
Chapter 13

For Further Study

To deepen your understanding of the methods of this part, first you can study
optimization theory, as this forms the basis of all the methods. Two good
books on optimization that, among others, have influenced the development
here are [68], and the earlier book [337]. To learn more about neural networks
and their training, see [130, 238]. The reader wishing to strengthen her or
his background in conventional adaptive control should consult [254] (or the
earlier books [448, 376, 219, 30]). For an in-depth treatment of stable adaptive
estimation and control using fuzzy and neural systems, see [484].

Cognitive Neuroscience of Learning: The descriptions of classical and
operant conditioning were based on [152, 223, 268, 269]. The description of the
conditioned learning mechanisms in the Aplysia was taken from [267, 223, 269];
for more relevant literature in this area, see [130]. It is interesting to note
that habituation can occur in microorganisms (e.g., Vorticella and nematodes),
and it seems that learning of simple behavioral rules can occur in flatworms
[161]. The discussion here on Hebbian learning is based on [206, 130]. For
more details on modeling and analysis of learning processes from the field of
theoretical neuroscience, see [130] and the references therein. Of particular
relevance to this book is their coverage of the modified Rescorla-Wagner model
used at the neural level for representing classical conditioning, the discussions
on modeling of Hebbian learning and its connections with both deterministic
and stochastic gradient methods, and the “tuning curves” (e.g., see pp. 14–17)
and their connection to function approximation (see pp. 316–321) by viewing
them as basis functions. The Rescorla-Wagner model studied in psychology and
related mathematical and computer representations of the learning process are
studied in [152] (pp. 109–119) and the references therein.

An early study growing from the field of cybernetics is given in [26] where
the author seeks to explain the origins of adaptive behavior (learning). While
research has often focused on organisms with a neural network when study-
ing learning, there have been studies of microorganisms that can demonstrate
behavioral plasticity via training [208].
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Function Approximation and System Identification: It is helpful if you
study the theory of system identification and for this, it is recommended that you
see [331]. It could be helpful to study approximation and regularization theory,
and one window into the mathematical literature you may want to consider
is [422]. The section on approximation theory, and in particular, the section
on whether to use linear or nonlinear in the parameter approximators, used
the ideas in [45]. An introduction to the topical area of this part is given
in [469, 265], where the authors also cover wavelets, and other approximators
and properties in some detail. Wavelet methods for nonlinear identification are
studied in [175].

Neural Control: A method that has been popular in the control of robots is
the cerebellar model articulation controller (CMAC), which was first introduced
in [9], and later applied in a different form in [362, 286]. An early paper on neural
networks for control is given in [378]. A very nice introduction to learning control
is given in [176]. Although developed independently, the FMRLC approach
discussed in Section 9.4, is related to the neural control method in [286]. A nice
overview of neural control methods is given in [171] and in [252, 361]. For a
method that also adapts the structure of the neural network, see [322]. A related
topic is that of “neural dynamic optimization for control,” where optimal control
laws are approximated [460].

Adaptive Fuzzy Control: The FMRLC was introduced in [300, 301] and
uses ideas from the linguistic self-organizing controller (SOC) presented in [429]
(with applications in [451, 507, 255, 121, 120, 119, 547]) and ideas in conventional
model reference adaptive control. The ship steering application was developed
from the work in [30, 376, 301, 412] and other applications of the FMRLC are
studied in [555, 297, 370, 302, 300, 560, 303]. Other methods and relevant work
are contained in [155, 266, 80, 530, 46, 505, 466, 435, 222, 221, 117, 118, 49,
80, 528, 80, 320], but note that there are many other methods that have been
developed and reported in the literature.

Expert, Planning, and Attentive Systems in Adaptive Control: In
addition to [193], the authors in [521, 395, 132, 516, 373] study fuzzy supervi-
sory controllers that tune conventional controllers, especially ones that tune PID
controllers (there are many conventional PID auto-tuning methods [28, 311]).
Conventional gain scheduling has been studied extensively in the literature, es-
pecially for a wide range of practical applications. See [461, 443, 462] for some
theoretical studies of gain scheduling. The connections between fuzzy supervi-
sion and gain scheduling have been highlighted by several researchers. A more
detailed mathematical study of the connections is provided in [399]. The idea
of using a supervisor for conventional adaptive controllers was studied earlier
in [27, 21]. A case study for supervisory control of a two-link flexible robot
was presented in [371]. The approach to supervision there bears some similarity
to the one in [319]. A case study for a fault-tolerant aircraft control problem,
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where a rule based system supervises an adaptation mechanism to achieve per-
formance adaptive control, is given in [297]. General issues in hierarchical fuzzy
control are discussed in [133].

A survey of model predictive control is given in [192]. Adaptive fuzzy model
predictive control is studied for a process control problem in [389] and there have
been other similar studies for fuzzy model predictive control on which some of
this work was based [237, 236]. The section on dynamically focused learning,
an attentive mechanism for adaptive fuzzy systems, is based on [296].

Next, note that multisensor integration [339] and a variety of applications
[11] utilize a concept called “world modeling” where a model of the environ-
ment is built while the system operates and information from the model is used
in decision-making. While there are some relationships between systems that
exploit a world model, and those in adaptive model predictive control, general
world modeling is an important topic in its own right as it represents a very
general philosophy on model building.

Finally, note that the area of learning automata is relevant to the topics
studied in this part (e.g., in modeling learning systems and analysis of stochastic
learning systems). For an introduction to that area, see [380]. The area of
learning Bayesian networks from data is covered in [383].

Linear Least Squares: There are many methods to train neural networks
and fuzzy systems. There are many books on neural networks (see, e.g., [238,
262]). For other methods to train fuzzy systems, consider [412], [262], [530, 531],
or [242, 37].

The idea of using least squares to train fuzzy systems was first introduced
in [504] and later studied in [532] and other places. Numerical issues for least
squares methods are discussed in [331, 103, 332] and model validity is studied
in [70]. The controller construction problem where process operator data is used
was taken from [498], as was the CO2 estimation problem for the gas furnace
studied in an exercise at the end of Chapter 10. Issues in how to determine
which inputs to use for an estimator are discussed in [331, 104, 260, 498, 262].

Gradient Methods: If you are interested in connections between gradient
methods and learning in neuroscience, the first area to study is modeling Heb-
bian learning [241], specifically when it is modeled as a gradient method. For
this, you can study [130, 238] and the references therein.

For more details on gradient methods, see [337, 68]. The brief discussion
on the stochastic gradient method is based on [69]. For more background on
stochastic optimization, see [439], where the “stochastic approximation” method
was introduced, and [293] (the classical backpropagation method is a stochas-
tic gradient approach, since it uses a steepest descent gradient approach and
random presentation of data from the training data set).

The hybrid methods (e.g., methods that may use one optimization method
for the nonlinear part of the approximator structure and another for the linear
part) have been used by a variety of researchers; a particularly nice set of appli-
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cations were studied in [262, 259, 261]. Some clustering methods are overviewed
in [43]. A method that combines an online clustering and least squares method
is given in [102]. A variety of clustering methods are discussed in [147], where
the authors also focus on construction of local models that are useful for the
development of control systems.

Some other methods related to the topics in this part are given in [251, 48,
545, 306, 1, 253, 378, 80].

Stable Adaptive Fuzzy/Neural Control: Here, the treatment was only
meant to introduce the topic of stable adaptive fuzzy/neural control. A recent
text that covers the full details of many stable adaptive neural/fuzzy methods
is [484]. There, more general direct and indirect adaptive control methods are
introduced, the output feedback and multivariable cases are discussed in detail,
many examples and applications/implementations are provided, and discrete-
time and decentralized adaptive control are covered. It seems that the field of
stable neural control started with [424] and has been significantly affected by
the work in [423, 424, 441, 172, 174, 167, 321, 552, 316, 379, 447, 101, 546,
445, 425, 105], where the authors make use of neural networks as approxima-
tors of nonlinear functions. In [497, 248, 529, 304, 99, 530, 486], the authors
use fuzzy systems for the same purpose and [441, 379] use dynamical neural
networks. The neural and fuzzy approaches are most of the time equivalent,
differing between each other mainly in the structure of the approximator cho-
sen. Indeed, to try to bridge the gap between the neural and fuzzy approaches,
several researchers (e.g., in [486]) introduce adaptive schemes using a class of
parameterized functions that include both neural networks and fuzzy systems.
Linear in the parameter approximators are used in much of the above-referenced
work, and for example, [497, 248, 423, 424, 92, 172, 167, 99, 447, 445, 486] and
nonlinear in, for example, [321, 552, 316, 379, 101, 546, 425]. Note that most of
the papers deal with indirect adaptive control, whereas very few authors use the
direct adaptive control approach (see, however, [486, 442]). Research on decen-
tralized adaptive neural/fuzzy control is given in [487] and for the MIMO case
(both direct and indirect) in [396]. Persistency of excitation issues are studied
in [173, 172]. An interesting study on issues related to the use of local (finite
support) approximators in adaptive control can be found in [170]. Implemen-
tation studies for adaptive neural fuzzy control are given in [397]. For more
information on multiple model adaptive control, see [31, 347, 333, 377, 375] and
the references therein.

The aircraft wing rock model used in the design problem in Section 12.7 was
taken from [382, 165], which is based on wind tunnel data as studied in [309].
The aircraft wing rock design problem at the end of Section 12.7 was taken from
[289] and is based on [247].

Approximator Structure Learning: For an overview of methods for au-
tomatically constructing or pruning neural networks, see [295, 431] and for
discussion on some methods to adjust structure of fuzzy systems, see [412]. The
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issue of structure choice is treated in [103] for linear in the parameter approx-
imators where you want to choose the number of basis functions. There, least
squares methods are used to eliminate basis functions that do not significantly
contribute to making the approximation accurate. Such methods could be em-
ployed in another method to initialize the nonlinear portion of the approximator
[331] where you simply pick a very large approximator structure, then eliminate
the parts that do not contribute in a significant way. Some work in the direction
of trying to tune structure of an approximator in an adaptive control system is
contained in [198] (but also see the references there).

Immune Networks: While not discussed in this chapter, there has been
recent interest in biomimicry of immune systems and subsequent engineering
applications (e.g., in pattern recognition and control) [124]. For more recent
work, see [125]. Some in fact think of the immune system as a second type
of “brain” in the human body, with the ability to learn (e.g., it encounters a
type of pathogen, then “learns” how to more easily recognize it the next time)
and make decisions (e.g., how and when to attack foreign invaders). Immune
networks are models of immune systems and some such networks are “connec-
tionist” in similar ways to how neural networks are [168], and some types of
immune networks have underlying mechanisms that are sometimes thought of
as being similar to evolutionary optimization (e.g., the genetic algorithm) [182],
since their learning strategy can be viewed as a type of nongradient stochastic
optimization process. There have been several studies of underlying mechanisms
for learning in immune networks [169, 417, 66, 63, 67, 249, 250, 65, 471] and the
application of these ideas to control [63, 64] has been considered.

A recent study [146] focuses on tuning approximator structure and param-
eters and these ideas are more firmly connected with the ideas and methods of
this part.

Temporal Difference Learning and Neuro-Dynamic Programming: An
introduction to the area of reinforcement learning, and in particular “tempo-
ral difference learning” is given in [499], and connections to neuroscience are
discussed. Related methods and analysis of temporal difference learning are
studied in the area of “neuro-dynamic programming” [69], where the authors
also study the application to a number of multi-stage decision-making system
problems. In neuro-dynamic programming, an approximator, such as a neu-
ral network, is used to approximate the “optimal cost to go” in the dynamic
programming methodology, and then it is used to make choices of decision vari-
ables. Many other references are available in this general area, so you should
search the current literature.
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Sequence of Essential Concepts

• Evolution is a type of search that continually and incrementally redesigns
the structure and parameters of organisms to maximize organism fitness
for survival in an uncertain environment. To do this, it tends to optimize
the design of the organism for typical characteristics of its environment
(i.e., some type of average environment it encounters) and thereby pro-
duce an organism that is “robust” for survival in its habitat. (Extinction
processes are due to insufficient adaptation rate or “traps” in the search
space due to coupled constraints like physiology and environment.) En-
gineering design is analogous to evolution, but for technological products
and systems.

• Genetic algorithms simulate evolution and hence, can serve as a general
tool for parallel stochastic nongradient based optimization. There are,
however, many closely related deterministic and stochastic conventional
approaches (i.e., not biologically motivated), including response surface,
pattern search, simplex, and stochastic optimization methods. These pro-
vide insights into the operation of biologically motivated optimization
methods, such as the genetic algorithm (or the foraging algorithms of
Part V). Moreover, they provide practical approaches for solving engi-
neering problems that involve robust optimal design.

• Evolution is best viewed as a type of global optimization process (“global”
in time and population space) that can act on all aspects of the organ-
ism, including its ability to perform learning, which can be viewed as a
“local” adaptive search. The environment is the fundamental driver of
this optimization process. Learning is “local” in time, since it applies to a
single generation and local in space, since it occurs in a single individual
(but of course, culture has more global influences on learning in groups of
organisms). Learning can accelerate evolution (the “Baldwin effect”) and
evolution can shape learning (it can design every aspect of the learning
system). Evolution may produce an optimal balance between instincts
and learning capabilities that is dependent on characteristics of the en-
vironment (e.g., the stochastic nature of the environment) and organism.
These ideas provide some principles in the design of robust optimal com-
plex decision-making systems.

• Genetic algorithms are optimization processes that can be employed to
tune approximators in closed-loop systems and hence, can achieve real-
time adaptive control. Direct and indirect adaptive controllers and adap-
tive model predictive controllers can be designed using genetic algorithms.




