
Chapter 10

Linear Least Squares
Methods

Chapter Contents

10.1 Batch Least Squares . 423

10.1.1 Batch Least Squares Derivation . 423

10.1.2 Numerical Issues in Computing the Estimate 425

10.1.3 Example: Fitting a Line to Data . 428

10.2 Example: Offline Tuning of Approximators 429

10.2.1 Multilayer Perceptrons . 429

10.2.2 Takagi-Sugeno Fuzzy Systems . 433

10.3 Design Example: Rule Synthesis Using Operator Data 437

10.3.1 Data Analysis, Correlation Analysis, and Controller Input Selection . . 438

10.3.2 Determine if a Linear Controller Is Sufficient 440

10.3.3 Study the Effects of Removing Input Variables 441

10.3.4 Construct a Fuzzy Controller from Operator Data 444

10.3.5 Methods to Test Generalization/Extrapolation and Controller Validity . 450

10.4 Recursive Least Squares . 451

10.4.1 Recursive Least Squares Derivation . 451

10.4.2 Weighted Recursive Least Squares: Using a Forgetting Factor 453

10.4.3 Numerical Issues and Covariance Modifications 454

10.4.4 Example: Fitting a Line to Data . 456

10.5 Example: Online Tuning of Approximators 457

10.5.1 Multilayer Perceptrons . 457

10.5.2 Takagi-Sugeno Fuzzy Systems . 462

10.6 Exercises and Design Problems . 464

10.1 Batch Least Squares 423

In this chapter, we introduce batch and recursive least squares methods for
tuning approximator structures where the parameters that will be tuned enter
linearly. In particular, we study the tuning of the p × 1 vector θ for the linear
in the parameters approximator

Flip(x, θ) = θ�φ(x)

where φ(x) is a known specified p × 1 vector function. For the tuning, we use
the given set of training data G = {(x(i), y(i)) : i = 1, 2, . . . , M}.

Section 9.3 outlined several approximator structures that fit this form, in-
The batch least squares
method can be used to
find approximator
parameters that enter
linearly when all training
data is given a priori.

cluding the linear approximator Fl(x, θ); the polynomial approximator Fpoly(x, θ)
where the coefficients are tuned; the multilayer perceptron Fmlp(x, θ) with one
hidden layer, a linear activation function at the output, and known activation
functions in the hidden layer; and the Takagi-Sugeno fuzzy system Fts(x, θ) with
known premise membership functions. In each case, the function φ(x) is known
once x is specified, and the form of θ depends on which approximator structure
you use.

In this chapter, we simply focus on tuning of θ and will not concern ourselves
(except in the examples) with which of the approximator structures is used to
implement the approximator (i.e., we will not focus on the construction of φ(x)).

10.1 Batch Least Squares

First, we derive the least squares solution to the approximation problem. Then
we provide a simple example where we fit a line to data, and a more interesting
example where we train a multilayer perceptron and Takagi-Sugeno fuzzy system
to match the function in Figure 9.10.

10.1.1 Batch Least Squares Derivation

In the batch least squares method, we define

Y (M) = [y(1), y(2), . . . , y(M)]�

to be an M × 1 vector of output data where the y(i), i = 1, 2, . . . , M come from
G (i.e., y(i) such that (x(i), y(i)) ∈ G). We let

Φ(M) =

⎡
⎢⎢⎢⎣

φ�(x(1))
φ�(x(2))

...
φ�(x(M))

⎤
⎥⎥⎥⎦

be an M × p matrix that is constructed by stacking the 1 × p φ�(x(i)) vectors
into a matrix (i.e., the x(i) are such that (x(i), y(i)) ∈ G). Let ε(i) = y(i) −
Flip(x(i), θ) = y(i) − θ�φ(x(i)), which is the same as

ε(i) = y(i) − φ�(x(i))θ

424 Linear Least Squares Methods

be the error in approximating the data pair (x(i), y(i)) ∈ G where θ is used in
the approximation structure. Define

E(M) = [ε(1), ε(2), . . . , ε(M)]�

so that
E = Y − Φθ

Choose
J(θ, G) =

1
2
E�E

to be a measure of how good the approximation is for all the data in G for a
given θ. J(θ, G) is the sum of the squares of the errors in approximation for
each of the training data pairs. We want to pick θ to minimize J(θ, G) and that
is why we use the term “least squares.” It is “linear” least squares since our
approximator is linear in the parameters.

Notice that J(θ, G) is convex in θ so that a local minimum is a global mini-
mum. Next, we seek to find the value of θ that will achieve the global minimum.
Using basic ideas from calculus, if we take the partial derivative of J with respect
to θ and set it equal to zero, we get an equation for θ, the best estimate (in the
least squares sense) of the unknown θ∗. Leaving this approach to the derivation
(which depends on the use of vector calculus) to a homework exercise, we take
a simple (matrix) algebraic approach to the minimization by noting that

2J = E�E = Y �Y − Y �Φθ − θ�Φ�Y + θ�Φ�Φθ

Then, we “complete the square” by assuming that Φ�Φ is invertible and letting

2J = Y �Y − Y �Φθ − θ�Φ�Y + θ�Φ�Φθ

+Y �Φ(Φ�Φ)−1Φ�Y − Y �Φ(Φ�Φ)−1Φ�Y

(where we are simply adding and subtracting the same terms at the end of the
equation). Hence,

2J = Y �(I − Φ(Φ�Φ)−1Φ�)Y
+(θ − (Φ�Φ)−1Φ�Y)�Φ�Φ(θ − (Φ�Φ)−1Φ�Y) (10.1)

The first term in this equation is independent of θ, so we cannot reduce J(θ, G)
The parameters
computed via batch least
squares minimize the
sum of the squared error
between the
approximator output and
the training data
outputs; however, it only
adjusts the parameters
that enter linearly to
achieve this
minimization.

via this term, so it can be ignored. Hence, to get the smallest value of J(θ, G),
we choose θ so that the second term is zero. We will denote the value of the
parameters that achieves the minimization of J by θ, and we notice that

θ = (Φ�Φ)−1Φ�Y (10.2)

since the smallest we can make the last term in the above equation is zero
(since it is positive). This is the equation for batch least squares that shows
we can directly compute the least squares estimate θ from the “batch” of data
that are taken from G and loaded into Φ and Y . If we pick the inputs to the

10.1 Batch Least Squares 425

system so that it is “sufficiently excited” [331], then we will be guaranteed that
Φ�Φ is invertible; if the data come from a linear mapping with p (the number
of parameters in the linear in the parameters approximator) as the number of
underlying linear terms in the nonlinear function, then for sufficiently large M
we will achieve perfect estimation of the plant parameters.

In “weighted” batch least squares, we use

J(θ, G) =
1
2
E�WE (10.3)

where, for example, W is an M ×M diagonal matrix with its diagonal elements
wi > 0 for i = 1, 2, . . . , M and its off-diagonal elements equal to zero. These
wi can be used to weight the importance of certain elements of G more than
others. For example, we may choose to have it put less emphasis on older data
by choosing w1 < w2 < · · · < wM when x(2) is collected after x(1), x(3) is
collected after x(2), and so on. One way to select the weights in this case is to
suppose that 0 < λ ≤ 1, then let wi = λM−i, i = 1, 2, . . . , M . In any case, the
resulting parameter estimates can be shown to be given by

θwbls = (Φ�WΦ)−1Φ�WY (10.4)

To show this, simply use Equation (10.3) and proceed with the derivation in the
same manner as above.

10.1.2 Numerical Issues in Computing the Estimate

In practical problems, numerical issues often arise in computing the inverse

(Φ�Φ)−1

needed to compute the batch least squares solution due to Φ�Φ being “ill-
conditioned.” Such issues can arise even for relatively simple “academic” prob-
lems. For example, these issues arise in the examples to be considered in this
book where we typically use the Matlab “backslash” operation to compute the
least squares estimate as

theta = Phi \ Y

where theta is θ, Phi is Φ, and Y is Y. Basically, most view the inverse in
Equation (10.2) as a statement of how the least squares estimate is found the-
oretically. In practice, direct computation of the inverse is generally not used.

In practical applications,
numerical issues in
computing the least
squares estimate must be
confronted.

To avoid numerical issues you have several options. First, if you can select
x(i) explicitly (which you often cannot, either due to physical limitations of the
mapping you are trying to learn, or because you cannot pick x(i) because it
it provided by another system), then you can avoid the problems. To do this,
basically you want to choose the x(i) so that the φ(x(i)) that are loaded into Φ
have values that are aligned in such a way that the inverse can be computed (i.e.,

426 Linear Least Squares Methods

so that Φ�Φ is positive definite, with a good “condition number”). Without
getting into details, one way to get “rich” enough data so that the inverse is
computable is to use noise as the components of x(i). Of course, this is not
always possible, so we often have to turn to other methods.

For instance, a common approach to solve numerical problems with comput-
ing the least squares solution is to use a “square root” method. The details of
the variety of possible methods and their advantages and disadvantages are be-
yond the scope of this discussion; however, if you run into numerical problems,
you can basically proceed in four ways. First, you can rely on an existing soft-
ware package to provide a numerically sound solution (i.e., perhaps you should
not just employ a direct method to computing the inverse but use more sophis-
ticated methods). Second, you can see the “For Further Study” section at the
end of this part to find references to learn more about how to overcome nu-
merical problems. Third, you could turn to an RLS (or gradient) approach to
process the data sequentially (e.g., by cycling several times through the data set
G) as we explain in the next sections. Fourth, you could use the singular value
decomposition approach that we discuss next, whose solution has interesting
and useful properties.

It is possible to provide the least squares solution whether or not Φ�Φ is
invertible. The common approach to doing this is to use the singular value
decomposition (SVD) method. If Φ is an M × p matrix and U and V are
M ×M and p×p “unitary” matrices, respectively (i.e., U�U = I and V �V = I
so U−1 = U� and V −1 = V �), then the SVD of Φ is

U�ΦV =
[

Σ 0
0 0

]
= S

where S is M × p, the “0” elements in S are, in general, matrices (what are
their dimensions?),

Σ = diag(σ1, σ2, . . . , σr)

where
σ1 ≥ σ2 ≥, · · · ,≥ σr > 0

are the “singular values” and r = rank(Φ).
The least squares estimate is then

θ = (Φ�Φ)−1Φ�Y = V

[
Σ−1 0
0 0

]
U�Y

Note that the matrix [
Σ−1 0
0 0

]
in this computation is a p × M matrix. Also, note that the SVD computes
(Φ�Φ)−1Φ�, which is the “pseudoinverse” of matrix Φ. To see that this is a
valid computation for the least squares estimate, recall that

J(θ, G) =
1
2
E�E =

1
2
(Y − Φθ)�(Y − Φθ)

10.1 Batch Least Squares 427

and since U and V are unitary,

J(θ, G) =
1
2
[
U�(Y − ΦV �V θ)

]� [
U�(Y − ΦV �V θ)

]
Now, let

V �θ = v̄ =
[

v̄1

v̄2

]
where v̄1 is r × 1 and v̄2 is (n − r) × 1, and

U�Y = ū =
[

ū1

ū2

]
where ū1 is r × 1 and ū2 is (M − r) × 1. Note that since we can choose θ to
minimize J(θ, G), we can choose v̄. Since

U�ΦV =
[

Σ 0
0 0

]
we know that

J(θ, G) =
[[

ū1

ū2

]
−
[

Σ 0
0 0

] [
v̄1

v̄2

]]� [[
ū1

ū2

]
−
[

Σ 0
0 0

] [
v̄1

v̄2

]]

=
[

ū1 − Σv̄1

ū2

]� [
ū1 − Σv̄1

ū2

]
To get J(θ, G) as small as possible, choose

v̄1 = Σ−1ū1

and also choose v̄2 = 0 (since we can choose it to be anything we would like).
We have V �θ = v̄ so

θ = V v̄ = V

[
Σ−1ū1

0

]
= V

[
Σ−1 0
0 0

] [
ū1

ū2

]
= V

[
Σ−1 0
0 0

]
U�Y

In the weighted batch least squares case, with W a diagonal matrix with all
positive numbers on its diagonal, if you let

W =
√

W
√

W

we know that
√

W =
√

W
�

. Hence, θwbls = (Φ�√W
√

WΦ)−1Φ�√W
√

WY ,
and if we let Φ̄ =

√
WΦ and Ȳ =

√
WY , we have θwbls = (Φ̄�Φ̄)−1Φ̄�Ȳ and so

you can use the same approach as above.
Finally, it is interesting to note that even in the case where M < p, where we

have the “underdetermined case,” the singular value decomposition will provide
a solution even though in this case, there are an infinite number of θ solu-
tions. Actually, out of the infinite number of possible solutions to the linear
least squares problem in this case, the θ computed via the singular value de-
composition is the one solution such that θ�θ has the smallest possible size (so
sometimes it is a reasonable choice).

428 Linear Least Squares Methods

10.1.3 Example: Fitting a Line to Data

As an example of how batch least squares can be used, suppose that we would
like to use this method to fit a line to a set of data. Suppose that n = 1. In
this case, our parameterized linear (polynomial) approximator is

y = Flip(x, θ) = θ�φ(x) = θ�[φ1(x), 1]� = θ1x1 + θ2 (10.5)

which is an equation for a line (note that the 1 in the second row of φ(x) =
[φ1(x), 1]� is used to include the affine term θ2). Suppose that the data that we
would like to fit the line to is given by

G = {(1, 1), (2, 1), (3, 3)}
and that these data were generated from an unknown function G(x, z) (we
assume that they are numbered from left to right, so that (x(1), y(1)) = (1, 1)).
Notice that M = 3.

We will use Equation (10.2) to compute the parameters for the line that best
fits the data (in the sense that it will minimize the sum of the squared distances
between the line and the data). First, let

Y =

⎡
⎣ 1

1
3

⎤
⎦

Next, form the φ(x(i)), i = 1, 2, 3, and let

Φ =

⎡
⎣ 1 1

2 1
3 1

⎤
⎦

With this,

θ = (Φ�Φ)−1Φ�Y =
([

14 6
6 3

])−1 [12
5

]
=
[

1
− 1

3

]
Hence, the line

y = x1 − 1
3

best fits the data in the least squares sense.
To see that the line fits the data, consider Figure 10.1, where we plot both

the data in G and the line Flip(x, θ). Clearly, the data were not generated by
a linear mapping. The least squares method tries to overcome this problem,
and results in a good fit to the data, the best in the least squares sense that is
possible for a linear approximator. Notice that the line is raised up toward the
two points above it, balancing out the error that is created in the approximation,
considering that there is only one point below it.

The same general approach works for larger data sets. The reader may want
to experiment with weighted batch least squares to see how the weights wi affect

10.2 Example: Offline Tuning of Approximators 429

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x

y(
i)

an
d

lin
e

Fitting a line to data

Figure 10.1: Training data and line that is the best fit to the data.

the way that the line will fit the data (making it more or less important that the
data fit at certain points). In doing this, you will see that you can, by various
choices of the weighting factors, move the line so that it more closely matches
any point that you put a relatively high weight value on.

10.2 Example: Offline Tuning of Approximators

In this section we will show how to use batch least squares to tune a multilayer
perceptron and Takagi-Sugeno fuzzy system to match the training data shown

It is good practice to
first try a linear in the
parameter approximator,
or even one that is
linear in its inputs.

in Figure 9.10 (this defines G and in our case, we have M = 121). In particular,
we will first use the same multilayer perceptron and Takagi-Sugeno fuzzy sys-
tem as studied in Section 9.3 and compare the approximation accuracy when a
least squares approach is used to tune the parameters that enter linearly to the
approximation accuracy that we obtained via manual tuning.

10.2.1 Multilayer Perceptrons

Improved Accuracy Over the Manually Tuned Neural Network

Recall that we were using the perceptron with a single hidden layer shown in
Figure 9.13 with n1 = 2 neurons in the hidden layer. This is represented by

y = Fmlp(x, θ) = θ�φ(x) = [w1, w2, b][φ1(x), φ2(x), 1]�

430 Linear Least Squares Methods

where via our heuristic approach, we used f(x̄) = 1
1+exp(−x̄) and had chosen

φ1(x) = f(b1 + w1,1x)

with b1 = 0 and w1,1 = 1.5, and

φ2(x) = f(b2 + w1,2x)

with b2 = −6 and w1,2 = 1.25. We had chosen θ = [3, 1, 0.6]�. We will use the
batch least squares approach to see how it can pick a better θ.

Batch least squares is
often a very effective
method for computing
the parameters that
enter linearly; however,
it relies on your choice
of the parameters that
enter nonlinearly.

To do this, we simply form the matrices Y and Φ and use the batch least
squares formula to find

θ = [2.5747, 1.6101, 0.7071]�

which, when we use these values for the approximator parameters, results in the
approximator shown with the training data in Figure 10.2. The approximation
accuracy is clearly better than what we obtained via manual tuning (see Fig-
ure 9.15) and the batch least squares method provided an automatic method
to pick some of the parameters, in particular, w1, w2, and b. For the other
parameters we relied on our heuristic tuning discussed earlier.

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x(i)

y(
i)=

G
(x

(i)
,z

(i)
),

 a
nd

 p
er

ce
pt

ro
n

ou
tp

ut

Neural network approximation, trained with batch least squares

Figure 10.2: Multilayer perceptron approximator trained with batch least
squares, 2 neurons.

10.2 Example: Offline Tuning of Approximators 431

Seeking More Approximation Accuracy: Increasing the Number of
Hidden Neurons

The main reason for not considering more neurons in the hidden layer when we
were considering manual tuning of the perceptron for this example was that the
tuning can become complicated due to interactions between the tuning param-
eters. With the assistance of batch least squares, however, we can easily tune
approximators with more parameters. Generally, you want to use much more
training data than parameters (to avoid what is called “overfitting” below) so
since we use M = 121, we will now consider n1 = 11 neurons in the hidden layer
(for a total of 11(2) + 11 + 1 = 34 parameters).

Notice, however, that we need a scheme to pick the weights and biases of
the hidden layer. To do this, we will use a simple heuristic approach (others
are possible, some suggested by the application at hand). To pick the biases,
we choose them to be evenly spaced over −5 to 5, so that b1 = −5, b2 = −4,
all the way to b11 = 5. This should help spread the points where the activation
functions turn on across the input space. The choice for the wj , j = 1, 2, . . . , 11,
is more difficult if you take the view that we did in the manual tuning of the
perceptron. Notice that there we assumed that we could examine the training
data and pick off slopes to set these values. This is often unrealistic for complex
real world problems. Here, we will exploit the fact that the scaling factors
in w are used to modify the slopes to what we will need, so we simply pick
wj = 1, j = 1, 2, . . . , 11 (for applications where n > 1, this scheme may not
be as effective; in those cases, you will want the weights to take on values that
will allow for a range of slopes). This completes the specification of the hidden
layer.

Next, we use batch least squares to tune the 12 parameters in θ = [w�, b]�.
We get

θ = [2.7480, 2.0120,−11.9865, 34.7556,−69.6968, 93.4042,

−80.8496, 57.0819,−34.6710, 15.8048,−3.9398, 0.8087]

For this case we get the approximation shown in Figure 10.3, which is a signifi-
cant improvement over Figure 10.2, where we used n1 = 2 neurons in the hidden
layer and Figure 9.15, where we tuned the approximator manually. Notice that
in the vector θ, we have both positive and negative values. The negative ones
help to implement the parts of the nonlinearity where the slope goes negative.
Clearly, it would be quite difficult to tune the approximator manually to get
this kind of accuracy.

Fine-Tuning to Capture High Frequency Behavior

Next, to illustrate what can happen if you use even more parameters in your
approximator, we use n1 = 25 neurons (to get a total of 25(2) + 25 + 1 = 76
parameters). We choose the biases in a similar fashion to the above, but spread
them over the whole range −6 to 6 to get b1 = −6, b2 = −5.5, all the way to b25 =
6. As above, we pick all the weights in the hidden layer to be unity. We use batch

432 Linear Least Squares Methods

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x(i)

y(
i)=

G
(x

(i)
,z

(i)
),

 a
nd

 p
er

ce
pt

ro
n

ou
tp

ut

Neural network approximation,11 hidden neurons

Figure 10.3: Multilayer perceptron approximator trained with batch least
squares, 11 neurons.

least squares to tune the 26 parameters in θ = [w�, b]�. For this case, we get the
approximation shown in Figure 10.4, which is an improvement over Figure 10.3,
where we used n1 = 11 neurons (notice that the approximator is starting to find
some of the structure of the underlying function that is illustrated in Figure 9.9;
least squares is particularly good at finding this structure, in this case, due to

Generally, using a larger
approximator structure
can improve
approximation accuracy;
however, if you use a
structure that is too
complex, it can be too
aggressive in trying to
represent the noise
(overfitting) rather than
seeking to achieve a good
interpolation.

how the noise on z enters). Also, notice that with more neurons we are able to
approximate more and more of the “high frequency” behavior in the function
(with even more neurons, perhaps concentrated in the region around 1, we can
get an even more accurate approximation of the peaking behavior found in that
region).

Overfitting Where the Approximator Seeks to Model Noise

Next, we show that this approach of continually increasing n1 can be taken too
far. Suppose that we choose n1 = 121 (for a total of 121(2) + 121 + 1 = 364
parameters), b1 = −6, b2 = −5.9, all the way to b121 = 6, and the weights in
the hidden layer as all unity. In this case, we have θ as a 122× 1 vector so that
we have more parameters to tune than data pairs. We use batch least squares
to train the network and the result is shown in Figure 10.5. Notice that in
this plot, we have also plotted approximator nonlinearity on top of the function
G(x) (i.e., where we have removed the effects of the noise z). This illustrates
a very important fact: if you use too many parameters, you may start trying

10.2 Example: Offline Tuning of Approximators 433

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x(i)

y(
i)=

G
(x

(i)
,z

(i)
),

 a
nd

 p
er

ce
pt

ro
n

ou
tp

ut
Neural network approximation,25 hidden neurons

Figure 10.4: Multilayer perceptron approximator trained with batch least
squares, 25 neurons.

to approximate characteristics of the noise, and not the underlying function.
Even without the presence of z, it is possible to get similar “overfitting” where
in between the training data, the approximator moves far away from where it
should be (but for this example, if you train without the influence of z in the
data, the approximator will do a very good job at approximating the function
and does not exhibit this problem). Basically, this highlights the fact that there
are often situations where it is desirable to capture some of the higher frequency
behavior, but not behavior that is too high a frequency since this may represent
uncertainty (noise) in the system.

10.2.2 Takagi-Sugeno Fuzzy Systems

In this section, we study how to tune the Takagi-Sugeno fuzzy system to match
the function in Figure 9.10. Here, however, we will not consider the many
different cases as we did for the neural network in the last section since the
same basic ideas apply (least squares offers a nice automated method for tuning,
additional parameters can be used to achieve improved accuracy, and if you use
too many parameters, you can get a type of overfitting). Instead, our focus will
simply be on how to construct the premise membership functions.

434 Linear Least Squares Methods

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x(i)

y(
i)=

G
(x

(i)
,z

(i)
),

 a
nd

 p
er

ce
pt

ro
n

ou
tp

ut

Neural network approximation,121 hidden neurons

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

y=
G

(x
),

 a
nd

 p
er

ce
pt

ro
n

ou
tp

ut

Comparison to the function G(x)

Figure 10.5: Multilayer perceptron approximator trained with batch least
squares, 121 neurons, plus comparison to G(x).

Getting Similar Accuracy to the Neural Network

Suppose we use R = 20 rules so that we will have 4R = 80 parameters to tune,
a number close to the 76 parameters used for the neural network above, with
25 neurons in the hidden layer. It is interesting to note that we will tune 40
values of the Takagi-Sugeno fuzzy system compared to 26 for the perceptron
with n1 = 25 neurons in the hidden layer. For this reason, we will have fewer
parameters to tune manually (i.e., the function φ for the Takagi-Sugeno fuzzy
system takes fewer parameters to specify than the one for the neural network).

Comparisons between
approximator structure
types must include
complexity of the
structure, ease of
training, and
approximation accuracy.

For the Takagi-Sugeno fuzzy system, we have to pick the parameters for

µi(x) = exp

⎛
⎝−1

2

(
xj − ci

j

σi
j

)2
⎞
⎠

where j = 1 (since n = 1) and i = 1, 2, . . . , R. A logical strategy is to space the
ci
1 points on a uniform grid across the x axis (especially in cases where you do not

know the form of the underlying function; for this example, since we can easily
examine the data, it would make more sense to use a nonuniform distribution
of the ci

1 points, with more concentrated where there is more high frequency
behavior). To do this, for convenience, we choose to spread the 20 ci

1 points
across the range [−5.4, 6] in increments of 0.6. Next, we pick all the σi

1 = 0.1.
This gives us the ξi functions shown in Figure 10.6 and the approximator shown

10.2 Example: Offline Tuning of Approximators 435

in Figure 10.7. Notice that with our choice of σi
1 = 0.1, we get very steep slopes

between the basis functions so that they switch somewhat abruptly from one
line for the approximator to the next. This results in the somewhat erratic
behavior in the plot.

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

B
as

is
 fu

nc
tio

n
va

lu
es

Takagi-Sugeno fuzzy system, 20 rules, basis functions

Figure 10.6: Takagi-Sugeno basis functions, R = 20, σi
1 = 0.1 case.

Manually Tuning the Nonlinear Part of the Approximator

If we pick σi
1 = 1, we get the ξi functions shown in Figure 10.8 (why are they

There exist good
intuitive ideas on how to
manually tune the
nonlinear part of the
approximator structure.

not perfectly symmetric?) and the approximator shown in Figure 10.9. This
shows that the value of σi

1 = 1 provides for a much smoother transition between
basis functions, which results in smoother transitions between the lines used for
approximation. Overall, in terms of approximator accuracy, we obtain results
similar to those obtained for the perceptron with n1 = 25 neurons in the hidden
layer; however, this may not always be the case. Sometimes, one approximator
will be able to achieve better accuracy with fewer parameters.

Overall, this shows some ideas on how to tune the premise membership
functions (that extend to the more general case where n > 1). As a final note,
we caution against using this discussion—and that given in the last section—to
draw general conclusions about which approximator structure to use. In general,
different applications will dictate the need for different approximator structures,
numbers of parameters to tune, and methods to tune them.

436 Linear Least Squares Methods

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x(i)

y(
i)=

G
(x

(i)
,z

(i)
),

 a
nd

 fu
zz

y
sy

st
em

 o
ut

pu
t

Takagi-Sugeno fuzzy system, 20 rules

Figure 10.7: Takagi-Sugeno approximator, R = 20, σi
1 = 0.1 case.

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

B
as

is
 fu

nc
tio

n
va

lu
es

Takagi-Sugeno fuzzy system, 20 rules, basis functions

Figure 10.8: Takagi-Sugeno basis functions, R = 20, σi
1 = 1 case.

10.3 Design Example: Rule Synthesis Using Operator Data 437

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x(i)

y(
i)=

G
(x

(i)
,z

(i)
),

 a
nd

 fu
zz

y
sy

st
em

 o
ut

pu
t

Takagi-Sugeno fuzzy system, 20 rules

Figure 10.9: Takagi-Sugeno approximator, R = 20, σi
1 = 1 case.

10.3 Design Example: Rule Synthesis Using Op-

erator Data

In this problem, taken directly from [498] (where other estimation methods
are studied), suppose you are given data from how a human operator con-
trols a chemical plant (see the Web site for this book to get the data set). See
Figure 10.10, where we suppose that the operator has measurements of monomer

It is possible to
construct a fuzzy (or
neural) controller from a
set of numeric examples
of how an expert human
would solve the problem.
This offers another
nonmodel-based strategy
to construct a nonlinear
controller.

concentration (u1), change in monomer concentration (u2), monomer flow rate
(u3), some local temperatures in the plant (u4, u5), and with these makes deci-
sions on how to select the set point for the monomer flow rate (y). The actual
value of the monomer flow rate to be put into the plant is controlled by a PID
controller and the value of y is the set point for that controller.

In Chapter 5 we studied how to construct a fuzzy controller using heuristic
ideas about how the plant behaves. Here, we take a different approach where
we gather plant data (that actually represents the heuristic control ideas of the
operator about how to control the plant) and create an interpolator for these
data using a fuzzy controller. After appropriate testing, this controller could
then be put into operation either to provide advice to novice operators or to
completely replace the expert operator.

438 Linear Least Squares Methods

PID
controller

Operator

(to be replaced
by a fuzzy
controller)

u

u

u

u

u

1

2

3

4

5

Monomer
flow rate

set point, y

PID
controller

Plant

u3

u

u

u

u

1

2

4

5

Monomer concentration= u

Change in monomer concentration= u

Monomer flow rate= u

Measured plant temperature= u

Measured plant temperature= u

1

2

3

4

5

Figure 10.10: Operator for controlling a plant.

10.3.1 Data Analysis, Correlation Analysis, and Controller
Input Selection

There are M = 70 data pairs that were obtained by monitoring how the operator
performs this task. In the data set, the first 5 columns hold ui(k), i = 1, 2, 3, 4, 5,
and each row corresponds to a different time k. The last column holds the
corresponding set point values y(k) that are determined by the operator. The
data are shown in Figure 10.11. In practical applications, it is often good to plot
the data and examine them. Here, it is interesting to note that we clearly may
not have enough data to perform a good approximation over a wide range of
values of the inputs since we do not have output settings for a very wide range
of input combinations. Moreover, by examining the plots more carefully you
may suspect that the operator is not using all five data values to make decisions
(the operator is the expert, so while the data might be available, the operator
may not use it to make decisions since the operator may have found a few key
variables are the important ones to consider).

From our examination of the data, we begin by performing some data analy-
sis to study how the operator makes decisions. In particular, using the approach
in [343], we calculate the correlation coefficients between each input and the
output (and in fact, between all the different variables) and we show this in Fig-
ure 10.12. Now, while this is a linear analysis, it does give an indication of which
inputs are important to the operator in making decisions. Notice that u4(k) and
u5(k) do not have a high correlation with the output y(k) (the magnitudes of
the correlation coefficients are less than about 0.2 for both cases), so this leads
us to suspect that the operator is ignoring these inputs in his decision-making
process (perhaps the operator could be asked if this is the case). Moreover,
u2(k) has a correlation coefficient of only about 0.33 so it does not seem to
be a key variable for decision-making either. Notice, however, that u1(k) and

10.3 Design Example: Rule Synthesis Using Operator Data 439

0 20 40 60
4.5

5

5.5

6

6.5
u 1(k

)

0 20 40 60

-0.2

-0.1

0

0.1

u 2(k
)

0 20 40 60

2000

4000

6000

u 3(k
)

0 20 40 60
-0.4

-0.2

0

0.2

u 4(k
)

0 20 40 60
-0.1

0

0.1

0.2

0.3

u 5(k
)

Time, k
0 20 40 60

2000

4000

6000
y(

k)

Time, k

Figure 10.11: Data that indicate how the operator selects the set point for the
monomer flow rate.

u3(k) have correlation coefficients that are close to 1 in magnitude and this indi-
cates that each of these variables seems to be important in the decision-making
process. Recall that u3(k) is the monomer flow rate (the output of the PID con-
troller) so we expect a correlation with y(k), the set point for the controller (the
correlation indicates that the PID controller is successful in forcing the actual
monomer flow rate to be equal to the one that is commanded by the operator).
The input u1(k) is the monomer concentration and seems to be a key variable
for decision-making.

While the above analysis is instructive, it is also important to consider the
cross-correlation between the inputs that we decide to keep as inputs to the
controller. If one input is significantly correlated to another one that you want
to keep, then it may be that they are carrying basically the same information
so it might be possible to remove one of them. For instance, the correlation
coefficient between u1(k) and u3(k) is −0.9381 so since its magnitude is near 1,
it seems that removing one of these inputs is possible. From the physics of the
problem, it does not make sense to only use the input u3(k) as an input to the
controller since it is the actual value of the monomer flow rate that is input to
the plant, and its value is directly dictated by the monomer flow rate set point
that is set by the controller to be constructed. Hence, when we only want to use
one input variable, we will consider the case where we remove u3(k) and hence,
only use u1(k) as the input to the controller. We will, however, also consider
the use of other inputs as you will see below.

Before proceeding, however, note that there are other methods for selecting

440 Linear Least Squares Methods

1 2 3 4 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n

co
ef

fic
ie

nt
 v

al
ue

s

Correlation coefficient between inputs and y(k)

i indices for u
i
(k), i=1,2,3,4,5

Figure 10.12: Correlation coefficients between each input, ui(k), i = 1, 2, 3, 4, 5,
and the output y(k).

inputs to the controller and that these of course also apply to general function
approximation problems (note that we are essentially trying here to pick the
regressor vector length and composition). While here we use the approach in
[343], you could, in some situations (e.g., when you have plenty of training
data and not too many inputs), simply use an exhaustive approach where you
train approximators for all possible combinations of input variables. Another
approach is to normalize the data so that they all lie between −1 and 1, and then
construct a linear least squares estimator between the inputs and the output
and consider the magnitude of the regressor coefficients. Then you can discard
regressor components that have coefficients that are small in magnitude. Note
that even though this is also a linear analysis approach, it can lead to different
conclusions from the correlation analysis above. Moreover, all this analysis is
complicated by the fact that the conclusions that you reach can depend on the
controller that you end up constructing (e.g., you may have two sets of inputs
to choose between, and your analysis may say that one is better than the other,
but you may not be able to construct a nonlinear approximator that performs
better for that set of inputs).

10.3.2 Determine if a Linear Controller Is Sufficient

We start by trying to use a linear (actually affine) mapping to fit the operator
data so that we get a linear (affine) controller. We do this first for two reasons.

10.3 Design Example: Rule Synthesis Using Operator Data 441

First, if the linear controller performs reasonably well, then we will guess that
the linear correlation analysis of the last subsection is valid. Second, if the linear
controller works well, then we will want to use it since it is simpler to implement
than a fuzzy controller.

Due to the lack of a significant amount of training data, we will train the
approximator using all M = 70 data pairs (this specifies G). This approach,
however, creates problems with validating the accuracy of the approximation
since we can only test at the data that the approximator was trained at. Here,
since we cannot access the plant to generate more data, we will artificially
generate a test data set. To do this, we simply create data points in between
each of the given data points by taking the average value of two adjacent points
(i.e., average value of each component), and associating it with the average value
between two output data points. This will give us MΓ = 69 test data pairs in
our test set Γ. We will treat these values as if they were actually generated in
an experimental setting.

Using a linear least squares method to train an affine approximator structure,
we get the results shown in Figure 10.13. For this, if F (x, θ) is the affine
approximator mapping with θ chosen using batch least squares and we use all
the inputs so

x(k) = [u1(k), u2(k), u3(k), u4(k), u5(k)]�

we get a mean squared error at the training data of

1
M

∑
(x,y)∈G

((y − F (x, θ))2 = 1.1142 × 104

and we get a mean squared error at the test data of

1
MΓ

∑
(x,y)∈Γ

((y − F (x, θ))2 = 8.6598× 103

Note that the mean squared error values at the training and testing data are
similar, but in this case the training error is higher (this is a bit atypical; nor-
mally the test error is slightly higher).

Notice that we achieve reasonable approximation accuracy, but there are
several points at which there are significant deviations between what the op-
erator did and what the linear controller does (suppose that the operator feels
that the errors are “significant”). We could conclude from this, however, that a
linear estimator does reasonably well, so we place more confidence in our earlier
correlation analysis. From this, we suspect that we may be able to remove input
variables and achieve similar approximation accuracy.

10.3.3 Study the Effects of Removing Input Variables

We could study the performance of the approximator by successively removing
more input variables. Here, we will trust the earlier correlation analysis and
first consider a two-input linear controller that only uses u1(k) and u3(k) as

442 Linear Least Squares Methods

0 10 20 30 40 50 60 70
0

2000

4000

6000

8000

y
an

d
its

 e
st

im
at

e

Estimator performance, y (solid line), estimate of y (dashed line)

0 10 20 30 40 50 60 70
-200

-100

0

100

200

300

400

Time, k

Estimation error

Figure 10.13: Operator settings, linear controller settings, and error between
these.

inputs (the case for using inputs u1(k), u2(k), and u3(k) is similar, with just a
slightly worse approximation error than the case where we use all the inputs).
After that we will consider the case where we only use the input u1(k).

Using a linear least squares method to train an affine approximator structure
with only two inputs, we get the results shown in Figure 10.14. For this, if
F (x, θ) is the affine approximator mapping with θ chosen using batch least
squares and

x(k) = [u1(k), u3(k)]�

we get a mean squared error at the training data of

1
M

∑
(x,y)∈G

((y − F (x, θ))2 = 1.1669× 104

and we get a mean squared error at the test data of

1
MΓ

∑
(x,y)∈Γ

((y − F (x, θ))2 = 9.1087× 103

Notice that our mean squared error did not increase drastically even though we
removed three inputs.

Notice, however, that if we only use u1(k) as an input, then using a linear
least squares method to train an affine approximator structure with only one

10.3 Design Example: Rule Synthesis Using Operator Data 443

0 10 20 30 40 50 60 70
0

2000

4000

6000

8000
y

an
d

its
 e

st
im

at
e

Estimator performance, y (solid line), estimate of y (dashed line) (2 inputs)

0 10 20 30 40 50 60 70
-200

-100

0

100

200

300

400

Time, k

E
st

im
at

io
n

er
ro

rs

Figure 10.14: Operator settings, linear controller settings, and error between
these, u1(k) and u3(k) as inputs.

input, we get the results shown in Figure 10.15. For this, if F (x, θ) is the affine
approximator mapping with θ chosen using batch least squares and

x(k) = [u1(k)]�

we get a mean squared error at the training data of

1
M

∑
(x,y)∈G

((y − F (x, θ))2 = 5.2090 × 105

and we get a mean squared error at the test data of

1
MΓ

∑
(x,y)∈Γ

((y − F (x, θ))2 = 5.0309× 105

Notice that in this case, we get a significant degradation in performance.
You could be led to several different conclusions. First, you may think, via
the earlier correlation analysis, that even though the cross-correlation between
u1(k) and u3(k) was high, there was still some important information in the
u3(k) input that we are now ignoring. In that case it would seem that the
operator is primarily looking at two inputs to make decisions. However, there is
a second possibility that is important to consider. It is possible that the linear
approach is failing. In particular, it could be that the errors for the single-input

444 Linear Least Squares Methods

0 10 20 30 40 50 60 70
0

2000

4000

6000

8000

y
an

d
its

 e
st

im
at

e

Estimator performance, y (solid line), estimate of y (dashed line) (1 input)

0 10 20 30 40 50 60 70
-2000

-1500

-1000

-500

0

500

1000

1500

Time, k

E
st

im
at

io
n

er
ro

rs

Figure 10.15: Operator settings, linear controller settings, and error between
these, u1(k) as an input.

case are arising due to the fact that there is a nonlinearity in the underlying
operator decision-making that the linear mapping is not suited to represent. It is
for this reason that we turn to a nonlinear approximator, the fuzzy system, and
try to use only one input (of course you could also construct a neural network
in an analogous manner). We keep in mind, however, that if we do not succeed
in this approach, we will try to add a second input, u3(k).

10.3.4 Construct a Fuzzy Controller from Operator Data

Next, we attempt to reduce the approximation errors so that the decisions made
are closer to those of the operator than what we were able to obtain with a lin-
ear approximator, no matter how many inputs were used. We first construct a
single-input fuzzy controller. We will, in fact, construct a Takagi-Sugeno fuzzy
system with Gaussian input membership functions and affine consequent func-
tions, both with only one input. When this is done, using R = 9 rules and one
choice for the membership function parameters, we do reduce the approximation
error (we get a mean squared testing error of 3.0702×105), but not significantly,
and it is worse than the cases in the last section, where we also used u2(k) and
u3(k) as inputs. Now, you could increase the number of membership functions
on the input universe of discourse to try to improve accuracy; however, we will
take a different approach here since the development of the linear approximators
indicates that the inputs u2(k) and u3(k) do carry some information.

10.3 Design Example: Rule Synthesis Using Operator Data 445

First Attempt: Problems with Overfitting

Since we have found via the correlation analysis that u1(k) seems to be the most
informative input variable, we will use it as an input to the premise membership
functions; however, for the consequent membership functions we will use either
u1(k), u2(k), and u3(k), or all the inputs to try to get as much information
from the inputs as possible. Notice that this will increase the complexity of the
approximator, but for R rules there are only R(n+1) consequent parameters (n
is the number of inputs to the consequent membership functions). For R rules,
with only one input to the premise membership functions, there are only 2R
parameters needed to define the membership functions. Notice that if you used
all the inputs to the premise membership functions, and all possible combina-
tions of rules (that results from gridding the input space with N membership
functions on each input dimension), then we need 2R parameters but in this
case, R = Nn so that the approximator can easily become very complex. (If
we used n = 5 inputs with N = 3 membership functions on each input universe
of discourse, then there would be R = 35 = 243 rules which would be defined
with 486 parameters, which is far greater than M , not even considering the
additional parameters needed for the consequent functions.)

Here, we will consider two cases. In both cases we will use one input to the
premise membership function and R = 9 rules, so we will need 18 parameters
to define the input membership functions. We will, however, consider different
numbers of inputs to the consequent functions. First, we will consider using 3
inputs to the consequent functions (u1(k), u2(k), and u3(k)); hence, with n = 3
we will need R(n+1) parameters for a total of 18+9(4) = 54 parameters in the
approximator. In the second case, we will consider using all the inputs to the
consequent functions so that there will be 18 + 9(6) = 72, which is greater than
M = 70; hence, in the second case we must be especially concerned that the
approximator will “overfit” the data and hence not generalize well in between
the data.

We use a grid on the input space of 9 input membership functions so we get
R = 9 (we omit the actual values of the centers and spreads of the Gaussian
input membership functions and invite the reader to solve this problem in a
design problem at the end of the chapter). We use a linear least squares method
to train the Takagi-Sugeno fuzzy system approximator. In the first case, we use
u1(k), u2(k),and u3(k) as inputs to the consequent functions and get the results
shown in Figure 10.16. For this, if F (x, θ) is the Takagi-Sugeno fuzzy system
approximator mapping with θ chosen using batch least squares, we get a mean
squared error at the training data of

1
M

∑
(x,y)∈G

((y − F (x, θ))2 = 2.2077 × 103

and we get a mean squared error at the test data of

1
MΓ

∑
(x,y)∈Γ

((y − F (x, θ))2 = 1.1329× 104

446 Linear Least Squares Methods

Note that the testing error is significantly higher than the training error. This
result shows that there is some overfitting occurring (in between the training
data there are some excursions where the interpolation is not performing very
well). If we proceeded according to our plan and used all the inputs in the
consequent functions, we find that this overfitting problem gets significantly
worse so we do not present those results (we get a mean squared training error
of 594.1489 and a mean squared testing error of 6.3452× 109). Clearly, the fact
that we have more parameters to tune than training data is causing a significant
problem in this last case. This example clearly shows the importance of using
both training and testing sets; if you only used the training data set you would
think that you had significantly improved approximation accuracy when in fact
all you have done is match the training data very well. While in operation,
when data different from the training data are encountered, the controller could
provide very unreasonable inputs.

0 10 20 30 40 50 60 70
0

2000

4000

6000

8000

y
an

d
its

 e
st

im
at

e

Estimator performance, y (solid line), estimate of y (dashed line) (1 input)

0 10 20 30 40 50 60 70
-800

-600

-400

-200

0

200

400

Time, k

E
st

im
at

io
n

er
ro

rs

Figure 10.16: Operator settings, fuzzy controller settings, and error between
these (one input to the premise membership functions, three to the consequent
functions).

Before we continue with the design process for the approximator, consider
Figure 10.17 where, using ideas from [343], we see that by including the u1(k),
u2(k), and u3(k) inputs in producing the result in Figure 10.16, they are uncor-
related with the estimation error (notice that while this correlation analysis is
again linear, it does take into account the nonlinear mapping implemented by
the Takagi-Sugeno fuzzy system). Notice also that the u4(k) and u5(k) inputs
are only a bit correlated with the approximation error so that we expect that

10.3 Design Example: Rule Synthesis Using Operator Data 447

if we add these inputs, they probably would not help much with approximation
accuracy (but this is just a guess based on the linear analysis).

1 2 3 4 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n

co
ef

fic
ie

nt
 v

al
ue

s

Correlation coefficient between input and error (for training data)

i indices for u
i
(k), i=1,2,3,4,5

Figure 10.17: Correlation coefficients between each input, ui(k), i = 1, 2, 3, 4, 5,
and the output approximation error, using the training data (one input to the
premise membership functions and three to the consequent functions).

Second Attempt: A Good Controller

Notice that we have not improved the approximation accuracy over the previous
cases by using a nonlinear approximator. How do we improve the accuracy? We
could certainly try to improve the accuracy by tuning the premise membership
function parameters or adding more rules (but we are limited in this last ap-
proach by the small amount of training data). Another approach would be to
use more inputs to the premise membership functions. Recall from the past
section that if we add such inputs, we can quickly increase the number of rules
and hence the number of parameters in the approximator; therefore, we only
add one more input, u3(k). This approach may make sense since then it will
provide for a nonlinear map between two variables that the operator seems to
be using in decision-making.

In this case, we grid the membership functions on the input space and get
the results shown in Figure 10.18. For this, if F (x, θ) is the Takagi-Sugeno fuzzy
system approximator mapping with θ chosen using batch least squares, we get

448 Linear Least Squares Methods

a mean squared error at the training data of

1
M

∑
(x,y)∈G

((y − F (x, θ))2 = 4.0401× 103

and we get a mean squared error at the test data of

1
MΓ

∑
(x,y)∈Γ

((y − F (x, θ))2 = 3.1657× 103

which is significantly better than any of the controllers that we have constructed
so far.

0 10 20 30 40 50 60 70
0

2000

4000

6000

8000

y
an

d
its

 e
st

im
at

e

Estimator performance, y (solid line), estimate of y (dashed line) (2 inputs)

0 10 20 30 40 50 60 70
-200

-100

0

100

200

300

Time, k

E
st

im
at

io
n

er
ro

rs

Figure 10.18: Operator settings, fuzzy controller settings, and error between
these (u1 and u3 inputs to the premise membership functions and consequent
functions).

Before we continue with the design process for the approximator, consider
Figure 10.19 where, using ideas from [343], we see that by including the u1(k)
and u3(k) inputs in producing the result in Figure 10.18, they are uncorrelated
with the estimation error. Notice also that the u2(k), u4(k) and u5(k) inputs
are only a bit correlated with the approximation error so that we guess that if
we add these inputs, they probably would not help much with approximation
accuracy.

10.3 Design Example: Rule Synthesis Using Operator Data 449

1 2 3 4 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
C

or
re

la
tio

n
co

ef
fic

ie
nt

 v
al

ue
s

Correlation coefficient between input and error (for training data)

i indices for u
i
(k), i=1,2,3,4,5

Figure 10.19: Correlation coefficients between each input, ui(k), i = 1, 2, 3, 4, 5,
and the output approximation error, using the training data (one input to the
premise membership functions and three to the consequent functions).

Third Attempt: No, Nothing Better

At this point, we return to our original correlation analysis and evaluate if there
are other possibilities for improving on the performance. Recall that the analysis
indicated that if we kept u1 as an input, then we may not need to keep u3 since
these are correlated quite strongly. Earlier, in the construction of the linear
estimators, we found that we could eliminate all the variables but these and we
would still do pretty well, and that if we eliminated u3, and hence only used u1,
there was a significant decrease in performance. This led us to conclude that
there must be some useful information in the u3 variable.

There is, however, a different line of reasoning that can be used. Note that
u1 is certainly a useful variable and so suppose that we use it as an input. Then,
based on constraints due to approximator complexity in relation to the size of
the training data set, and the problems we encountered in overfitting, we could
try to pick a second variable that has the highest correlation with the output,
but the lowest correlation with u1. Which variable is this? Recall that u2 had
the third highest correlation with the output (a value of 0.3343), but it has
correlation with u1 of −0.1906. Note that u4 has a relatively low correlation
with the output of only 0.1012 (the u5 variable had a correlation of −0.2068)
but a correlation with u1 of only −0.0283 (and the u5 variable had a correlation
with u1 of 0.0837). To take a different approach, suppose that due to the low

450 Linear Least Squares Methods

correlation between u4 and u1, we try to use u4 as an input (u5 may also work).
We will simply take the same approach as in our “second attempt,” but we

will use u4 as an input, rather than u3. We try different numbers of inputs, but
do not find better results than earlier. Hence, while the line of reasoning above
made sense, it did not end up helping to improve approximator accuracy for this
approximator, and this training strategy. It may have been a good approach if
we had used a different approximator or different training method. Why even
discuss a case that does not work well? It helps to illustrate the normal process
that you encounter in a real-world problem. Generally, you need to establish a
logical approach to construction or improvement of an approximator, and try
out the approach. It may or may not work better than your previous approach.
Sometimes you win, sometimes you lose!

10.3.5 Methods to Test Generalization/Extrapolation and
Controller Validity

While the best Takagi-Sugeno fuzzy system (as measured by the mean squared
error) that we constructed in the last subsection gave a good approximation
error, it could be that in between the training and testing data there are large
excursions in the fuzzy controller mapping that intuitively may not be reason-
able interpolations. Similarly, there could be large excursions in certain regions
where there is a need to extrapolate since there is not good data in those regions.
For low dimensional cases, it is possible to test the validity of the approximator
by visually inspecting the approximator mapping (or perhaps a few dimensions
can be studied at a time). Another alternative is to analytically determine the
maximum slope of the approximator mapping. Or, as an approximation, you
could numerically determine the maximum slope of the function on a fine grid
of input data. In particular, in this approach, you would numerically compute
an approximation to

∂F (x, θ)
∂x

for the value of θ that was used in the approximator. You may want to study
the data and analyze two different cases, one where the x is in a region where we
had training data (to test generalization), and the other where x is in a region
where there were no training data (to test extrapolation).

It is important to note that often an integral part of the validation of the
controller will be to consult the operator and ask if it is reasonable. To do this,
it may be convenient to convert the R = 9 rules that were trained into a type
of linguistic equivalent. To do this, you could first assign linguistic values to
the input membership functions that were specified for the Takagi-Sugeno fuzzy
system. Now, if you used a standard fuzzy system you could assign linguistics to
the output membership functions; then the rules would be simple to explain to
the operator to get their “approval” of the rules. When we use a Takagi-Sugeno
fuzzy system, you need to discuss this with the operator as being a “smooth
switching” between the use of different linear (affine) functions of the inputs.
See more details in [498].

10.4 Recursive Least Squares 451

10.4 Recursive Least Squares

While the batch least squares approach has proven to be very successful for
a variety of applications, it is by its very nature a “batch” approach (i.e., all
the data are gathered, then processing is done). For small M , we could clearly
repeat the batch calculation for increasingly more data as they are gathered,
but the computations can become prohibitive due to the computation of the

The recursive least
squares method can be
used to tune the
approximator parameters
that enter linearly, with
adjustments to the
approximator mapping
made online as each new
training data pair is
obtained.

inverse of Φ�Φ and due to the fact that the dimensions of Φ and Y depend on
M . Next, we derive a recursive version of the batch least squares method that
will allow us to update our θ estimate each time we get a new data pair, without
using all the old data in the computation and without having to compute the
inverse of Φ�Φ. This “recursive least squares” approach allows us to implement
an online function approximator, as we will illustrate in our examples in the
next section.

10.4.1 Recursive Least Squares Derivation

Since we will be considering successively increasing the size of G, and we will
assume that we increase the size by one at each time step, we assume that
(x(i), y(i)) as gathered at time k = i. At time k = 0 we have no data. Suppose
that k = M so that you have gathered M pieces of training data and for k ≥ 1,
let the p × p matrix

P (k) = (Φ�Φ)−1 =

(
k∑

i=1

φ(x(i))φ�(x(i))

)−1

(10.6)

(P (k) is called the “covariance matrix”). We will define P (0) when we explain
how to initialize the recursive least squares algorithm. Assume that Φ�Φ is
nonsingular for all k. We have

P−1(k) = Φ�Φ =
k∑

i=1

φ(x(i))φ�(x(i))

so we can pull the last term from the summation to get

P−1(k) =
k−1∑
i=1

φ(x(i))φ�(x(i)) + φ(x(k))φ�(x(k))

and hence
P−1(k) = P−1(k − 1) + φ(x(k))φ�(x(k)) (10.7)

Now, the least squares estimate for k pieces of training data is θ(k), which
using Equation (10.2), is

θ(k) = (Φ�Φ)−1Φ�Y

452 Linear Least Squares Methods

=

(
k∑

i=1

φ(x(i))φ�(x(i))

)−1(k∑
i=1

φ(x(i))y(i)

)

= P (k)

(
k∑

i=1

φ(x(i))y(i)

)

= P (k)

(
k−1∑
i=1

φ(x(i))y(i) + φ(x(k))y(k)

)
(10.8)

Hence, from the second to last equation, if we shift the time index back one, we
have

θ(k − 1) = P (k − 1)
k−1∑
i=1

φ(x(i))y(i)

If we multiply both sides of this equation by P−1(k − 1), we get

P−1(k − 1)θ(k − 1) =
k−1∑
i=1

φ(x(i))y(i)

Now, replacing P−1(k − 1) in this equation with the result in Equation (10.7),
we get

(P−1(k) − φ(x(k))φ�(x(k)))θ(k − 1) =
k−1∑
i=1

φ(x(i))y(i)

Using the result from Equation (10.8), this gives us

θ(k) = P (k)(P−1(k) − φ(x(k))φ�(x(k)))θ(k − 1) + P (k)φ(x(k))y(k)
= θ(k − 1) − P (k)φ(x(k))φ�(x(k))θ(k − 1) + P (k)φ(x(k))y(k)
= θ(k − 1) + P (k)φ(x(k))(y(k) − φ�(x(k))θ(k − 1)). (10.9)

This provides a method to compute an estimate of the parameters θ(k) at each
time step k from the past estimate θ(k − 1) and the latest data pair that we
received, (x(k), y(k)). Notice that (y(k) − φ�(x(k))θ(k − 1)) is the error in
predicting y(k) using θ(k − 1).

To update θ in Equation (10.9), we need P (k), so we could use

P−1(k) = P−1(k − 1) + φ(x(k))φ�(x(k)) (10.10)

But then we will have to compute an inverse of a matrix at each time step (i.e.,
each time we get another data pair (x(k), y(k))). Clearly, this is not desirable
for real time implementation, so we would like to avoid this. To do so, recall
that the “matrix inversion lemma” indicates that if A, C, and (C−1 +DA−1B)
are nonsingular square matrices, then A + BCD is invertible and

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1

10.4 Recursive Least Squares 453

We will use this fact to remove the need to compute the inverse of P−1(k) that
comes from Equation (10.10) so that it can be used in Equation (10.9) to update
θ. Notice that

P (k) = (Φ�(k)Φ(k))−1

= (Φ�(k − 1)Φ(k − 1) + φ(x(k))φ�(x(k)))−1

= (P−1(k − 1) + φ(x(k))φ�(x(k)))−1

and that if we use the matrix inversion lemma with A = P−1(k − 1), B =
φ(x(k)), C = I, and D = φ�(x(k)), we get

P (k) = P (k − 1) − (10.11)
P (k − 1)φ(x(k))(1 + φ�(x(k))P (k − 1)φ(x(k)))−1φ�(x(k))P (k − 1)

Now, using the fact that

P (k)φ(x(k)) =
P (k − 1)φ(x(k))

1 + φ�(x(k))P (k − 1)φ(x(k))

(to see this, substitute P (k) from Equation (10.11) into P (k)φ(x(k)) on the left
side of this equation). This gives us

θ(k) = θ(k − 1) + K(k)
(
y(k) − φ�(x(k))θ(k − 1)

)
(10.12)

K(k) =
P (k − 1)φ(x(k))

1 + φ�(x(k))P (k − 1)φ(x(k))

P (k) =
(
I − K(k)φ�(x(k))

)
P (k − 1)

which is called the “recursive least squares (RLS) algorithm.” Basically, the ma-
trix inversion lemma turns a matrix inversion into the inversion of a scalar (i.e.,
the term (1+φ�(x(k))P (k−1)φ(x(k)))−1 is a scalar). Note that K(k) is some-
times viewed as a time-varying gain on the prediction error y(k)−φ�(x(k))θ(k−
1) that dictates how θ(k − 1) is adjusted to get θ(k).

We need to initialize the RLS algorithm (i.e., choose θ(0) and P (0)). One
approach to do this is to use θ(0) = 0 and P (0) = P0 where P0 = αI for some
large α > 0. This is the choice that is often used in practice. Other times, you
may pick P (0) = P0, but choose θ(0) to be the best guess that you have at what
the parameter values are.

10.4.2 Weighted Recursive Least Squares: Using a For-
getting Factor

There is a “weighted recursive least squares” (WRLS) algorithm also. Suppose
that the parameters of the physical system vary slowly. In this case, it may be
advantageous to minimize

J(θ, G)|M=k =
1
2

k∑
i=1

λk−i
(
y(i) − φ�(x(i))θ

)2

454 Linear Least Squares Methods

where 0 < λ ≤ 1 is called a “forgetting factor” since it gives the more recent
data higher weight in the optimization (to see this, consider the effect of the
term λk−i in the above summation). See the discussion on weighted batch least
squares in the previous section.

Using a similar approach to the RLS case, you can show that the equations
for WRLS are given by

θ(k) = θ(k − 1) + K(k)
(
y(k) − φ�(x(k))θ(k − 1)

)
(10.13)

K(k) =
P (k − 1)φ(x(k))

λ + φ�(x(k))P (k − 1)φ(x(k))

P (k) =
1
λ

(
I − K(k)φ�(x(k))

)
P (k − 1)

(where when λ = 1, we get the equation for standard RLS given above).

10.4.3 Numerical Issues and Covariance Modifications

Briefly, we note that for practical problems, you can have numerical problems
with the computation of the (weighted) recursive least squares update algorithm.
One solution to this problem is to employ the “factorization” methods that are
highlighted in the “For Further Study” section at the end of this part. Here,
we will discuss other issues that arise in the use of the recursive least squares
method.

RLS with Covariance Resetting

One particular problem that has been encountered in implementations of the
online recursive least squares algorithm (e.g., in adaptive control) is when the
matrix P (k) has elements that become too small so that P−1(k) is difficult to
compute. This can occur, for instance, when you do not get data that gives
sufficient information about the underlying unknown mapping. To be more
concrete, notice that for RLS (λ = 1), we had derived in Equation (10.7) that

P−1(k) = P−1(k − 1) + φ(x(k))φ�(x(k))

Notice that φ(x(k))φ�(x(k)) is a p× p matrix with squared terms so that they
are always positive. From this it is easy to see that it is possible that the
elements of P−1(k) can grow unbounded.

In this situation, sometimes a “covariance resetting method” is used where
at each time instant k, you check to see if

λmin(P (k)) < δ1

(where λmin(P (k)) is the minimum eigenvalue of P (k)) for some fixed δ1 > 0
and if it is, then you let

P (k + 1) = δ2I

10.4 Recursive Least Squares 455

where I is the identity matrix and δ2 ≥ δ1 (e.g., you could choose δ2 = α > δ1

where α was used to initialize P (0)). This ensures that we keep the minimum
eigenvalue of P (k) above some fixed value so that P (k) is positive definite so
the inverse P−1(k) exists (i.e., it is bounded). Now, this modification results in
a method that is not a pure least squares method (of course, between the resets,
it is); however, in adaptive control it is often found to be adequate to maintain
certain desirable closed-loop properties.

WRLS with Covariance Modification

It is interesting to note that for the WRLS method where 0 < λ < 1, we must
proceed differently. In this case, you can show that

P−1(k) = λP−1(k − 1) + φ(x(k))φ�(x(k))

(indeed, this is one step in the derivation of the WRLS formula in Equa-
tion (10.13)) so that P−1(k) will stay bounded (you can think of the above
equation as a stable discrete time system with a bounded input so long as
φ(x(k)) is bounded, which it often is simply by the choice of the structure of
the approximator). However, in this case, P (k) may have elements that grow
without bound. To see this, recall that we had derived

P (k) =
1
λ

P (k − 1) − 1
λ

P (k − 1)φ(x(k))φ�(x(k))P (k − 1)
λ + φ�(x(k))P (k − 1)φ(x(k))

Notice that while
λ + φ�(x(k))P (k − 1)φ(x(k)) > 0

since λ > 0, it could be that

P (k − 1)φ(x(k))φ�(x(k))P (k − 1) = 0

Now, since 1
λ > 1, it is possible that elements of P (k) can grow without bound.

To avoid this, we can modify the WRLS algorithm. To do this, we use
Equation (10.13) as an update formula for P (k) so long as

||P (k)||2 ≤ δ1

for some δ1 > 0 such that
||P (0)||2 < δ1

If, however, at some time k,
||P (k)||2 > δ1

we simply update P (k) by letting P (k) = P (k − 1) (i.e., rather than using
Equation (10.13)). This will ensure that all the elements of P (k) will stay
bounded. Here, note that

||P (k)||2 =
[
λmax

(
P�(k)P (k)

)] 1
2

456 Linear Least Squares Methods

where λmax

(
P�(k)P (k)

)
is the maximum eigenvalue of P�(k)P (k). But since

P (k) is symmetric and P (k) ≥ 0 (i.e., it is positive semidefinite), we know that

||P (k)||2 = λmax (P (k))

so that all we need to implement the modification to WRLS is to test eigenvalues.

10.4.4 Example: Fitting a Line to Data

As an example of how recursive least squares can be used, suppose that we
would like to use this method to fit a line to data that are generated by a time-
varying function. Suppose that n = 1. In this case our parameterized linear
approximator is

y = Flip(x, θ) = θ�φ(x) = θ�[φ1(x), 1]� = θ�[x1, 1]� = θ1x1 + θ2 (10.14)

which is an equation for a line. Suppose that the unknown function (we need
to explicitly provide it here for the sake of illustration)

y(k) = G(x(k), z(k)) = sin(0.01k)x1(k) + 1

where x(k) = x1(k) and z(k) captures the time-varying nature of the function
(e.g., we could say that z(k) = k). Notice that we can think of the sin(0.01k)
as a time-varying slope and the 1 as the intercept of a time-varying line. We
assume that we have examined the data and determined that there is some type
of time-varying behavior, so we decide to try to use recursive least squares. We
emphasize, however, that we assume that we do not know the explicit structure
of the unknown function.

First, we must specify the input x(k). Here, we simply choose x(k) to
be a random value that is uniformly distributed on [−1, 1]. Next, we pick
θ(0) = [0, 0]� and P (0) = αI where α = 100. Then we show the performance
of the estimator in Figure 10.20 for the case where λ = 1, 0.98, 0.95, 0.7. First,
notice that in the nonweighted case (λ = 1), the estimate θ1 quickly converges to
the true value of 1 but that the estimate θ2 is quite poor. The reason for this is
that even though the underlying system has a parameter that changes over time,
the estimation algorithm does not forget what the old data told it about how
to do a good estimate. On the other hand, in the case where λ = 0.98, which
represents that we want to forget some old information, the estimator does much
better. Continuing with the tuning in this manner, we see that we get successive
improvements, until the case where λ = 0.7 and we get a very good estimate.
In this case, we tuned λ so that we are forgetting enough old information about
the underlying function so that we are listening enough to what new data are
saying about how the underlying function is shaped. It is clear then that when
you have slowly varying changes in the underlying function, you probably want
a large λ (i.e., near 1), where if the underlying system changes quickly, you
probably want a smaller value of λ so that the algorithm quickly forgets old
information; however, generally you do not want to pick λ to be too small since
then it will quickly forget old information and may not perform well.

10.5 Example: Online Tuning of Approximators 457

0 100 200 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time, k

P
ar

am
et

er
s

an
d

es
tim

at
es

RLS parameter estimates

0 100 200 300
-0.5

0

0.5

1

1.5

Time, k

P
ar

am
et

er
s

an
d

es
tim

at
es

RLS parameter estimates

0 100 200 300
-0.5

0

0.5

1

1.5

Time, k

P
ar

am
et

er
s

an
d

es
tim

at
es

RLS parameter estimates

0 100 200 300
-0.5

0

0.5

1

1.5

Time, k

P
ar

am
et

er
s

an
d

es
tim

at
es

RLS parameter estimates

Figure 10.20: RLS parameter estimates, λ = 1 (upper left), λ = 0.98 (upper
right), λ = 0.95 (lower left), λ = 0.7 (lower right).

10.5 Example: Online Tuning of Approximators

In this section, we continue with the examples considered in Section 10.2 where
we considered the use of the batch least squares method to tune the approxi-
mator parameters.

10.5.1 Multilayer Perceptrons

Here, we consider the case where we had n1 = 25 neurons and use all the
same values of the biases and weights in the hidden layer that we developed in
Section 10.2. Here, we use RLS to tune the neural network output layer weights
and bias (these are stacked in the 26 × 1 vector θ). We will focus in particular
on how the training data are presented to the algorithm and how this affects the
accuracy of the approximator, how the forgetting factor affects the algorithm,
and how initialization affects approximator accuracy.

Relatively Uniform Coverage of the Input Space

We will let the input x be uniformly distributed on [−6, 6] and try to train the
neural network to match the function in Figure 9.10. We let λ = 1 and initialize
the algorithm with θ(0) = 0 and P (0) = αI with α = 100. To illustrate how
the shape of the approximator nonlinearity evolves over time, we show the first
10 iterations of the RLS algorithm in Figure 10.21. Notice that for k = 1,

458 Linear Least Squares Methods

we actually have two data points shown since we generated one data pair at
k = 0 simply in case you wanted to also evaluate the estimation error of the
approximator at time k = 0. At this time, however, only one data point has

The performance of
recursive least squares in
constructing a mapping
over the entire input
space depends critically
on the gathered data
being properly spread
over this space.

been used to tune the approximator. Notice that with only one data point, the
estimator mapping is far from providing a good approximation of the mapping
in Figure 9.10 (not surprising since with only one data pair, it knows little
about its shape). Notice, however, that as k increases, we get more and more
training data and our representation becomes more and more accurate. Here,
x(k) provides a relatively uniform coverage of the input space so even after only
10 iterations, we get a relatively good approximation.

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
1

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
2

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
3

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
4

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
5

-6 -4 -2 0 2 4 6
0

2

4

x
y,

 k
=

6

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
7

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
8

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
9

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
10

Figure 10.21: Neural network mappings generated using increasing amounts of
training data (k = 1 to k = 10).

Nonuniform Coverage of the Input Space

Next, consider what happens when we do not get a good coverage of the input
space. To do this, we simply run the program used to generate Figure 10.21 a
few times, until by random chance it does not place any x data in one region
of the input space. When this happens, we get the sequence of neural network
mappings shown in Figure 10.22, where there are no input data in the region
near x = −6 so we see that the approximation is poor in that region (until at
k = 10, where it gets one more point and it improves the approximation). This
is, of course, not surprising since, in this case the approximator is extrapolating
for k ≤ 9 so we cannot expect it to perform very well. It is also the case that if

10.5 Example: Online Tuning of Approximators 459

there are “holes” in the input space where there are no data, we will generally
get poor approximation accuracy in that region. The general principle is that
if you want to get good accuracy in any region, you need data to tell you what
the shape of the function in that region is.

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
1

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
2

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
3

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
4

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
5

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
6

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
7

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
8

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
9

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
10

Figure 10.22: Neural network mappings generated using increasing amounts of
training data (no data near x = −6 for k ≤ 9).

Effects of Tuning the Forgetting Factor

In this case we will use a data set that has many input-output data pairs that
are uniformly distributed across the input space. To do this, we will simply
run the RLS algorithm for 300 steps, generating data at each of these steps
(qualitatively, we obtain similar results if we use 1000 steps). To avoid showing
300 plots, we simply show how the last approximator performs compared to
the training data. In particular, see Figure 10.23, and notice that this is a
reasonably good approximation (we rely on random chance to get the uniform
distribution of training data shown). Here, the approximator misses some of
the structure inherent in the function, especially the “high frequency content”
of the function (e.g., the peak at about x = 1 is considered to be an outlier since
it is not encountered often). It seems to smooth out the approximator shape
and does avoid being distracted by noise.

It is interesting to compare the accuracy of this approximator to that which
was trained with batch least squares (see Figure 10.4). The one trained with
batch least squares appears to be more accurate even though it was trained with

460 Linear Least Squares Methods

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

y,
 k

=
30

0

Neural network trained with RLS

Figure 10.23: Neural network tuned with RLS for 300 steps.

fewer data (i.e., using less information about the unknown function). Notice,
however, that the critical issue here is how the data were used. For batch
least squares, all 121 data pairs were used at the same time to minimize the
approximation error. For RLS, we provide the 300 data pairs in a sequence,
and update the approximator each time we get a new data pair, placing equal
importance on each piece of data obtained (i.e., we have λ = 1 here). Actually,
by training with fewer steps (e.g., 121), you may get better overall accuracy
(similar to that of the batch least squares).

Note, however, that by tuning λ, it is sometimes possible to get the approx-
imator to do a better job at approximating the higher frequency content of the
function. (Of course, another option is to increase the number of neurons in
the hidden layer as we did in the batch least squares case.) For instance, if
we let λ = 0.95, we get the plot shown in Figure 10.24, where we see that the
approximator is trying to model the higher frequency behavior. Why? Well, the
effect of λ = 0.95 is to place less significance on old data (i.e., data encountered
for low values of k when we are at a higher value of k) so that different regions
tend to become somewhat independent of each other so we can shape based
on local data. However, this example is not to be overgeneralized. Sometimes
you can pick λ to take on certain values and get disastrous results (where the
approximator shape diverges from the shape it should have). The parameter λ
offers the potential for performance improvements but cannot be guaranteed to
provide these every time.

10.5 Example: Online Tuning of Approximators 461

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

y,
 k

=
30

0
Neural network trained with RLS

Figure 10.24: Neural network tuned with RLS for 300 steps, λ = 0.95.

Effects of Good Initialization of the Approximator

It should be intuitively clear that if we initialize, via choice of θ(0), the approx-
Generally, better
initialization of the
mapping results in
higher quality
approximators after
training; however,
training could decrease
the quality of the initial
guess.

imator close to the shape that it should ultimately be, that the RLS method
should perform better. How do we initialize θ? One approach is to collect a set
of training data and train with batch least squares first. If you do this for our ex-
ample using the result of the batch least squares training studied in Section 10.2,
then RLS ends up tuning the shape very little, even after 300 iterations (this is
partly because the (y(k) − φ(x(k))�θ(k − 1)) term in Equation (10.12), which
is the error in predicting y(k) using θ(k − 1), is small for a good initialization,
so the updates to θ(k) are small).

We would like to show, however, that if you have a reasonably good initial-
ization this can help the approximator accuracy, but that RLS also can improve
on this accuracy by using more data to tune the approximator. So, how do we
obtain a “reasonably good” initialization? One approach is to simply guess, but
this can be very difficult when there are many parameters. Another approach
is to use fewer training data in the batch least squares approach (in practical
applications, this is typically the approach used). Here, however, simply for
the sake of illustration, we will perturb the θ we had obtained from the batch
least squares training by letting θ(0) = θ + 0.25θ. In this case, we obtain the
results shown in Figures 10.25 and 10.26. Notice that in Figure 10.25, the initial
approximator shape is better than in, for instance, Figure 10.21, but that near
x = 6, the approximation is not very good. As data are gathered, however,

462 Linear Least Squares Methods

the RLS further improves the accuracy of the approximator and to see this, the
final approximator is illustrated in Figure 10.26.

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
1

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
2

-6 -4 -2 0 2 4 6
0

2

4

x
y,

 k
=

3
-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
4

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
5

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
6

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
7

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
8

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
9

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
10

Figure 10.25: Neural network mappings generated using increasing amounts of
training data (reasonably good initialization).

10.5.2 Takagi-Sugeno Fuzzy Systems

Here, we consider the case where we had R = 20 rules and use all the same
values of the centers and spreads for the premise membership functions that we
developed in Section 10.2. Here, we use RLS to tune the Takagi-Sugeno fuzzy
system output function parameters (these are stacked in the 40 × 1 vector θ).

Input Space Coverage

In Figure 10.27 we show what happens in the first 10 steps of the algorithm for
Due to locality properties
of the Takagi-Sugeno
fuzzy system, it tends to
adjust the mapping only
where it gets data and
tends not to destroy
what it has learned in
one area when making
adjustments in another
area.

training the Takagi-Sugeno fuzzy system. Notice that in this case, we are initial-
izing the parameter vector to be all zeros so that the mapping is zero initially.
As it begins to get data, it shapes the mapping, but apparently in a very differ-
ent way from what was done for the neural network (compare to Figure 10.21).
Each time it gets another data point, it tries to pass the approximator mapping
through that data point. In a sense, it trusts the initialization and does not
adjust parameters to match in places where it does not know how to adjust. Of
course, while this does not appear to be a good property in this example, for
early steps of the approximator construction it can be quite beneficial since the
approximator shape only changes locally.

10.5 Example: Online Tuning of Approximators 463

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

y,
 k

=
30

0
Neural network trained with RLS

Figure 10.26: Neural network mappings generated using increasing amounts of
training data, after 300 iterations.

Figure 10.27 dramatically illustrates issues of input space coverage. Bad
coverage can clearly result in bad mappings, just as in the neural network case.
Good coverage is obtained with more data. For example, if we use 300 pieces of
training data, we get the mapping shown in Figure 10.28. The approximation
error is somewhat lower compared to the neural network as you can see by
comparing to Figure 10.23 (but do not draw any general conclusions from that).
The tuning of the forgetting factor acts in a similar way (qualitatively) to that
which was illustrated for the neural network.

Effects of Good Initialization of the Approximator

Here, we briefly illustrate the effects of using a good initialization for the param-
eters of the Takagi-Sugeno fuzzy system. We will follow the same approach as
for the neural network in the last section. First, we show in Figure 10.29 what
happens if you use the exact value of θ found by batch least squares. Notice
that, as compared to Figure 10.27, the initial shapes are quite good due to the
initialization (and if you run this for 300 steps, then it gets the result shown in
Figure 10.30).

Next, we will perturb the good initialization by letting θ(0) = θ + 0.25θ
where θ was found using the batch least squares method. The results for this
case are shown in Figure 10.31. By studying the sequence of plots, you can see
that as data are obtained in new regions, the approximator updates the shape

464 Linear Least Squares Methods

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
1

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
2

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
3

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
4

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
5

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
6

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
7

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
8

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
9

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
10

Figure 10.27: Takagi-Sugeno fuzzy system mappings generated using increasing
amounts of training data (k = 1 to k = 10).

to more closely approximate the unknown function. In fact, after 300 iterations,
the shape shown in Figure 10.32 is quite good and even similar to the case where
a very good initialization was used. This shows how RLS can improve upon an
initialization to provide good approximation accuracy.

10.6 Exercises and Design Problems

Exercise 10.1 (Batch Least Squares Derivation): Recall that for batch
least squares, we had

J(θ) =
1
2
E�E

(a) Using basic ideas from calculus, take the partial of J with respect to θ
and set it equal to zero. From this, derive an equation for how to pick
the least squares estimate. Compare it to Equation (10.2). Hint: If
m and b are two n×1 vectors and A is an n×n symmetric matrix (i.e.,
A = A�), then d

dmb�m = b, d
dmm�b = b, and d

dmm�Am = 2Am.

(b) Repeat (a) for the weighted batch least squares approach and com-
pare it to Equation (10.4).

Exercise 10.2 (Recursive Least Squares Derivation): In this problem
you will derive the RLS method for two different cases.

10.6 Exercises and Design Problems 465

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

y,
 k

=
30

0
Takagi-Sugeno fuzzy system trained with RLS

Figure 10.28: Takagi-Sugeno fuzzy system approximator mapping after 300
steps.

(a) Derive the update Equations (10.13) for the weighted recursive least
squares approach (show every step of the derivations).

(b) In some applications we have a vector of measurements at each time
instant (i.e., multiple measurements), rather than a single measure-
ment. Derive the RLS equations for this case, and clearly identify
the dimensions of all the matrices and vectors that you use.

Design Problem 10.1 (Gas Furnace CO2 One-Step Ahead Prediction):
See the Web page for the book and download the Box-Jenkins data for
the gas furnace (it is in the form of a Matlab .dat file, but will download
as a text file that you will remove the .txt extension from, before using
in Matlab; of course, you can examine the file and easily use it in other
programs).

(a) Develop an estimator using a batch least squares approach for y(k),
assuming that you use all the inputs to the estimator. You can think
of this as a one-step ahead predictor since the estimate will depend
on past inputs and outputs, in particular, y(k−1), y(k−2), y(k−3),
y(k−4), u(k−1), u(k−2), u(k−3), u(k−4), u(k−5), and u(k−6).
Use an affine approximator mapping (i.e. linear with bias). There are
290 data pairs in the “boxjenkins.dat” file. Use only the first 145 for
training (i.e., M = 145). Use the last 145 for testing (i.e., MΓ = 145).
Provide values of the mean squared error for the approximator that

466 Linear Least Squares Methods

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
1

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
2

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
3

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
4

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
5

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
6

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
7

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
8

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
9

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
10

Figure 10.29: Takagi-Sugeno fuzzy system approximator mapping for the first
10 steps, good initialization.

you trained, both at the training data and the testing data. Plot y(k)
vs. k and the estimate of y(k) vs. k on the same plot (use different
line types for each) for k = 1, 2, ..., 145, 146,, 290, so that this plot
will show how the estimator will perform at both the training and
testing data (with the plots concatenated). Plot the error between
the approximator estimate and the training data and testing data on
the same type of plot (but on a different graph). Discuss the results.

(b) Suppose that you are constrained to only be able to use two inputs to
your estimator. Pick the best two (with “best” defined by minimiz-
ing the mean squared error for the testing data). Moreover, specify a
methodology for picking these. Use this methodology and repeat the
process for three inputs. Compare, using the same plotting method-
ology and mean squared errors, to part (a).

(c) For (a), switch the training and test data. Repeat the design and
testing of the estimator. Comment on the values of the mean squared
error relative to the ones found in (a).

Design Problem 10.2 (Controller Construction from Process Oper-
ator Data):

In this problem you will follow the development in Section 10.3 to con-
struct a controller using process operator data. (You can get the data at
the Web site for the book.)

10.6 Exercises and Design Problems 467

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

y,
 k

=
30

0
Takagi-Sugeno fuzzy system trained with RLS

Figure 10.30: Takagi-Sugeno fuzzy system approximator mapping obtained after
300 iterations, good initialization.

(a) Verify the correlation analysis that was used to try to select inputs
to the controller by reproducing Figure 10.12.

(b) Develop using a batch least squares approach linear (affine) con-
trollers for the cases where you use all the inputs, 3 inputs, 2 inputs,
and 1 input, as was done in the chapter. Verify the results there for
the values obtained for the mean square errors in each case. In each
case, produce the same types of plots to illustrate the performance
of the estimator. Also, for each case, compute the correlation coef-
ficients between the inputs and the estimation error and explain the
resulting values using ideas from Section 10.3.

(c) Next, using ideas presented in Section 10.3, develop a fuzzy controller
that obtains a lower mean squared error than you obtained for any
case in (b). Produce the same types of plots as you did in (b) to
illustrate the performance of the estimator and provide the value of
the mean square error. You may use the same type of approach as
given in the chapter (including the correlation analysis), or you may
want to try to tune a neural network, or try a different tuning method.
No matter which approach you take, be certain to pay attention to
the number of parameters that you use in the approximator you are
tuning. In fact, for each approximator structure you study, provide
the number of parameters in the approximator and keep in mind that
it is typically best to use the simplest approximator (where “simple”

468 Linear Least Squares Methods

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
1

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
2

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
3

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
4

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
5

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
6

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
7

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
8

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
9

-6 -4 -2 0 2 4 6
0

2

4

x

y,
 k

=
10

Figure 10.31: Takagi-Sugeno fuzzy system approximator mapping for the first
10 steps, reasonably good initialization.

may be measured by the size of the approximator, i.e., the number
of parameters that are used in its definition).

(e) Optional: If you used a standard fuzzy controller in (c), develop
linguistic rules from the ones that were constructed with data. You
can pick linguistic values. Use these rules to explain some operating
characteristics of the plant.

10.6 Exercises and Design Problems 469

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

y,
 k

=
30

0

Takagi-Sugeno fuzzy system trained with RLS

Figure 10.32: Takagi-Sugeno fuzzy system approximator mapping after 300 it-
erations, reasonably good initialization.

