
Chapter 11

Gradient Methods

Chapter Contents

11.1 The Steepest Descent Method . 475

11.1.1 Steepest Descent Parameter Updates . 475

11.1.2 Example: Convergence, Step Size, and Termination Issues 476

11.1.3 Descent Direction Possibilities and Momentum 478

11.1.4 The Linear in the Parameter Case . 479

11.1.5 Step Size Choice . 481

11.1.6 Parameter Initialization, Constraints, and Update Termination 485

11.1.7 Offline and Online, Serial and Parallel Data Processing 489

11.1.8 Stochastic Gradient Optimization Basics 490

11.2 Levenberg-Marquardt and Conjugate Gradient Methods 491

11.2.1 Newton’s Method . 491

11.2.2 Conjugate Gradient and Quasi-Newton Methods 493

11.2.3 Gauss-Newton and Levenberg-Marquardt Methods 496

11.3 Matlab for Training Neural Networks 499

11.3.1 Motivation to Use Software Packages . 499

11.3.2 Example: Matlab Neural Networks Toolbox 500

11.4 Example: Levenberg-Marquardt Training of a Fuzzy System 503

11.4.1 Update Formulas . 505

11.4.2 Parameter Constraint Set and Initialization 507

11.4.3 Approximator Tuning Results: Effects on the Nonlinear Part 508

11.4.4 Approximator Tuning Results: Effects of Initialization 509

11.4.5 Overtraining, Overfitting, and Generalization 511

11.4.6 Approximator Reparameterization for Flexibility and Complexity Re-
duction . 512

11.4.7 Approximation Error Measures: Using a Test Set 513

11.5 Example: Online Steepest Descent Training of a Neural Network . 514

11.5.1 Update Formulas . 516

11.5.2 Parameter Constraints and Initialization 520

11.5.3 Approximator Tuning Results: Effects of Step Size 521

11.5.4 Approximator Tuning Results: Effects of Initialization 523

11.5.5 Can We Improve Approximation Accuracy? 524

11.5.6 Local Vs. Global Tuning/Learning . 526

11.6 Clustering for Classifiers and Approximators 528

11.6.1 Using Approximators to Solve Classification Problems 530

11.6.2 Clustering Methods: Gradient Approaches 531

11.6.3 Fuzzy C-Means Clustering and Function Approximation 536

11.7 Neural or Fuzzy: Which is Better? Bad Question! 542

11.8 Exercises and Design Problems . 543

473

Gradient techniques offer practical and effective methods to perform opti-
mization. When applied to either the offline or online function approximation
problems, they seek to find θ to minimize the function approximation error. The
methods operate in an iterative fashion by successively improving on “guesses”
(estimates) of the ideal parameter vector.

Gradient methods can be
used in a batch or online
manner to tune all
parameters of the
approximator. The basic
approach is to iteratively
adjust the parameters to
minimize the
approximation error.

Consider minimizing

J(θ, G) =
1
2

M∑
i=1

|y(i) − F (x(i), θ)|2 (11.1)

by the choice of θ = [θ1, θ2, . . . , θp]� for a given training data set

G = {(x(i), y(i)) : i = 1, 2, . . . , M}

(note that in several cases below, we will develop the theory for the case where
F (x(i), θ) and y(i) are N̄×1 vectors so that it will be clear how to update multi-
input multi-output approximators if you need to do that). In Equation (11.1),
|x̄| =

√
x̄�x̄ if x̄ is an N̄×1 vector. Clearly, if we can pick θ to minimize J(θ, G),

we will have done a good job at function approximation, at least at the training
data pairs in G (perhaps not at the test set Γ where G ⊂ Γ).

At the outset it is important to highlight the fact that, in general, the opti-
mal solution to the function approximation problem is difficult to find. Why?
Basically, the answer lies in the fact that J(θ, G) can be a very complex “land-
scape” with many hills and valleys, such as the one shown in Figure 11.1, which
is also shown in Figure 11.2 as a contour map.

The methods may search for the global minimum of such a function (which
in this case, by inspection, is at (15, 5)), but it can get distracted by the multiple
local minima at other positions (e.g., at (20, 15), which is easier to see on the
contour plot), or the very flat regions of the surface where, if you only have
a local view (i.e., not the perspective you have by looking at the plots from
a bird’s-eye view where you can see the peaks and valleys), it is difficult to
know which direction to head to find the minimum. In fact, on such low slope

Local minima arise
since, in general, the
cost function that
characterizes
approximation error is
not convex. Getting
trapped at a local
minimum corresponds to
not tuning the
approximator in a way
that could further reduce
the approximation error.

portions of the surface, relatively large changes in the parameters make very
little progress in minimizing the function (and such low slope regions are often
found in function approximation problems where the approximator structure is
“overparameterized,” i.e., more approximator structure is used than is needed
to get a low representation error and hence, large changes in some parameters
may have little effect on the shape of the function and hence, the quality of the
approximation).

In general, we will not know that we have converged to a global or local
minima for the gradient methods studied here (except in special cases). The
most we will be able to hope for is to converge to a “stationary point;” that is,
a zero slope region of the surface such as a local minimum or a flat region on
the landscape.

474 Gradient Methods

Figure 11.1: Candidate function for which we may seek to find the minimum.

0 5 10 15 20 25
0

5

10

15

20

25

θ
1

θ 2

Cost function, J (contour map)

Figure 11.2: Candidate function for which we may seek to find the minimum
(contour map).

11.1 The Steepest Descent Method 475

11.1 The Steepest Descent Method

Let θ(j) be the current estimate of the parameter vector at iteration j (note
that when we indexed θ with time we used k, but here j is used to emphasize
that the index may simply be for the training data, not time).

11.1.1 Steepest Descent Parameter Updates

The basic form of the update using a gradient method to minimize the function
J(θ, G) via the choice of θ(j), is

θ(j + 1) = θ(j) + λjd(j) (11.2)

where d(j) is the p × 1 “descent direction,” and λj > 0 is a (scalar) positive
“step size” that can depend on the iteration number j.

To see the rationale for the choice of this parameter update formula, consider
the case where θ is a scalar and where we use the simple quadratic function

J(θ, G) = θ2

in Figure 11.3, where we are searching for the point where the function reaches
the minimum by picking the scalar θ. Name the point where the minimum is

It is useful to think of
gradient methods as “hill
climbing” (here,
climbing down hills).

achieved θ∗ and assume that it is unknown and that we want to find its value.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

J

Quadratic cost function

θ(0)

θ (0)
2

θ(0)
1
2

2θ(0)

θ

Figure 11.3: Scalar quadratic J(θ, G).

476 Gradient Methods

The update formula for this scalar case, where λj = λ is a positive constant,
is

θ(j + 1) = θ(j) + λd(j)

Notice that

d(j) =
θ(j + 1) − θ(j)

λ
(11.3)

With λ as a step size, we see that d(j) is a descent direction in the sense that
it is the direction in which the parameter is moving in order to try to minimize
J(θ, G). What direction would we like this to be? We would like the parameter
updates to always move in a direction that decreases J(θ, G) because, if it
does this over a whole sequence of iterations (perhaps an infinite number of
iterations), we may get θ(j) → θ∗ as j → ∞ (so J(θ∗, G) ≤ J(θ, G) for all other
possible θ).

The above formula (Equation (11.3)) suggests that the direction should be
the slope of the function J(θ, G) at θ = θ(j). To see this, consider the example
in Figure 11.3. Suppose that the initial (best) guess of θ∗ is the θ(0) shown.
Based on this guess, how would you next guess at θ? That is, how would you
generate θ(1)? Suppose that we can compute the slope (gradient) of J(θ, G) at
θ(0). For our example, this gradient is

∂J(θ, G)
∂θ

∣∣∣∣
θ=θ(0)

= 2θ|θ=θ(0) = 2θ(0) (11.4)

and it is shown as the black arrow pointing up and to the right in Figure 11.3.
The negative of this gradient is −2θ(0) and it is shown as the black arrow
pointing down and to the left in Figure 11.3. These arrows indicate possible
directions d(j) to update the guess at θ(0). Clearly, to move down the function
J(θ, G) to minimize it, one choice would be to use the direction

Steepest descent involves
updating the parameters
in a direction that
appears to decrease the
cost function the most.

d(j) = −∂J(θ, G)
∂θ

∣∣∣∣
θ=θ(j)

(11.5)

(i.e., to move along the negative gradient). Intuitively, this choice is the
“direction of steepest descent” (it corresponds to how a skier often moves down
a snow-covered mountain) and hence, the parameter update formula for the
steepest descent method, even for the p-dimensional case, is given by

θ(j + 1) = θ(j) − λj
∂J(θ, G)

∂θ

∣∣∣∣
θ=θ(j)

(11.6)

11.1.2 Example: Convergence, Step Size, and Termina-
tion Issues

Using the hill climbing (or skiing) perspective, the step size indicates how big a
step to move in the d(j) direction. For instance, for λj = λ = 0.1 for all j, the

11.1 The Steepest Descent Method 477

update formula becomes

θ(j + 1) = θ(j) − 0.2θ(j)
= 0.8θ(j)

so clearly as j → ∞, θ(j) → θ∗ = 0, the optimum point.
In optimization you do not know where the minimum point is to begin with,

so you generally do not directly know if you are approaching it (or if you are at
it), so it is difficult to know how to terminate the updates to θ(j). That is, we
do not know when θ(j) has approached θ∗ since θ∗ is unknown. So, how do we
terminate the gradient algorithm if we need a solution after a finite number of
iterations? One way is to monitor

d(j) = −∂J(θ, G)
∂θ

∣∣∣∣
θ=θ(j)

and if

d(j) = −∂J(θ, G)
∂θ

∣∣∣∣
θ=θ(j)

= 0

clearly Equation (11.6) will stop making changes to θ(j). In practice, we often
simply terminate if

|d(j)| =

∣∣∣∣∣−∂J(θ, G)
∂θ

∣∣∣∣
θ=θ(j)

∣∣∣∣∣ ≤ ε

for some prechosen constant ε > 0; however, there are other termination issues
and methods that will be discussed later.

Next, it is important to further consider the effect of the choice of the step
size, particularly on the convergence of the estimate to its true value. If you
choose λj = λ = 0.2 for all j (i.e., double the step size compared to the choice
above), the update formula becomes

θ(j + 1) = θ(j) − 0.4θ(j)
= 0.6θ(j)

so again as j → ∞, θ(j) → θ∗ = 0, the optimum point. But notice that the “rate
of convergence” is much faster in this case since this choice for λ corresponds to
taking larger steps at each iteration. So this line of reasoning may lead one to
believe that larger step sizes are generally better; this is not, however, the case.
Notice that if you pick λj = λ = 10 for all j, then the update formula is

θ(j + 1) = θ(j) − 20θ(j)
= −19θ(j)

so that as j increases, the value of θ(j) oscillates between larger and larger values
and does not converge (in terms of Figure 11.3 it climbs up the parabola). In
this case, the step size is too big, so the algorithm is too aggressive and fails to
converge to the minimum value of J(θ, G).

478 Gradient Methods

Generally, θ(j) may not have a limit point, it may diverge as in this example,
or it may oscillate; however, gradient methods are generally able to find isolated
stationary points (i.e., ones where you can draw a sphere around them and no
other stationary points are in the sphere) if they start close to them (this is why
initialization of the algorithms is so important). Sometimes, all we can hope to
be able to show is that the parameters will remain bounded, and sometimes we
can do this by appropriately choosing the step size so that at each iteration we
are guaranteed to get descent. In this case, the parameter vector will belong to
a bounded set and so it must have at least one limit point; however, it can be
difficult to guarantee that the parameter vector will converge to a single limit
point. Clearly, the direction of descent and step size are important parameters
in the development of a gradient update formula, especially when J(θ, G) is very
complex, as it often is in practical applications.

11.1.3 Descent Direction Possibilities and Momentum

The above simple example shows intuitively that the choice of

d(j) = −∂J(θ, G)
∂θ

∣∣∣∣
θ=θ(j)

(i.e., the negative gradient) is the direction of steepest descent and that as long
as an appropriate choice is made for the step size λj , the algorithm will converge
for this example (since the function we are minimizing is convex and only has
one minimum). There are, however, many other choices that can be made for
the descent direction and these others can be useful in practical applications.
(Indeed, in the case where J(θ, G) is quadratic, there are well-known methods
for the solution to the optimization problem; in practical applications, it is
most often not quadratic.) Notice that any direction d(j) is a descent direction

Iterative update of the
parameters in any
direction that locally
appears to decrease the
cost results in viable
gradient descent
methods.

provided that the angle it makes with

∂J(θ, G)
∂θ

∣∣∣∣
θ=θ(j)

is more than 90◦. Hence, the shaded arrows in Figure 11.3 are also descent
directions for θ(0). The angle is greater than 90◦ if(

∂J(θ(j), G)
∂θ(j)

)�
d(j) < 0

As indicated, this formula also holds for the vector case. In the vector case, d(j)
is a p × 1 vector and the gradient is a p × 1 vector that is denoted by

∇J(θ(j), G) =
∂J(θ(j), G)

∂θ(j)
=

⎡
⎢⎢⎢⎢⎣

∂J(θ(j),G)
∂θ1(j)

∂J(θ(j),G)
∂θ2(j)

...
∂J(θ(j),G)

∂θp(j)

⎤
⎥⎥⎥⎥⎦ (11.7)

11.1 The Steepest Descent Method 479

Clearly, the choice of

d(j) = −∂J(θ, G)
∂θ

∣∣∣∣
θ=θ(j)

= −∇J(θ(j), G)

results in the satisfaction of this formula, but clearly many other choices do also.
One modification to the descent direction that has been found to be useful

in some applications is to use a “momentum term.” In this case the update
formula is

θ(j + 1) = θ(j) − λj∇J(θ(j), G) + β (θ(j) − θ(j − 1)) (11.8)

where 0 ≤ β < 1 is a fixed gain and β (θ(j) − θ(j − 1)) is the momentum term.
Basically, momentum accelerates progress of the update where the gradients
∇J(θ(j), G) are pointing in the same direction, but restricts update sizes when
successive gradients are roughly opposite in direction. This can tend to damp
oscillations in the parameter vector and keep the parameter vector moving in
the proper direction.

In the following sections we will consider other choices for the descent direc-
tion, ones that can be particularly effective in practical applications (e.g., for
tuning approximators that are not linear in the parameters). First, however,
we will consider the application of the steepest descent method to the tuning of
linear in the parameter approximators.

11.1.4 The Linear in the Parameter Case

For a linear in the parameter approximator y = F (x, θ) = θ�φ(x) we have, in
the case where N̄ = 1,

d(j) = − ∂J(θ, G)
∂θ

∣∣∣∣
θ=θ(j)

= − 1
2

∂

∂θ

M∑
i=1

(
y(i) − θ�φ(x(i))

)2∣∣∣∣∣
θ=θ(j)

and if we use the notation from Chapter 10, this is expressed as

d(j) = −1
2

∂

∂θ
E�E

∣∣∣∣
θ=θ(j)

where
E = [ε1, ε2, . . . , εM]� = Y − Φθ

with ε(i) = y(i)− θ�φ(x(i)). Now, if we follow the derivation of the batch least
squares estimate, we find

d(j) = −1
2

∂

∂θ
(Y − Φθ)�(Y − Φθ)

∣∣∣∣
θ=θ(j)

= −1
2

∂

∂θ

(
Y �(I − Φ(Φ�Φ)−1Φ�)Y +

480 Gradient Methods

(θ − (Φ�Φ)−1Φ�Y)�Φ�Φ(θ − (Φ�Φ)−1Φ�Y)
)∣∣

θ=θ(j)

= −1
2

∂

∂θ

(
θ�Φ�Φθ − 2θ�Φ�Φ(Φ�Φ)−1Φ�Y

)∣∣∣∣
θ=θ(j)

= −1
2

∂

∂θ

(
θ�Φ�Φθ − 2θ�Φ�Y

)∣∣∣∣
θ=θ(j)

= −1
2
(
2Φ�Φθ − 2Φ�Y

)∣∣
θ=θ(j)

= Φ�(Y − Φθ)
∣∣
θ=θ(j)

= Φ�E
∣∣
θ=θ(j)

Suppose that λk = λ > 0 is a constant so that the steepest descent update
formula for the linear in the parameters case is

θ(j + 1) = θ(j) + λΦ�E = θ(j) + λΦ�(Y − Φθ(j))

= θ(j) + λ
M∑
i=1

φ(x(i))(y(i) − θ�(j)φ(x(i))) (11.9)

= λ

(
I

1
λ
− Φ�Φ

)
θ(j) + λΦ�Y

Now, if the steepest descent approach converges (and it will, assuming certain
technical conditions are satisfied, for instance, having a diminishing step size),
we get

θ(j + 1) → θ(j) = θsd

as j → ∞ (where we call θsd the value that the steepest descent converges to).
In this case, we have

θsd = λ

(
I

1
λ
− Φ�Φ

)
θsd + λΦ�Y

Now, notice that (
I − λ

(
I

1
λ
− Φ�Φ

))
θsd = λΦ�Y

λΦ�Φθsd = λΦ�Y

so that if the inverse exists

θsd =
(
Φ�Φ

)−1
Φ�Y

and we see that (if it converges) it converges to the least squares solution that
we found in Equation (10.2). Notice, however, that this is an analysis of the
asymptotic behavior of the estimate, and sometimes it is better simply to use
an appropriate software package to compute the least squares estimate.

11.1 The Steepest Descent Method 481

This provided a comparison to the batch least squares approach in the case
where the batch of data is used in the steepest descent gradient method. What
if, instead, we proceeded as in the recursive least squares case and processed
the data sequentially? To do this, define

Gk = {(x(k), y(k))}
to be the data set at time k. In this case, since we make an iteration of the
gradient method at each step, our update formula is

θ(k + 1) = θ(k) + λkd(k)

(i.e., we replace j with k) and

d(k) = − ∂J(θ, Gk)
∂θ

∣∣∣∣
θ=θ(k)

so with λk = λ = 1 for all k, using Equation (11.9) (with M = 1 piece of data,
the piece in Gk), we have

θ(k + 1) = θ(k) + φ(x(k))
(
y(k) − θ�(k)φ(x(k))

)
Compare this to the update formula for recursive least squares given in Equa-
tion (10.12) that can be used for online parameter adjustment. Notice that the
two are not the same. The update formula for recursive least squares has the ex-
tra P (k+1) term that multiplies the second term in the above equation. Which
is the better approach? In adaptive control problems, the recursive least squares
approach tends to converge faster but you pay for this faster convergence by hav-
ing to compute P (k) and include it in the update formulas. Hence, sometimes
for simplicity we may use a steepest descent gradient approach (sometimes, with
certain modifications), even for the linear in the parameter case.

11.1.5 Step Size Choice

While in the last section (and in several subsequent ones) we focus on the
selection of the descent direction d(j), here we will consider the choice of the

Step size choice affects
rate of convergence, how
the algorithm copes with
local minima, and
asymptotic behavior of
the algorithm.

scalar step size λj . Clearly, while we will only discuss scalar step sizes, it is
possible to have a diagonal matrix of step sizes, so that different parameters are
updated at different rates.

Constant Step Size

For some applications (e.g., in adaptive control), a fixed step size λj = λ for all
j can be sufficient. Other times, it can be difficult to select λ. For instance,
see the example in Section 11.1, where for a simple example, we showed that it
is possible to pick it so that convergence is not achieved. Generally, as we saw
in that example, if λ is too small, we get slow convergence; if it is too large,
then we can get divergence. Indeed, in many problems a constant step size can

482 Gradient Methods

result in “limit cycling” (oscillations in parameter values) near a local minimum
since, when you are in a region near a local minimum, you must often take
successively smaller steps to ensure that you do not “overshoot” the solution.
Next, we discuss the case where a successively smaller step size is used.

Diminishing Step Size

In this case, the step size converges to zero as j goes to infinity, according to
some formula. That is, we pick an algorithm for forcing

λj → 0

as j → ∞. For instance, we may choose

λj =
λ

j + 1

where λ > 0 is a constant or we could pick

λj = e−αj

for some α > 0. While these rules can be simple to implement, in some cases
λj may be chosen so that it goes to zero too fast so that the algorithm slows
prematurely, before it gets near a solution. It is for this reason that often it is
required that

∞∑
j=0

λj = ∞

which, in effect, forces the step size to persistently update the parameters (pro-
vided the gradient is sufficiently large).

Another way that a diminishing step size is sometimes implemented in prac-
tical applications is to let

λj = max
{

λmin,
λmax

1 + αj

}
where at j = 0 we have λ0 = λmax > 0 and as j increases λj decreases, with
rate governed by the choice of α > 0, to λmin > 0. All these parameters would
need to be tuned for a particular application. Generally, this approach offers a
big step size early in the processing and the step size diminishes as time goes
on, but no lower than the value λmin. This ensures that the step size will not
get too small so that updates are persistently made (but of course in this case,
we do not get λj → 0 as j → ∞).

Regardless, the general problem with a diminishing step size approach for
practical applications is that it often slows convergence too much, or does not
provide a fast enough update early in the processing. Due to this, tuning of the
step size rule is normally needed. This is why in some practical problems, many
have turned to line minimization approaches and the Armijo step size rule that
we discuss next.

11.1 The Steepest Descent Method 483

Line Minimization Approaches

For this, pick a scalar λ0 > 0 that is the largest step size you think is reasonable
for the problem at hand (sometimes information from the problem domain can
suggest a choice for λ0, while other times you must guess at it and experiment
with the performance of the algorithm to get a good choice). Then, you pick λj

so that
J(θ(j) + λjd(j), G) = min

λ∈[0,λ0]
J(θ(j) + λd(j), G)

This is simply a one-dimensional “line” minimization problem. The resulting
value of λj yields the greatest reduction in the cost function over all step sizes
such that λj ≥ 0 (to keep the updates moving in the proper direction) and
λj ≤ λ0 as it is specified above. “Line search,” or what are sometimes called
“line minimization” approaches, are used to solve this problem.

There are many line minimization methods. Some, like Newton’s approach,
require the use of second derivatives, while methods like the “secant method”
only require the use of first derivatives. Other approaches use interpolation
with candidate points generated in [0, λ0], or “golden section search,” which is
an interval reduction method. See the “For Further Study” section for more
details.

Armijo Step Size Rule

In practice it is often the case that the line minimization approaches are com-
putationally expensive, so methods that are based on “successive step size re-
duction” are often used. One popular method of this type is the Armijo step
size rule.

In this rule, first pick the following scalars:

1. λ0, an initial guess at the size of the step (often, for applications that are
properly “scaled” you can pick λ0 = 1).

2. γ, 0 < γ < 1, a “reduction factor” (often, for applications, 1
10 ≤ γ ≤ 1

2).

3. σ, 0 < σ < 1, a scale factor (often, for applications, 0.00001 ≤ σ ≤ 0.1).

While this provides guidelines for the choice of these parameters, they may need
to be tuned. The Armijo step size rule is actually an iterative process for finding
the step size λj that proceeds as follows for each iteration j:

1. Let m = 0.

2. Let λj = γmλ0.

3. If
J(θ(j), G) − J(θ(j) + λjd(j), G) ≥ −σλj∇J(θ(j), G)�d(j)

then return λj as the step size to be used at iteration j. Otherwise, let
m = m + 1 (i.e., increase m by one) and go to Step 2.

484 Gradient Methods

Suppose that we apply the Armijo step size rule to the steepest descent
method so that d(j) = −∇J(θ(j), G). The test in Step 3 then evaluates if the
advance in reducing J(θ, G) (i.e., the left side of the inequality, J(θ(j), G) −
J(θ(j + 1), G)) is greater than a scaled version of the size of the gradient at
θ(j). The Armijo step size rule decreases the step size from the initial guess λ0

by a factor of γ until it is small enough to ensure a certain amount of decrease
in J(θ(j + 1), G) relative to J(θ(j), G). The amount of reduction is governed
by the parameter σ, while the rate of decrease of λj is governed by the choice
of γ (if γ is chosen too large, it can take too many iterations to find a solution,
while if it is chosen too small, it may miss a larger valid step size that could
have resulted in more decrease in the value of J(θ(j + 1), G)). Note that if
d(j) is a descent direction, ∇J(θ(j), G)�d(j) < 0 so that the Armijo step size
rule algorithm will be guaranteed to converge in a finite number of iterations.
Basically, the Armijo step size rule tries to combine the positive effects of a
constant step size rule and a diminishing step size rule. Generally, when the
gradient is large, it will try to take a big step (the size limited by the choice
of λ0) since it knows that it is probably not near a local minimum. When the
gradient is small, it assumes that it is near a local minimum, and it takes smaller
steps (clearly there is the possibility that it could reduce the steps too much so
that convergence is slowed).

Step Size Choice Via Normalizing the Gradient

While there are many other ways to pick the step size, we will close this sec-
tion with a brief discussion on one approach that has been found to be useful
for online function approximation problems. In particular, we will focus on
picking the step size for the steepest descent case for linear in the parameter
approximators by “normalizing” the gradient.

For a linear in the parameter approximator y = F (x, θ) = θ�φ(x) and the
case where we process one training data pair at a time (i.e., recursive processing
as is often done in online approximation) we have, following the development in
Section 11.1.4 in the case where N̄ = 1,

θ(k + 1) = θ(k) + λkφ(x(k))(y(k) − θ�(k)φ(x(k)))

where k is the time index. Consider the choice of

λk =
λ

1 + γφ�(x(k))φ(x(k))
(11.10)

where we consider λ > 0 to be a type of constant step size and γ to be a tuning
parameter. To see how this works, first, view the term(

y(k) − θ�(k)φ(x(k))
)

in the above update formula as simply a scalar (approximation error) that in-
dicates how close the approximator is to doing a good job at approximation at
time k. If it does well, then this term is small while if it does poorly then this

11.1 The Steepest Descent Method 485

term is larger. It does not, however, contribute to the direction of the update
(except in its sign), and only to its size so we will not consider it to be a part of
the “update direction” d(k) (you could think of it as part of the step size that
says that if you are not doing good approximation at that point, then make a
big update, but that if you are doing a good job, then make a small update).
Now, we see that the direction of the update is dictated by the vector φ(x(k))
and of course, depending on its form, it can also affect the magnitude of the
update. Clearly the size of the elements of φ(x(k)) set how big the updates
will be for the corresponding components of θ(k). In fact, φ�(x(k))φ(x(k)) is a
measure of the overall size of the update suggested by φ(x(k)) (“big” updates
result from a large φ�(x(k))φ(x(k)).

Now, with this in mind, and with the step size in Equation (11.10), we
see that if the gradient size, as characterized by φ�(x(k))φ(x(k)), is big, 1 +
γφ�(x(k))φ(x(k)) will be particularly large, so that the step size λk will be
small. If the gradient size, as characterized by φ�(x(k))φ(x(k)), is small, 1 +
γφ�(x(k))φ(x(k)) will be close to 1, so that the step size λk is close to λ. In
this case, we see that the parameter γ scales our characterization of size of the
gradient so that if, for example, γ is very small, then even larger gradients will
still result in a step size near λ.

To summarize, we see that the value of λk will vary between 0 (for a very
big gradient) and λ (for a very small gradient), with γ governing the rate of
variation between the two extremes. Hence, the step size will “diminish” if the
gradient is large, but it does not generally “diminish” to zero as time progresses
since if a local minimum is approached, then the gradient size goes to zero (not
to mention the approximation error) and the step size approaches λ. Notice,
however, that it does have one characteristic that is similar to some of the
other rules. It fixes a maximum step size (λ) no matter how big the gradient is
(compare to the Armijo step size rule).

11.1.6 Parameter Initialization, Constraints, and Update
Termination

In this section we will discuss the practical issues of how to initialize the gradient
methods (i.e., to pick θ(0)), how to incorporate constraints on the parameter
values into the dynamics of the algorithm, and if it is needed, how to terminate
the algorithm.

Parameter Initialization

The choice of θ(0) can obviously have a significant effect on the quality of a
Initialization affects
performance of the
algorithm and ultimately
the achieved
approximation accuracy.

solution provided by the gradient method. While in general you do not know
where the optimal solution θ∗ is, it is clearly best to pick θ(0) as close to this
desired value as possible. The examples in Section 10.5 illustrated this for the
recursive least squares algorithm (for the linear in the parameter case) and the
same general concepts hold here. There are, however, other practical issues in
choosing θ(0) for gradient methods.

486 Gradient Methods

First, note that since the functions J(θ, G) that we seek to minimize are in
general not necessarily bowl-shaped and can have many local minima, it is often
wise to execute the gradient algorithm for several choices of θ(0). This can help
ensure that the value you found is indeed a global minimum. However, simple
tests with multiple θ(0) cannot, in general, guarantee that you have found a
global minimum.

Second, for a neural network with sigmoid nonlinearities, if you pick θ(0)
(which will also have weights and biases of a hidden layer in it) to have certain
components that are all too large, then it could be that all (or many of) the
sigmoids are saturated so that the gradient will be small and updates will be
slow (at least at the beginning). It is for this reason that for neural networks, a
good choice for the weights and biases is often random small values. For a fuzzy
system, there can be similar issues in specifying θ(0) (e.g., if Gaussian shaped
membership functions are used and all the centers are specified to be too large,
and the consequent function parameters are set to be zero, then the gradient
will be small, at least initially).

In addition, when you generate the update formulas for a function approxi-
mator, you may find that the parameters cannot be allowed to take on certain
values (both initially and for j > 0) or there will be a divide-by-zero error or
other numerical problems. Hence, after you derive the update formulas, you
should examine them for such problems and initialize appropriately. Moreover,
you will then also need to make sure that during its operation, the algorithm
never moves the parameters to inappropriate values. We discuss this next.

Constraints on Parameters

Generally, there are several reasons why there are constraints on the parameters
in the optimization problems we study:

1. If the parameters θ(j) take on certain values, there are numerical problems
as we discussed above (e.g., division by zero).

2. Since the parameters correspond to physical values (e.g., parameters for
a neural network), there are practical limitations to their size (even in
software there can be overflows if the values are too large).

3. Sometimes we know a “feasible region” for the optimal parameter values
and hence, impose constraints on the set of values that θ(j) may take on
because searching outside this set is fruitless.

4. Sometimes, we have extra information about the form of the underlying
function that we seek to approximate (e.g., by physical insights or by
simple inspection of the training data), and this can be used to constrain
the choices of the parameters. For instance, in some problems you may
know where on the input domain the unknown function has more nonlinear
or oscillatory behavior, and hence, where you would like to “allocate” more
of the approximator structure, since this is where it is needed to get good

11.1 The Steepest Descent Method 487

approximation accuracy. For instance, if there are some oscillations in
the function in a certain region, then you may want more sigmoids or
membership functions there. Often, however you may want to allow the
training method to perform the actual allocation of structure, rather than
fixing it a priori. To do this, you would simply put appropriate constraints
on the parameters to only allow them to move in the region where more
accuracy is needed.

In any of these three cases, the constraints can be captured by requiring that

θ(j) ∈ Θ(j)

for all j ≥ 0 where Θ(j) is the (known) parameter “constraint set” at iteration
j. Often, we know that Θ(j) = Θ; that is, that the constraint set is the same at
each iteration. For convenience, assume this in the discussion below since the
case for a time-varying constraint set is similar.

There are effective ways
to incorporate into the
algorithm constraints on
parameter values that
are known a priori.

How do we ensure that θ(j) ∈ Θ for all j ≥ 0? First, we initialize so that
θ(0) ∈ Θ so that all we need to concern ourselves with is the case for j > 0. In
general, the normal approach is to assume that Θ is a convex set. Then, if for
some update the gradient method places θ(j + 1) outside Θ, you simply require
θ(j +1) to stay on the boundary of Θ. If it is on the boundary, and the gradient
update says to put it outside the boundary, leave it on the boundary. But if it
says to leave it on the boundary, or place it within Θ, you let it do that. While
it is not difficult to characterize this (and “this” is called a gradient method
with “projection” since we project the updates back into the convex feasible
parameter set) precisely in mathematical terms, in practice the implementation
is often easy and we will simply explain this.

The most common case in practice is when we know scalars θmin
i and θmax

i ,
i = 1, 2, . . . , p, such that we want

θmin
i ≤ θi(j) ≤ θmax

i (11.11)

for all j ≥ 0 (this specifies a convex set Θ = {θ : θmin
i ≤ θi ≤ θmax

i , i =
1, 2, . . . , p}). Then, each time you use a gradient update formula to generate
θ(j + 1), you test Equation (11.11) for each i = 1, 2, . . . , p and if it has chosen

θi(j + 1) > θmax
i

you let
θi(j + 1) = θmax

i

and if it has chosen
θi(j + 1) < θmin

i

you let
θi(j + 1) = θmin

i

If any generated θi(j+1) is within the range specified by Equation (11.11), then
you accept the update θi(j + 1) with no modification.

488 Gradient Methods

In this way, for all j ≥ 1 we will never update the parameter vector θ(j) to lie
outside Θ. You can see that this “projection method” is very easy to implement
in practice, and hence, it is often easy to avoid the problems outlined at the
beginning of this subsection.

Parameter Update Termination

In an offline function approximation problem, there is a need to specify a ter-
mination criterion so that when this criterion is met, the algorithm is stopped
and the final computed value of the parameters is taken to be the best solu-
tion (which below, we will call θ�, since the algorithm may not have found the
optimal solution, i.e., it may be that θ� �= θ∗). It is also possible in an online
method, where you decide to do multiple iterations of the gradient method from
one sampling instant to the next (an issue that is discussed more in the next
section), to use a type of termination criterion as we will discuss below.

It is best to use “scale-free” termination criteria such as the following:
Choice of termination
criteria is governed by
the desire to terminate
with the best possible
approximation.

1. Terminate if Parameter Change Rate is Low: Terminate if

(θ(j + 1) − θ(j))�(θ(j + 1) − θ(j)) ≤ εθ(j)�θ(j)

for some ε > 0 and let θ� = θ(j + 1). This requires the relative amount
of change in the parameter values to decrease enough before termination.
In this case, it terminates since the parameters are not changing much
anyway, so the algorithm is not making much progress. Other times, tests
that check that the parameters have not changed much over the last fixed
number of iterations are used.

2. Terminate if the Gradient is Small: Terminate if

∇J(θ(j), G)�∇J(θ(j), G) ≤ ε∇J(θ(0), G)�∇J(θ(0), G)

for some ε > 0 and let θ� = θ(j). In this case, when the size of the gradient
is small relative to its size in the beginning, then you terminate since the
algorithm is operating slowly at this point and will probably not make
many further improvements.

While such methods are often used, in practice they are often augmented
(i.e., used in conjunction with) other criteria such as the following:

1. Terminate Based on a “Validation Set”: For many problems you have an
idea of how much you would like to reduce the cost function and when
you get to this value, you terminate. Along these lines, in the function
approximation problem one common approach is to pick a “validation set”

V = {(x(i), y(i)) : i = 1, 2, . . . , Mv}
on which the cost function value will be evaluated. While some training
data from G may be used in V , it is best if V contains a significant amount

11.1 The Steepest Descent Method 489

of data that are not in G so that J(θ(j), V) is a measure of J(θ(j), Γ)
(recall that Γ is the “test set”) and hence also quantifies how well the
function approximator “generalizes” (i.e., interpolates between training
data points) and achieves its overall function approximation task. Now
using V , terminate when J(θ(j), V) starts increasing since this will stop
the algorithm before it starts generalizing poorly. Other times, you may
terminate when J(θ(j), V) < ε (i.e., when you have reduced a measure of
the function approximation error to less than some value) or

J(θ(j), V) ≤ εJ(θ(0), V)

(i.e., you have reduced a measure of the function approximation error to
some percentage of its initial value) and let θ� = θ(j). Both of these
approaches could make sense for particular applications.

2. Terminate After a Maximum Number of Iterations: In practical problems,
you simply have to set a maximum number of iterations that you will allow.
Otherwise, the above criteria may either never be met or take too long to
reach. If Nmax is the maximum number of iterations that you will allow,
upon termination you will let θ� = θ(Nmax).

Regardless of which termination method(s) you choose, it is important to
view them as something that may also need to be tuned (i.e., modified for each
application to get the best or at least an adequate approach).

11.1.7 Offline and Online, Serial and Parallel Data Pro-
cessing

In this section we discuss how data can be processed by gradient algorithms. We
focus on issues of order of data processing and parallel versus serial processing.
We will, however, discuss such issues in the context of whether we are doing
offline or online (i.e., real time) processing of training data.

The manner in which
you process the given
training data can
significantly affect the
performance of the
approximator.

Offline Processing

In this case we know G a priori and hence its size M is fixed. The gradient
methods discussed up till now (except some in the linear in the parameters
case) process the data set G in “parallel” by repeated application of the gradient
update formula to the entire data set. There are, however, ways to process the
data in G serially and this can, in some cases, lead to savings in computational
complexity, and improved convergence properties.

For instance, sometimes a sequential fixed-order processing of single data
pairs from G can improve the rate of convergence over the case where the data
in G is used in a batch fashion. In this case, you simply order the data in
G and process it in that order many times (cycle through the finite data set G
repeatedly). For each data pair you could execute one (or more) iterations of the
gradient update formula. Normally, in this case you would use the parameter

490 Gradient Methods

set last generated by the algorithm to initialize the algorithm when you start
processing another piece of data.

Other times, when G is known a priori, you can process the data from G
one at a time in a random order (perhaps with more than one iteration of the
gradient update formula for each piece of data), and sometimes this has been
found to provide better approximation accuracy.

In addition, whether you use fixed-order cycling through the data or a ran-
dom order, you could process a subset of the data in G (i.e., more than one
piece of training data) and perhaps execute more than one iteration for each
subset (again, when you start the processing for one subset you normally would
initialize the gradient update formula with the parameter set found at the last
iteration for the last subset considered). Or, you could process subsets of dif-
ferent sizes at different times. For example, you could start by processing the
data pairs one at a time and then increase the size of the subset processed at
each subsequent step (the rate of the increase in subset size would be a design
parameter) until all the data pairs in G were processed in a batch fashion. The
algorithm could then continue in the normal batch processing mode until some
termination criterion was met.

No matter which type of processing you choose for your application, it is
important to keep in mind that step size choice and data processing choices are
interrelated (e.g., sometimes you want to diminish your step size if you grow
the size of the batch of data that you process at each step).

Online Processing

The data processing issues are different for the online case since we do not know
G a priori since M → ∞ (of course, the number of data considered is never
really infinite, it is just convenient to think of it that way). The most common
case in online (real time) processing is to use one training data pair per time
step and take one iteration of the gradient formula; this aligns time steps, data
acquisitions, and iterations of the gradient update formula.

But, of course, you could gather multiple pieces of data, and iterate the
gradient update formula multiple times for each of these data sets (in this case,
we acquire data at a higher rate than we initiate processing of the gradient
update formula). Again, when you start the processing for one subset, you
normally would initialize the gradient update formula with the parameter set,
found at the last iteration for the last subset considered. Just as with the offline
approach, you could process varying sizes of subsets of data at each step, and
you will have to pay attention to the effects of data processing choice on selection
of the step size.

11.1.8 Stochastic Gradient Optimization Basics

Suppose that we seek to minimize J(θ) ≥ 0 where ∇J(θ(j)) is Lipschitz in θ.
Suppose that we use the gradient method

θ(j + 1) = θ(j) + λjd(j)

11.2 Levenberg-Marquardt and Conjugate Gradient Methods 491

with
d(j) = − (∇J(θ(j)) + n(j)) (11.12)

where ∞∑
j=0

λj = ∞,

∞∑
j=0

λ2
j < ∞ (11.13)

(so the step size results in a persistent parameter update). Also, n(j) ∈ 	p is a
vector noise term with

E[n(j)|Hj] = 0 (11.14)

where Hj = {θ(i), d(i), λi : i = 0, 1, 2, . . . , j} holds the past information from
the algorithm and E[·] denotes the expected value, and

E[n(j)�n(j)|Hj] = c1 + c2∇J(θ(j))�∇J(θ(j)) (11.15)

where c1 and c2 are two positive constants. Under these conditions the sequence
J(θ(j)) converges, limj→∞ ∇J(θ(j)) = 0, and every limit point of θ(j) is a
stationary point of J .

Equation (11.12) is a standard deterministic steepest descent approach mod-
ified at each step by perturbing the steepest descent direction with the direction
n(j). How could this help with the performance of the optimization process?
On average, due to Equation (11.14), the algorithm will move in the steepest
descent direction. Due to Equation (11.15), the noise perturbations will not be
so large that they will destroy convergence properties. On a surface J(θ) that
has many local minima, it may be that n(j) will move the updates so as to avoid
local minima (i.e., it could help “jump” out of local minima).

11.2 Levenberg-Marquardt and Conjugate Gra-

dient Methods

In this section we introduce Newton’s, conjugate gradient, and Levenberg-
Marquardt methods, the latter two of which have been found to be quite effective
in solving practical function approximation problems.

11.2.1 Newton’s Method

For the nonlinear in the parameter approximator, the cost function J(θ, G) is
not a quadratic function of θ as it is in the linear in the parameter case. For
this reason, J(θ, G) can take on very complex shapes (with many local min-
ima) with high slope regions in some areas of the parameter space and very low
slope regions in other areas. In the low slope regions, the gradient is (very)
small so if you use a constant step size, the changes to θ(j) will generally be
small and convergence will generally be (very) slow. In the high slope regions,
if a constant step size is used, the changes to θ(j) can be too large so that
convergence is not achieved. While there are a variety of approaches to try to

492 Gradient Methods

solve these problems with the steepest descent approach (e.g., adaptive step size
methods, modifications to the descent direction, such as the “momentum term”
approach), in practice such modifications are often found to be lacking. For
example, the traditional “backpropagation” algorithm is a (stochastic) steep-
est descent method whose direct application has often been found to lead to
slow convergence for practical problems. It is for these reasons that more so-
phisticated methods have been employed for tuning θ that rely on the more
sophisticated use of information from F (x, θ). The methods we are referring
to are the Newton, conjugate gradient and quasi-Newton, Gauss-Newton, and
Levenberg-Marquardt methods.

Newton’s Parameter Update Formula

Let

∇2J(θ(j), G) =
[
∂2J(θ, G)

∂θiθj

]∣∣∣∣
θ=θ(j)

be the (symmetric) p × p “Hessian matrix,” whose elements are the second
partials of J(θ, G) at θ = θ(j). In Newton’s method we make a quadratic ap-
proximation of J(θ, G) at θ(j) at each iteration j and minimize this to generate
θ(j + 1). Let the quadratic approximation at θ(j) be the second order Taylor

Newton’s method is
based on producing a
quadratic approximation
to the cost function at
the current parameter
values and then choosing
the next parameters to
be those that minimize
that quadratic cost.

series expansion of J(θ, G) at θ(j) (i.e., a Taylor series expansion truncated after
the second term), which we will denote by

Jq(θ, G) = J(θ(j), G) + ∇J(θ(j), G)�(θ − θ(j)) +
1
2
(θ − θ(j))�∇2J(θ(j), G)(θ − θ(j))

Since this is quadratic in θ, if we take the derivative with respect to θ and set
it equal to zero and solve for θ, its value will be θ(j + 1), the parameter vector
that minimizes Jq(θ(j), G). In particular,

∇Jq(θ, G) = ∇J(θ(j), G) + ∇2J(θ(j), G)(θ − θ(j))

and if we let ∇Jq(θ, G) = 0, we get θ = θ(j + 1) and Newton’s update formula
is

θ(j + 1) = θ(j) − λj

(∇2J(θ(j), G)
)−1 ∇J(θ(j), G) (11.16)

where we have added the step size λj > 0. In the case where λj = 1 for all
j, the method is called the “pure form” of Newton’s method. In this case, the
Newton direction (which may not be a descent direction since it may be that
∇2J(θ(j), G) is not positive definite, so it may be that J is not decreased at
each iteration) is

Newton’s method is not
generally practical since
it depends on
computation of the
inverse of the Hessian of
the cost function.

d(j) = − (∇2J(θ(j), G)
)−1 ∇J(θ(j), G) (11.17)

Notice here that we have to assume that ∇2J(θ(j), G) is invertible (e.g., if it
is positive definite, then it is invertible). Note also that this pure form for
Newton’s method can be attracted by both local minima and maxima. There
are many methods that have been developed to try to solve these problems with
Newton’s method.

11.2 Levenberg-Marquardt and Conjugate Gradient Methods 493

The Linear in the Parameter Case

For a function J(θ, G) that is quadratic in θ (the linear in the parameter case),
Newton’s method provides convergence in one step. To see this, first consider
our simple scalar quadratic example in Figure 11.3, where J(θ, G) = θ2. Recall
that we had

∇J(θ, G)|θ=θ(j) = 2θ(j)

so that
∇2J(θ, G)

∣∣
θ=θ(j)

= 2

Hence, Newton’s method for this simple example is given by

θ(j + 1) = θ(j) −
(

1
2

)
(2θ(j))

if we pick λj = λ = 1 for all j (i.e., a “pure” Newton update). Clearly, if we
guess any value of θ(0), we get

θ(1) = 0

so we get convergence in one step (i.e., Newton’s method modifies the descent
direction so that it converges very fast). Of course, this one step convergence (to

In tuning only
parameters that enter
linearly, the quadratic
approximation used in
Newton’s method is
exact so its first update
is a batch least squares
solution and convergence
occurs in one step.

the least squares value) only works for quadratic functions and it works because
the quadratic approximation Jq(θ, G) is exact.

In the general linear in the parameter case, using derivatives from the last
section,

∇J(θ, G)|θ=θ(j) = −Φ�E
∣∣
θ=θ(j)

and
∇2J(θ, G)

∣∣
θ=θ(j)

= Φ�Φ

so that the pure Newton method is

θ(j + 1) = θ(j) + (Φ�Φ)−1Φ�E
∣∣
θ=θ(j)

= θ(j) + (Φ�Φ)−1Φ�(Y − Φθ(j))
= (Φ�Φ)−1Φ�Y

and we see that we get one-step convergence no matter what the initial guess
θ(0) is. Note that this simply shows that for the linear in the parameter case,
Newton’s method is equivalent to a batch least squares approach and hence it
relies on the existence of the inverse shown in Equation (11.16). We pay the price
for fast convergence by assuming the existence of the inverse and computing it.

11.2.2 Conjugate Gradient and Quasi-Newton Methods

In the nonlinear in the parameter case, it is very difficult to guarantee the
existence of the inverse in the Newton update formula, and difficult to compute
it. Hence, Newton’s method is rarely used in practice for the tuning of function
approximators. Newton’s method does, however, set up a goal for us in terms of

494 Gradient Methods

convergence rate and hence, many methods try to approximate it but still avoid
the problems with the computation of the inverse. The Levenberg-Marquardt
method is one approach to avoid the computations necessary for the Newton
method but still try to achieve its nice rate of convergence properties. It is
discussed later.

In this section we briefly study other methods to try to speed up the steep-
est descent method without the extra computations associated with Newton’s
method.

Conjugate Gradient Methods

Conjugate gradient methods were originally developed for quadratic optimiza-
tion problems to try to keep the descent directions properly aligned to speed the
convergence of the steepest descent approach. In fact, for a quadratic minimiza-
tion problem with p variables, they can be shown to converge in p steps. For
nonlinear optimization problems they cannot in general be shown to provide
this fast convergence property; however, for many problems they do provide
good convergence and rate of convergence properties. They achieve this with-
out using the Hessian or any matrix inversion; hence, they have sometimes been
found to be useful for problems with a large value of p.

There are many variations on the parameter update formula for conjugate
gradient methods (many of these are equivalent for the quadratic case but dif-
ferent for the nonlinear case). Here, we pick just the most common one that is
given by

θ(j + 1) = θ(j) + λjd(j)

where λj is generated by a line minimization so that

J(θ(j) + λjd(j), G) = min
λ∈[0,λ0]

J(θ(j) + λd(j), G)

The accuracy of the line minimization can affect the performance of the algo-
rithm and often you need to experiment with the choice of parameters of the
line minimization method to get good performance. Here, we will assume that
the Armijo step size rule is used to specify λj . The descent direction d(j) is
given by

d(j) = −∇J(θ(j), G) + β(j)d(j − 1) (11.18)

where

β(j) =
∇J(θ(j), G)� (∇J(θ(j), G) −∇J(θ(j − 1), G))

∇J(θ(j − 1), G)�∇J(θ(j − 1), G)

is called the “Polak-Ribiere” formula.
In the practical application of the method, it has been found to be useful to

make certain modifications to the method to improve its convergence proper-
ties. There are many ways to modify the algorithm. For instance, the method
could be modified by using a steepest descent direction at the first step. Then,
every Ncg steps, the algorithm is “restarted” by using a steepest descent update
direction.

11.2 Levenberg-Marquardt and Conjugate Gradient Methods 495

Quasi-Newton Methods

In “quasi-Newton methods” you try to avoid problems with existence and com-
putation of the inverse in Equation (11.17) by choosing

d(j) = −Λ(j)∇J(θ(j), G)

where Λ(j) is a positive definite p × p matrix for all j and that is chosen to
approximate

(∇2J(θ(j), G)
)−1. In this way, d(j) may approximate a Newton

direction and we may get the associated fast convergence without all the extra
computations.

For example, in some cases the approximation is performed by letting Λ(j) be
a diagonal matrix with its elements set to the corresponding diagonal elements
of
(∇2J(θ(j), G)

)−1 and in this case, the method is often referred to as the
“diagonally scaled steepest descent method.” In some practical applications
this method can be quite effective.

Generally, if Λ(j) is chosen properly, for some applications much of the con-
vergence speed of Newton’s method can be achieved. In other more sophisti-
cated approaches, Λ(j) is chosen to form an approximation to the inverse of the
Hessian. Here, we outline just one, the “Broyden-Fletcher-Goldfarb-Shanno”
(BFGS) method. For this, we have

θ(j + 1) = θ(j) + λjd(j)

where λj is generated by a line minimization (e.g., the Armijo step size rule),
and

d(j) = −Λ(j)∇J(θ(j), G)

We define
c(j) = θ(j + 1) − θ(j)

and
g(j) = ∇J(θ(j + 1), G) −∇J(θ(j), G)

Then, we let Λ(0) be an arbitrary positive definite matrix, and

Λ(j + 1) = Λ(j) +
c(j)c(j)�

c(j)�g(j)
− Λ(j)g(j)g(j)�Λ(j)

g(j)�Λ(j)g(j)

+g(j)�Λ(j)g(j)h(j)h(j)�

where

h(j) =
c(j)

c(j)�g(j)
− Λ(j)g(j)

g(j)�Λ(j)g(j)

Even though storage of Λ(j) and other computational requirements can be heavy
for the BFGS method, there are situations where the BFGS method may be pre-
ferred to the conjugate gradient method. The BFGS method can provide fast
convergence when it is near a solution, and generally seems to be less sensi-
tive to line minimization accuracy. Depending on the complexity of computing
J(θ(j), G) and its gradient, you may, however find one method preferred over
the other.

496 Gradient Methods

11.2.3 Gauss-Newton and Levenberg-Marquardt Methods

Next, we consider the Gauss-Newton method that is used to solve a (nonlinear)
least squares problem, such as finding θ to minimize J(θ, G) in Equation (11.1)
when we do not use a linear in the parameter approximator. To develop the
Gauss-Newton method, we have

J(θ, G) =
1
2

M∑
i=1

|y(i) − F (x(i), θ)|2

and let the N̄ × 1 vectors

ε(i) = y(i) − F (x(i), θ)

(these are the function approximation errors arising at each piece of training
data) and define the N̄M × 1 vector

ε(θ, G) = [ε(1)�, ε(2)�, . . . , ε(M)�]�

= [ε1, ε2, . . . , εN̄M]�

(where εj, j = 1, 2, . . . , N̄M , are scalars) to be a vector containing all of the
approximation errors. Note that

J(θ, G) =
1
2

M∑
i=1

ε(i)�ε(i) =
1
2
ε(θ, G)�ε(θ, G)

In the Gauss-Newton
method, the
approximation error is
linearized about the
current parameter values
and then least squares is
used to minimize the
linearized error value to
provide the next
parameter update.

For functions J(θ, G) that are quadratic in θ (scalar or vector case), Newton’s
method gave very fast convergence (in one step). For the function approxima-
tion problem, to get J(θ, G) quadratic in θ, we use a linear in the parameter
approximator F (x, θ) = θ�φ(x) so that the approximation errors ε(i) and hence
ε(θ, G) are linear (affine) with respect to the parameters θ, and then J(θ, G) is
quadratic in θ. If F (x, θ) is nonlinear in the parameters, then so are ε(i) and
ε(θ, G).

Gauss-Newton Parameter Update Formula

To tune nonlinear in the parameter approximators in the Gauss-Newton ap-
proach, at each iteration j we proceed according to the following steps:

1. Linearize the error ε(θ, G) about the current value of θ(j).

2. Solve a least squares problem to minimize the linearized error value and
provide the next guess at the parameter, θ(j + 1).

Compared to Newton’s method, in the Gauss-Newton method you create a
quadratic approximation to the function you want to minimize at each itera-
tion, but now it is done via linearization, rather than using second derivative
information. We discuss these two steps in more detail next.

11.2 Levenberg-Marquardt and Conjugate Gradient Methods 497

First, linearize ε(θ, G) around θ(j) using a truncated Taylor series expansion
to get

ε̂(θ, θ(j), G) = ε(θ(j), G) + ∇ε(θ, G)�
∣∣
θ=θ(j)

(θ − θ(j))

where ε̂(θ, θ(j), G) is an approximation of ε(θ, G) since we omitted the higher
order terms (second order and higher) in the Taylor series expansion. We use the
notation ε̂(θ, θ(j), G) to emphasize the dependence on both θ and θ(j). Here,

∇ε(θ, G) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ε1
∂θ1

· · · ∂εN̄M

∂θ1

. . .
...

...
. . .

∂ε1
∂θp

· · · ∂εN̄M

∂θp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [∇ε1,∇ε2, . . . ,∇εN̄M] (11.19)

is a p × N̄M matrix and ∇ε(θ, G)� is the “Jacobian.”
Second, minimize the (scaled) squared norm,

Jq(θ, G) =
1
2
ε̂(θ, θ(j), G)� ε̂(θ, θ(j), G)

which is a quadratic approximation to J(θ, G) (at θ(j)), which is nonlinear in
θ, and different from the one used in Newton’s method. Let

θ(j + 1) = arg min
θ

Jq(θ, G)

= arg min
θ

1
2
ε̂(θ, θ(j), G)� ε̂(θ, θ(j), G)

(here, “argminθ” is simply mathematical notation for the value of θ that mini-
mizes the norm—it is the “argument” that provides the value that achieves the
minimization).

We know how to solve this problem. It is the same as the batch least squares
problem for the linear in the parameters case. To see this, note that

Jq(θ, G) =
1
2
E�E

with E = ε̂(θ, θ(j), G). Recall that we had

E = Y − Φθ

Here, we have

ε̂(θ, θ(j), G) =
(
ε(θ(j), G) − ∇ε(θ, G)�

∣∣
θ=θ(j)

θ(j)
)

+ ∇ε(θ, G)�
∣∣
θ=θ(j)

θ

so if we let
Y =

(
ε(θ(j), G) − ∇ε(θ, G)�

∣∣
θ=θ(j)

θ(j)
)

498 Gradient Methods

and
Φ = − ∇ε(θ, G)�

∣∣
θ=θ(j)

our least squares solution (the value of the parameter at the next iteration) is
given by Equation (10.2) as

θ(j + 1) = (Φ�Φ)−1Φ�Y

so θ(j + 1) is

− (∇ε(θ(j), G)∇ε(θ(j), G)�
)−1 ∇ε(θ(j), G)

(
ε(θ(j), G) −∇ε(θ(j), G)�θ(j)

)
where

∇ε(θ(j), G)� = ∇ε(θ, G)�
∣∣
θ=θ(j)

so that the resulting Gauss-Newton update formula is

θ(j + 1) = θ(j) − (∇ε(θ(j), G)∇ε(θ(j), G)�
)−1 ∇ε(θ(j), G)ε(θ(j), G) (11.20)

(If we had included a step size parameter, then the method is sometimes re-
ferred to as a “damped” Gauss-Newton approach.) Notice that compared with
Newton’s method, we do not need the Hessian, only the Jacobian. Essentially, a
Gauss-Newton iteration is an approximation to a Newton iteration (in the sense
that the quadratic approximation at each iteration tries to approximate the one
in Newton’s method that uses second derivative information in its quadratic ap-
proximation) so it can typically provide for faster convergence than, for instance,
steepest descent, but generally not as fast as a pure Newton method. It is also

The Gauss-Newton
method is equivalent to
the extended Kalman
filter if the data are
processed in the same
way.

interesting to note that the Gauss-Newton method is the same as the “extended
Kalman filter” (EKF) except where the linearizations are performed. (In the
EKF, where we process one data pair at a time, we perform the linearizations
at each point; for the Gauss-Newton method where batch processing is used,
we perform the linearizations for each batch.) To make the methods the same
simply involves changing how the data are processed.

Levenberg-Marquardt Parameter Update Formula

To avoid problems with computing the inverse in Equation (11.20), the method
is often implemented as

θ(j + 1) = θ(j) − (∇ε(θ(j), G)∇ε(θ(j), G)� + Λ(j)
)−1 ∇ε(θ(j), G)ε(θ(j), G)

(11.21)
where Λ(j) is a p × p diagonal matrix such that

∇ε(θ(j), G)∇ε(θ(j), G)� + Λ(j)

is positive definite so that it is invertible. Sometimes, a “Cholesky factorization”
is used to specify Λ(j) at each iteration. In the Levenberg-Marquardt method,
you choose Λ(j) = λI where λ > 0 and I is the p × p identity matrix. The

11.3 Matlab for Training Neural Networks 499

parameter λ serves a role similar to the step size. When λ = 0, we get the
standard Gauss-Newton method and as you increase λ, the descent direction
moves towards the gradient. Hence, generally thinking of λ as a step size, we
expect that for a small value of λ, we will get fast convergence; for a larger
value, we should get slower convergence.

The Linear in the Parameter Case

As a simple example, notice that in the case where J(θ, G) = θ2, ε(θ, G) = θ,
and if we pick λj = λ = 1, Λ(j) = Λ = I for all j, then ∇ε(θ, G) = 1 so the
Gauss-Newton method is

θ(j + 1) = θ(j) − θ(j) = 0

(and the Levenberg-Marquardt method would be the same if you pick λj = λ =
2). Hence, no matter what the choice is for the initial guess θ(0), θ(1) = 0, and
we get convergence in one step (similar to Newton’s method for this example).
Generally, however, this only occurs in the case where J(θ, G) is quadratic and
we have a linear in the parameters approximator.

11.3 Matlab for Training Neural Networks

There exist many software packages for solving optimization problems with gra-
dient methods (you may want to search the Web to find some public-domain
ones), and one that is particularly well-suited for the gradient training of neural
networks is the Matlab Neural Networks Toolbox.

11.3.1 Motivation to Use Software Packages

This toolbox provides a variety of tools that facilitate the construction of neu-
Excellent software
packages exist for
optimization and its
application to training
neural networks and
fuzzy systems.

ral network structures and the training of the parameters in these structures.
The training methods include steepest descent, conjugate gradient methods,
Levenberg-Marquardt, and others. Moreover, many numerical issues for these
algorithms have been tested to help ensure their robustness and numerical ac-
curacy for ease of use.

It is recommended that if you want to construct complex multilayer neural
networks (e.g., a perceptron with two or more hidden layers) or regularly work
with sophisticated practical applications, that you use some software package.
In this part we have shown the basic concepts, but there are more issues to deal
with when the networks get more complex, in addition to how sophisticated the
gradient method is. For instance, for more complex multilayer neural networks,
the recognition of the repeated calculations that are necessary in gradient update
formulas (particularly steepest descent) led to the “backpropagation” method,
which is a method for saving computations in the application of the gradient
method (even though, most often, the term “backpropagation” is used to refer
to the scheme for saving computations, and the gradient method employed).

500 Gradient Methods

The Matlab toolbox exploits the repeated calculations using a backpropagation
method and frees you from these somewhat tedious details so that you can focus
on the fundamental issues in training that are discussed here.

It is also important to point out that many software packages, including
Matlab, provide functions for general nonlinear least squares minimization (e.g.,
using the Levenberg-Marquardt method) and all you have to do is find the gra-
dients and provide the proper information to the software and it will provide a
solution. Hence, with such packages it is not only possible to train neural net-
works but also Takagi-Sugeno fuzzy systems or other approximator structures.

An exercise at the end of the chapter asks you to solve a simple function
approximation problem with software such as the Matlab toolbox. Next, we
show how to train a multilayer perceptron with the Matlab Neural Networks
Toolbox.

11.3.2 Example: Matlab Neural Networks Toolbox

In this section, we will show how to use the Matlab Neural Networks Toolbox to
tune a multilayer perceptron to match the training data shown in Figure 9.10
(this defines G and in our case, we have M = 121). In particular, we will train
a two layer multilayer perceptron with n1 = 11 hidden layer neurons that have
logistic activation functions and a linear activation function in the output layer
(as shown in Figure 9.13). We will test different training methods, and will use
500 training “epochs” in each case. The code used is given at the Web site for
the book listed in the Preface.

Gradient Descent Training

In this case we use the training option traingd which indicates that we want
to use a gradient descent approach (this is the classical “backpropagation” ap-
proach). When you execute the program, it displays data indicating how the
algorithm is performing (e.g., the mean squared error and size of the gradient)
and a plot of the mean square error versus the epoch number as shown in Fig-
ure 11.4. Notice that as training progresses, the mean squared error decreases.
The quality of the approximation for this case is shown in Figure 11.5, where we
can see by inspection that a reasonably good approximation was achieved. Note
that if you run the code at the Web site you will almost surely get a different
plot, since the data are presented in a random order for the training.

Conjugate Gradient Training

In this case we use the training option traincgp, which indicates that we want to
use a conjugate gradient approach (actually the Polak-Ribiere method). When
you execute the program, it displays data indicating how the algorithm is per-
forming (e.g., the mean squared error and size of the gradient) and a plot of the
mean square error versus the epoch number as shown in Figure 11.6. Notice
that as training progresses, the mean squared error decreases at a faster rate

11.3 Matlab for Training Neural Networks 501

0 50 100 150 200 250 300 350 400 450 500
10

-2

10
-1

10
0

10
1

Performance is 0.0484847, Goal is 0

500 Epochs

T
ra

in
in

g-
B

lu
e

Figure 11.4: Mean squared error vs. epoch number for backpropagation training.

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

D
at

a
an

d
ne

ur
al

 n
et

w
or

k
m

ap
pi

ng

Multilayer perceptron trained with Matlab NN Toolbox

Figure 11.5: Approximator mapping and data for training with backpropaga-
tion.

502 Gradient Methods

and achieves a lower value than in the standard backpropagation method shown
in Figure 11.4.

0 50 100 150 200 250 300 350 400 450 500
10

-2

10
-1

10
0

10
1

Performance is 0.0143501, Goal is 0

500 Epochs

T
ra

in
in

g-
B

lu
e

Figure 11.6: Mean squared error vs. epoch number for conjugate gradient train-
ing.

The quality of the approximation for this case is shown in Figure 11.7, where
we can see by inspection that better approximation was achieved (for this num-
ber of training epochs and specific training run) than was achieved for back-
propagation in Figure 11.5. It is typical to find slow training times for standard
backpropagation and improvements on convergence rates and approximation
errors if you compare to a conjugate gradient method.

Levenberg-Marquardt Training

In this case we use the training option trainlm, which indicates that we want to
use a Levenberg-Marquardt training approach. When you execute the program,
it displays data indicating how the algorithm is performing (e.g., the mean
squared error and size of the gradient) and a plot of the mean square error versus
the epoch number as shown in Figure 11.8. Notice that as training progresses,
the mean squared error decreases at a relatively fast rate (even faster than what
was obtained in the above training run for the conjugate gradient method in
Figure 11.6), then levels off at about the same value as that which was obtained
with the conjugate gradient method.

The quality of the approximation for this case is shown in Figure 11.9, where
we can see by inspection that better approximation was achieved (for this num-

11.4 Example: Levenberg-Marquardt Training of a Fuzzy System 503

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

D
at

a
an

d
ne

ur
al

 n
et

w
or

k
m

ap
pi

ng
Multilayer perceptron trained with Matlab NN Toolbox

Figure 11.7: Approximator mapping and data for training with a conjugate
gradient method.

ber of training epochs and specific training run) than was achieved for backprop-
agation in Figure 11.5. The result is, however, different from the one obtained
with the conjugate gradient method in Figure 11.7, in that it does not adjust
the map to the high frequency peak even though it achieves similar accuracy
(of course, this is just for this training run; you should not reach any general

To understand the
“canned” software
packages, it is useful to
build a “homemade”
optimization algorithm
for approximator tuning.

conclusions by this).

11.4 Example: Levenberg-Marquardt Training
of a Fuzzy System

In this section we study the use of the Levenberg-Marquardt method for training
a Takagi-Sugeno fuzzy system with R = 11 rules. We will tune all 44 parameters
of the approximator. Here, we consider offline batch processing of a data set
G = {(x(i), y(i)) : i = 1, 2, . . . , M} from Figure 9.10 (where in this case n = 1).

In this case, our Takagi-Sugeno fuzzy system is given by

y = Fts(x, θ) =
∑R

i=1 gi(x)µi(x)∑R
i=1 µi(x)

where gi(x) = ai,0 + ai,1x1 and the ai,j , i = 1, 2, . . . , R, j = 0, 1 are constants.

504 Gradient Methods

0 50 100 150 200 250 300 350 400 450 500
10

-2

10
-1

10
0

10
1

Performance is 0.0161823, Goal is 0

500 Epochs

T
ra

in
in

g-
B

lu
e

Figure 11.8: Mean squared error vs. epoch number for Levenberg-Marquardt
training.

Also,

µi(x) =
n∏

j=1

exp

⎛
⎝−1

2

(
xj − ci

j

σi
j

)2
⎞
⎠ = exp

(
−1

2

(
x1 − ci

1

σi
1

)2
)

where ci
j is the point in the jth input universe of discourse where the membership

function for the ith rule achieves a maximum, and σi
j > 0 is the relative width

of the membership function for the jth input and the ith rule (since n = 1, the
premise membership functions are the same as the input membership functions).
Recall that we had defined

ξj =
µj(x)∑R
i=1 µi(x)

j = 1, 2, . . . , R. For our case, we have

θ = [c1
1, . . . , c

R
1 , σ1

1 , . . . , σ
R
1 ,

a1,0, a2,0, . . . , aR,0, a1,1, a2,1, . . . , aR,1]�

for a total of p = 4R = 44 parameters to tune.

11.4 Example: Levenberg-Marquardt Training of a Fuzzy System 505

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

D
at

a
an

d
ne

ur
al

 n
et

w
or

k
m

ap
pi

ng
Multilayer perceptron trained with Matlab NN Toolbox

Figure 11.9: Approximator mapping and data for training with the Levenberg-
Marquardt method.

11.4.1 Update Formulas

The update formula, given in Equation (11.21), is

θ(j + 1) = θ(j) − (∇ε(θ(j), G)∇ε(θ(j), G)� + Λ(j)
)−1 ∇ε(θ(j), G)ε(θ(j), G)

(11.22)
where Λ(j) = λI where λ > 0 is a tuning parameter (where if λ is small, we can
generally expect faster convergence, but we may need it to be larger to ensure
the existence of the inverse) and I is the p × p identity matrix.

To make the computations for the update formula we need, for N̄ = 1, the
p × M matrix ∇ε(θ(j), G) and the M × 1 vector ε(θ(j), G). With N̄ = 1, the
scalars

εi = ε(i) = y(i) − Fts(x(i), θ)

for i = 1, 2, . . . , M , and so ε(θ, G) = [ε1, ε2, . . . , εM]�. Here,

∇ε(θ, G) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ε1
∂θ1

· · · ∂εM

∂θ1

. . .
...

...
. . .

∂ε1
∂θp

· · · ∂εM

∂θp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

506 Gradient Methods

Now, notice that for i = 1, 2, . . . , M , j = 1, 2, . . . , p,

∂εi

∂θj
=

∂

∂θj
(y(i) − Fts(x(i), θ))

= − ∂

∂θj
Fts(x(i), θ)

It is convenient to compute this partial by considering various components of the
vector in sequence (not forgetting about the minus sign in front of the partials).

First, consider the update formulas for the centers of the premise member-
Developing the update
formulas simply requires
the use of the partial of
the approximator with
respect to the
parameters.

ship functions. We will use indices i∗ and j∗ to help avoid confusion with the
indices i and j. We find, for j∗ = 1, 2, . . . , R,

∂

∂cj∗
1

Fts(x(i∗), θ) =
∂

∂cj∗
1

(∑R
i=1 gi(x(i∗))µi(x(i∗))∑R

i=1 µi(x(i∗))

)

where

µi(x(i∗)) = exp

(
−1

2

(
x(i∗) − ci

1

σi
1

)2
)

(we replaced x1 with x, since they are the same) and

ξj∗(x(i∗)) =
µj∗(x(i∗))∑R
i=1 µi(x(i∗))

Hence, we have

∂

∂cj∗
1

Fts(x(i∗), θ) =

(∑R
i=1 µi(x(i∗))

)(
gj∗(x(i∗)) ∂

∂cj∗
1

µj∗(x(i∗))
)

(∑R
i=1 µi(x(i∗))

)2

−

(∑R
i=1 gi(x(i∗))µi(x(i∗))

)(
∂

∂cj∗
1

µj∗(x(i∗))
)

(∑R
i=1 µi(x(i∗))

)2

=

(
gj∗(x(i∗)) − Fts(x(i∗), θ)∑R

i=1 µi(x(i∗))

)
∂

∂cj∗
1

µj∗(x(i∗))

For this, let

x̄j∗ = −1
2

(
x(i∗) − cj∗

1

σj∗
1

)2

so that using the chain rule from calculus

∂

∂cj∗
1

µj∗(x(i∗)) =
∂µj∗(x(i∗))

∂x̄j∗
∂x̄j∗

∂cj∗
1

11.4 Example: Levenberg-Marquardt Training of a Fuzzy System 507

We have
∂µj∗(x(i∗))

∂x̄j∗ = µj∗(x(i∗))

and
∂x̄j∗

∂cj∗
1

=
x(i∗) − cj∗

1(
σj∗

1

)2

so

∂

∂cj∗
1

Fts(x(i∗), θ) =

(
gj∗(x(i∗)) − Fts(x(i∗), θ)∑R

i=1 µi(x(i∗))

)
µj∗(x(i∗))

(
x(i∗) − cj∗

1

)
(
σj∗

1

)2

Next, for the spreads on the premise membership functions, we use the same
development above to find

∂

∂σj∗
1

Fts(x(i∗), θ) =

(
gj∗(x(i∗)) − Fts(x(i∗), θ)∑R

i=1 µi(x(i∗))

)
µj∗(x(i∗))

(
x(i∗) − cj∗

1

)2

(
σj∗

1

)3

since

∂x̄j∗

∂σj∗
1

=

(
x(i∗) − cj∗

1

)2

(
σj∗

1

)3

Next, for the parameters of the consequent functions, notice that

∂

∂aj∗,0
Fts(x(i∗), θ) =

∂

∂aj∗,0
(gj∗(x(i∗))ξj∗(x(i∗))) = ξj∗(x(i∗))

and
∂

∂aj∗,1
Fts(x(i∗), θ) = x1(i∗)ξj∗ (x(i∗))

This gives us all the elements for the ∇ε(θ, G) matrix, and hence, we can im-
plement the Levenberg-Marquardt update formula.

11.4.2 Parameter Constraint Set and Initialization

The chosen parameter constraint set simply forces the centers to lie between −6
and +6 (hence, we assume that we know the maximum variation on the input
domain a priori) and spreads to all between 0.1 and 1 and uses projection to
maintain this for each iteration. We place the constraints on the spreads for two
reasons. First, we must keep the values of the spreads above some fixed value
to ensure that we do not have a divide-by-zero error in computing the partials
needed for the update formula. Second, it seems reasonable not to have spreads
cover too much of the input domain, since then its corresponding consequent

508 Gradient Methods

(a line) would have to produce an approximation over that large portion of the
domain. We put no constraints on the parameters of the consequent functions.

The centers are initialized to be on a uniform grid across the input space,
a reasonable choice if you do not know where high frequency behavior occurs;
however, if you know that there is a region with higher frequency oscillations,
then it may be advantageous to put more centers in that region. In particular,
we choose c1

1 = −5, c2
1 = −4, up to c11

1 = 5. The spreads are all initialized to
be 0.5 so that there is a reasonable amount of separation between them when
one consequent function of one rule turns on and the other turns off. We will,
however, experiment with the effects of the size of the initial spreads on the
performance of the method. The parameters of the consequent functions are
simply initialized to be all zero. It must be emphasized that while these choices
make sense for this problem, and as you will see, work reasonably well for this
problem, other initializations may work better (and others, much worse).

11.4.3 Approximator Tuning Results: Effects on the Non-
linear Part

Here, we first consider the M = 121 case for the function shown in Figure 9.10.
We will simply show the mapping shape at various iterations and hence, will
not implement a termination criterion. We choose λ = 0.5 (you can easily tune
this parameter where, if you make it smaller, it tends to make bigger updates).
Figure 11.10 shows the mapping after just one iteration. Clearly, even after
one iteration, even though it has not tuned the centers and spreads much, the
method has chosen reasonable values for the consequent functions and this is
not surprising considering the performance of the batch least squares method
for this approach and the similarities to that method.

Next, we will focus on how the method tunes the nonlinear part of the
approximator (i.e., the µi, and hence ξi functions) but we must keep in mind
that the linear part is also being tuned at the same time. Figure 11.11 shows
that by the second iteration, there is already significant and successful tuning
of the nonlinear part so that approximation errors are reduced, particularly in
the region around x = −2.

As the algorithm continues, it continues to tune the nonlinear part of the
approximator. In particular, consider Figure 11.12 at j = 5, and we see that at
this point, the training method has done quite a good job at shaping the nonlin-
ear part to obtain good accuracy around x = −2. Note that here it is exploiting

Adjustments to the
parameters that enter
nonlinearly provide
significant tuning
flexibility for the shape
of the mapping.

the parameters that enter in a nonlinear fashion to achieve interesting shapes
for the nonlinearity (you could think of this as illustrating the inherent tuning
flexibility associated with approximators, where we tune both the parameters
that enter linearly and the ones that enter in a nonlinear fashion).

As the algorithm continues, it still continues to tune the nonlinear part of
the approximator, both in the region around x = −2 and in the high frequency
region around x = 1. In particular, consider Figure 11.13 at j = 12, and we
see that while it has tuned the parameters some, it is not much different in the
x = −2 region. It is, however, having difficulties in the x = 1 region due to

11.4 Example: Levenberg-Marquardt Training of a Fuzzy System 509

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

B
as

is
 fu

nc
tio

ns
, d

at
a,

 a
nd

 a
pp

ro
xi

m
at

or
 m

ap
pi

ng
, j

=
1

Takagi-Sugeno fuzzy system, 11 rules

Figure 11.10: Levenberg-Marquardt training of a Takagi-Sugeno fuzzy system,
mapping shape at iteration j = 1.

the high frequency behavior. It seems that for this example, for higher numbers
of iterations, it tends to leave the approximator structure near x = −2 pretty
much as it is and it tries to “fix” the part near x = 1. Consider the mapping
at iteration j = 15, which is shown in Figure 11.14. Notice that in the x = 1
region, there is a significant change in the nonlinear shape. It tends to keep
moving this shape around near x = 1 to try to improve accuracy.

Now, this is where the issue of termination arises. Do you terminate at
j = 12 and declare success? Do you try to run the algorithm for many more
iterations to see if it can “allocate” more approximator structure to the x =
1 high frequency region to improve the accuracy further? If you use more
iterations will the overall approximation accuracy improve? Or, will it get even
worse that it is here? These are all important issues, but they tend to be very
application dependent. It is best if you are simply aware of all these issues and
experiment with the particular application at hand to try to get the best possible
results (where the definition of “best” certainly depends on the constraints of
the particular application).

11.4.4 Approximator Tuning Results: Effects of Initializa-
tion

Next, consider the same initial parameters as above except let the spreads all be
0.2 instead of 0.5. Figure 11.15 shows the mapping shape at j = 1 and we see

510 Gradient Methods

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

B
as

is
 fu

nc
tio

ns
, d

at
a,

 a
nd

 a
pp

ro
xi

m
at

or
 m

ap
pi

ng
, j

=
2

Takagi-Sugeno fuzzy system, 11 rules

Figure 11.11: Levenberg-Marquardt training of a Takagi-Sugeno fuzzy system,
mapping shape at iteration j = 2.

that the approximator is not performing too well. The small spread results in
sharp transitions between the rules so that there is a sharp transition between
the lines that are used in the consequents.

Figure 11.16 shows the mapping shape at j = 2. We see that the centers are
updated to values that were similar to the 0.5 initialization case; the algorithm
quickly recovers from what appeared to be a poor initialization (and then the
behavior is qualitatively similar to the case where the spreads were initialized
with 0.5 after j = 2).

Next, we will use the same initial parameters as above, except let the spreads
all be 1 instead of 0.5. Figure 11.17 shows the mapping shape at j = 1 and
this shows that as we smooth out the membership functions, we tend to get
a smoothed out function. This time, however, the method does not recover
from this initialization as fast as when the spreads were initialized at 0.2. For
instance, notice that by j = 15 the mapping shape, which is shown in Fig-
ure 11.18, is not much better in the region around x = −2; it has, however,
done something interesting: up to this point, the algorithm has focused on try-
ing to allocate approximator structure to the high frequency region to try to
improve approximation accuracy there.

Overall, these simulations show that the performance of the algorithm clearly
depends on the initialization. We would like to start with the best possible
initialization; however, for practical problems it can be particularly difficult to
get a good one for a particular application without having significant insights

11.4 Example: Levenberg-Marquardt Training of a Fuzzy System 511

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

B
as

is
 fu

nc
tio

ns
, d

at
a,

 a
nd

 a
pp

ro
xi

m
at

or
 m

ap
pi

ng
, j

=
5

Takagi-Sugeno fuzzy system, 11 rules

Figure 11.12: Levenberg-Marquardt training of a Takagi-Sugeno fuzzy system,
mapping shape at iteration j = 5.

into the physics of the problem or by performing analysis on the data before
training. Hence, even in practical problems, you may want to use the same basic
approaches that we use here for this simple problem.

11.4.5 Overtraining, Overfitting, and Generalization

Next, we consider the case where M = 13, which is a much smaller data set
Poor generalization,
which is bad
interpolation between
training data, can occur
if the approximator is
too complex relative to
the amount of
information in the
training data. You want
your approximator
simple to help avoid poor
generalization, yet
complex enough to
provide flexibility to
match the unknown
function.

than used above. We still use R = 11 rules and tune 44 parameters, so our
number of parameters is greater than the number of data points. We use our
earlier choice of initial parameters as c1

1 = −5, c2
1 = −4, up to c11

1 = 5 with all
the spreads as 0.5. Also, we use λ = 0.5 as earlier. In Figure 11.19, we show the
mapping shape at j = 1, and we see that it picks a reasonable shape considering
how little information it has been given. There is, however, a problem when we
train with so few data and so many parameters, that becomes even clearer if we
allow a few more iterations to occur. In particular, consider Figure 11.20, where
the mapping is shown at j = 12. We see that the algorithm, in one sense, does
a very good job. It matches the training data almost exactly at every point.
However, this causes a problem since at points outside the training data, the
matching to the unknown function is poor (consider, e.g., the large peak near
x = 1, where even though the mapping goes through one point in that region,
we know its shape is not appropriate for the problem at hand). This is called
poor “generalization.” If the approximator generalizes well, then it will produce

512 Gradient Methods

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

B
as

is
 fu

nc
tio

ns
, d

at
a,

 a
nd

 a
pp

ro
xi

m
at

or
 m

ap
pi

ng
, j

=
12

Takagi-Sugeno fuzzy system, 11 rules

Figure 11.13: Levenberg-Marquardt training of a Takagi-Sugeno fuzzy system,
mapping shape at iteration j = 12.

a good interpolation between the training data, not one that provides large
oscillations between the data. Moreover, if you study Figure 11.20 carefully
(and compare it to Figure 9.9 when noise is not added to the function), as
we have seen in the least squares case, the approximator is failing also in the
sense that it is trying to match the noise in the function (i.e., it is exhibiting
overfitting).

How do we avoid these problems? First, you would normally never pick p >
M ; that is, you will normally have fewer parameters than training data pairs.
Next, in some applications you need to make sure that you do not “overtrain;”
that is, use too many iterations of the gradient update method. Sometimes this
can result in forcing the approximator to match exactly at the data pairs at
the expense of performing poor generalization (i.e., poor interpolation between
the training data). Sometimes, the use of a “validation set” can help to detect
when poor generalization is occurring and the updating can be terminated.

11.4.6 Approximator Reparameterization for Flexibility
and Complexity Reduction

Sometimes an approximator has too much flexibility, in the sense that there
are many ways to tune the parameters to get good approximation accuracy.
One way to reduce this flexibility, and thereby simplify the parameter update
method, is to make some of the parameters of the approximator that enter

11.4 Example: Levenberg-Marquardt Training of a Fuzzy System 513

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

B
as

is
 fu

nc
tio

ns
, d

at
a,

 a
nd

 a
pp

ro
xi

m
at

or
 m

ap
pi

ng
, j

=
15

Takagi-Sugeno fuzzy system, 11 rules

Figure 11.14: Levenberg-Marquardt training of a Takagi-Sugeno fuzzy system,
mapping shape at iteration j = 15.

in a nonlinear fashion a function of some of the other parameters. In this
way we reduce tuning flexibility, but not so much as to reduce it to the case
where we only tune the parameters that enter in a linear fashion. For example,
one way to do this for the Takagi-Sugeno fuzzy system is to simply make the
spreads a function of the centers. One way to do this is to pick the spreads so
that neighboring premise membership functions always cross over each other at
0.5. This way, when many centers are allocated to a region to try to improve
approximation accuracy, the choice of the spreads will allow for the “turning
on” and “off” of the appropriate consequent functions for a high density of
membership functions. This approach could be good for some applications, but
it should be emphasized that it does reduce approximator flexibility and so for
some applications, it may not be a good choice. Moreover, the exact methods
to specify the function specifying how the spreads change based on the centers
will depend on the particular application.

11.4.7 Approximation Error Measures: Using a Test Set

To focus on other issues, we have been glossing over the issues of the use of
a “test set” Γ for evaluating the approximation quality of our approximators.
Instead we have been relying on visual inspection of the plots to comment on
approximation accuracy. Generally, for more complex multidimensional appli-
cations, this is not a good approach and you will want to use some type of

514 Gradient Methods

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

B
as

is
 fu

nc
tio

ns
, d

at
a,

 a
nd

 a
pp

ro
xi

m
at

or
 m

ap
pi

ng
, j

=
1

Takagi-Sugeno fuzzy system, 11 rules

Figure 11.15: Levenberg-Marquardt training of a Takagi-Sugeno fuzzy system,
mapping shape at iteration j = 1, different initialization.

numerical measure of approximation accuracy where you measure the accuracy
both at the training data points and at points in between these. In addition,
you will often want to evaluate the approximator for points where it is “extrap-
olating” from the data (e.g., at the end points of the input domains).

Such approximation error measures, based on, for example, a sum of squares
or the maximum error over the domain, provide a way to quantify accuracy, and
hence to compare different training methods and approximation structures.

11.5 Example: Online Steepest Descent Train-
ing of a Neural Network

For online function approximation, we must choose how we will process the
data that we gather online. Here, we simply use Gk = {(x(k), y(k))} so that we
acquire and process one data pair at each time step. We will assume that N̄ = 1
so that there is only one output and hence y(k) is a scalar (the development
is similar for many outputs). Once again we will train the neural network to
match the function in Figure 9.10.

We will use a single hidden layer neural network. Recall that φj , j =
1, 2, . . . , n1 denotes the output of the jth neuron in the hidden layer, and bj

is its bias. We defined

wj = [w1,j , w2,j , . . . , wn,j]�

11.5 Example: Online Steepest Descent Training of a Neural Network 515

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

B
as

is
 fu

nc
tio

ns
, d

at
a,

 a
nd

 a
pp

ro
xi

m
at

or
 m

ap
pi

ng
, j

=
2

Takagi-Sugeno fuzzy system, 11 rules

Figure 11.16: Levenberg-Marquardt training of a Takagi-Sugeno fuzzy system,
mapping shape at iteration j = 2, different initialization.

so φj = f(bj + (wj)�x). Here, for every neuron in the hidden layer, we use the
activation function

f(x̄) =
1

1 + exp(−x̄)

Recall that wj , j = 1, 2, . . . , n1 denotes a weight in the output layer and b is
the bias for the output layer neuron. We have w = [w1, w2, . . . , wn1]�. With a
linear activation function in the output layer, the approximator is

y = Fmlp(x, θ) = b +
n1∑

j=1

wj

(
f(bj + (wj)�x)

)
If we tune all the parameters of this approximator, both the ones that enter
linearly and in a nonlinear fashion, we let

θ = [(w1)�, b1, (w2)�, b2, . . . , (wn1)�, bn1 , w
�, b]�

In this case, if n is the number of inputs to the approximator, the number of
parameters to be tuned is p = nn1 + n1 + n1 + 1 = n1(n + 2) + 1.

Here, we use the steepest descent training method to update the parameter
vector θ = [θ1, θ2, . . . , θp]� and use a constant step size. We will only execute
one iteration of the gradient update formula for each piece of data gathered;
hence, we are aligning gradient iterations with time steps. In particular, for our

516 Gradient Methods

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

B
as

is
 fu

nc
tio

ns
, d

at
a,

 a
nd

 a
pp

ro
xi

m
at

or
 m

ap
pi

ng
, j

=
1

Takagi-Sugeno fuzzy system, 11 rules

Figure 11.17: Levenberg-Marquardt training of a Takagi-Sugeno fuzzy system,
mapping shape at iteration j = 1, different initialization.

online case, our update formula is given in Equation (11.6), which we repeat
here as

θ(k + 1) = θ(k) − λ
∂J(θ, Gk)

∂θ

∣∣∣∣
θ=θ(k)

where λ > 0 is the constant step size. Recall that we have a cost function given
by Equation (11.1), which in our case is

J(θ, Gk) =
1
2

(y(k) − Fmlp(x(k), θ))2

From this, in order to fully specify the parameter update law, it is clear that we
must provide

∂J(θ, Gk)
∂θ

for this case. This is what we do next.

11.5.1 Update Formulas

Clearly, we have

∂J(θ, Gk)
∂θ

=
1
2

∂

∂θ
(y(k) − Fmlp(x(k), θ))2

= −ε
∂Fmlp(x(k), θ)

∂θ

11.5 Example: Online Steepest Descent Training of a Neural Network 517

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

B
as

is
 fu

nc
tio

ns
, d

at
a,

 a
nd

 a
pp

ro
xi

m
at

or
 m

ap
pi

ng
, j

=
15

Takagi-Sugeno fuzzy system, 11 rules

Figure 11.18: Levenberg-Marquardt training of a Takagi-Sugeno fuzzy system,
mapping shape at iteration j = 15, different initialization.

where we let the scalar ε(k) = y(k) − Fmlp(x(k), θ). Now, using the definition
of the approximator structure

∂Fmlp(x(k), θ)
∂θ

=
∂

∂θ

⎛
⎝b +

n1∑
j=1

wjf
(
bj + (wj)�x

)⎞⎠
At this point, it is convenient to develop the update formula for different com-
ponents of the θ vector individually, since there will be special cancellations in
each case. First, we derive the case for the weights of the hidden layer, then its
biases. Then we will proceed to the case for the parameters that enter linearly,
the weights and bias of the output layer.

Development of update
formulas simply requires
the chain rule from
calculus and some
algebra.

To help avoid confusion with the use of the indices, we will use j∗ and i∗ to
denote the particular parameter value that we seek to derive the update formula
for. Hence, we seek to find, for j∗ = 1, 2, . . . , n1, and i∗ = 1, 2, . . . , n,

∂Fmlp(x(k), θ)
∂wi∗,j∗

=
∂

∂wi∗,j∗

⎛
⎝b +

n1∑
j=1

wjf
(
bj + (wj)�x

)⎞⎠
Now, taking the partial we find, using the chain rule from calculus,

∂Fmlp(x(k), θ)
∂wi∗,j∗

= wj∗
∂

∂wi∗,j∗
f
(
bj∗ + (wj∗)�x

)

518 Gradient Methods

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

B
as

is
 fu

nc
tio

ns
, d

at
a,

 a
nd

 a
pp

ro
xi

m
at

or
 m

ap
pi

ng
, j

=
1

Takagi-Sugeno fuzzy system, 11 rules

Figure 11.19: Levenberg-Marquardt training of a Takagi-Sugeno fuzzy system,
mapping shape at iteration j = 1, M = 13.

= wj∗
∂f

∂x̄j∗

∂x̄j∗

∂wi∗,j∗

Here, x̄j∗ = bj∗ + (wj∗)�x and note that using simple rules from calculus, with
the above definition for the logistic function,

∂f

∂x̄j∗
= f(x̄j∗)(1 − f(x̄j∗))

If we had used the hyperbolic tangent for the activation functions f , then

∂f

∂x̄j∗
= 1 − (f(x̄j∗))2

Returning to the logistic function case, notice that

∂x̄j∗

∂wi∗,j∗
= xi∗

so
∂Fmlp(x(k), θ)

∂wi∗,j∗
= wj∗f(x̄j∗)(1 − f(x̄j∗))xi∗

Hence, the update formula for the weights in the hidden layer is

wi,j(k + 1) = wi,j(k) + (11.23)
λε(k)wjf

(
bj(k) + (wj)�(k)x(k)

) (
1 − f

(
bj(k) + (wj)�(k)x(k)

))
xi(k)

11.5 Example: Online Steepest Descent Training of a Neural Network 519

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

B
as

is
 fu

nc
tio

ns
, d

at
a,

 a
nd

 a
pp

ro
xi

m
at

or
 m

ap
pi

ng
, j

=
12

Takagi-Sugeno fuzzy system, 11 rules

Figure 11.20: Levenberg-Marquardt training of a Takagi-Sugeno fuzzy system,
mapping shape at iteration j = 12, M = 13.

for j = 1, 2, . . . , n1, and i = 1, 2, . . . , n, where ε(k) = y(k) − Fmlp(x(k), θ(k)).
Next, we will derive the update formula for the biases that enter the n1

neurons in the hidden layer. For this, for j∗ = 1, 2, . . . , n1,

∂Fmlp(x(k), θ)
∂bj∗

= wj∗
∂

∂bj∗
f
(
bj∗ + (wj∗)�x

)
= wj∗

∂f

∂x̄j∗

∂x̄j∗

∂bj∗

= wj∗f(x̄j∗)(1 − f(x̄j∗))

Note that
∂x̄j∗

∂bj∗
= 1

Hence, we get the update formula

bj(k + 1) = bj(k) + (11.24)
λε(k)wj(k)f

(
bj(k) + (wj)�(k)x(k)

) (
1 − f

(
bj(k) + (wj)�(k)x(k)

))
for j = 1, 2, . . . , n1, where ε(k) = y(k) − Fmlp(x(k), θ(k)).

Next, we derive the update formula for the n1 weights in the output layer.
For this, for j∗ = 1, 2, . . . , n1,

∂Fmlp(x(k), θ)
∂wj∗

= f
(
bj∗ + (wj∗)�x

)

520 Gradient Methods

Hence, we get the update formula

wj(k + 1) = wj(k) + λε(k)f
(
bj(k) + (wj)�(k)x(k)

)
(11.25)

for j = 1, 2, . . . , n1, where ε(k) = y(k)−Fmlp(x(k), θ(k)). Notice that this is the
update formula for parameters that enter linearly, and you will generally find
such a relationship for this case.

Finally, we derive the scalar update formula for the bias b in the output
layer. For this

∂Fmlp(x(k), θ)
∂b

= 1

Hence, we get the update formula

b(k + 1) = b(k) + λε(k) (11.26)

where ε(k) = y(k) − Fmlp(x(k), θ(k)).
To summarize, the update formulas for θ(k) are given by Equations (11.23),

(11.24), (11.25), and (11.26). Clearly, while we use only one constant step size,
you could use different ones for the different update formulas.

Notice that, as a practical computational issue, there are many shared cal-
culations that are used in the update formulas. It is for this reason that it is
probably best to first update the output layer bias, the output layer weights,
the hidden layer biases, then finally the hidden layer weights (and then each
update can use some of the calculations needed for the previous update).

11.5.2 Parameter Constraints and Initialization

Notice that for the update formulas we derived, there are no particular values
of parameters that will cause, for instance, the functions on the right side of
the update formulas to be undefined (which could cause, e.g., a divide-by-zero
error). Hence, we will not have to constrain the parameters to avoid such
situations. Moreover, in this simple example, we will not assume that, due to
implementation concerns, the parameters must lie in certain bounded regions.
For this reason, we will not put any constraints on the parameter update laws
from a parameter constraint set. We emphasize, however, that generally the
more information you have about the underlying function, the more you tend to
know about how to initialize the approximator. Here, for the sake of illustration,
we assume that we know nothing useful for the initialization (even though we
could certainly analyze the data to learn some useful ideas for initialization, just
as we have done in Section 10.5).

How do we initialize the algorithm? That is, how do we specify θ(0)? There
are many ways to choose this, but often in practice the parameters are sim-
ply chosen to be random small values (here in one case we choose θi(0) to be
uniformly distributed on [−0.1, 0.1]). This often tends to be a good choice for
several reasons. First, we get some initial random distribution of the biases
that place the sigmoid functions across at least some small region of the space

11.5 Example: Online Steepest Descent Training of a Neural Network 521

(sometimes, if you know the range of possible values on some input space a pri-
ori, then you can spread the sigmoids randomly across this range). Next, by
choosing the weights to be small but random, we start with “steps” that are
going both up and down with small slopes and this tends to make sure that the
gradient is not too small initially. Finally, the small values for the output layer
provide something close to picking the values at zero, which as we saw in the
recursive least squares case, can be a good choice.

There are many cases for practical applications where you can determine
what may be a better initialization than simply using small random values.
For instance, in Section 10.5, we chose initial values for the parameters of the
approximator that enter in a nonlinear fashion (i.e., the hidden layer weights and
biases) in a way that when it was tuned with the recursive least squares method,
it determined a good approximation to the function after 300 iterations. It did
this whether we chose the initial values for the parameters that enter linearly
(the output layer weights and bias) as all zero, or if we used values perturbed
off the ones that batch least squares finds. Such initialization by some educated
guessing at the nonlinear part and using batch least squares to specify the linear
part is generally a good approach and one that we will study here. We must
keep in mind, however, that in practical applications you are sometimes limited
by how many data are available a priori so that initialization with batch least
squares is not always possible. It is for this reason that we will also study the
case where we simply pick the parameters that enter linearly to be zero.

11.5.3 Approximator Tuning Results: Effects of Step Size

For our example, we pick n1 = 25, the same as we have studied in the recursive
least squares case in Section 10.5. Notice that now, however, we will tune all 76
parameters of the neural network. Tuning this many parameters is probably not
necessary for this problem to get a reasonable level of accuracy (e.g., consider the
similar effects on the shape of the nonlinearity for the weights in the hidden and
output layers), but we will use this example simply for illustration. Without
much tuning, we picked λ = 0.1 or λ = 0.01 to illustrate the differences in
the algorithm’s behavior (and we note that if you pick it too much larger, the
algorithm will diverge in some cases, as it did for the simple scalar quadratic
example considered earlier).

When you use the batch least squares initialization, with λ = 0.1, you get
For a fixed step size,
under very general
conditions,
asymptotically the map
will “oscillate” by
persistently trying to
match the most recent
data. Smaller step sizes
result in smaller
asymptotic oscillations,
but slower convergence.

the results shown in Figure 11.21 for the first 10 steps, in Figure 11.22 for the
last 10 steps, and in Figure 11.23 at k = 1000 steps. Notice that the algorithm
quickly tunes the shape to be a reasonable approximation, but that it does not
ultimately achieve the kind of approximation accuracy that was achieved with
the recursive least squares method in Section 10.5, even though it has what
is most likely a better initialization (the actual values found from batch least
squares, rather than the perturbed ones used there).

If you examine the shapes in Figure 11.22 for the last 10 steps, you find that
the accuracy found at k = 1000 is also found at earlier steps and the shape
changes at each iteration try to accommodate the new piece of training data

522 Gradient Methods

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
1

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
2

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
3

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
4

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
5

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
6

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
7

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
8

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
9

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
10

Figure 11.21: Steepest descent training of a neural network, mapping shapes for
first 10 steps, batch least squares initialization, step size λ = 0.1.

(hence, the result in Figure 11.23 should only be taken as representative of the
shapes found). The shape is still moving around at k = 1000 (and will for higher
numbers of iterations also); it is not fixed at that point.

Next, if you use the batch least squares initialization, with λ = 0.01, you
get the results shown in Figure 11.24 for the first 10 steps, in Figure 11.25 for
the last 10 steps, and in Figure 11.26 after 1000 steps. Notice that with a
smaller value for λ, the shape initially changes slowly and also near the end.
Basically, the algorithm is less aggressive in trying to match each new piece of
training data. This may be a desirable characteristic of an algorithm for online
operation in some applications. Generally, larger step sizes will tend to force
the method to pay more significant attention to each new piece of data, while
smaller ones allow for it to partially ignore new data. There is generally a good
choice that will allow the algorithm to slowly shape the nonlinear mapping as
new information is gathered, allowing new information to partially reshape the
nonlinearity, but not too much so that the information encountered in the past
is not forgotten (some think of the algorithm as being “greedy” in seeking to
achieve the minimization, which in this case means that it tries to approximate
the information provided by the new piece of training data, with the amount of
greed proportional to the step size). Sometimes, to keep the shape from moving
around too much at each step, you have to use a very small step size, and then
generally you need more steps in the algorithm to get convergence.

Next, recall that we are presenting data to the algorithm where x is uniformly

11.5 Example: Online Steepest Descent Training of a Neural Network 523

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
99

1

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
99

2

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
99

3

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
99

4

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
99

5

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
99

6

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
99

7

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
99

8

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
99

9

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
10

00

Figure 11.22: Steepest descent training of a neural network, mapping shapes for
last 10 steps, batch least squares initialization, step size λ = 0.1.

distributed on [−6, 6]. Now, if we are unlucky and we only get data in one region
of the x domain over several initial steps, then we generally will not get the kind
of initial accuracy that you see in Figure 11.21. Clearly if it does not have data
in certain regions, then it generally will do poor approximation in that region
(of course you may get lucky and it may do a good extrapolation). Generally,
the performance and convergence properties of the algorithm depend on the
order of presentation of the training data. Finally, note that while we have run
the algorithm for many iterations and the parameters did not diverge, we must
emphasize that this does not prove that they will not; it could be that after only
a few more iterations they will diverge. Generally, you must be very careful to
ensure boundedness for parameters that you adjust online and one way to do
this is to use a parameter constraint set (which we did not do here just to keep
things simple).

11.5.4 Approximator Tuning Results: Effects of Initializa-
tion

In this subsection, we will assume that λ = 0.01. First, we initialize the param-
eters that enter linearly to be all zero, as we did for the recursive least squares
method in Section 10.5. Using this initialization, we get the approximator map-
ping shown in Figure 11.27 after 1000 iterations (the plots for the first and last
ten steps are omitted as they are similar to the case above where we initialized

524 Gradient Methods

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

y,
 k

=
10

00

Neural network trained with steepest descent

Figure 11.23: Steepest descent training of a neural network, mapping shape
after 1000 steps, batch least squares initialization, step size λ = 0.1.

with batch least squares). At 1000 iterations, this approximator shape provides
an approximation accuracy that is clearly close to that shown in Figure 11.23.
It seems that in this case for this choice of training data (which is random), the
steepest descent method ultimately picked the parameters just as well as when
it had (what was probably) a better initialization. We can say that it seemed to
overcome the poor initialization in this case (of course, we cannot always expect
this).

When we initialize with all small random values, the results are shown in
Figure 11.28 after 1000 steps. The mapping shapes for the first 10 iterations
are not shown, but basically, it is as you would guess: little progress is seen
in coming up with a good approximation since λ is small and the initialization
is not very good. The mapping shapes for the last 10 iterations are close to
the one shown in k = 1000 in Figure 11.28, showing that it appears that the
mapping shape has converged. Hence, it seems that we have found that this
initialization, which is often used when you know nothing better about how to
initialize the mapping, results in poorer approximation accuracy as compared
to the others.

11.5.5 Can We Improve Approximation Accuracy?

Well, there are many things that you can try, but the choices depend on the
particular application. For the simple example we have been studying, there is

11.5 Example: Online Steepest Descent Training of a Neural Network 525

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
1

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
2

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
3

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
4

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
5

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
6

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
7

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
8

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
9

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
10

Figure 11.24: Steepest descent training of a neural network, mapping shapes for
first 10 steps, batch least squares initialization, step size λ = 0.01.

clearly room for improvement of approximation accuracy, and there are several
options that become apparent after completion of the above investigations.

First, you could try to use a diminishing step size rule, such as the one that
starts with a certain step size and then decreases it to some minimum value.
For some applications, this can ensure that the initial data are quickly used
to tune the approximator to get a reasonable accuracy, but then the step size
decreases so that the oscillations in the shape of the mapping do not occur at
later iterations after it has learned more about the shape.

Second, you could try processing more than one data pair per step, for
instance, by “windowing” the data. Then, at each iteration, you would execute
several iterations of the gradient method to try to get the approximator to match
the function (often you would simply terminate the iterations after some fixed
number, since you will often be constrained by processor resources; however,
other times you could use a termination criterion at each step). This can help
alleviate the problems with the algorithm being too aggressive in seeking to
match the data pair just encountered. In such an approach, you could weight
the old data as being less important than the new data, just as we did in the
least squares approach with a forgetting factor. To do this, you would need to
add weighting factors to the cost function you are trying to minimize. Overall,
such an approach can offer improved accuracy but you are certainly paying for
it in computational complexity.

Third, you could try to use a different gradient method such as the Levenberg-

526 Gradient Methods

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
99

1

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
99

2

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
99

3

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
99

4

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
99

5
-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
99

6

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
99

7

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
99

8

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
99

9

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
10

00

Figure 11.25: Steepest descent training of a neural network, mapping shapes for
last 10 steps, batch least squares initialization, step size λ = 0.01.

Marquardt method, and again you may want to consider serially processing
batches of data as we discussed above (with the computational complexity gen-
erally increasing with an increase in the batch size). Why might this have a
chance at improving approximation accuracy? First, it should try to approxi-
mate a Newton method so that it should get fast convergence, but even with
tuning, you may get the type of behavior seen with the steepest descent method
where the mapping shape oscillates. Second, experience has shown that the
Levenberg-Marquardt approach is generally better than the steepest descent al-
gorithm for offline training, so we might find the same or similar benefits for
online training. At the same time, using a more sophisticated method can raise
other problems, such as ensuring that the inverse for the Levenberg-Marquardt
update formulas can be computed.

11.5.6 Local Vs. Global Tuning/Learning

It is interesting to consider how the mapping shape changes over time as we
have done in the recursive least squares case. To do this, we will return to
the first case where we had initialized with the batch least squares and had
λ = 0.1 (see Figures 11.21, 11.22, and 11.23), since this will most dramatically
illustrate the ideas here. Figure 11.21 shows the approximator nonlinearity for
the first 10 steps, and notice that for the first 5 steps, the approximator does
not have much data and hence the quality of approximation is quite poor. Next,

11.5 Example: Online Steepest Descent Training of a Neural Network 527

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

y,
 k

=
10

00
Neural network trained with steepest descent

Figure 11.26: Steepest descent training of a neural network, mapping shape
after 1000 steps, batch least squares initialization, step size λ = 0.01.

however, notice that at k = 6 a data pair is obtained, and the approximator
is tuned to provide a reasonable approximation to the given data (although it
does not match the data near x = 5 very well). At times k = 7, 8, 9, data are
obtained on the left side and the approximator shape changes very little. Now,
at k = 10, a data point is obtained on the right, but it does not modify the
approximator shape much to try to improve the accuracy, because the step size
is relatively small.

For some approximator
structures trained with
some methods, learning
in the present can
destroy what has been
learned in the past (the
stability-plasticity
dilemma).

What would we have liked to see in this initial sequence? Well, by k = 4, we
had data on the right side that the approximator did not match very well, and
we would have liked to see it do better. Then, when at steps k = 5, 6, 7, 8, 9,
it got data on the left side we would have liked to see it let the approximator
pass through the data gathered earlier, but also force the approximator to pass
through these new data. Then, when the data pair is gathered at k = 10, we
would like to have seen it adjust the approximator on the right, without disturb-
ing (forgetting) what it had already done on the left. In summary, we would
have liked it to have made “local” adjustments to the approximator nonlinear-
ity, depending on where it gathered data, so that it incrementally learns the
proper shape.

Such problems arise for a variety of reasons, such as step size choice, the
choice of using a gradient method, and only processing one data point at each
iteration; however, one other significant contributing factor can be the choice
of the approximator structure. For neural networks with sigmoid nonlineari-

528 Gradient Methods

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

y,
 k

=
10

00

Neural network trained with steepest descent

Figure 11.27: Steepest descent training of a neural network, mapping shape
after 1000 steps, parameters that enter linearly initialized to zero.

ties, and other approximators, a change in one parameter can change the whole
mapping shape (like the bias on the output layer, which shifts the whole plot
vertically up and down) so that when it should only be shaping the mapping
locally, where it got the training data it does so “globally.” At times, this is not
a problem as the method can sometimes be designed so that it shapes the non-
linearity appropriately, or since the neural network is a universal approximator,
it can provide for local learning too if it picks the parameters properly. Some-
times, however, it is difficult to achieve this with the neural network or with
other approximator structures. At times, it can be beneficial to force a type
of local learning to help overcome this problem by picking the nonlinear part
of the approximator to have functions that approximately have “local support”
(i.e., they are only positive in a certain domain of the input space) so that only
local adjustments are made. Radial basis function neural networks can achieve
local support as well as the Takagi-Sugeno fuzzy system with Gaussian input
membership functions.

11.6 Clustering for Classifiers and Approxima-
tors

It is important to realize that gradient methods are very general and applicable
to many optimization problems you can encounter in engineering. In particular,

11.6 Clustering for Classifiers and Approximators 529

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

y,
 k

=
10

00
Neural network trained with steepest descent

Figure 11.28: Steepest descent training of a neural network, mapping shape
after 1000 steps, parameters initialized to small random values.

they have been found to be useful in many roles in the development of intelligent
control systems. One area that they can be particularly useful is in the tuning of
nonlinearities to partition data vectors into different “classes” (the data vectors
can be numeric representations of the parameters of many different kinds of
objects, from computer vision and image processing data, to speech signals
and plant input-output data). These can then be used in “classifiers” that
can take a given input vector and indicate which of a finite set of classes that
input corresponds to. There is a wide variety of “pattern recognition” problems
that can use classification methods. In some approaches, the data vectors are
grouped into “clusters” that partition the data. Then, when an input is given,
the membership in each cluster is determined and the one it best matches is
declared to be the cluster that the data vector belongs to. In this way, even if
we get an input vector that is somewhat different from the center of the cluster
(e.g., due to noise), it can still correctly classify the object to the proper class.

There are also times when it is useful to use clustering to tune a portion of
an approximator to solve a function approximation problem. For instance, using
the “input portion” x of the training data set G, we can form clusters around
similar x vectors. Then we can use these clusters in the nonlinear portion of
the approximator (i.e., in the φ function) and train the remaining linear portion
of the approximator to solve a function approximation problem. Indeed, the
classification problem discussed above can be thought of as a type of function
approximation problem where the output portion of the training data y simply

530 Gradient Methods

indicates which class x belongs to, where (x, y) ∈ G. It is for this reason that
many different approximators and training methods of the previous sections can
be used for the classification task.

In this section, after we explain how to use approximators as classifiers, we
show how to form clusters around data. The resulting methods will be shown
to provide either classifiers or function approximators. You can think of the
methods of this chapter as a different approach to tune nonlinear in the pa-
rameter approximators. Here, you first use a cost function that characterizes
quality of clustering to get the clusters, and hence the nonlinear portion of the
approximator. Then you can use a linear least squares criterion that charac-
terizes approximation accuracy to specify a least squares method to find the

Classifiers indicate
which group of data
(cluster) an input vector
belongs to (is associated
with).

parameters that enter linearly.

11.6.1 Using Approximators to Solve Classification Prob-
lems

We must emphasize that any of the methods developed in the previous sections
can be used as function approximators to solve a classification problem. To
explain how this is done in a bit more detail, note that the key to formulating
the classification problem as a function approximation problem is to start by
picking the data set and this will suggest whether you use a single- or multiple-
output approximator.

Single-Output Classifiers

One way is to assume that we have nc different classes that objects can belong to.
Here, our objects are characterized by (parameterized by) a vector of n numbers.
Suppose that these classes are simply labeled with numbers 1, 2, . . . , nc. Suppose
that we have M examples that pair objects with their classes, such as (x(i), y(i))
where x(i) is a specific data vector and y(i) ∈ {1, 2, . . . , nc} is its class. Clearly,
we can use these data to specify the training data set G and the resulting
approximator (which has n inputs and one output) can be trained to classify
the data. In such an approach, the output will be a scalar and you will have to
specify a method to determine which integer 1, 2, . . . , nc the output is closest to
in order to classify it into one of the finite number of possible classes.

Note that the issue of approximator structure choice can be very important
in the design of a classifier. For instance, suppose that nc = n = 2 and that the
input space is simply split by a line where vectors on one side of the line belong
to the first class and the ones on the other side belong to the second class. In this
case, it may be good to use a neural network with a logistic function since it can
then be tuned to provide for the splitting of the space along the line mentioned
above. If the two classes were defined by being in or out of a circular region,
then a different nonlinearity might work better. Which one? Usually the choice
is very application-dependent and requires significant insight into the problem;
however, in this case you may consider a normalized Gaussian function (like ξi

that we had used for the fuzzy systems) since it can then provide a function that

11.6 Clustering for Classifiers and Approximators 531

naturally comes on in a circular region, and a function that comes on everywhere
but in a circular region. (Develop and sketch one to convince yourself of this.)

Similar issues in structure choice arise in the multi-output classifiers that we
discuss next.

Multiple-Output Classifiers

Another perhaps more common way to formulate the classification problem as
a function approximation problem is to construct a multi-output approximator
with nc outputs. View this multi-output system as nc multi-input single-output
systems. Consider how to train the jth output to classify whether the input
vector x is a member of class j where j ∈ {1, 2, . . . , nc}. Suppose that we have
M examples that pair objects with their classes but in a different way than in
the last subsection. Here, suppose that we have Mj data pairs (x(i), y(i)) where
x(i) is a specific data vector and y(i) ∈ {0, 1} where if x(i) is in class j, then
y(i) = 1 and if it is not in class j, then y(i) = 0. The entire data set for training
the classifier is simply the union of the data sets used to train each classifier
(then M =

∑nc

j=1 Mj for the data set G). Now, suppose that we have trained
the nc approximators with these data sets.

How does the classification process work? Suppose that we consider only the
jth classifier that tries to decide if the input vector is in the jth class. Suppose
that we call the approximator that was trained for this task Fj(x, θ) (of course,
θ is the parameter vector that resulted from the training process). For a given
x, we could test if Fj(x, θ) ≥ 0.5 and if it is, then we could indicate that x has
class j (and if it is not, then it is not of class j). There are several possible
problems with such an approach. First, for a given x there may be more than
one output that is greater than 0.5 so that a single vector could be classified as
being in two different classes (and often you would not want this). Second, it is
possible that there is no j such that the value of Fj(x, θ) ≥ 0.5 and in this case,
it does not know how to classify.

Hence, the common approach is to pick the output, say j∗, that has a max-
imum value and then indicate that x has class j∗. Mathematically, we say that
we decide that the given input x is of class j∗ where

j∗ = arg max
j=1,2,...,nc

{Fj(x, θ)}

(if there is more than one value that has the maximum value, then you simply
arbitrarily pick one). Note that with this approach, we will always have a unique
classification. But, of course, if all the values of Fj(x, θ) are close to zero, we
may not be very confident in the classification. In fact, in some applications it
may make sense to use the output of the classifier to indicate the confidence in
the classification.

11.6.2 Clustering Methods: Gradient Approaches

In this section we take a different approach to the classification problem from
in the last subsection. Here, we specify functions that are designed to partition

532 Gradient Methods

data in certain ways and try to adjust the parameters of these functions so that
they group the data into clusters. We do not explicitly focus on a function
approximation problem; however, we note that these methods can be used with
other methods to construct approximators (e.g., see the next section, where
we couple a clustering method with a least squares approach to form a function
approximator). The clustering methods of this section could be used in a similar
role.

Cluster Functions

First, we give some examples of how to specify what we will call “cluster func-
tions” that are nonlinear functions designed to partition data. There are a wide
variety of possibilities for such functions and we only consider two here (the first
one will be studied in more detail in the next section).

Polynomial-Based Function: Let

vj = [vj
1, v

j
2, . . . , v

j
n]�

denote the jth “cluster center” where j = 1, 2, . . . , R. Let

pj(x) =

[
R∑

k=1

(|x − vj |2
|x − vk|2

) 1
m−1
]−1

(11.27)

j = 1, 2, . . . , R be the “polynomial-based” cluster functions. Here, we must have
m > 1. Note that m controls the “width” of all the clusters.

As an example, consider the case where n = 1 and R = 3. Let m = 2. A
plot of pj, j = 1, 2, 3 for the case where v1 = −5, v2 = 0, and v3 = 5 is shown
in Figure 11.29 (see top plot). We use a solid line for p1, a dashed line for p2,
and a dotted line for p3. Notice that the clusters provide “soft” partitions for
the x domain. When one function is near one, the others are near zero. At the
outer edges of the domain of x (i.e., for large |x| values), the cluster function
values all approach the same value.

A plot of pj , j = 1, 2, 3 for the case where v1 = −3, v2 = 6, and v3 = 1 is
shown in Figure 11.30 (see top plot). In this case, notice that it also achieves a
good partitioning of the x axis.

Gaussian-Based Function: For j = 1, 2, . . . , R, let

µj(x) =
n∏

i=1

exp

⎛
⎝−1

2

(
xi − cj

i

σj
i

)2
⎞
⎠

where cj
i is the point in the ith input xi where the function achieves a maximum,

and σj
i > 0 is the “width” of the function for the ith input. (This is simply the

Gaussian premise membership function used earlier for fuzzy systems.) We will

11.6 Clustering for Classifiers and Approximators 533

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

x

Polynomial-based cluster functions

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

x

Gaussian-based cluster functions

Figure 11.29: Polynomial and Gaussian-based cluster functions.

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

x

Polynomial-based cluster functions

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

x

Gaussian-based cluster functions

Figure 11.30: Polynomial and Gaussian-based cluster functions.

534 Gradient Methods

use this function to construct another type of cluster function. In particular,
we “normalize the Gaussian functions” by letting

ξj =
µj(x)∑R
i=1 µi(x)

j = 1, 2, . . . , R. We can use these functions as cluster functions. Note that
in Takagi-Sugeno fuzzy systems, we used them to turn on and off different
consequent functions.

As an example, consider the case where n = 1 and R = 3. A plot of ξj ,
j = 1, 2, 3, for the case where c1

1 = −5, c2
1 = 0, and c3

1 = 5, with σ1
1 = 1, σ2

1 = 0.7,
and σ3

1 = 1, is shown in Figure 11.29 (see bottom plot). We use a solid line for
ξ1, a dashed line for ξ2, and a dotted line for ξ3. Notice that these functions
provide a different type of partitioning of the domain from the polynomial-based
function. Besides the shapes being different, at the outer edges of the domain,
all the points would be grouped together into the outermost cluster. Notice also
that the widths for all the functions can be different, while in the polynomial-
based case, the widths are all controlled by one parameter. This added flexibility
may or may not be useful (and of course, the polynomial-based function can be
modified to provide this characteristic).

It is also possible that a cluster of this type exhibits other shapes that may
be useful. For instance, it can be the case that one cluster can come on (i.e.,
achieve a value near one) in more than one region of the space. However, note
that due to the normalization (i.e., the division by the sum of the µi), the sum
of the cluster function values at any one x point must be one. This ensures that
as one cluster function increases, the others must decrease so that any input is
in a cluster in varying amounts and never completely in more than one cluster.

As an example, a plot of ξj , j = 1, 2, 3, for the case where c1
1 = −3, c2

1 = 6,
and c3

1 = 1, with σ1
1 = 1, σ2

1 = 0.1, and σ3
1 = 1, is shown in Figure 11.30 (see

bottom plot). Compare this to the result from the polynomial-based function
and notice that the result is quite different. Notice that here ξ3 is very near
one (i.e., it is on) for x ∈ [0, 5] and x ≥ 7. This characteristic of this cluster
function could be useful in some applications (but may be bad for others) and
provides for some interesting cluster shapes (not just the standard ones). For
instance, in the case where n = 2, it is possible to have what you may call
circular concentric clusters with a circle in the middle and doughnut-shaped
clusters centered around it.

Clustering Cost Functions

In this section we provide cost functions that we will seek to minimize to make
Clustering via a gradient
method involves
adjusting functions
representing clusters to
minimize a measure of
how the data are grouped
and separated.

the cluster functions partition the data.

Cost for Polynomial-Based Function: Consider the function

J(θ) =
M∑
i=1

R∑
j=1

(µij)m|x(i) − vj |2 (11.28)

11.6 Clustering for Classifiers and Approximators 535

where m > 1, vj are the cluster centers, typically M >> R, and the µij are
scalars. Here, the parameter vector θ holds both the cluster centers and the µij

scalars. Intuitively, the µij for i = 1, ..., M and j = 1, ..., R are the grades of
membership of x(i) in the jth cluster. Typically, you would require that for each
i = 1, 2, . . . , M ,

∑R
j=1 µij = 1 so that the centers are placed so that no more

than one will have a value of 1 at any point on the input domain (this forces
us to solve a nonlinear optimization problem with constraints, and this will be
discussed below). The terms |x(i) − vj |2 are included to try to get the clusters
to be in the middle of the data. The (µij)2 values weight the terms |x(i)− vj |2
and they are adjusted so that the cluster centers will separate to find different
groups of data.

Cost for Gaussian-Based Function: Recall that cj
i is the point in the ith

input where the jth cluster center reaches a maximum. Let

cj = [cj
1, c

j
2, . . . , c

j
n]�

and think of this as a cluster center. Consider the function

J(θ) =
M∑
i=1

R∑
j=1

ξj(x(i))|x(i) − cj |2 (11.29)

Here, θ can hold both the cj and σj
i values. Sometimes, however, it may be

convenient to use the same value for all the σj
i and you may only want to adjust

that single value. Alternatively, you may simply want to fix the values of the
spreads, for instance, to be all the same value (this can simplify the optimization
problem). Conceptually, the cost function is closely related to the one used for
the polynomial-based function. Notice, however, that the clustering problem
for the Gaussian-based function is a nonlinear optimization problem without
constraints.

Cluster Adjustment Methods

For the cost function for the Gaussian-based function defined in the last section,
it is possible to define a gradient update formula and use it to iteratively update
the parameters of the cluster functions. The gradient ∇J(θ) can be found and

Specification of gradient
update formulas for
cluster functions requires
the same general
approach as for
approximators.

used with the methods of the last section. For instance, you may want to use
a steepest descent or Levenberg-Marquardt method to solve the minimization
problem. Clearly, standard initialization and termination issues for gradient
algorithms are relevant. Also, we must emphasize that there are no convergence
guarantees, so we will not know if we have found a global minimum of the cost
function.

The cost function for the polynomial-based function can also be minimized
but in doing so, we must guarantee that the method ensures that for each
i = 1, 2, . . . , M ,

∑R
j=1 µij = 1 (this is a constrained minimization problem). In

the next section we will show one method to do this.

536 Gradient Methods

11.6.3 Fuzzy C-Means Clustering and Function Approxi-
mation

As indicated above, “clustering” is the partitioning of data into subsets or groups
We can use clustering
methods to tune the
parameters that enter
nonlinearly, and linear
least squares to tune the
parameters that enter
linearly. This is just one
of many possible
“hybrid” training
methods.

based on similarities between the data. Here, we will introduce a method to per-
form fuzzy clustering, where we seek to use fuzzy sets to define soft boundaries
to separate data into groups. The methods here are related to conventional
ones that have been developed in the field of pattern recognition. In the c-
means approach, we continue in the spirit of the previous methods in that we
use optimization to pick the clusters and, hence, the premise membership func-
tion parameters. The consequent parameters are chosen using the weighted
least squares approach developed earlier. In this way, we show one way to use a
clustering method in the construction of function approximators. The combined
least squares-clustering method has been called “clustering with optimal output
predefuzzification.”

Clustering for Specifying Rule Premises

Fuzzy clustering is the partitioning of a collection of data into fuzzy subsets
or “clusters” based on similarities between the data, and can be implemented
using an algorithm called fuzzy c-means.

C-Means Cost Function: Fuzzy c-means is an iterative algorithm used to
find grades of membership µij (scalars) and cluster centers vj (vectors of di-
mension n × 1) to minimize the cost function

J(θ) =
M∑
i=1

R∑
j=1

(µij)m|x(i) − vj |2 (11.30)

where m > 1 is a design parameter. Here, M is the number of input-output data
pairs in the training data set G, R is the number of clusters (number of rules) we
wish to calculate, x(i) for i = 1, ..., M is the input portion of the input-output
training data pairs, vj = [vj

1, v
j
2, . . . , v

j
n]� for j = 1, ..., R are the cluster centers,

µij for i = 1, ..., M , and j = 1, ..., R is the grade of membership of x(i) in the
jth cluster. Also, |x| =

√
x�x where x is a vector. Intuitively, minimization of

J results in cluster centers being placed to represent groups (clusters) of data.

The Premises and Fuzzy System to be Constructed: Fuzzy cluster-
ing will be used to form the premise portion of the If-Then rules in the fuzzy
system we wish to construct. The process of “optimal output predefuzzifica-
tion” (least squares training for consequent parameters) is used to form the
consequent portion of the rules. We will combine fuzzy clustering and optimal
output predefuzzification to construct multi-input single-output fuzzy systems.
Extension of our discussion to multi-input multi-output systems can be done by
repeating the process for each of the outputs.

11.6 Clustering for Classifiers and Approximators 537

In this section we utilize a Takagi-Sugeno fuzzy system in which the conse-
quent portion of the rule-base is a function of the crisp inputs such that

If Hj Then gj(x) = aj,0 + aj,1x1 + · · · + aj,nxn (11.31)

where n is the number of inputs and Hj is an input fuzzy set given by

Hj = {(x, µHj (x)) : x ∈ X1 × · · · × Xn} (11.32)

where Xi is the ith universe of discourse, and µHj (x) is the membership function
associated with Hj that represents the premise certainty for rule j; and gj(x) =
a�j x̂ where aj = [aj,0, aj,1 . . . , aj,n]� and x̂ = [1, x�]� where j = 1, . . . , R. The
resulting fuzzy system is a weighted average of the output gj(x) for j = 1, ..., R
and is given by

Fts(x, θ) =

∑R
j=1 gj(x)µHj (x)∑R

j=1 µHj (x)
(11.33)

where R is the number of rules in the rule-base. Next, we will use the Takagi-
Sugeno fuzzy model, fuzzy clustering, and optimal output defuzzification to
determine the parameters aj and µHj (x), which define the fuzzy system. We
will do this via a simple example.

Clustering Algorithm

We first discuss the choice of some of the parameters and initialization. Then
we will provide a method to iteratively update the cluster centers and µij . To
do this, we will use a simple example with the training data set

G =
{([

0
2

]
, 1
)

,

([
2
4

]
, 5
)

,

([
3
6

]
, 6
)}

(11.34)

as shown in Figure 11.31. For the clustering method, we will only use the input
portion of the training data; however, when we seek to form our approximator,
we will also use the output data.

1

2

3

4

5

6
7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 yx

x

1

2

Figure 11.31: A simple training data set G.

538 Gradient Methods

Initialization: To specify the clustering algorithm, we first specify a “fuzzi-
ness factor” m > 1, which is a parameter that determines the amount of overlap
of the clusters. If m > 1 is large, then points with less membership in the jth

cluster have less influence on the determination of the new cluster centers. Next,
we specify the number of clusters R we wish to calculate. The number of clus-
ters R equals the number of rules in the rule-base and must be less than or
equal to the number of data pairs in the training data set G (i.e., R ≤ M). We
also specify the error tolerance εc > 0, which is the amount of error allowed in
calculating the cluster centers. We initialize the cluster centers vj

0 via a random
number generator so that each component of vj

0 is no larger (smaller) than the
largest (smallest) corresponding component of the input portion of the training
data. The selection of vj

0, although somewhat arbitrary, may affect the final
solution.

For our simple example, we choose m = 2 (a typical choice) and R = 2, and
let εc = 0.001. Our initial cluster centers were randomly chosen to be

v1
0 =

[
1.89
3.76

]

and

v2
0 =

[
2.47
4.76

]
so that each component lies in between x1(i) and x2(i) for i = 1, 2, 3 (see the
definition of G in Equation (11.34)).

Cluster Center Calculations: Next, we compute the new cluster centers vj

based on the previous cluster centers to try to minimize the cost function in
Equation (11.30). The necessary conditions for minimizing J are given by using
Lagrange multiplier theory as

vj
new =

∑M
i=1 x(i)(µnew

ij)m∑M
i=1(µ

new
ij)m

(11.35)

where

µnew
ij =

⎡
⎣ R∑

k=1

(
|x(i) − vj

old|2
|x(i) − vk

old|2
) 1

m−1
⎤
⎦−1

(11.36)

for each i = 1, . . . , M and for each j = 1, 2, . . . , R such that
∑R

j=1 µnew
ij = 1

(and |x|2 = x�x). In Equation (11.36), we see that it is possible that there
exists an i = 1, 2, . . . , M such that |x(i) − vj

old|2 = 0 for some j = 1, 2, . . . , R.
In this case, the µnew

ij is undefined. To fix this problem, let µij for all i be any
nonnegative numbers such that

∑R
j=1 µij = 1 and µij = 0, if |x(i) − vj

old|2 �= 0.
Using Equation (11.36) for our example with vj

old = vj
0, j = 1, 2, we find that

µnew
11 = 0.6729, µnew

12 = 0.3271, µnew
21 = 0.9197, µnew

22 = 0.0803, µnew
31 = 0.2254,

11.6 Clustering for Classifiers and Approximators 539

and µnew
32 = 0.7746. We use these µnew

ij from Equation (11.36) to calculate the
new cluster centers

v1
new =

[
1.366
3.4043

]
and

v2
new =

[
2.5410
5.3820

]
using Equation (11.35).

Testing for Termination: Next, we compare the distances between the cur-
rent cluster centers vj

new and the previous cluster centers vj
old (which for the

first step is vj
0). If |vj

new − vj
old| < εc for all j = 1, 2, . . . , R, then the cluster

centers vj
new accurately represent the input data, the fuzzy clustering algorithm

is terminated, and we proceed to the optimal output defuzzification algorithm
(see below) where we use a least squares method. Otherwise, we continue to
iteratively use Equations (11.35) and (11.36) until we find cluster centers vj

new

that satisfy |vj
new − vj

old| < εc for all j = 1, 2, . . . , R. For our example, vj
old = vj

0,
and we see that |vj

new − vj
old| = 0.6328 for j = 1 and 0.6260 for j = 2. Both of

these values are greater than εc, so we continue to update the cluster centers.
Proceeding to the next iteration, let vj

old = vj
new, j = 1, 2, . . . , R from

the last iteration, and apply Equations (11.35) and (11.36) to find µnew
11 =

0.8233, µnew
12 = 0.1767, µnew

21 = 0.7445, µnew
22 = 0.2555, µnew

31 = 0.0593, and
µnew

32 = 0.9407 using the cluster centers calculated above, yielding the new
cluster centers

v1
new =

[
0.9056
2.9084

]
and

v2
new =

[
2.8381
5.7397

]
Computing the distances between these cluster centers and the previous ones,
we find that |vj

new −vj
old| > εc, so the algorithm continues. It takes 14 iterations

before the algorithm terminates (i.e., before we have |vj
new − vj

old| ≤ εc = 0.001
for all j = 1, 2, . . . , R). When it does terminate, name the final membership
grade values µij and cluster centers vj , i = 1, 2, . . . , M , j = 1, 2, . . . , R.

Finding the Final Cluster Center Values: For our example, after 14
iterations the algorithm finds µ11 = 0.9994, µ12 = 0.0006, µ21 = 0.1875,
µ22 = 0.8125, µ31 = 0.0345, µ32 = 0.9655,

v1 =
[

0.0714
2.0725

]

and

v2 =
[

2.5854
5.1707

]

540 Gradient Methods

Notice that the clusters have converged so that v1 is near x(1) = [0, 2]� and v2

lies in between x(2) = [2, 4]� and x(3) = [3, 6]�.

Specifying the Premise Membership Function: The final values of vj ,
j = 1, 2, . . . , R, are used to specify the premise membership functions for the
ith rule. In particular, we specify the premise membership functions as

µHj (x) =

[
R∑

k=1

(|x − vj |2
|x − vk|2

) 1
m−1
]−1

(11.37)

j = 1, 2, . . . , R where vj , j = 1, 2, . . . , R are the cluster centers from the last
iteration that uses Equations (11.35) and (11.36). It is interesting to note that
for large values of m, we get smoother (less distinctive) membership functions.
This is the primary guideline to use in selecting the value of m; however, often
a good first choice is m = 2. Next, note that µHj (x) is a premise membership
function that is different from any that we have considered. With the premises
of the rules defined, we next specify the consequent portion.

Least Squares for Specifying Rule Consequents

We apply “optimal output predefuzzification” to the training data to calculate
the function gj(x) = a�

j x̂, j = 1, 2, . . . , R for each rule (i.e., each cluster center),
by determining the parameters aj . There are two methods you can use to find
the aj .

Approach 1: For each cluster center vj , in this approach we wish to minimize
the squared error between the function gj(x) and the output portion of the
training data pairs. Let x̂(i) = [1, (x(i))�]� where (x(i), y(i)) ∈ G. We wish to
minimize the cost function Jj given by

We may use the µij

from the clusters to
weight the batch least
squares calculation so
that the linear
approximations pertain
to each cluster.

Jj =
M∑
i=1

(µij)2
(
y(i) − (x̂(i))�aj

)2
(11.38)

for each j = 1, 2, . . . , R where µij is the grade of membership of the input
portion of the ith data pair for the jth cluster that resulted from the clustering
algorithm after it converged, y(i) is the output portion of the ith data pair from
G, (x(i), y(i)), and the multiplication of (x̂(i))� and aj defines the output gj(x)
associated with the jth rule for the ith training data point.

Looking at Equation (11.38), we see that the minimization of Jj via the
choice of the aj is a weighted least squares problem. From Equation (10.2)
on page 424, the solution aj for j = 1, 2, . . . , R to the weighted least squares
problem is given by

aj = (X̂�D2
j X̂)−1X̂�D2

j Y (11.39)

11.6 Clustering for Classifiers and Approximators 541

where

X̂ =
[

1 ... 1
x(1) ... x(M)

]�
Y = [y(1), . . . , y(M)]�,

D2
j = (diag([µ1j , . . . , µMj]))

2

For our example, the parameters that satisfy the linear function gj(x) = a�
j x̂(i)

for j = 1, 2 such that Jj in Equation (11.38) is minimized, were found to be
a1 = [3, 2.999,−1]� and a2 = [3, 3,−1]�, which are very close to each other.

Approach 2: As an alternative approach, rather than solving R least squares
problems, one for each rule, we can use the least squares methods to specify
the consequent parameters of the Takagi-Sugeno fuzzy system. To do this, we
simply parameterize the Takagi-Sugeno fuzzy system in Equation (11.33) in a
form so that it is linear in the consequent parameters; then we can use batch
or recursive least squares methods to find the parameters. Unless we indicate
otherwise, we will always use approach 1 in this book.

Testing the Approximator

Suppose that we use approach 1 to specify the rule consequents. To test how
accurately the constructed fuzzy system represents the training data set G in
Figure 11.31 on page 537, suppose that we choose the test point x′ such that
(x′, y′) �∈ G. Specifically, we choose

x′ =
[

1
2

]
We would expect from Figure 11.31 that the output of the fuzzy system would
lie somewhere between 1 and 5. The output is 3.9999, so we see that the trained
Takagi-Sugeno fuzzy system seems to interpolate adequately. Notice also that
if we let x = x(i), i = 1, 2, 3 where (x(i), y(i)) ∈ G, we get values very close to
the y(i), i = 1, 2, 3, respectively. That is, for this example, the fuzzy system
nearly perfectly maps the training data pairs. We also note that if the input to
the fuzzy system is x = [2.5, 5]�, the output is 5.5, so the fuzzy system seems
to perform good interpolation near the training data points.

Finally, we note that the aj will clearly not always be as close to each other
as for this example. For instance, if we add the data pair ([4, 5]�, 5.5) to G
(i.e., make M = 4), then the cluster centers converge after 13 iterations (using
the same parameters m and εc as we did earlier). Using approach 1 to find the
consequent parameters, we get

a1 = [−1.458, 0.7307, 1.2307]�

and
a2 = [2.999, 0.00004, 0.5]�

542 Gradient Methods

For the resulting fuzzy system, if we let x = [1, 2]� in Equation (11.33), we get
an output value of 1.8378, so we see that it performs differently from the case
for M = 3 but still provides a reasonable interpolated value.

11.7 Neural or Fuzzy: Which is Better? Bad

Question!

If you are asking this question, it shows that you do not understand the funda-
mental concepts!

• You should be concerned about whether your training data carries the
proper information to perform good approximation. Is the training data
set large enough? Is the test set large enough? Does your measure of
approximation accuracy properly reflect your approximation goals? Did
you start with a simple linear (or affine) approximator and a linear least
squares method? For many applications this can be sufficient; you only
need all the capabilities of neural or fuzzy system approximators if you
have a nonlinear approximation problem.

• You should realize that for practical applications, the choice of which is
the best approximator structure is very difficult and you cannot quickly
conclude that one is better than another.

• You should be concerned with approximator complexity and approximator
tunability for your application. For example, via experience have you
found that a certain type of structure works well? Or, based on physical
insights, can you use nonlinear functions of input data as inputs to your
approximator?

• You should ask whether to use a local or globally supported basis function
(i.e., one that only has a local influence on the approximator mapping, or
one that, if it is changed, can change the shape over the whole region of
the mapping).

• You should ask whether you have too many inputs (i.e., too large a value
for n) so that it is not possible to use a grid if you are using a locally
supported basis function (i.e., you should be concerned with the impact
of how many inputs you have on the computational complexity in approx-
imator structure choice).

• You should ask whether you should use a linear or nonlinear in the pa-
rameter approximator, since this affects tuning flexibility and training
algorithm performance.

The names “neural” or “fuzzy” are largely attached simply for historical pur-
poses due to the fields that they came from. Really you need to think of the
basics, not this terminology. Focus on generalization, overfitting, complexity,

11.8 Exercises and Design Problems 543

and composition of the data set. Generally, structure choice is quite difficult
so it needs attention; however, methods to automate the construction of the
structure are discussed in the “For Further Study” section at the end of this
part.

11.8 Exercises and Design Problems

Exercise 11.1 (Matlab for Neural Network Training):

(a) Suppose you use a multilayer perceptron with two layers, the first
layer has n1 = 11 logistic function neurons, and the output layer has a
single linear neuron. Use a software package (e.g., the Matlab Neural
Networks toolbox) to match the training data shown in Figure 9.10
(this defines G and here use M = 121). Train with the Levenberg-
Marquardt method. While you train with 121 data pairs, test with
about 10 times that many. Plot the approximator mapping and data
on the same plot to evaluate the accuracy of the interpolation.

(b) Train with a conjugate gradient method and compare to the result
in (a).

(c) Train with steepest descent and compare to the results in (a) and
(b).

Exercise 11.2 (Levenberg-Marquardt Update Formulas for Neural
Networks):

(a) Derive the Levenberg-Marquardt parameter update formulas for a
two-layer multilayer perceptron with a linear output layer and hy-
perbolic tangent activation functions in the hidden layer. Assume
that you update all weights and biases in the network (i.e., both the
parameters that enter linearly and those that enter in a nonlinear
fashion).

(b) Repeat (a), but for a radial basis function neural network where
the output is computed as a sum of Gaussian receptive field units.
Assume that you update all parameters in the network (i.e., both the
parameters that enter linearly and those that enter in a nonlinear
fashion).

(c) For both (a) and (b), solve the function approximation theme prob-
lem given in this chapter. Clearly explain all your choices for the
approximator structure and training method. Illustrate generaliza-
tion properties of the approximators after they are trained.

Design Problem 11.1 (Fuzzy C-Means and Least Squares for Ap-
proximator Tuning):

(a) Use fuzzy c-means and least squares for tuning the special type of
Takagi-Sugeno fuzzy system given in the chapter to solve the function
approximation theme problem studied throughout this chapter.

544 Gradient Methods

(b) Illustrate its generalization capabilities and that it makes reasonable
choices for cluster placement (plot the final clusters on the same plot
as the function you are trying to approximate).

(c) Compare the results to what you obtained in Exercise 11.2 where
neural networks and Levenberg-Marquardt training were used.

Design Problem 11.2 (Structural Plasticity and Approximators)�:
The human brain and the brains of many other animals learn not only via
parameter adjustment (the adjustment of strengths between connections
in the biological neural network), but also by growing new neuronal con-
nections and destroying others. In this problem you will learn methods for
constructing the structure of approximators. For example, in the case of
multilayer perceptrons, some methods automatically pick the number of
neurons used in each layer, and some of the methods use biomimicry con-
cepts based on biological neural networks. Alternatively, with our unified
view of approximators, we can consider how to construct the structure of
a fuzzy system. For instance, we may study how to automatically pick
the number of rules or membership functions.

(a) First, you must conduct some background research. Read the papers
[295, 431] and see the book [412] for ideas on how to construct the
number of rules in a fuzzy system.

(b) Explain in detail how the neural network methods can be used for
fuzzy systems. To do this, pick a standard fuzzy system and define
the algorithms for its construction. Are there methods developed in
the area of neural networks that do not seem to apply to any fuzzy
system?

(c) Choose a method from one of the above references, specify a struc-
ture construction/destruction algorithm, develop code to implement
it, and test it for the theme problem that was studied in this chap-
ter. For many methods this will involve specifying how structure is
adjusted, and the use of a standard training method (e.g, gradient
or least squares) as found in the chapter. Be sure to use appropriate
training and test sets, and clearly illustrate the performance of the
method. If possible, compare it to the results in the chapter where
only the parameters were tuned, not the structure.

(d) Invent a method for tuning structure of an approximator. You choose
the type of approximator you want to study. Hint: Suppose that you
have a low-dimensional function to approximate (e.g., one output and
two inputs). Suppose that your training data set is G and test set
is Γ. Suppose that you grid the input space, calling each subregion
a “cell,” and label these ci, i = 1, 2, . . . , Ng where Ng is the number
of cells created by the number of partitions on the jth input space
xj (we assume that the number of divisions on each input dimension
is the same, but clearly this is just for convenience). Suppose that

11.8 Exercises and Design Problems 545

you use a test set Γa and a cost function Ja that is defined to be
the approximation error in each cell ci between the approximator
and the actual function for Γa. In particular, if ci is a cell (e.g., a
square if the dimension of the input space is 2), then Ja(ci) could be
defined to be the average mean squared error over points in the test
set Γa that lie in ci (clearly, then, to make this a reasonable definition
you would want Γa to have points in each cell created by the input
space gridding). Suppose that there are no common points in Γa,
G, and Γ. Suppose that |G| < |Γ| (with the difference in size large
enough so that you can achieve good function approximation for a
fixed size approximator, and for any value that you adjust p to be in
your structure adjustment method). Also, suppose that |Γa| is large
enough to be representative of the approximation error, no matter
how you adjust the structure (e.g., it could be that |Γa| = |Γ|).

Now, view the approximator construction problem as a two-level
optimization problem. In particular, we will view it as a type of mul-
tilevel reinforcement learning approach, and hence, it is a gradient-
type method. For any fixed structure (i.e., fixed p), we will tune
with a standard gradient method (e.g., Levenberg-Marquardt). This
tuning will occur interleaved with structure adjustments; there will
be a structure adjustment, then multiple steps of the standard gra-
dient method will be executed (e.g., until some termination criterion
is satisfied) before the next structure adjustment. How do we then
make structure adjustments? There are many ways. One way is to
adjust the structure of the approximator to try to achieve the min-
imization of Ja. Choose some threshold ε > 0 that represents what
you consider to be an acceptable level of approximation error in any
cell ci. Suppose that we try to adjust an approximator structure
that is based on gridding the input space with basis functions (e.g.,
the radial basis function neural network or several types of fuzzy
systems). To be more concrete, suppose that we adjust radial ba-
sis function neural networks with their radial basis functions defined
to be Gaussian functions with centers that our structure adjustment
method will place (for simplicity, let the parameters that enter lin-
early be adjusted only after structure adjustments are made in the
step where we use gradient training). Adjust structure as follows:

1. Compute Ja(ci), i = 1, 2, . . . , Ng, over the test set Γa.
2. If for some i, Ja(ci) > ε, then randomly place λaddint(|Ja(ci) −

ε|) (int(·) is the integer part of its argument) new radial basis
functions in the region ci, where λadd > 0 can be thought of as
a step size for the structure adjustment algorithm in the case
where structure is added.

3. If for some i, Ja(ci) ≤ ε, then randomly remove λsubint(|Ja(ci)−
ε|) radial basis functions from the region ci, where λsub > 0
can be thought of as a step size for the structure adjustment

546 Gradient Methods

algorithm in the case where structure is deleted.
4. Go to standard gradient method for parameter adjustments.

The goal of the method is to try to achieve an error of ε in each cell.
Why not just try for zero approximation error in each cell? This
will in general require an infinite number of radial basis functions;
we pay for accuracy with complexity. The addition of more radial
basis functions allows for more accurate function approximation in
regions where they are added. Removal of radial basis functions can
result in lower approximation accuracy where they are removed. The
algorithm will tend to redistribute the centers so as to allocate them
where more accuracy is needed.

Fully test this algorithm for both n = 1 and n = 2, showing how it
reshapes the approximator mapping (show plots) and reallocates the
radial basis function centers. Explain why you can view the above
approach as a reinforcement-based learning method for structure,
and in particular, write down the update equation that clearly shows
it is a gradient-type method. What is the reinforcement function?
Next, can you achieve a simpler approximator structure with this
approach than with the one you would construct manually? Does the
gridding approach that this method is based on make it impossible to
apply to high-dimensional function approximation problems? If not,
explain. If so, which method from the literature would do better?
Next, explain how you could redesign the algorithm so that it can be
used for online function construction.

