time. We assume a constant population size, even if there are
many nutrients and generations. We assume that the cells respond to nutrients
in the environment in the same way that they respond to ones released by other
cells for the purpose of signaling the desire to swarm. (A more biologically
accurate model of the swarming behavior of certain bacteria is given in [544].)
Clearly, other choices for the criterion of which bacteria should split could be
used (e.g., based only on the concentration at the end of a cell’s lifetime, or on
the quantity of noxious substances that were encountered). We are also ignor-
ing conjugation and other evolutionary characteristics. For instance, we assume
that C(i), Ns, and Nc remain the same for each generation. In nature it seems
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likely that these parameters could evolve for different environments to maximize
population growth rates.

18.3.2 Bacterial Foraging Optimization Algorithm

For initialization, you must choose p, S, Nc, Ns, Nre, Ned, ped, and the C(i),
i = 1, 2, . . . , S. If you use swarming, you will also have to pick the parameters
of the cell-to-cell attractant functions; here we will use the parameters given
above. Also, initial values for the θi, i = 1, 2, . . . , S, must be chosen. Choos-
ing these to be in areas where an optimum value is likely to exist is a good
choice. Alternatively, you may want to simply randomly distribute them across
the domain of the optimization problem. The algorithm that models bacterial
population chemotaxis, swarming, reproduction, elimination, and dispersal is
given below (initially, j = k = � = 0). For the algorithm, note that updates
to the θi automatically result in updates to P . Clearly, we could have added a
more sophisticated termination test than simply specifying a maximum number
of iterations.

1. Elimination-dispersal loop: � = � + 1

2. Reproduction loop: k = k + 1

3. Chemotaxis loop: j = j + 1

(a) For i = 1, 2, . . . , S, take a chemotactic step for bacterium i as follows.

(b) Compute J(i, j, k, �). Let

J(i, j, k, �) = J(i, j, k, �) + Jcc(θi(j, k, �), P (j, k, �))

(i.e., add on the cell-to-cell attractant effect to the nutrient concen-
tration).

(c) Let Jlast = J(i, j, k, �) to save this value, since we may find a better
cost via a run.

(d) Tumble: generate a random vector ∆(i) ∈ 	p with each element
∆m(i), m = 1, 2, . . . , p, a random number on [−1, 1].

(e) Move: let

θi(j + 1, k, �) = θi(j, k, �) + C(i)
∆(i)√

∆�(i)∆(i)

This results in a step of size C(i) in the direction of the tumble for
bacterium i.

(f) Compute J(i, j+1, k, �), and then let J(i, j+1, k, �) = J(i, j+1, k, �)+
Jcc(θi(j + 1, k, �), P (j + 1, k, �)).
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(g) Swim (note that we use an approximation, since we decide swimming
behavior of each cell as if the bacteria numbered {1, 2, . . . , i} have
moved, and {i + 1, i + 2, . . . , S} have not; this is much simpler to
simulate than simultaneous decisions about swimming and tumbling
by all bacteria at the same time):

i. Let m = 0 (counter for swim length).
ii. While m < Ns (if have not climbed down too long)

• Let m = m + 1.
• If J(i, j +1, k, �) < Jlast (if doing better), let Jlast = J(i, j +

1, k, �) and let

θi(j + 1, k, �) = θi(j + 1, k, �) + C(i)
∆(i)√

∆�(i)∆(i)

and use this θi(j +1, k, �) to compute the new J(i, j +1, k, �)
as we did in (f) above.

• Else, let m = Ns. This is the end of the while statement.
(h) Go to next bacterium (i + 1) if i �= S (i.e., go to (b) above to process

the next bacterium).

4. If j < Nc, go to step 3. In this case, continue chemotaxis, since the life of
the bacteria is not over.

5. Reproduction:

(a) For the given k and �, and for each i = 1, 2, . . . , S, let

J i
health =

Nc+1∑
j=1

J(i, j, k, �)

be the health of bacterium i (a measure of how many nutrients it
got over its lifetime and how successful it was at avoiding noxious
substances). Sort bacteria and chemotactic parameters C(i) in order
of ascending cost Jhealth (higher cost means lower health).

(b) The Sr bacteria with the highest Jhealth values die and the other Sr

bacteria with the best values split (and the copies that are made are
placed at the same location as their mother).

6. If k < Nre, go to step 2. In this case, we have not reached the number
of specified reproduction steps, so we start the next generation in the
chemotactic loop.

7. Elimination-dispersal: for i = 1, 2, . . . , S, with probability ped, eliminate
and disperse each bacterium (this keeps the number of bacteria in the
population constant). To do this, if you eliminate a bacterium, simply
disperse one to a random location on the optimization domain.

8. If � < Ned, then go to step 1; otherwise end.
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18.3.3 Guidelines for Algorithm Parameter Choices

The bacterial foraging optimization algorithm requires specification of a variety
of parameters. First, you can pick the size of the population, S. Clearly,
increasing the size of S can significantly increase the computational complexity
of the algorithm. However, for larger values of S, if you choose to randomly
distribute the initial population, it is more likely that you will start at least some
bacterium near an optimum point, and over time, it is then more likely that
many bacterium will be in that region, due to either chemotaxis or reproduction.

What should the values of the C(i), i = 1, 2, . . . , S, be? You can choose a
biologically motivated value; however, such values may not be the best for an
engineering application. If the C(i) values are too large, then if the optimum
value lies in a valley with steep edges, it will tend to jump out of the valley, or
it may simply miss possible local minima by swimming through them without
stopping. On the other hand, if the C(i) values are too small, then convergence
can be slow, but if it finds a local minimum, it will typically not deviate too far
from it. You should think of the C(i) as a type of “step size” for the optimization
algorithm.

The size of the values of the parameters that define the cell-to-cell attractant
functions J i

cc will define the characteristics of swarming. If the attractant width
is high and very deep, the cells will have a strong tendency to swarm (they may
even avoid going after nutrients and favor swarming). On the other hand, if the
attractant width is small, and the depth shallow, there will be little tendency to
swarm and each cell will search on its own. Social versus independent foraging is
then dictated by the balance between the strengths of the cell-to-cell attractant
signals and nutrient concentrations.

Next, large values for Nc result in many chemotactic steps, and, hopefully,
more optimization progress, but of course, more computational complexity. If
the size of Nc is chosen to be too short, the algorithm will generally rely more on
luck and reproduction, and in some cases, it could more easily get trapped in a
local minimum (“premature convergence”). You should think of Ns as creating
a bias in the random walk (which would not occur if Ns = 0), with large values
tending to bias the walk more in the direction of climbing down the hill.

If Nc is large enough, the value of Nre affects how the algorithm ignores
bad regions and focuses on good ones, since bacteria in relatively nutrient-poor
regions die (this models, with a fixed population size, the characteristic where
bacteria will tend to reproduce at higher rates in favorable environments). If Nre

is too small, the algorithm may converge prematurely; however, larger values of
Nre clearly increase computational complexity.

A low value for Ned dictates that the algorithm will not rely on random
elimination-dispersal events to try to find favorable regions. A high value in-
creases computational complexity but allows the bacteria to look in more regions
to find good nutrient concentrations. Clearly, if ped is large, the algorithm can
degrade to random exhaustive search. If, however, it is chosen appropriately, it
can help the algorithm jump out of local optima and into a global optimum.
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18.3.4 Relations to Other Nongradient Optimization Meth-
ods

There are algorithmic analogies between the genetic algorithm and the above op-
timization model for foraging. There are analogies between the fitness function
and the nutrient concentration function (both a type of “landscape”), selection
and bacterial reproduction (bacteria in the most favorable environments gain
a selective advantage for reproduction), crossover and bacterial splitting (the
children are at the same concentration, whereas with crossover they generally
end up in a region around their parents on the fitness landscape), and muta-
tion and elimination and dispersal. However, the algorithms are not equivalent,
and neither is a special case of the other. Each has its own distinguishing fea-
tures. The fitness function and nutrient concentration functions are not the
same (one represents likelihood of survival for given phenotypic characteristics,
whereas the other represents nutrient/noxious substance concentrations, or for
other foragers predator/prey characteristics). Crossover represents mating and
resulting differences in offspring, something we ignore in the bacterial foraging
algorithm (we could, however, have made less than perfect copies of the bacteria
to represent their splitting). Moreover, mutation represents gene mutation and
the resulting phenotypical changes, not physical dispersal in an environment.

From one perspective, note that all the typical features of genetic algorithms
could augment the bacterial foraging algorithm by representing evolutionary
characteristics of a forager in their environment. From another perspective,
foraging algorithms can be integrated into evolutionary algorithms and thereby
model some key survival activities that occur during the lifetime of the pop-
ulation that is evolving (i.e., foraging success can help define fitness, mating
characteristics, etc.). For the bacteria studied here, foraging happens to entail
hill-climbing via a type of biased random walk, and hence, the foraging algo-
rithm can be viewed as a method to integrate a type of approximate stochastic
gradient search (where only an approximation to the gradient is used, not ana-
lytical gradient information) into evolutionary algorithms. Of course, standard
gradient methods, quasi-Newton methods, etc., depend on the use of an explicit
analytical representation of the gradient, something that is not needed by a
foraging or genetic algorithm. Lack of dependence on analytical gradient infor-
mation can be viewed as an advantage (fewer assumptions), or a disadvantage
(e.g., since, if gradient information is available, then the foraging or genetic
algorithm may not exploit it properly).

You probably also recognize some similarities between certain features of the
foraging algorithm and SPSA. What are they? What are the relationships to
the nongradient methods of the last part? There are in fact many approaches to
“global optimization” when there is no explicit gradient information available;
however, it is beyond the scope of this book to evaluate the relative merits of
foraging algorithms to the vast array of such methods that have been studied for
many years. To start such a study, it makes sense to begin by considering the
theoretical convergence guarantees for certain types of evolutionary algorithms,
stochastic approximation methods, and pattern search methods (e.g., see [481]
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for work along these lines), and then proceed to consider foraging algorithms
in this context. It also seems useful to consider how well the foraging algo-
rithms will perform for time-varying nutrient landscapes, which occurs in the
underlying biological problem and many engineering problems.

18.3.5 Example: Function Optimization via E. coli For-
aging

As a simple illustrative example, we use the algorithm to try to find the mini-
mum of the function in Figure 18.10 (note that the point [15, 5]� is the global
minimum point).

Figure 18.10: Nutrient landscape.

Nutrient Hill-Climbing: No Swarming

According to the above guidelines, choose S = 50, Nc = 100, Ns = 4 (a bio-
logically motivated choice), Nre = 4, Ned = 2, ped = 0.25, and the C(i) = 0.1,
i = 1, 2, . . . , S. The bacteria are initially spread randomly over the optimiza-
tion domain. The results of the simulation are illustrated by motion trajectories
of the bacteria on the contour plot of Figure 18.10, as shown in Figure 18.11.
In the first generation, starting from their random initial positions, searching
is occurring in many parts of the optimization domain, and you can see the
chemotactic motions of the bacteria as the black trajectories where the peaks
are avoided and the valleys are pursued. Reproduction picks the 25 healthiest
bacteria and copies them, and then, as shown in Figure 18.11 in generation 2,
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all the chemotactic steps are in five local minima. This again happens in going
to generations 3 and 4, but bacteria die in some of the local minima (due es-
sentially to our requirement that the population size stay constant), so that in
generation 3, there are four groups of bacteria in four local minima, whereas in
generation 4, there are two groups in two local minima.

0 10 20 30
0

5

10

15

20

25

30
Bacteria trajectories, Generation=1

θ
1

θ 2

0 10 20 30
0

5

10

15

20

25

30
Bacteria trajectories, Generation=2

θ
1

θ 2

0 10 20 30
0

5

10

15

20

25

30
Bacteria trajectories, Generation=3

θ
1

θ 2

0 10 20 30
0

5

10

15

20

25

30
Bacteria trajectories, Generation=4

θ
1

θ 2

Figure 18.11: Bacterial motion trajectories, generations 1–4, on contour plots.

Next, with the above choice of parameters, there is an elimination-dispersal
event, and we get the next four generations shown in Figure 18.12. Notice
that elimination and dispersal shifts the locations of several of the bacteria
and thereby the algorithm explores other regions of the optimization domain.
However, qualitatively we find a similar pattern to the previous four generations
where chemotaxis and reproduction work together to find the global minimum;
this time, however, due to the large number of bacteria that were placed near
the global minimum, after one reproduction step, all the bacteria are close to
it (and remain this way). In this way, the bacterial population has found the
global minimum.

Swarming Effects

Here we use the parameters defined earlier to define the cell-to-cell attraction
function. Also, we choose S = 50, Nc = 100, Ns = 4, Nre = 4, Ned = 1, ped =
0.25, and the C(i) = 0.1, i = 1, 2, . . . , S. We will first consider swarming effects
on the nutrient concentration function with contour map shown on Figure 18.13
which has a zero value at [15, 15]� and decreases to successively more negative
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Figure 18.12: Bacterial motion trajectories, generations 1–4, on contour plots,
after an elimination-dispersal event.

values as you move away from that point; hence, the cells should tend to swim
away from the peak. We will initialize the bacterial positions by placing all
the cells at the peak [15, 15]�. Using these conditions, we get the result in
Figure 18.13. Notice that in the first generation, the cells swim radially outward,
and then in the second and third generations, swarms are formed in a concentric
pattern of groups. Notice that with our simple method of simulating health of
the bacteria and reproduction, some of the swarms are destroyed by the fourth
generation. We omit additional simulations that show the behavior of the swarm
on the surface in Figure 18.10, since qualitatively the behavior is as one would
expect from the above simulations. The interested reader can obtain the code
mentioned above and further study the behavior of the algorithm.

18.4 Stable Social Foraging Swarms

In this section, we first overview some biology of swarms, with a focus on the
honey bee in order to provide a concrete example. Then, we introduce a math-
ematical model for a generic swarm of agents. We conduct a mathematical
analysis to prove stability (cohesiveness) of the swarm and perform simulations
to provide insights into swarm dynamics.
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Figure 18.13: Swarm behavior of E. coli on a test function.

18.4.1 Example: The Biology of Honey Bee Swarms

There are many types of animals that swarm, including bacteria, insects, birds,
fish, horses, and so on. (Groupings of different animals are typically given differ-
ent names, but for convenience, here we will call them all swarms.) Such groups
are composed of individuals with different physiological capabilities, and when
operating as a group, they can achieve different types of emergent behaviors.
Here, in order to be more concrete about how swarms operate, we will describe
in more detail how and why one species, the honey bee, swarms.

First, when a hive splits, a group of bees will “cluster” around the queen
on, for example, a nearby branch. This is a type of swarming where the group
contracts together and forms a tightly packed group of relatively stationary bees.
After forming such a cluster, the bees perform nest site selection. Upon liftoff,
after the scouts generally reach agreement on a nest site, the honey bee swarm
forms a spherical group that hovers near the place where the swarm had grouped
while nest site selection occurred. Next, the group slowly starts to move in the
direction of the new nest site, elongating laterally, and accelerating as a group
to about 11 kilometers/hr. There is a type of “inertia” in getting the group
moving due to the swarm dynamics. It seems that several factors contribute to
in-transit swarm cohesiveness, two of which may involve pheromones. First, the
queen releases a pheromone (but the queen is not in the lead so it does not seem
likely that it can steer the bees that are ahead of her). Second, some evidence
suggests that other bees in the swarm release Nasanov pheromones that help
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to maintain cohesiveness, but it seems that this is still not fully verified. How
does the swarm know which direction to go? Again, there seem to be several
factors. First, during the site selection process, it seems that those observing the
final phase of the agreement process may know which direction to go. However,
perhaps not all of the bees will know the direction, and this may explain the
way that some bees in the swarm seem to wander somewhat within the swarm,
apparently lacking knowledge of the direction to the nest. Alternatively, it
seems possible that even if they knew the direction, they may not be able to
easily navigate while in the swarm due to obstruction of navigation cues due
to interference from many other bees. Another factor that certainly seems to
influence the direction of movement of the swarm is the presence of the scouts
that do know the way to the site, and which “pilot” the swarm by “streaking”
through it in the general direction of the nest site. (You could think of this as an
“aerial dance signal” to recruit bees in the proper direction.) Nevertheless, even
with the possibility of several methods of group navigation, there are significant
motions of bees within the swarm that are not directed towards the site. Aside
from navigational obstructions, and possible bee-bee collisions, it also seems that
it may be possible that there are conflicting indictions of the general direction
to move, due to dynamic changes in the dominance of factors that guide the
bee (e.g., pheromones, its own sense of direction, and the indications of scout
piloting). Also, it should be clear that wind (perhaps even currents that are
induced by the swarm) will disrupt a uniform flow of the swarm towards the
nest site. At the same time, it should be clear that some type of “robust” group
guidance and navigation is achieved since they successfully reach the site. Upon
reaching the site the group stops (and it is not understood how that occurs),
some scouts drop into the new nest entrance and release a pheromone, and this
attracts the group to the new nest. A model of the clustering and in-transit
motion of bees has been studied (see the “For Further Study” section at the end
of the part for more details).

18.4.2 Swarm and Environment Models

Here, we describe the agent, communications, and the environment that the
agents move in.

Agent Dynamics and Communications

Here, rather than focusing on the particular characteristics of one type of animal
or autonomous vehicle, we consider a swarm to be composed of an interconnec-
tion of N “agents,” each of which has point mass dynamics given by

ẋi = vi (18.2)

v̇i =
1

Mi
ui

where xi ∈ 	n is the position, vi ∈ 	n is the velocity, Mi is the mass, and
ui ∈ 	n is the (force) control input for the ith agent. We use this simple linear
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model for an agent in order to illustrate the basic features of swarming and
stability analysis of cohesion. Other nonlinear and stochastic models for agents
in swarms have been considered in the literature (see the “For Further Study”
section at the end of this part). Here, we will use n = 3 for swarms moving in a
three-dimensional space. We will assume that each agent can sense information
about the position and velocity of other agents, but only with some noise that
we will define below.

The agents interact to form groups, and in some situations groups will split.
Some think of having local interactions between agents, which “emerge” into a
global behavior for the group. One way to represent which agents can interact
with each other is via a directed graph (G, A) where G = {1, 2, . . . , N} is a set
of nodes (the agents) and

A = {(i, j) : i, j ∈ G, i �= j}

represents a “sensing/communication topology” (in general, then, each “link”
(i, j) could be a dynamical system). For example, if (i, j) ∈ A, then it could be
assumed that agent i can sense the position and velocity of agent j. In some
vehicular systems it may be possible that A is fixed and independent of vehicle
positions and velocities. Clearly, however, for biological systems it is often the
case that A is not fixed, but changes dynamically based on the positions of
the agents (e.g., so that only agents within a line-of-sight and close enough can
be sensed). Here, for simplicity, we will assume that A does not change based
on the positions and velocities of the agents, and that A is fully connected
(e.g., that for all i ∈ G, (i, j) ∈ A). We also assume that there are no delays
or noise in communicating, communications are not range constrained, and
that there is infinite bandwidth. More general formulations may also include
a “communications topology” that specifies which agents can send and receive
messages to other agents. Such messages could represent a wide variety of
communication capabilities of the agents (e.g., bee scout leadership in a swarm,
sounds, and so on.).

Agent to Agent Attraction and Repulsion

Agent to agent interactions considered here are of the “attract-repel” type,
where each agent seeks to be in a position that is “comfortable” relative to its

Agents want to be close
to each other, but not
too close.

neighbors (and for us, all other agents are its neighbors). Attraction indicates
that each agent wants to be close to every other agent and provides the mech-
anism for achieving grouping and cohesion of the group of agents. Repulsion
provides the mechanism where each agent does not want to be too close to every
other agent (e.g., for animals to avoid collisions and excessive competition for
resources). There are many ways to define attraction and repulsion, each of
which can be represented by characteristics of how we define ui for each agent,
and we list a few of these below:
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• Attraction: There can be linear attraction and in this case we have terms
in ui of, for example, the form

−ka

(
xi − xj

)
where ka > 0 is a scalar that represents the strength of attraction. If the
agents are far apart, then there is a large attraction between them, and
if they are close, there is a small attraction. In other cases, there can
be nonlinear attraction terms that can be expressed in terms of nonlinear
functions of

(
xi − xj

)
. Some attraction mechanisms are “local” (i.e., for

range-constrained sensing, where the agent only tries to move to other
agents that are close to it) and others which are “global” (i.e., where
agents can be attracted to move near other agents no matter how far
away they are). Attraction terms can be specified in terms of a variety
of agent variables. For example, the above term is for positions, but we
could have similar terms for velocity so that the agents will try to match
the velocities of other agents. Moreover, the above term is “static” but
we would have a local “dynamic” controller that tries to match agent
variables.

• Repulsion: As with attraction, there are many types of repulsion terms,
some local, global, static, or dynamic, each of which can be expressed
in terms of a variety of agent variables. Sometimes repulsion is defined
in terms that also quantify attraction, other times they quantify only a
repulsion.

– Seek a “comfortable distance”: For example, a term in ui may take
the form [−k

(||xi − xj || − d
)] (

xi − xj
)

where ||xi − xj || =
√

(xi − xj)� (xi − xj), k > 0 is the magnitude
of the repulsion, and d can be thought of as a comfortable distance
between the ith and jth agents. Here, the quantity in the brackets
sets the size of the repulsion. When ||xi − xj || is small (relative to
d), the term in the bracket is positive so that agents i and j try to
move away from each other (there is repulsion). When ||xi − xj || is
big (relative to d), then the term in the brackets is negative so that
the agents are attracted to each other. Balance between attraction
and repulsion (a basic concept in swarm dynamics that is sometimes
referred to as an “equilibrium,” even though it may not be one in
the stability-theoretic sense) may be achieved when ||xi −xj || = d so
that the term above is zero.

– Repel when close: Another type of repulsion term in ui, which may
be used with, for example, a linear attraction term, may take the
form

kr exp
(− 1

2‖xi − xj‖2

r2
s

)(
xi − xj

)
(18.3)
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where kr > 0 is the magnitude of the repulsion, and rs > 0 quantifies
the region size around the agent from which it will repel its neighbors.
When ‖xi −xj‖ is big relative to rs, the whole term approaches zero.

– Hard repulsion for collision avoidance: The above repulsion terms
are “soft,” in the sense that when the two agents are at the same
location, the repulsion force is finite. In some cases, it is appropriate
to use a repulsion term that becomes increasingly large as two agents
approach each other. One such term, that does not have an attraction
component, is in the form of[

max
{(

a

b||xi − xj || − w
− ε

)
, 0
}] (

xi − xj
)

(18.4)

Here, w > 0 affects the radius of repulsion of the agents, a > 0 is a
gain on the magnitude of the repulsion, b > 0 can change the shape
of the repulsion gain, and ε > 0 can be used to define the term so that
it only has a local influence. For instance, the radius of the repulsion
is

R′ =
1
b

(a

ε
+ w
)

For agent positions such that ||xi−xj|| ≥ R′, the term in the brackets
is zero. For given values of w, a, and b, you can choose ε to get any
value of R′ > 0. Note that a key feature of this repulsion term is that
as ||xi −xj || goes from a large value to w/b, the value in the brackets
goes to infinity to provide a “hard” repelling action and hence, avoid
the possibility that two agents ever end up at the same position (i.e.,
to avoid collisions). Another way to define a hard repulsion is to
consider agents to be solid “balls,” where, if they collide, they do not
deform.

For more ideas on how to define attraction and repulsion terms, see the “For
Further Study” section at the end of this part.

Environment and Foraging

Next, we will define the environment that the agents move in. While there are
many possibilities, here we will simply consider the case where they move over
what we will call “resource profile” (e.g., nutrient profile) J(x), where x ∈ 	n.
We will however, think of this profile as being something where the agents want

Agents follow resource
profiles to meet their
objectives.

to be in certain regions of the profile and avoid other regions (e.g., where there
are noxious substances). We will assume that J(x) is continuous with finite
slope at all points. Agents move in the direction of the negative gradient of
J(x)

−∇J(x) = −∂J

∂x
in order to move away from bad areas and into good areas of the environment
(e.g., to avoid noxious substances and find nutrients). Hence, they will use a
term in their ui that holds the negative gradient of J(x).
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Clearly, there are many possible shapes for J(x), including ones with many
peaks and valleys. Here, we simply list two simple forms for J(x) as follows:

• Plane: In this case, we have J(x) = Jp(x) where

Jp(x) = R�x + ro

where R ∈ 	n and ro is a scalar. Here, ∇Jp(x) = R.

• Quadratic: In this case, we have J(x) = Jq(x) where

Jq(x) =
rm

2
‖x − Rc‖2 + ro

where rm and ro are scalars and Rc ∈ 	n. Here, ∇Jq(x) = rm (x − Rc).

Below, we will assume that each agent can sense the gradient of the resource
profile, but only with some noise.

It could be that the environment has many different types of agents in it, or
the same types of agents with different objectives. In this case, there may be
different resource profiles for each agent, or the agents may switch the profiles
it follows, or strategies for following them. Different agents may have different
capabilities to sense the profile (e.g., sensing only at a point, or sensing a range-
constrained region) and move over it. If the agents are consuming food, this
may change the shape of the profile, and of course, an agent may pollute its
environment so it may affect the profile in that manner also. This would create
a time-varying profile that is dependent on agent position, and possibly many
other variables. See the “For Further Study” section at the end of this part for
more discussion on nutrient profiles and, for example, their use in modeling bee
swarming.

18.4.3 Stability Analysis of Swarm Cohesion Properties

Cohesion and swarm dynamics can be quantified and analyzed using stability
analysis (e.g., via Lyapunov’s method). You can pick agent dynamics, interac-
tions, sensing capabilities, attraction/repulsion characteristics, and foraging en-
vironment characteristics, then quantify and analyze cohesion properties. Here,
we will do this for a few simple cases in order to give a flavor of the type of anal-
ysis that is possible, and to provide insight into swarm properties and dynamics
during social foraging.

Sensing, Noise, and Error Dynamics

First, let

x̄ =
1
N

N∑
i=1

xi
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be the center of the swarm and

v̄ =
1
N

N∑
i=1

vi

be the average velocity (vector) which we view as the velocity of the group of
agents. We assume that each agent can sense the distance from itself to x̄, and
the difference between its own velocity and v̄. We assume that each agent knows
its own velocity, but not its own position. Note that for some animals, its senses
and sensory processing may naturally provide the distance to x̄ and v̄, but not
all the individual positions and velocities of all agents that could be used to
compute these. Also, we will consider below the case where there is noise in
sensing these quantities.

The objective of each agent is to move so as to end up at or near x̄ and
have its velocity equal to v̄; in this way, an emergent behavior of the group is
produced where they aggregate dynamically and end up near each other and
ultimately move in the same direction (i.e., they achieve cohesion). The problem
is that since all the agents are moving at the same time, x̄ and v̄ are generally
time-varying; hence, in order to study the stability of swarm cohesion, we study
the dynamics of an error system with

ei
p = xi − x̄

and
ei

v = vi − v̄

Other choices for error systems are also possible and have been used in some
studies of swarm stability. For instance, you could use ẽi

p =
∑N

j=1

(
xi − xj

)
.

This corresponds to computing the errors to each other agent and then trying
to get all those errors to go to zero. Note, however, that

ẽi
p = N

⎛
⎝xi − 1

N

N∑
j=1

xj

⎞
⎠ = N

(
xi − x̄

)
= Nei

p

The same relationship holds for velocity.
Given the above choices, the error dynamics are given by

ėi
p = ei

v

ėi
v =

1
Mi

ui − 1
N

N∑
j=1

1
Mj

uj (18.5)

The challenge is to specify the ui so that we get good cohesion properties and
successful social foraging.

Assume that each agent can sense its position and velocity relative to x̄ and
v̄, but with some bounded errors. In particular, let di

p(t) ∈ 	n, di
v(t) ∈ 	n

be these errors for agent i, respectively. We assume that di
p(t) and di

v(t) are
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sufficiently smooth and are independent of the state of the system. Each agent
will try to follow the resource profile Jp defined earlier. (We use the plane
profile for the sake of illustration, as it will show how swarm dynamics operate
over a simple but representative surface.) We assume that each agent senses
the gradient of Jp, but with some sufficiently smooth error di

f (t) ∈ 	n. You
may think of this as either a sensing error or as variations (e.g., high frequency
ripples) on the resource profile. Below, we will refer to the signals di

p(t), di
v(t),

and di
f (t) as “noise” signals, but clearly there is no underlying probability space

and all signals in this section are deterministic. You may think of these signals
as being generated by, for example, a chaotic dynamic system.

We assume that all the sensing errors are bounded such that

‖di
p‖ ≤ Dp

‖di
v‖ ≤ Dv

‖di
f‖ ≤ Df

where Dp > 0, Dv > 0, and Df > 0 are known constants. Similar results
to what we find below can be found for the more general case, where we have
‖di

p‖ ≤ Dp1

∥∥Ei
∥∥+Dp2 , ‖di

v‖ ≤ Dv1

∥∥Ei
∥∥+Dv2 , and ‖di

f‖ ≤ Df where Dp1 , Dp2 ,
Dv1 and Dv2 are known positive constants and Ei is defined in Equation (18.10).
See the “For Further Study” section at the end of this part.

Thus, each agent can sense noise-corrupted versions of ei
p and ei

v, as

êi
p = ei

p − di
p

êi
v = ei

v − di
v

Also, each agent can sense
∇Jp

(
xi
)− di

f

at the location xi where the agent is located.
Suppose that in order to steer itself, each agent uses

Noise makes it more
difficult to get cohesive
behavior and degrades
foraging effectiveness.

ui = −Mikaêi
p − Mikaêi

v − Mikvv
i

+ Mikr

N∑
j=1,j �=i

exp

(
− 1

2‖êi
p − êj

p‖2

r2
s

)(
êi

p − êj
p

)
− Mikf

(∇Jp

(
xi
)− di

f

)
(18.6)

Here, we assume that each agent knows its own mass Mi and velocity vi. The
parameter kv > 0 is the gain for a “velocity damping term.” We think of the
scalar ka > 0 as the “attraction gain” that indicates how aggressive the agents
are in aggregating. The gain kr is a “repulsion gain,” which sets how much the
agents want to be away from each other. Note that use of the repulsion term
assumes that the ith agent knows, within some errors, the relative distance of
all other agents from the swarm center. Also, since

êi
p − êj

p =
((

xi − x̄
)− di

p

)− ((xj − x̄
)− dj

p

)
=
(
xi − xj

)− (di
p − dj

p

)
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we are assuming that the ith agent knows its position (and velocity) relative to
each other agent within some bounded errors. Note, however, that when xi and
xj are far apart, the exp(·) term is close to zero. (So in effect, if each agent did
not use distant agents’ values in the repulsion term, we would get approximately
the same results.) Also note that if Dp = Dv = 0, there is no sensing error on
attraction and repulsion, thus, êi

p = ei
p, êi

v = ei
v, and ei

p − ej
p = xi − xj , and

we get a repulsion term of the form explained in Equation (18.3). The sensing
errors create the possibility that agents will try to move away from each other
when they may not really need to, and they may move towards each other when
they should not. Clearly, this complicates the ability of the agents to avoid
collisions with their neighbors. The last term in Equation (18.6) indicates that
each agent wants to move along the negative gradient of the resource profile
with the gain kf proportional to the agent’s desire to follow the profile.

Social Foraging in Noise: Groups Can Increase Foraging Effectiveness

Next, we will substitute this choice for ui into the error dynamics described
in Equation (18.5) and study their stability properties. First, however, we will
study how the group can follow the resource profile in the presence of noise. To
do this, consider ėi

v = v̇i − ˙̄v. First, note that

˙̄v =
1
N

N∑
i=1

1
Mi

ui

= −ka

N

N∑
i=1

(
êi

p + êi
v

)− kv

N

N∑
i=1

vi

+
kr

N

N∑
i=1

N∑
j=1,j �=i

exp

(
− 1

2‖êi
p − êj

p‖2

r2
s

)(
êi

p − êj
p

)

−kf

N

N∑
i=1

(
R − di

f

)
(18.7)

Notice that

1
N

N∑
i=1

êi
p =

1
N

N∑
i=1

((
xi − x̄

)− di
p

)
= x̄ − 1

N
Nx̄ − 1

N

N∑
i=1

di
p = − 1

N

N∑
i=1

di
p

Also, the term due to repulsion in Equation (18.7) is zero as we show next. Note
that

N∑
i=1

N∑
j=1,j �=i

exp

(
− 1

2‖êi
p − êj

p‖2

r2
s

)(
êi

p − êj
p

)
=

⎡
⎣ N∑

i=1

êi
p

N∑
j=1,j �=i

exp

(
− 1

2‖êi
p − êj

p‖2

r2
s

)⎤⎦
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−
⎡
⎣ N∑

i=1

N∑
j=1,j �=i

exp

(
− 1

2‖êi
p − êj

p‖2

r2
s

)
êj

p

⎤
⎦ (18.8)

The last term in Equation (18.8)

N∑
i=1

N∑
j=1,j �=i

exp

(
− 1

2‖êi
p − êj

p‖2

r2
s

)
êj

p =
N∑

j=1

êj
p

N∑
i=1,i�=j

exp

(
− 1

2‖êj
p − êi

p‖2

r2
s

)

and since

exp

(
− 1

2‖êi
p − êj

p‖2

r2
s

)
= exp

(
− 1

2‖êj
p − êi

p‖2

r2
s

)

we have this the same as

N∑
j=1

êj
p

N∑
i=1,i�=j

exp

(
− 1

2‖êi
p − êj

p‖2

r2
s

)
=

N∑
i=1

êi
p

N∑
j=1,j �=i

exp

(
− 1

2‖êi
p − êj

p‖2

r2
s

)

but this last value is the same as the first term on the right-hand side of Equa-
tion (18.8). So overall its value is zero. This gives us

˙̄v =
ka

N

N∑
i=1

di
p +

ka

N

N∑
i=1

di
v +

kf

N

N∑
i=1

di
f − kvv̄ − kfR

Letting d̄p(t) = 1
N

∑N
i=1 di

p(t) and similarly for d̄v(t) and d̄f (t), we get

˙̄v = −kvv̄ + kad̄p + kad̄v + kf d̄f − kfR︸ ︷︷ ︸
z(t)

(18.9)

This is an exponentially stable system with a time-varying but bounded input
z(t) so we know that v̄(t) is bounded. To see this, choose a Lyapunov function

Vv̄ =
1
2
v̄�v̄

defined on D = {v̄ ∈ 	n | ‖v̄‖ < rv} for some rv > 0, and we have

V̇v̄ = v̄� ˙̄v = −kv v̄�v̄ + z(t)�v̄

with ∥∥∥∥∂Vv̄

∂v̄

∥∥∥∥ = ‖v̄‖

Note that ‖z(t)‖ ≤ ∥∥kad̄p

∥∥+
∥∥kad̄v

∥∥+
∥∥kf d̄f

∥∥+ ‖kfR‖ ≤ δ, where δ = kaDp +
kaDv + kfDf + kf‖R‖. If δ < kvθrv for all t ≥ 0 for some positive constant
θ < 1, and all v̄ ∈ D, then it can be proven that for all ‖v̄(0)‖ < rv, and some
finite T , we have

‖v̄(t)‖ ≤ exp [−(1 − θ)kvt] ‖v̄(0)‖ , ∀ 0 ≤ t < T
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and
‖v̄(t)‖ ≤ δ

kvθ
, ∀ t ≥ T

Since this holds globally, we can take rv → ∞ so these inequalities hold for all
v̄(0). If δ and θ are fixed, with increasing kv we get that ‖v̄(t)‖ decreases faster
for 0 ≤ t < T and smaller bound on ‖v̄(t)‖ for t ≥ T . If δ gets larger with
kv and θ fixed, ‖v̄(t)‖ has larger bound for t ≥ T ; hence, if the magnitude of
the noise increases, this increases δ and hence, there can be larger magnitude
changes in the ultimate average velocity of the swarm (e.g., the average velocity
could oscillate). Note that if in Equation (18.9) z(t) ≈ 0 (e.g., due to noise that
destroys the directionality of the resource profile R), then the above bound may
be reduced, but the swarm could be going in the wrong direction.

Regardless of the size of the bound, it is interesting to note that while the
noise can destroy the ability of an individual agent to follow a gradient accu-
rately, the average sensing errors of the group is what changes the direction of
the group’s movement relative to the direction of the gradient of Jp(x). In some
cases when the swarm is large (N big), it can be that d̄p ≈ d̄v ≈ d̄f ≈ 0 to
give a zero average sensing error and the group will perfectly follow the proper
direction for foraging. (This may be a reason why, for some organisms, large
group size is favorable.) In the case when N = 1 (i.e., single agent), there is no

Social groups can climb
noisy gradients better
than individuals.

opportunity for a cancellation of the sensor errors; hence, an individual may not
be able to climb a noisy gradient as easily as a group, and in some cases, a group
may be able to follow a profile where an individual cannot. This characteristic
has been found in biological swarms [230]. From an optimization perspective,
you should think of an individual trying to execute a gradient optimization
method, which we know can result in it getting stuck in local minima. The
group is producing a type of approximation to the gradient by a larger spatial
sampling and attraction/repulsion terms. Intuitively, it filters out the noise and
moves in the proper direction. Of course, the group itself can get stuck in a
local minimum if the basin of attraction of that minimum is large.

It is also important to note that there is an intimate relationship between
sensor noise and observations of biological swarms (e.g., in bee swarms [458])
in that there is a type of “inertia” of a swarm. Note that for large swarms
(N big), there can be regions where the average sensor noise is small, so that
agents in that region move in the right direction. In other regions there may be
alignments of the errors and hence, the agents may not be all moving in the right
direction so they may get close to each other and impede each other’s motion,
having the effect of slowing down the whole group. With no noise, the group
inertia effect is not found, since each agent is moving in the right direction. The
presence of sensor noise generally can make it more difficult to get the group
moving in the right direction (e.g., for foraging, migration, or movement to a
nest site). Large swarms can help move the group in the right direction, but at
the expense of possibly slowing their movement initially in a transient period.
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Cohesive Social Foraging in Noise

Next, we return to the problem of finding the error dynamics and then stability
analysis by considering the v̇i term of ėi

v = v̇i − ˙̄v in the error dynamics of
Equation (18.5). Note that

v̇i =
1

Mi
ui = −kaêi

p − kaêi
v − kvv

i

+ kr

N∑
j=1,j �=i

exp

(
− 1

2‖êi
p − êj

p‖2

r2
s

)(
êi

p − êj
p

)− kf

(∇Jp

(
xi
)− di

f

)
= −kaei

p + kadi
p − kaei

v + kadi
v − kvv

i

+ kr

N∑
j=1,j �=i

exp

(
− 1

2‖êi
p − êj

p‖2

r2
s

)(
êi

p − êj
p

)− kf

(
R − di

f

)
Hence, we have

ėi
v = v̇i − ˙̄v = −kaei

p − kaei
v − kvei

v + ka

(
di

p − d̄p

)
+ ka

(
di

v − d̄v

)
+ kr

N∑
j=1,j �=i

exp

(
− 1

2‖
(
xi − xj

)− (di
p − dj

p

) ‖2

r2
s

)((
xi − xj

)
− (

di
p − dj

p

))
+ kf

(
di

f − d̄f

)
To study the stability of the error dynamics, and hence, swarm cohesiveness,

define
Ei =

[
ei

p

�
, ei

v

�]�
(18.10)

and E =
[
E1�, E2�, . . . , EN�]�, and choose a Lyapunov function

V (E) =
N∑

i=1

Vi

(
Ei
)

where
Vi

(
Ei
)

= Ei�PEi

with P = P� and P > 0 (a positive definite matrix). We know that

λmin(P )Ei�Ei ≤ Ei�PEi ≤ λmax(P )Ei�Ei

Notice that with I an n × n identity matrix, we have

Ėi =
[

0 I
−kaI − (ka + kv) I

]
︸ ︷︷ ︸

A

Ei +
[

0
I

]
︸ ︷︷ ︸

B

gi(E)
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where

gi(E) = ka

(
di

p − d̄p

)
+ ka

(
di

v − d̄v

)
+ kr

N∑
j=1,j �=i

exp

(
− 1

2‖êi
p − êj

p‖2

r2
s

)(
êi

p − êj
p

)
+ kf

(
di

f − d̄f

)
(18.11)

Note that any matrix [
0 I

−k1I −k2I

]
with k1 > 0 and k2 > 0 has eigenvalues given by the roots of (s2 + k2s + k1)

n,
which are in the strict left half plane. Since ka > 0 and kv > 0, the matrix A
above is Hurwitz (i.e., has eigenvalues all in the strict left half plane).

We have

V̇i = Ei�PĖi + Ėi
�

PEi = Ei� (PA + A�P
)
Ei + 2Ei�PBgi(E) (18.12)

Note that if −Q =
(
PA + A�P

)
, then Q is such that Q = Q� and Q > 0,

and the unique solution P of PA + A�P = −Q has P = P� and P > 0 as
needed. Also, since ‖B‖ = 1, Ei�QEi ≥ λmin(Q)Ei�Ei, and ‖P‖ = λmax(P )
with P = P� > 0, we have

V̇i ≤ −λmin(Q)
∥∥Ei
∥∥2 + 2

∥∥Ei
∥∥λmax(P )‖gi(E)‖

= −λmin(Q)
(∥∥Ei

∥∥− 2λmax(P )
λmin(Q)

‖gi(E)‖
)∥∥Ei

∥∥ (18.13)

Suppose for a moment that for each i = 1, 2, . . . , N , ‖gi(E)‖ < β for some
known β. Then, if ∥∥Ei

∥∥ >
2λmax(P )
λmin(Q)

‖gi(E)‖ (18.14)

we have that V̇i < 0. Hence, the set

Ωb =
{

E :
∥∥Ei
∥∥ ≤ 2

λmax(P )
λmin(Q)

‖gi(E)‖, i = 1, 2, . . . , N

}
(18.15)

is attractive and compact. Also we know that within a finite amount of time,
Ei → Ωb. This means that we can guarantee that if the swarm is not cohesive,

The positions and
velocities of all agents
can oscillate, yet overall
swarm cohesiveness can
be maintained.

it will seek to be cohesive, but this can only be guaranteed if it is a certain
distance from cohesiveness, as indicated by Equation (18.14).

It remains to show that for each i, ‖gi(E)‖ < β for some β. Note that

‖gi(E)‖ ≤ ka‖di
p−d̄p‖+ka‖di

v−d̄v‖+kf‖di
f−d̄f‖+kr

N∑
j=1,j �=i

exp
(− 1

2‖ψ‖2

r2
s

)
‖ψ‖

(18.16)
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where ψ = êi
p − êj

p =
(
xi − xj

) − (di
p − dj

p

)
. Notice that 1

N

∑N
j=1 ‖dj

p‖ ≤ Dp

since ‖dj
p‖ ≤ Dp. Also

di
p − 1

N

N∑
j=1

dj
p ≤ ‖di

p‖ +
1
N

‖
N∑

j=1

dj
p‖ ≤ ‖di

p‖ +
1
N

N∑
j=1

‖dj
p‖

‖di
p − d̄p‖ ≤ 2Dp, ‖di

v − d̄v‖ ≤ 2Dv, and ‖di
f − d̄f‖ ≤ 2Df .

For the last term in Equation (18.16), note that as ‖xi − xj‖ becomes large
for all i and j, the agents are all far from each other and the repulsion term goes
to zero. Also, the term due to the repulsion is bounded with a unique maximum
point. To find this point, note that

∂

∂‖ψ‖
(
‖ψ‖ exp

(− 1
2‖ψ‖2

r2
s

))
= exp

(− 1
2‖ψ‖2

r2
s

)
− ‖ψ‖2

r2
s

exp
(− 1

2‖ψ‖2

r2
s

)

The maximum point occurs at a point such that

1 − ‖ψ‖2

r2
s

= 0

or when ‖ψ‖ = rs. Hence, we have

‖gi(E)‖ ≤ 2ka (Dp + Dv) + 2kfDf + kr

N∑
j=1,j �=i

exp
(
−1

2

)
rs

= 2ka (Dp + Dv) + 2kfDf + krrs(N − 1) exp
(
−1

2

)
= β

If you substitute this value for β into Equation (18.15), you get the set Ωb that
ultimately all the trajectories will end up in.

Cohesive Social Foraging with No Noise: Optimization Perspective

When there is no noise, tighter bounds and stronger results can be obtained.
First, we can eliminate the effect of P via λmax(P ) on the bound for the no-noise
case. Assume there is no sensor noise so Dp = Dv = Df = 0. Choose

ui = −Mikaei
p − Mikaei

v − Mikvvi

+Mikr

(
B�P−1B

) N∑
j=1,j �=i

exp

(
− 1

2‖ei
p − ej

p‖2

r2
s

)(
ei

p − ej
p

)
−MikfR (18.17)

where P = P�, P > 0 was defined earlier, so P−1 exists. Also

V̇i ≤ −λmin(Q)
∥∥Ei
∥∥2
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+ 2Ei�PB

⎛
⎝krB

�P−1B
N∑

j=1,j �=i

exp

(
− 1

2‖ei
p − ej

p‖2

r2
s

)(
ei

p − ej
p

)⎞⎠
= −λmin(Q)

∥∥Ei
∥∥2 + 2krE

i�B

N∑
j=1,j �=i

exp

(
− 1

2‖ei
p − ej

p‖2

r2
s

)(
ei

p − ej
p

)
≤ −λmin(Q)

∥∥Ei
∥∥2 + 2kr

∥∥Ei
∥∥ (N − 1) exp

(
−1

2

)
rs

So V̇i < 0 if
∥∥Ei
∥∥ > 2kr(N−1)rs

λmin(Q) exp
(− 1

2

)
. Let

Ω′
b =
{

E :
∥∥Ei
∥∥ ≤ 2krrs(N − 1)

λmin(Q)
exp
(
−1

2

)
, i = 1, 2, . . . , N

}

Next, note that in the set Ωb, we have bounded ei
p and ei

v but we are not
guaranteed that ei

v → 0 for any i. Achieving ei
v → 0 for all i would be a desirable

property, since this represents that vi = v̄ for all i so that the group will all
move cohesively in the same direction. To study this, consider Ω′

b, and consider
a Lyapunov function V o(E) =

∑N
i=1 V o

i

(
Ei
)

with

V o
i

(
Ei
)

=
1
2
kaei

p

�
ei

p +
1
2
ei

v

�
ei

v + krr
2
s

N∑
j=1,j �=i

exp

(
− 1

2‖ei
p − ej

p‖2

r2
s

)

Note that this Lyapunov function satisfies V o
i

(
Ei
) ≥ 0. You should view the

objective of the agents as being that of minimizing this Lyapunov function;
they try to minimize the distance to the center of the swarm, match the average
velocity of the group, and minimize the repulsion effect (to do that, the agents
move away from each other). We have

∇ei
p
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i = kaei
p − kr
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v
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Ėi

= kaei
p
�

ei
v − kr

N∑
j=1,j �=i

exp

(
− 1

2‖ei
p − ej

p‖2

r2
s

)(
ei

p − ej
p

)�
ei

v

+ ei
v

�
⎛
⎝−kaei

p − kaei
v − kvei

v + kr

N∑
j=1,j �=i

exp

(
− 1

2‖ei
p − ej

p‖2

r2
s

)(
ei

p − ej
p

)⎞⎠
= − (1 + kv) ei
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Hence,

V̇ o = − (1 + kv)
N∑

i=1

‖ei
v‖2 ≤ 0

on E ∈ Ω for a compact set Ω. Choose Ω so it is positively invariant, which is
When noise is not
present, ultimately the
velocity of all agents
becomes the same and
the swarm moves
directly down the
resource profile.

clearly possible, and so Ωe ∈ Ω where

Ωe = {E : V̇ o(E) = 0} = {E : ei
v = 0, i = 1, 2, . . . , N}

From LaSalle’s Invariance Principle, we know that if E(0) ∈ Ω then E(t) will
converge to the largest invariant subset of Ωe. Hence,

ei
v(t) → 0

as t → ∞. When R = 0 (no resource profile effect), v̄(t) → 0 and hence vi(t) → 0
as t → ∞ for all i (i.e., ultimately no oscillations in the average velocity). If
R �= 0, then ˙̄v = −kvv̄ − kfR and v̄(t) → −kf

kv
R as t → ∞, and thus, vi(t) →

−kf

kv
R for all i as t → ∞, i.e, the group follows the profile. These results help

to highlight the effects of the noise. The noise makes it so that the swarm may
not follow the profile as well (but makes following it possible when it may not
be possible for a single individual), and it destroys tight cohesion characterized
by getting ei

v(t) → 0. Next, we will study additional characteristics of swarms
by analyzing the results of this and the previous sections in more detail.

18.4.4 Cohesion Characteristics and Swarm Dynamics

Here, we will study the effects of various parameters on cohesion characteristics
and then provide a simulation to provide insight into swarm dynamics, especially
transient behavior. Suppose that ui is given by Equation (18.6).

Effects of Parameters on Swarm Size

The size of Ωb in Equation (18.15), which we denote by |Ωb|, is directly a function
of several known parameters. Consider the following cases:

• No sensing errors: If there are no sensing errors, i.e., Dp = Dv = Df = 0,
Attraction gains should
be set high to get tight
swarm cohesion, but not
too high or the attraction
will amplify the noise
and swarm compactness
can degrade.

and if Q = kaI, we obtain

Ωb =
{

E :
∥∥Ei
∥∥ ≤ 2krrs(N − 1)

ka
λmax(P ) exp

(
−1

2

)
, i = 1, 2, . . . , N

}

If N , kr, and rs are fixed, then if ka increases from zero, we get λmax(P )
ka

→
1 from above and we get a decrease in |Ωb|, but only up to a certain point.

• Sensing errors: There are several characteristics of interest:

– Noise cancellations: In the special situation when di
p = dj

p, di
v = dj

v,
and di

f = dj
f for all i and j, then di

p − d̄p = di
v − d̄v = di

f − d̄f for all
i and it is as if there is no error and |Ωb| is smaller.
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– Repel effects: For fixed values of N , ka, and kr if we increase rs, each
agent has a larger region from which it will repel its neighbors so |Ωb|
is larger. For fixed kr, ka, and rs, if we let N → ∞, then |Ωb| → ∞
as we expect due to the repulsion. (The bound is conservative since
it depends on the special case of all agents being aligned on a line so
there are N − 1 inter-agent distances that sum to make the bound
large.)

– Attraction can amplify noise: Let Ds = Dp + Dv and J quantify
the size of the set Ωb. Next, we study the special case of choosing
Q = kaI. Fix all values of the parameters except ka and Ds. A plot
of J versus ka and Ds is shown in Figure 18.14, where the locus of
points are those values of ka that minimize J for each given value
of Ds. This plot shows that if there is a set magnitude of the noise,
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Figure 18.14: Values of ka that minimize J for given values of noise magnitude
Ds.

then to get the best cohesiveness (smallest Ωb), ka should not be too
small (or it would not hold the group together), but also not too large
since then the noise is also amplified by the attraction gain and poor
cohesion results. Could you interpret the plot as a type of fitness
function, and then come to conclusions about the evolution of the
agent parameters?

• Swarm size N : In some situations, when N is very large, d̄p ≈ d̄v ≈ d̄f ≈ 0
and there is no biasing of sensing errors so that on average they are zero
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and this reduces the above bound on ‖gi(E)‖.
For additional analysis of swarm properties, see the “For Further Study” section
at the end of this part.

Swarm Dynamics: Individual and Group

Here, we will simply simulate a swarm for the no noise case in order to provide
some insights into the dynamics, especially the transient behavior. We will in
particular seek to study the individual motions and how they collectively move
as a group to achieve cohesion, and the dynamics of the motion of the group.
We use linear attraction, velocity damping, the Gaussian form for the repulsion
term, and the resource profile with the shape of a plane. The parameters for the
simulation are N = 50, ka = 1, kr = 10, r2

s = 0.1, kv = kf = 0.1, R = [1, 2, 3]�,
and ro = 0. Simulating for 10 sec. we get the agent trajectories in Figure 18.15.
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Figure 18.15: Agent trajectories in a swarm.

Notice that initially the agents move to achieve cohesion. By the end of
the simulation, the agents are moving at the same velocity and as a group,
with some constant inter-agent spacing between each pair of agents. Moreover,
due to the choice of initial conditions (actually random), the group achieves a
certain level of aggregation relatively quickly, then the group moves to follow
the foraging profile. Of course, some orientation towards following the profile is
achieved during the initial aggregation period, but in this simulation, significant
reorientation towards following the resource profile occurs after there is tight
aggregation.
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18.5 Design Example: Robot Swarms

This problem is an extension of the one in Section 6.2, where we sought to
develop a guidance algorithm for moving a robot from an initial position to
a goal position in a factory while avoiding collisions with obstacles. Here, we
consider one approach to guiding multiple robots through the same maze as was
studied there, using the swarm approach discussed in the last section.

18.5.1 Robot Swarm Formulation

A robot swarm is simply a group of robots that move in some cohesive fashion
in order to perform some task. Here, the task is simply to get the group to a
certain location in a factory, so that they can perform some activity together
there. In moving them from one location to another, the key challenge is to
have them all avoid certain obstacles that appear in their paths. Here, we use

Cooperative guidance
strategies based on
swarms are useful for
groups of robots.

the same maze as described in Section 6.2 with the same final goal position. We
use the same “obstacle function” defined there to represent the positions of the
obstacles and the same “goal function” to represent where we want the group
to go. To solve this problem, we view the combined obstacle/goal functions as
a cost function just as we did in the chapter on planning. Here, however, we
take the view that the group of robots is engaged in social foraging over the cost
function, which we think of as a nutrient profile. The obstacles are thought of as
regions with a noxious substance, and increasing amounts of food are obtained
by moving towards the goal position. We use a different model for the robot
from the one considered in Section 6.2. Here, we use the model of a swarm agent
from the last section with all the masses of the robots the same, at Mi = 1.

We assume that each vehicle knows its own velocity. Here, we will first
consider the case where each robot perfectly knows the swarm center and swarm
average velocity. For some types of robotic systems, this would require each
robot to know the positions and velocities of all the other robots so it can
compute the swarm center and average velocity, but for others there may be a
sensor which could directly sense these. We will also consider the case where
there is noise in sensing, of the type described in Design Problem 18.7, so that
each robot does not perfectly know the swarm center and average velocity.

18.5.2 Performance in Obstacle Avoidance and Noise Ef-
fects

Suppose that there are 30 robots in the swarm. Let kp = 1, kv = 0.1, kf = 0.1,
kr = 10, and r2

s = 1. We pick some random initial locations and velocities,
but within some fixed ranges. We pick w1 = 120 and w2 = 0.1 after some
tuning. Also, to keep the simulation simple, we use an Euler approximation
and simulate the swarm as a discrete-time system. For this, we use a sampling
period of 0.01 and simulate for 80 sec. Clearly, due to the use of a different form
of a “resource profile” and the discrete-time approach, the stability results of the
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previous section do not apply directly; however, the simulations will illustrate
that the basic ideas still do apply.

The noise-free case is shown in Figure 18.16. This shows the position tra-
jectories of the 30 robots in moving from an initial position to the point where
they are around the goal position. As time goes on, the robots slow down and
stop when they are near the goal position. If you study the trajectories you
will see that they successfully avoid the obstacles and still maintain a cohesive
group. The ultimate size of the group is set by the attraction and repulsion
parameters, and the shape of the goal (and obstacle) functions (e.g., if they
resulted in a very steep slope near the goal position, then the group of robots
would be packed tighter in their final position).
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Figure 18.16: Robot swarm, robot position trajectories.

Figure 18.17 shows what happens if the robots sense with noise of the type
discussed in Design Problem 18.7. Here, due to the sensing errors, there are
actually collisions with some of the obstacles by some of the robots (actually due
to noise in use of the obstacle and goal functions in the simulation). Moreover,
the positions and velocities of the robots oscillate near the goal position. Clearly,
noise can adversely affect cohesion and orderly operation of a group of robots.

18.5.3 Additional Robot Swarm Design Challenges

As outlined in Section 6.2.4, there are many additional challenges that can arise
in autonomous vehicle guidance, and these are compounded in the case where
we want to guide multiple autonomous robots. The challenges there included
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Figure 18.17: Robot swarm, robot position trajectories, noise case.

complex mazes that led to dead ends and circular loops, mobile obstacles, and
uncertainty. Dead ends and circular loops that one, or some subset, of the robots
get stuck in may be solved in the swarm case by having some robots that are
moving in the right direction “pull” them out of the problem (via appropriate
desire to stay grouped). However, it can also be that the ones that get stuck in
a dead end or circular loop, hold back the others that are headed in the right
direction. The problems with mobile obstacles are multiplied for the swarm
case, since now the whole group must avoid such obstacles. It may be easier
to avoid mobile obstacles if the robots cooperate by telling each other when
they sense a mobile obstacle, but the very existence of a swarm creates more
problems with mobile obstacles, since each robot in the group can be thought
of as a mobile obstacle to avoid (in the last section, we considered point-sized
vehicles and hence, avoided the whole issue of inter-robot collisions).

Uncertainty makes each of these issues more challenging, and the swarm can
create more problems with uncertainty. For instance, suppose that the group of
robots is connected via a communication network, with its “topology” specifying
which robots are connected. If this communication network is less than perfect
(e.g., via bandwidth constraints, delays, or topology changes), then clearly the
maintenance of cohesive robot swarm behavior will be even more challenging.
Some of these issues will be discussed in more detail in the “Challenge Problem”
in the next chapter.
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18.6 Exercises and Design Problems

Exercise 18.1 (E. coli Swarm Foraging):

(a) Illustrate for the simulations in the chapter the effects of changing
Nc and the parameters of the cell-to-cell attractant function. Ex-
plain how to make poor choices for these parameters (e.g,. ones that
result in swarming, but little optimization progress on the nutrient
concentration profile) and good choices (e.g., ones where cells pull
each other toward minima), and illustrate in each case the resulting
behavior of the algorithm.

(b) Suppose that you use Rosenbrock’s function in Equation (15.9) as
a cost function. Make appropriate algorithm parameter choices and
illustrate the performance of the algorithm for this function.

Exercise 18.2 (Foraging of Square-Shaped Bacteria):

(a) Based on the brief description the foraging behavior of square bac-
teria, develop an optimization algorithm that models its foraging
behavior. To do this, specify how each bacterium moves forward and
backward and changes directions. Ignore reproduction, elimination,
and dispersal. Write a simulation of the algorithm.

(b) Use the algorithm to perform optimization over the multiple-extremum
function in Figure 18.10. Show plots to illustrate the characteristics
of the algorithm.

Exercise 18.3 (ODE Model of Dynamic Labor Force Allocation for
Bees): In [89] the authors develop a nonlinear differential equation model
of the key functional aspects of dynamic labor force allocation of honey
bees and validate the model against T. Seeley and his colleagues’ earlier
experimental work (see [456]).

(a) Simulate this model, compare to Seeley’s results, and explain the key
aspects of the model and its properties.

(b) In what ways is the model inaccurate? What does it not represent?

(c) Can you modify the ODEs with some nonlinearities so that the sim-
ulations will fit Seeley’s data better?

Exercise 18.4 (Effects of Parameters on Swarm Dynamics): In this
problem, you will simulate the swarm in Section 18.4.4 for appropriate
parameter choices to illustrate different behaviors (this is a noise-free case).
Start with the parameter values given there and tune only the parameter
indicated in each part.

(a) Pick a value for ka that will result in a tighter packed ultimate swarm
(i.e., a smaller ultimate swarm size).
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(b) Pick a value for kr that will result in a more loosely packed ultimate
swarm (i.e., a larger ultimate swarm size).

(c) Repeat (b), but for the rs parameter.

(d) Repeat (a)–(c) but for the case where there is noise in sensing. Hint:
Simulate the noise by generating it as the output of a chaotic sys-
tem (e.g., via Duffing’s equation) so that it satisfies the smoothness
requirement on the sensing errors.

Exercise 18.5 (Hard Repulsion, Collision-Avoidance, and Swarm Dy-
namics): Replace the Gaussian-type repulsion term in Section 18.4 with
a repulsion term that will provide a “hard” constraint to avoid collisions
between agents. Add velocity damping, a foraging plane, and an appropri-
ate attraction term. Simulate the swarm and demonstrate via plots that
there are no collisions both during the transient and in the steady-state.
Investigate the effects of all parameters of the controller.

Design Problem 18.1 (Extensions to E. coli Swarm Foraging): Study
how to find the minimum of the function in Figure 18.10, but model,
code, and illustrate the performance and algorithmic characteristics of
the algorithm for the following cases.

(a) Change the nutrient concentration to represent consumption of nu-
trients.

(b) Model Brownian effects so that the bacteria cannot swim straight.

(c) Make the tumble and run lengths exponentially distributed random
variables consistent with what has been found in nature.

(d) Make run-length decisions based on the past 4 sec. of concentrations.

(e) Develop a fully asynchronous model.

(f) Allow a time-varying population size.

(g) A more biologically accurate model of the swarming behavior of cer-
tain bacteria is given in [544]. Simulate the partial differential equa-
tion model given there.

(h) Develop other criteria by which bacteria split. Add effects of conju-
gation and other evolutionary characteristics (e.g., evolve C(i), Ns,
and Nc).

Design Problem 18.2 (M. xanthus Swarm Foraging)�: Review the cur-
rent literature and develop a cellular automaton model of the foraging of
M. xanthus. Include the modeling of fruiting bodies and the full lifecycle
of the bacteria.

Design Problem 18.3 (Robot Swarms): In this problem, you will inves-
tigate aspects of the robot swarm problem studied in Section 18.5.
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(a) Explain via simulations, the effects of kp, kv, kr, and rs on the tran-
sient and ultimate (as t → ∞) swarm behavior (i.e., show in simula-
tion the effects of changing each of these parameters and, for example,
explain whether the swarm size (diameter) increases or decreases).

(b) Design a new control that is based on a “hard repel” and demonstrate
via simulations that you can design it so that there will be no inter-
robot collisions and no collisions with obstacles. This may require
retuning the parameters of the simulation.

(c) Repeat (a) and (b) except simulate the system as a continuous-time
system. Hint: This will require using the gradient of the cost function
that holds the goal and obstacle functions.

(d) Repeat (a), (b), and (c) but for the case where noise of the type
described in Design Problem 18.7 is used.

(e) Define a communication topology and an “intelligent” strategy (e.g.,
one that uses planning, learning, and/or attention) for each of the
robots to coordinate their actions to solve the problem. Simulate to
evaluate performance.

Design Problem 18.4 (Social Foraging Strategies for Indirect/Direct
Adaptive Control): In this problem, you will study the development
of indirect and direct adaptive controllers for the process control problem
studied in Sections 12.4 and 12.6, but where foraging algorithms are used
for the optimization method. First, read the part in the chapter on the
genetic adaptive control strategies in Section 16.5. Basically, you will
simply replace the online genetic algorithm with a foraging algorithm.
This changes how we view the operation of the algorithm. From a foraging
perspective, we view θi as the location of the ith forager in its environment.
In a foraging method, we will move the position of the forager θi so as to
minimize J(θi). The particular manner used to adjust the θi(k−1) to find
θi(k) will depend on the choice of the foraging algorithm steps (e.g., will it
involve swarming, or other communications between individuals that tell
each other when they are doing well?). In an indirect adaptive control
strategy, we view foraging as searching for good model information. If a
foraging strategy is used, we view θ(k) in Equation (16.2) as the forager
who has found the best model information. With a foraging strategy, we
could view the fixed-position members that were discussed in the chapter
as “information centers,” if the foragers were endowed with communication
capabilities. If such centers have good model information, they will tend
to attract foragers. Clearly, you can specify a direct adaptive control
strategy based on social foraging in a similar way to how we did for direct
genetic adaptive control.

Next, we show how to develop an indirect adaptive controller based on
foraging for the tank problem. The problem given after that will focus on
various extensions of the method.
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Our forager’s position in one dimension is given by θα and in the other di-
mension by θβ so our ith forager’s position is θi = [θi

α, θi
β ]�, i = 1, 2, . . . , S.

We choose S = 10 as the population size. The foraging strategy we em-
ploy is the one from Section 18.3, which is based on E. coli chemotaxis,
but without swarming, elimination-dispersal, and reproduction. Hence,
we only use the chemotactic hill-climbing strategy to adjust the parame-
ters. At each time step, we take one foraging step, which for our foraging
strategy means that we use either one tumble-tumble step or part of a
“run.” In this way, the foraging occurs while the control system operates
with foraging (searching) for parameters occurring at each time step. For
instance, if over one time step the cost did not decrease for an individual,
then there is a tumble, and to do this, we generate a random direction
and update the parameters (location of the forager) in that direction. If,
however, the cost improved from the last step, then another step in the
same direction taken last time is made (provided not too many steps in
that direction have already been made). In this case, the forager is on a
“run” in a good direction, down the cost function.

The step size C(i, k) is set to be 0.05 for all bacteria for all times. The
maximum number of steps along a good direction is Ns = 4, and θi

α(0) =
2, θi

β(0) = 0.5, i = 1, 2, . . . , S. We use the cost evaluation procedure
with Js(θi(k − 1), N) in Equation (16.3) with N = 100. To keep things
simple, we will simply use θα(k) = θα(0) and θβ(k) = θβ(0) for k =
1, 2, . . . , N + 1 (i.e., we wait till we have computed all the values needed
for the cost evaluation before we start the adaptation procedure). Clearly,
other initialization choices are possible. For instance, in the beginning you
could use an expanding length window of data to evaluate the quality of
the estimators.

The performance of the closed-loop system is illustrated in Figure 18.18,
where we see that, after an initial transient period that results in part due
to the poor initialization of estimators and the controller start-up method,
we get reasonably good tracking of the reference input. Next, Figure 18.19
shows that the estimate of the tank liquid level is quite good, even though
at times the individual estimates of the nonlinearities are not.

To further illustrate some properties of the adaptive controller, see Fig-
ure 18.20 where we plot the cost of the best individual in the population
(the one that leads to the specification of the controller) and the index i of
the best individual in the population for every time step. First, note that
early in the simulation, cost is zero due to how we start up the controller.
Then, when we start the controller at t = 10 sec., the cost jumps to a rela-
tively high value; this represents that we have a poor initialization for the
population. After some time, however, the foraging strategy is somewhat
successful at adjusting the population members so that the estimation er-
ror decreases and hence, the best cost decreases. Note, however, that the
cost does not always decrease over time. It can also increase and one cause
of this can be the change in the reference input. Next, note that in the
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Figure 18.18: Indirect adaptive controller based on foraging.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15
Liquid level h and estimate of h (solid)

0 10 20 30 40 50 60 70 80 90 100
-5

0

5

10

15
Plant nonlinearity α and its estimate (solid)

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

Time, k

Plant nonlinearity β and its estimate (solid)

Figure 18.19: Indirect adaptive controller based on foraging, estimates of liquid
level, and nonlinearities.
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bottom plot we show the index of the best individual in the population at
each step. Notice that there are some short stretches of time where the
best individual does not change; however, there is a significant amount of
switching between different members of the population that provide better
estimates at different times.
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Figure 18.20: Indirect adaptive controller based on foraging, best cost, and
index of best individual in the population.

(a) Develop an indirect adaptive controller for the process control prob-
lem using a foraging strategy for parameter adjustments. You may
build your approach above where an E. coli chemotactic foraging
strategy was simulated, but you must add some additional feature to
the foraging algorithm that represents a situation in nature, where
foragers can communicate to each other how well they are doing and
subsequently, use that information to improve their foraging success.
Regardless of which approach you use, verify the operation of your
controller in the same manner as was done above. Study the effect of
the choice of the reference input on the ability of the approximator
mappings to match the underlying unknown nonlinearities. Provide
plots to illustrate the quality of the matching as was done in the
chapter.

(b) Develop a direct adaptive controller for the process control problem
that is based on a foraging strategy that includes some type of com-
munication of information between foragers, and subsequent use of
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that information to improve foraging success. Regardless of which
foraging approach you use, verify the operation of your controller in
the same manner as was done above. Study the effect of the choice
of the reference input on the ability of the approximator mapping
to match the “ideal” controller nonlinearity discussed in the chapter.
Provide plots to illustrate the quality of the matching as was done in
the chapter.

(c) Compare the performance of the indirect and direct methods and
discuss. Evaluate the value of using fixed portions of the popula-
tion of models or controllers. Study the effects of good population
initialization.

Design Problem 18.5 (Foraging in Colombia)�: This problem continues
with Design Problem 14.2. Suppose that you have a group of foragers
that find more food at higher elevations. Design a foraging algorithm that
successfully finds the highest point on the topographical map. Compare
its performance to that of the genetic algorithm. Next, suppose that you
have a forager who is searching for coffee beans in Colombia. Formulate
a foraging landscape and develop a simulation that illustrates the success
of foragers across that landscape.

Design Problem 18.6 (Foraging for Approximator Tuning)�: We can
think of learning as a process of foraging for information. Can a foraging
algorithm be used to tune an approximator structure? Is this a good
idea? Why or why not? It is generally not possible to compute a gradient
with respect to a structure change in an approximator (e.g., the change
in the output with respect to the change in the number of neurons in a
hidden layer). Can a foraging algorithm be used to tune the structure of
an approximator? How? Develop an example and method, and test its
performance relative to standard ones.

Design Problem 18.7 (Stable Social Foraging Swarms)�: Use the same
model as in the chapter for a swarm of agents. Suppose that, however,
‖di

p‖ ≤ Dp1

∥∥Ei
∥∥ + Dp2 , ‖di

v‖ ≤ Dv1

∥∥Ei
∥∥ + Dv2 , and ‖di

f‖ ≤ Df where
Dp1 , Dp2 , Dv1 and Dv2 are known positive constants.

(a) Find conditions under which you are guaranteed to have the trajec-
tories of the swarm uniformly ultimately bounded.

(b) Find bounds on the size of the trajectories of the error dynamics in
terms of the parameters of the problem.

(c) Simulate the noise as the output of a chaotic system (e.g., via Duff-
ing’s equation), but one which still satisfies the above bounds. Study
in simulation the effects of the parameters of the problem (e.g., ka,
kr, and the noise bounds). Show simulations of the agent trajectories
to illustrate the transient behavior of the swarm. To see how to do
this for a discrete-time approximation to the continuous-time system,
see Section 18.5.2.
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Design Problem 18.8 (Modeling and Simulation of Honey Bee Clus-
ters and In-Transit Swarms)�: Research the literature on how honey
bees form clusters when a colony splits and then swarm together to a new
nest site. Using the modeling ideas in this chapter, produce an ordinary
differential equation model of both the clustering (aggregation process)
and the in-transit swarm. Try to validate your model against the experi-
mental results found in the literature.

Design Problem 18.9 (Predation and Aggregation)�: Read the paper
entitled “Geometry for the Selfish Herd” by W.D. Hamilton in [240] that
studies why an organism that is trying to protect itself will at times ag-
gregate (group closely) with conspecifics (it also discusses other reasons
for aggregation).

(a) Develop and simulate “jumping rules” (e.g., methods to generate
Figure 1 in [240]). Characterize and analyze emergent aggregation
behaviors by showing differences in aggregation behavior for different
choices of rules. You could consider the case where all the “frogs”
have the same rules, and the case where there are nonhomogeneous
rules.

(b) Consider Hamilton’s statement on p. 296 of [240]: “I know of no
rule of jumping that can prevent them from aggregating.” Why does
Hamilton say this? Can you find a “rule” like the one he is talking
about that can result in them not aggregating?

(c) Model and simulate a two-dimensional case, using some of the ideas
in Section 3 of [240].

Design Problem 18.10 (Stable Dynamic Sphere Packing)�: There is
a problem found in physics and biology of trying to pack objects on the
surface of a sphere.

(a) Suppose that you seek to pack spherical swarm agents on a sphere.
Suppose the agents are modeled as in the chapter via a double in-
tegrator but that a type of “hard-repel” term is used that makes
them into spherical agents. Define the environment to be a sphere
with the objective of each agent to be on the surface of the sphere
by touching it at one point. Define appropriate attract-repel terms
between agents so that only local interactions are allowed (i.e., so
that every agent cannot be influenced by every other one, but only
by its “neighbors”). Simulate the dynamic formation of packing on
the sphere.

(b) Next, perhaps with the help of the literature in mathematics and
physics, characterize the equilibria that represent the sphere being
packed and show in simulation that these equilibria can be achieved.
This is not a trivial problem. Are there equilibria that correspond to
the agents moving about on the sphere?
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(c) Provide conditions for Lyapunov stability or asymptotic stability of
the equilibria specified in (b).

(d) Repeat (a)–(c) but for packing different shapes (e.g., an ellipsoid or
a cube).

Design Problem 18.11 (Distributed Synchronization—From Fireflies
to Simulations and Circuits)�: In this problem, you will investigate
a biological phenomenon, simulate it, and then implement a circuit real-
ization of it.

(a) Some types of fireflies exhibit a property, where they can synchronize
their flashing. Investigate the literature on this and write a descrip-
tion of this phenomenon. Start with [496].

(b) Build a network of electronic fireflies according to the design in [194].
For this, build a line topology of at least four coupled oscillators.

(c) There are mathematical models of coupled nonlinear oscillators that
can be used to represent the distributed sychronization. Study the
one in [495], which has

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi)

for j = 1, 2, . . . , N , where θi is the phase of oscillator i, ωi is its
natural frequency, and K ≥ 0 is a coupling strength. Let N = 10,
the ωi = 1, and K = 1. Develop a simulation of the N coupled
oscillators and simulate for 20 sec. Plot the phase angles.

(d) Use the ideas in [495] to pick parameters and study “phase transi-
tions” by illustrating these via a series of simulations.

(e) Explain the relationship between distributed synchronization and
swarming (e.g., what is the “attraction/repulsion” function in the
above distributed synchronization model?). Can you find conditions
under which the distributed synchronization system is stable? What
type of stability property does it possess?

(f) Model the system that you implemented in (b). Characterize and
analyze the stability properties of the model. Compare to what is
found in actual experiments.




