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Constrained Estimation

9.1 Overview

This chapter introduces the reader to the issues involved in constrained esti-
mation. We adopt a stochastic framework and model the underlying system
via a set of stochastic difference equations in which the noise has a known
probability density function. This leads to a stochastic interpretation of the
resulting estimators. Alternatively, one can interpret the resulting optimisa-
tion problems in a purely deterministic framework.

We begin with fixed horizon constrained linear estimation problems. We
will see that the resulting optimisation problems are similar to the prob-
lems that arise in constrained control. Indeed, they only differ by virtue of
the boundary conditions imposed. In the next chapter we will show that the
connection is actually deeper than similarity. Indeed, we will show that, for
the linear constrained case, the problems are formally dual to each other. We
then consider rather general nonlinear estimation problems. Finally, the mov-
ing horizon implementation of these estimators is discussed and illustrated by
examples.

Potential applications of the ideas presented here include any estimation
problem where the variables are known, a priori, to satisfy various constraints.
Examples are:

(i) State estimation problems in physical systems where constraints are
known to apply, for example, in a distillation column where the liquid
levels in the trays are known to lie between two levels (empty and full).

(ii) More general state estimation problems in process control where key vari-
ables (for example, disturbances) are known to lie in certain regions.

(iii) Channel equalisation problems in digital communication systems where
the transmitted signal is known to belong to a finite alphabet (say ±1).

(iv) Estimation problems with general distributions where the distribution can
be approximated in different regions by different Gaussian distributions.
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9.2 Simple Linear Regression

To motivate the more general results to follow, let us first consider a simple
linear regression problem:

xk+1 = xk = x0 for k = 0, . . . , N − 1,

yk = Cxk + vk for k = 1, . . . , N,
(9.1)

where xk ∈ Rn and where {yk} is a given sequence of scalar observations.
Say that {vk} is an i.i.d. sequence having a distribution pv(vk) obtained by
truncating on the interval [−b, b] a Gaussian distribution with zero mean and
variance σ2, that is,

pv(vk) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

σ
√

2π
exp

{
− v2

k

2σ2

}
∫ b

−b
1

σ
√

2π
exp

{− α2

2σ2

}
dα

if |vk| ≤ b,

0 otherwise.

(9.2)

Also, assume that x0 has a Gaussian distribution: N(µ0, P0) with P0 > 0.
In the sequel, we will need to refer frequently to conditional probability

density functions. These take the general form of the probability density for
a random variable a evaluated at â (say), given that another random variable
b takes the specific value b̂. We will express this density as pa|b(a = â|b = b̂).
Often we will simplify the notation to pa|b(â|b̂).

Let yN =
[
y1 . . . yN

]t and let yd
N =

[
yd
1 . . . yd

N

]t
denote the given obser-

vations. Then, using Bayes’ rule and the independence assumption, the joint
probability density function for the data yd

N and initial state estimate x̂0 can
be obtained as follows:

py1,x0(y
d
1 , x̂0) = py1|x0(y

d
1 |x̂0) px0(x̂0),

py2,y1,x0(y
d
2 , yd

1 , x̂0) = py2|y1,x0(y
d
2 |yd

1 , x̂0) py1,x0(y
d
1 , x̂0)

= py2|y1,x0(y
d
2 |yd

1 , x̂0) py1|x0(y
d
1 |x̂0) px0(x̂0)

= py2|x0(y
d
2 |x̂0) py1|x0(y

d
1 |x̂0) px0(x̂0),

...

pyN ,x0(y
d
N , x̂0) = px0(x̂0)

N∏
k=1

pyk|x0(y
d
k|x̂0). (9.3)

Also note from (9.1) and (9.2) that

pyk|x0(y
d
k|x̂0) = pv(yd

k − Cx̂0)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

σ
√

2π
exp

{
− (yd

k−Cx̂0)
2

2σ2

}
∫ b

−b
1

σ
√

2π
exp

{− α2

2σ2

}
dα

if |yd
k − Cx̂0| ≤ b,

0 otherwise.



9.2 Simple Linear Regression 189

Then, using the above in (9.3), we finally obtain

pyN ,x0(y
d
N , x̂0) =

{
f1(yd

N , x̂0) if |yd
k − Cx̂0| ≤ b, k = 1, . . . , N,

0 otherwise,
(9.4)

where

f1(yd
N , x̂0) � β exp

{
−(x̂0 − µ0)t

P−1
0

2
(x̂0 − µ0)

}

×
N∏

k=1

1
σ
√

2π
exp

{−(yd
k−Cx̂0)

2

2σ2

}
∫ b

−b
1

σ
√

2π
exp

{−α2

2σ2

}
dα

, (9.5)

where β � (2π)−
n
2 (det P0)−

1
2 .

The estimation problem is as follows: Given yd
N , make some statement

about the value of x0. Based on pyN ,x0(yd
N , x̂0) we can express the a posteriori

distribution of x0 given yN as follows:

px0|yN
(x̂0|yd

N ) =
pyN ,x0(yd

N , x̂0)
pyN (yd

N )
, (9.6)

where pyN (yd
N ) is independent of x0 and satisfies

pyN (yd
N ) =

∫
Rn

pyN ,x0(y
d
N , α)dα. (9.7)

The a posteriori distribution px0|yN
(x̂0|yd

N ) summarises “what we know about
x0 given the observations yd

N .” If we require a specific estimate, then we can
obtain this from px0|yN

(x̂0|yd
N ). Possible estimates are:

(i) Conditional mean

x̂
[1]
0 � E{x0|yd

N} =
∫

Rn

α px0|yN
(α|yd

N ) dα. (9.8)

(ii) A posteriori most probable

x̂
[2]
0 � arg max

x̂0

px0|yN
(x̂0|yd

N ) = arg max
x̂0

pyN ,x0(y
d
N , x̂0). (9.9)

Note that, in general, x̂
[1]
0 �= x̂

[2]
0 . A simple two-state case is illustrated in

Figure 9.1. In the unconstrained Gaussian case we have that the conditional
mean coincides with the a posteriori most probable estimate (denoted x̂0 in
the figure). However, in the presence of constraints, the a posteriori probability
density is nonzero only in a restricted region illustrated by the shaded area1 in
1 For simplicity, all the truncated distributions are illustrated in this chapter with-

out scaling.
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x̂0

px0|yN
(x0|yd

N)

x̂
[2]
0 x̂

[1]
0

Figure 9.1. Illustration of the conditional mean and the a posteriori most probable
estimate. (The points shown should actually be on the x0-plane.)

Figure 9.1. In this case, we see that the conditional mean x̂
[1]
0 will, in general,

differ from the a posteriori most probable x̂
[2]
0 .

In the sequel, we will mainly focus on the a posteriori most probable
estimate since this is found via a constrained optimisation procedure which is
similar to the optimal control problems addressed earlier.

Returning to our special case of simple linear regression, we see from (9.9),
that the a posteriori most probable estimate is obtained by maximising (9.4)–
(9.5). In turn, this is equivalent to minimising − ln pyN ,x0(yd

N , x̂0) where

− ln pyN ,x0(y
d
N , x̂0) =

N∑
k=1

1
2σ2

v̂2
k +

1
2
(x̂0 − µ0)tP−1

0 (x̂0 − µ0) + constant,

subject to the constraints

v̂k = yd
k − Cx̂0 for k = 1, . . . , N,

v̂k ∈ [−b, b] for k = 1, . . . , N.

We recognise this as a standard constrained quadratic optimisation problem
in the variable x̂0.



9.3 Linear State Estimation with Constraints 191

9.3 Linear State Estimation with Constraints

Here we generalise the ideas presented in Section 9.2 to the following linear
Markov model:

xk+1 = Axk + Bwk,

yk = Cxk + vk,
(9.10)

where xk ∈ Rn, wk ∈ Rm, yk ∈ Rr and vk ∈ Rr. Suppose that {wk}, {vk}, x0

are i.i.d. sequences having truncated Gaussian distributions, that is,

pw(wk) =

⎧⎪⎪⎨⎪⎪⎩
βw exp

{− 1
2wt

kQ−1wk

}
βw

∫
Ω1

exp
{− 1

2νtQ−1ν
}

dν
for wk ∈ Ω1,

0 otherwise,

(9.11)

pv(vk) =

⎧⎪⎪⎨⎪⎪⎩
βv exp

{− 1
2vt

kR−1vk

}
βv

∫
Ω2

exp
{− 1

2νtR−1ν
}

dν
for vk ∈ Ω2,

0 otherwise,

(9.12)

px0(x0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
βx0 exp

{− 1
2 (x0 − µ0)tP−1

0 (x0 − µ0)
}

βx0

∫
Ω3

exp
{− 1

2 (ν − µ0)tP−1
0 (ν − µ0)

}
dν

for x0 ∈ Ω3,

0 otherwise,
(9.13)

where Q > 0, R > 0, P0 > 0, βw � (2π)−
m
2 (det Q)−

1
2 , βv � (2π)−

r
2 (det R)−

1
2 ,

βx0 � (2π)−
n
2 (det P0)−

1
2 , Ω1 ⊂ Rm, Ω2 ⊂ Rr and Ω3 ⊂ Rn.

We define

yN =
[
yt
1 . . . yt

N

]t
, (9.14)

yd
N =

[
yd
1
t

. . . yd
N

t]t
, (9.15)

xN =
[
xt

0 . . . xt
N

]t
, (9.16)

x̂N =
[
x̂t

0 . . . x̂t
N

]t
. (9.17)

From Bayes’ rule and the Markovian structure of (9.10) we have that

pxk+1,...,x0(x̂k+1, x̂k, x̂k−1, . . . , x̂0) = pxk+1|xk,...,x0(x̂k+1|x̂k, x̂k−1, . . . , x̂0)

× pxk,...,x0(x̂k, x̂k−1, . . . , x̂0)
= pxk+1|xk

(x̂k+1|x̂k)

× pxk,...,x0(x̂k, x̂k−1, . . . , x̂0),
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and also

pyk,xk,...,x0(ŷ
d
k, x̂k, x̂k−1, . . . , x̂0) = pyk|xk,...,x0(y

d
k|x̂k, x̂k−1, . . . , x̂0)

× pxk,...,x0(x̂k, x̂k−1, . . . , x̂0)

= pyk|xk
(yd

k|x̂k)
× pxk,...,x0(x̂k, x̂k−1, . . . , x̂0).

It then follows that the joint probability density function for yN and xN

defined in (9.14) and (9.16), respectively, is given by

pyN ,xN (yN = yd
N ,xN = x̂N ) = px0(x0 = x̂0)

N∏
k=1

[
pyk|xk

(yk = yd
k|xk = x̂k)

× pxk|xk−1(xk = x̂k|xk−1 = x̂k−1)
]
.

(9.18)

We next develop an explicit expression for the joint density function in
(9.18). We begin with the nonsingular case when wk ∈ Rn (m = n) and B is
nonsingular in (9.10).

Lemma 9.3.1 For the model described in (9.10) to (9.17), and subject to
wk ∈ Rn (m = n) and B nonsingular, the joint probability density function
(9.18) for yN and xN satisfies

pyN ,xN (yN = yd
N ,xN = x̂N ) = constant × exp

{
−1

2

N−1∑
k=0

ŵt
kQ−1ŵk

}

× exp

{
−1

2

N∑
k=1

v̂t
kR−1v̂k

}

× exp
{
−1

2
(x̂0 − µ0)tP−1

0 (x̂0 − µ0)
}

,

(9.19)

whenever

ŵk ∈ Ω1 for k = 0, . . . , N − 1,

v̂k ∈ Ω2 for k = 1, . . . , N,

x̂0 ∈ Ω3,

where

x̂k+1 = Ax̂k + Bŵk for k = 0, . . . , N − 1,

v̂k = yd
k − Cx̂k for k = 1, . . . , N.
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Proof. From (9.10), (9.11) and (9.12), we have, using the rule of transforma-
tion of probability density functions:

pxk+1|xk
(xk+1 = x̂k+1|xk = x̂k) = constant× pw(ŵk)

= constant× exp
{
−1

2
ŵt

kQ−1ŵk

}
,

whenever ŵk ∈ Ω1 and satisfies x̂k+1 = Ax̂k + Bŵk. Also,

pyk|xk
(yk = yd

k|xk = x̂k) = constant× pv(v̂k)

= constant× exp
{
−1

2
v̂t

kR−1v̂k

}
,

whenever v̂k ∈ Ω2 and satisfies yd
k = Cx̂k + v̂k. Finally, using (9.13), and

substituting all expressions into (9.18), the result follows. �

Remark 9.3.1. In the general case, when wk ∈ Rm with m < n in (9.10),
the linear equality x̂k+1 −Ax̂k = Bŵk, implies that x̂k+1 −Ax̂k can only take
values in the range space of B. Hence, we need to account for the fact that
x̂k+1 − Ax̂k has a singular distribution2 in Rn. We can easily deal with this
situation by introducing a linear transformation in the state space as follows.

Assume that B has full column rank. Let T1 be a basis for the range space
of B (which, in particular, could be chosen equal to B) and choose any T2

such that T = [T1 T2] is nonsingular. We partition T−1 as follows:

T−1 =
[
S1

S2

]
,

where S1 is an m × n matrix. Then T−1T = In implies

S1T1 = Im, S2T1 = 0(n−m)×m.

Hence, since B = T1B̄1 for some nonsingular m×m matrix B̄1, we have, using
the above equations, that

T−1B =
[
S1

S2

]
T1B̄1 =

[
B̄1

0

]
. (9.20)

Partition x̄k+1 as
x̄k+1 � T−1xk+1. (9.21)

Then, from (9.10), x̄k+1 satisfies

x̄k+1 = Āxk + B̄wk, (9.22)

2 A singular distribution is a distribution in �
n which is concentrated in a lower

dimensional subspace, that is, the probability associated with any set not inter-
secting the subspace is zero (Anderson 1958).
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where

Ā � T−1A �
[
Ā1

Ā2

]
, B̄ � T−1B =

[
B̄1

0

]
, (9.23)

using (9.20). Let

x̄k+1 �
[
x̄′

k+1

x̄′′
k+1

]
,

where x̄′
k+1 ∈ R

m. Then, from (9.22)–(9.23), we can write[
x̄′

k+1

x̄′′
k+1

]
=

[
Ā1

Ā2

]
xk +

[
B̄1

0

]
wk. (9.24)

Hence, using the rule of transformation of probability density functions, we
have, from (9.21) and (9.24), that

pxk+1|xk
(x̂k+1|x̂k) = constant × px̄k+1|xk

(ˆ̄xk+1|x̂k)

= constant × px̄′
k+1|xk

(ˆ̄x′
k+1|x̂k) × δn−m[ˆ̄x′′

k+1 − Ā2x̂k]

= constant × pw(ŵk) × δn−m[ˆ̄x′′
k+1 − Ā2x̂k],

whenever ŵk ∈ Ω1 and satisfies ˆ̄x′
k+1 = Ā1x̂k + B̄1ŵk. In the above equations,

δn−m[ · ] is the Dirac delta function defined on Rn−m, that is, δn−m[η] =
δ(η1) × · · · × δ(ηn−m), where η =

[
η1 · · · ηn−m

]t ∈ Rn−m.
We can thus write

pxk+1|xk
(x̂k+1|x̂k) = constant× pw(ŵk) × δn−m[ˆ̄x′′

k+1 − Ā2x̂k], (9.25)

where x̂k+1 is restricted to those values reachable from ŵk, that is, such that
x̂k+1 = Ax̂k + Bŵk for some ŵk ∈ Ω1. We thus see that pxk+1|xk

( · | · )
has a density function in Rn corresponding to those values of xk+1 that are
reachable from wk.

When defining the joint a posteriori most probable [JAPMP] estimator
below, we will maximise the envelope of the delta function in (9.25). For
notational convenience, we define this envelope as

p′xk+1|xk
(x̂k+1|x̂k) � constant × pw(ŵk)

whenever ŵk ∈ Ω1 and satisfies x̂k+1 = Ax̂k + Bŵk. Hence, in the sequel,
probability densities p corresponding to singular distributions should be in-
terpreted as the envelope p′ defined above. ◦

The general estimation problem is: Given the observations yd
N =

[yd
1
t
. . . yd

N

t]t, make some statement about the states xN = [xt
0 . . . xt

N ]t. From
the joint probability density function (9.19), we can express the a posteriori
distribution of xN given yN as follows:

pxN |yN
(x̂N |yd

N ) =
pyN ,xN (yd

N , x̂N )
pyN (yd

N )
, (9.26)
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where pyN (yd
N ) is a data dependent term which does not depend on xN .

The a posteriori distribution pxN |yN
(x̂N |yd

N ) summarises “what we know
about xN given the observations yd

N .” As foreshadowed in Remark 9.3.1, our
aim is to find the joint a posteriori most probable [JAPMP] state estimates
x̂N = [x̂t

0 . . . x̂t
N ]t given the observations ŷd

N ; that is,

x̂∗
N � arg max

x̂N

pxN |yN
(x̂N |yd

N ). (9.27)

Note that (9.27) is equivalent to maximising the joint probability density
function, since, as noticed in (9.26), both functions are related by a term that
does not depend on xN . Thus, the joint maximum a posteriori estimate is
given by

x̂∗
N � arg max

x̂N

pxN |yN
(x̂N |yd

N )

= arg max
x̂N

pyN ,xN (yd
N , x̂N )

= arg min
x̂N

− ln pyN ,xN (yd
N , x̂N ). (9.28)

The preceding discussion leads, upon substitution of (9.19) into (9.28), to the
following optimisation problem.

Estimation Problem

Given the observations {yd
1 , . . . , yd

N} and the knowledge of µ0 (the mean value
of x0), solve:

Pe : V opt
N (µ0, {yd

k}) � min VN ({x̂k}, {v̂k}, {ŵk}), (9.29)

subject to:
x̂k+1 = Ax̂k + Bŵk for k = 0, . . . , N − 1, (9.30)

v̂k = yd
k − Cx̂k for k = 1, . . . , N, (9.31)

ŵk ∈ Ω1 for k = 0, . . . , N − 1, (9.32)
v̂k ∈ Ω2 for k = 1, . . . , N, (9.33)
x̂0 ∈ Ω3, (9.34)

where

VN ({x̂k}, {v̂k}, {ŵk}) � 1
2
(x̂0 − µ0)tP−1

0 (x̂0 − µ0)

+
1
2

N−1∑
k=0

ŵt
kQ−1ŵk +

1
2

N∑
k=1

v̂t
kR−1v̂k.

(9.35)
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We see that the above problem is very similar to the constrained lin-
ear quadratic optimal control problems discussed earlier (see, for example,
(5.49)–(5.54) in Chapter 5) save that they have different boundary conditions
and initial and terminal state weightings. The two problems are compared in
Table 9.1.

Constrained control Constrained estimation

Model xk+1 = Axk + Buk x̂k+1 = Ax̂k + Bŵk

Initial condition x0 (given) x̂0 ∈ Ω3

Initial state weighting 1
2
xt

0Qx0 (given) 1
2
(x̂0 − µ0)

tP−1
0 (x̂0 − µ0), µ0 given

Terminal state weighting 1
2
xt

NPxN
1
2
(yd

N − Cx̂N )tR−1(yd
N − Cx̂N),

yd
N given

Table 9.1. Comparison between the optimisation problems corresponding to con-
strained control and constrained estimation.

9.4 Extensions to Other Constraints and Distributions

The development in Section 9.3 was based on an assumption of truncated
Gaussian noise. This result is interesting in its raw form but becomes a pow-
erful tool when utilised as a basic building block to solve more general prob-
lems. Several alternatives are discussed below indicating how the core ideas
of Section 9.3 can be used in more general problems.

9.4.1 Nonzero-mean Truncated Gaussian Noise

It is very straightforward to add a nonzero mean assumption to the truncated
Gaussian noise assumption. The appropriate changes to (9.11) and (9.12) are

pw(wk) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
βw exp

{− 1
2 (wk − µw)tQ−1(wk − µw)

}
βw

∫
Ω1

exp
{− 1

2 (ν − µw)tQ−1(ν − µw)
}

dν
for wk ∈ Ω1,

0 otherwise,

pv(vk) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
βv exp

{− 1
2 (vk − µv)tR−1(vk − µv)

}
βv

∫
Ω2

exp
{− 1

2 (ν − µv)tR−1(ν − µv)
}

dν
for vk ∈ Ω2,

0 otherwise,
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where µw and µv are the “prior” means, that is, the means of the Gaussian
distributions before truncation.

The corresponding change in the objective function (9.35) is

VN ({x̂k}, {v̂k}, {ŵk}) � 1
2
(x̂0 − µ0)tP−1

0 (x̂0 − µ0)

+
1
2

N−1∑
k=0

(ŵk − µw)tQ−1(ŵk − µw)

+
1
2

N∑
k=1

(v̂k − µv)tR−1(v̂k − µv).

The use of a nonzero mean for the underlying distribution allows one, for
example, to build new zero-mean distributions such as the one illustrated in
Figure 9.2.

wµw

pw

Ω1

Figure 9.2. Zero-mean distribution formed by truncating a nonzero-mean Gaussian
distribution.

9.4.2 Combinations of Truncated Gaussian Noise

A further embellishment is to have different truncated Gaussian distributions
in different regions. For example, we could have

pw(wk) =
βwi exp

{− 1
2 (wk − µi)tQ−1

i (wk − µi)
}∑L

i=1 βwi

∫
Ωi

exp
{− 1

2 (ν − µi)tQ−1
i (ν − µi)

}
dν

,

for wk ∈ Ωi, i = 1, . . . , L, and zero otherwise, where Ωi ⊂ Rm are convex
sets that have an empty intersection pairwise. A simple example is shown in
Figure 9.3.

The associated optimisation problem can be solved by partitioning the
problem into constrained sub-problems, each of which is convex in a convex
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wµ1 µ2

pw

Ω1 Ω2

Figure 9.3. Combination of two nonzero-mean truncated Gaussian distributions.

region. One then simply chooses the global optimum as the minimum of the in-
dividual sub-problems. This idea was described in general terms in Section 2.7
of Chapter 2.

Thus, say that we have a scalar disturbance {wk} and an N -step opti-
misation horizon. Also, say that the distribution of {wk} is divided into L
nonoverlapping regions, each containing a different truncated Gaussian distri-
bution. Then one needs to solve LN separate QP problems. As an illustration,
with L = 2 (as in Figure 9.3) and N = 5, then one needs to solve 25 = 32 QP
problems.

Remark 9.4.1. Actually, the above idea is an interesting precursor to ideas
that will be presented in Chapter 13 when we treat finite alphabet estimation
problems. The latter case can be thought of as the limiting version of the idea
presented above in which each region contains a point mass distribution. In
this case, the optimisation problem requires LN objective function evaluations
rather than LN QP problems. ◦

9.4.3 Multiconvex Approximations of Arbitrary Distributions

A further generalisation of these ideas is to use a staircase approximation to
an arbitrary distribution. Thus, consider the smooth, but otherwise arbitrary,
distribution in Figure 9.4, together with a staircase approximation.

In each region, the probability density function is approximated by a uni-
form distribution, that is,

pw(wk) ≈ ci for wk ∈ Ωi,

where ci > 0 is a constant. In this case, we have

ln pw(wk) ≈ ln ci for wk ∈ Ωi.

The objective function (9.35) splits into LN (where L is the number of
regions Ωi in the staircase approximation) convex functions V i

N , each of them



9.5 Dynamic Programming 199

w

pw

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9

Figure 9.4. Arbitrary distribution and staircase approximation.

having the form:3

V i
N ({x̂k}, {v̂k}, {ŵk}) � 1

2
(x̂0 − µ0)tP−1

0 (x̂0 − µ0)

−
N−1∑
k=0

ln 
k +
1
2

N∑
k=1

v̂t
kR−1v̂k,

where 
k ∈ {c1, . . . , cL}, k = 0, . . . , N − 1.
The global solution is computed as the minimum of the LN convex op-

timisation sub-problems. (Note that the term −∑N−1
k=0 ln 
k is constant for

each sub-problem and, hence, it does not affect each minimiser. However,
these terms must be included in the evaluation of each sub-problem when
computing the global optimum.)

9.4.4 Discussion

We have seen above that one can treat very general estimation problems by
combining convex optimisation with constraints. Note that the juxtaposition
of constraints and regional convexity is the key idea to solving these problems.

9.5 Dynamic Programming

As for constrained control problems, we can utilise dynamic programming to
solve the constrained estimation problem. Here it is most convenient to use
forward dynamic programming whereas previously we used reverse dynamic
programming (see Section 3.4 in Chapter 3).

We return to the problem of constrained estimation described in (9.29)–
(9.35). We note that the objective function from time 0 to k (that is, (9.35)
for N = k) is a function of the initial state estimate x̂0, the choice of the input
3 Notice that we assume that vk has a Gaussian distribution, but the idea is readily

extended to arbitrary distributions for vk, also.
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noise sequence ŵ0, . . . , ŵk−1, and the given data µ0, yd
1 , . . . yd

k. If, for given
x̂0, we optimise with respect to ŵ0, . . . , ŵk−1, then the resulting partial value
function (at time k) is a function of x̂0 and µ0, yd

1 , . . . yd
k. For the purposes of

the dynamic programming argument it is actually more convenient to make
the partial value function a function of x̂k and µ0, yd

1 , . . . yd
k. This is possible

since (9.30) allows us to express x̂0 as a function of x̂k (together with the given
sequence ŵ0, . . . , ŵk−1) provided A is nonsingular. Thus, assuming that A is
nonsingular, the partial value function at time k is

V opt
k (x̂k, µ0, y

d
1 , . . . , yd

k) � min
ŵ0,...,ŵk−1

{
1
2
(x̂0 − µ0)tP−1

0 (x̂0 − µ0)

+
1
2

k−1∑
j=0

ŵt
j Q−1ŵj +

1
2

k∑
j=1

(yd
j − Cx̂j)tR−1(yd

j − Cx̂j)
}

,

subject to:

x̂j = A−1(x̂j+1 − Bŵj) for j = 0, . . . , k − 1, (9.36)
ŵj ∈ Ω1 for j = 0, . . . , k − 1, (9.37)

yd
j − Cx̂j ∈ Ω2 for j = 1, . . . , k, (9.38)

x̂0 ∈ Ω3. (9.39)

Then, the forward dynamic programming algorithm proceeds as follows. We
start with the partial value function at time 0, which, for x̂0 ∈ Ω3, is defined
as

V opt
0 (x̂0, µ0) � 1

2
(x̂0 − µ0)tP−1

0 (x̂0 − µ0). (9.40)

Next, for x̂1 ∈ Rn such that yd
1 − Cx̂1 ∈ Ω2, the partial value function at

time 1 is computed as

V opt
1 (x̂1, µ0, y

d
1) = min

ŵ0

{
V opt

0 (A−1x̂1 − A−1Bŵ0, µ0) +
1
2
ŵt

0Q−1ŵ0

+
1
2
(yd

1 − Cx̂1)tR−1(yd
1 − Cx̂1)

}
, (9.41)

subject to:
ŵ0 ∈ Ω1, (9.42)

A−1x̂1 − A−1Bŵ0 ∈ Ω3. (9.43)

Finally, for k ≥ 1, and x̂k+1 ∈ Rn such that yd
k+1 − Cx̂k+1 ∈ Ω2,
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V opt
k+1(x̂k+1, µ0, y

d
1 , . . . , yd

k+1)

= min
ŵk

{
V opt

k (A−1x̂k+1 − A−1Bŵk, µ0, y
d
1 , . . . , yd

k) +
1
2
ŵt

kQ−1ŵk

+
1
2
(yd

k+1 − Cx̂k+1)tR−1(yd
k+1 − Cx̂k+1)

}
, (9.44)

subject to:
ŵk ∈ Ω1, (9.45)

yd
k − C(A−1x̂k+1 − A−1Bŵk) ∈ Ω2. (9.46)

In the absence of constraints, the above dynamic programming algorithm
leads to the well-known Kalman filter. This is explained in the next section.

9.6 Linear Gaussian Unconstrained Problems

For the case of linear Gaussian unconstrained problems, the dynamic pro-
gramming algorithm of Section 9.5 can be solved explicitly. As expected, the
optimal estimator in this case is the Kalman filter, as we show in the following
results.

Lemma 9.6.1 ( Dynamic Programming for Linear Gaussian Estima-
tion) Assume that A is nonsingular.4 In the absence of constraints (that is,
Ω1 = Rm in (9.37), Ω2 = Rr in (9.38) and Ω3 = Rn in (9.39)), the dynamic
programming problem specified in (9.40)–(9.46) has the solution

V opt
k (x̂k, µ0, y

d
1 , . . . , yd

k) =
1
2
(x̂k − x̂k|k)tP−1

k|k (x̂k − x̂k|k) + constant, (9.47)

where x̂k|k is a function of µ0, y
d
1 , . . . , yd

k defined via the following recursion:

x̂0|0 = µ0, (9.48)
P0|0 = P0, (9.49)

and, for j = 0, . . . , k − 1,

x̂j+1|j = Ax̂j|j , (9.50)

x̂j+1|j+1 = x̂j+1|j + Pj+1|jCt(R + CPj+1|jCt)−1(yd
j+1 − Cx̂j+1|j), (9.51)

Pj+1|j = APj|jAt + BQBt, (9.52)

Pj+1|j+1 = Pj+1|j − Pj+1|jCt(R + CPj+1|jCt)−1CPj+1|j . (9.53)

Proof. We use induction, and assume that V opt
k (x̂k, µ0, y

d
1 , . . . , yd

k) is a
quadratic function of x̂k of the form
4 Here we assume A nonsingular, but the result holds for any matrix A.
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V opt
k (x̂k, µ0, y

d
1 , . . . , yd

k) =
1
2
(x̂k − x̂k|k)tP−1

k|k (x̂k − x̂k|k) + constant, (9.54)

where x̂k|k is the function of µ0, y
d
1 , . . . , yd

k defined via (9.48)–(9.53) for
j = 0, . . . , k − 1. We note from (9.40) and (9.48)–(9.49) that the induction
hypothesis holds for k = 0.

We next assume that (9.54) holds for k and show, by performing the
minimisation (9.44), that the results holds for k + 1. (Note that, in this case,
we should obtain that equations (9.50)–(9.53) apply for j = k.)

Step 1: As the first step towards performing the minimisation in (9.44),
we begin by adding the term 1

2 ŵt
kQ−1ŵk to (9.54) and substituting x̂k =

A−1x̂k+1 − A−1Bŵk, and then minimise with respect to ŵk. We denote the
resulting value function by W opt

k+1(x̂k+1, µ0, y
d
1 , . . . , yd

k), that is:

W opt
k+1(x̂k+1, µ0, y

d
1 , . . . , yd

k) = min
ŵk

{
1
2
(A−1x̂k+1 − A−1Bŵk − x̂k|k)tP−1

k|k

(A−1x̂k+1 − A−1Bŵk − x̂k|k)

+
1
2
ŵt

kQ−1ŵk

}
+ constant. (9.55)

Differentiating the argument of the min in (9.55) with respect to ŵk and
equating to zero gives

BtA−T P−1
k|k

(
x̂k|k − A−1x̂k+1 + A−1Bŵk

)
+ Q−1ŵk = 0,

or

ŵk = −
(
BtA−T P−1

k|kA−1B + Q−1
)−1

BtA−T P−1
k|k

(
x̂k|k − A−1x̂k+1

)
� −(Γ + Θ)−1BtA−T P−1

k|k α, (9.56)

where we have used the definitions

Γ � BtA−T P−1
k|kA−1B, (9.57)

Θ � Q−1, (9.58)

α �
(
x̂k|k − A−1x̂k+1

)
. (9.59)

Back-substituting (9.56) into (9.55), we obtain
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W opt
k+1(x̂k+1, µ0, y

d
1 , . . . , yd

k) =
1
2

[
α − A−1B(Γ + Θ)−1BtA−T P−1

k|kα
]t

P−1
k|k[

α − A−1B(Γ + Θ)−1BtA−T P−1
k|kα

]
+

1
2
αtP−1

k|kA−1B(Γ + Θ)−1Θ (9.60)

(Γ + Θ)−1BtA−T P−1
k|kα + constant

� 1
2
αtSα + constant, (9.61)

where

S =
[
I − A−1B(Γ + Θ)−1BtA−T P−1

k|k
]t

P−1
k|k[

I − A−1B(Γ + Θ)−1BtA−T P−1
k|k

]
+ P−1

k|kA−1B(Γ + Θ)−1Θ(Γ + Θ)−1BtA−T P−1
k|k

= P−1
k|k − 2P−1

k|kA−1B(Γ + Θ)−1BtA−T P−1
k|k

+ P−1
k|kA−1B(Γ + Θ)−1

{
BtA−T P−1

k|kA−1B
}

(Γ + Θ)−1BtA−T P−1
k|k
(9.62)

+ P−1
k|kA−1B(Γ + Θ)−1Θ(Γ + Θ)−1BtA−T P−1

k|k .

We note that the term in the { } in (9.62) is equal to Γ defined in (9.57).
Hence, the last three terms above can be combined to give

S = P−1
k|k − P−1

k|kA−1B(Γ + Θ)−1BtA−T P−1
k|k . (9.63)

Substituting (9.63) and (9.57)–(9.59) in (9.61), we have

W opt
k+1(x̂k+1, µ0, y

d
1 , . . . , yd

k) =
1
2
(
x̂k+1 − Ax̂k|k

)t
A−T

{
P−1

k|k − P−1
k|kA−1B[

BtA−T P−1
k|kA−1B + Q−1

]−1

BtA−T P−1
k|k

}
A−1(x̂k+1 − Ax̂k|k) + constant,

� 1
2
(
x̂k+1 − x̂k+1|k

)t (Pk+1|k)−1
(
x̂k+1 − x̂k+1|k

)
+ constant,

where we have used

x̂k+1|k � Ax̂k|k, (which gives (9.50) for j = k),

Pk+1|k � A

{
P−1

k|k − P−1
k|kA−1B

[
BtA−T P−1

k|kA−1B + Q−1
]−1

BtA−T P−1
k|k

}−1

At. (9.64)
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We also we note from (9.64) that

Pk+1|k =
{
A−T P−1

k|kA−1 − A−T P−1
k|kA−1B[

BtA−T P−1
k|kA−1B + Q−1

]−1

BtA−T P−1
k|kA−1

}−1

.

Using the matrix inversion lemma, we have

Pk+1|k = APk|kAt + BQBt,

as in (9.52) for j = k. Thus, summarising step 1, we have shown that

W opt
k+1(x̂k+1, µ0, y

d
1 , . . . , yd

k) =
1
2
(
x̂k+1 − x̂k+1|k

)t
P−1

k+1|k
(
x̂k+1 − x̂k+1|k

)
+ constant, (9.65)

where x̂k+1|k and Pk+1|k satisfy (9.50) and (9.52), respectively, for j = k.

Step 2: We next add the term 1
2 (yd

k+1−Cx̂k+1)tR−1(yd
k+1−Cx̂k+1) to (9.65)

to obtain

V opt
k+1(x̂k+1, µ0, y

d
1 , . . . , yd

k+1) =
1
2
(x̂k+1 − x̂k+1|k)tP−1

k+1|k(x̂k+1 − x̂k+1|k)

+
1
2
(yd

k+1 − Cx̂k+1)tR−1(yd
k+1 − Cx̂k+1)

+ constant. (9.66)

We want to write (9.66) as a perfect square, that is,

V opt
k+1(x̂k+1, µ0, y

d
1 , . . . , yd

k+1) =
1
2
(x̂k+1 − x̂k+1|k+1)tP

−1
k+1|k+1

(x̂k+1 − x̂k+1|k+1) + constant. (9.67)

To find the expression for x̂k+1|k+1 used in (9.67), we note that x̂k+1|k+1 is
the minimum of V opt

k+1(x̂k+1, µ0, y
d
1 , . . . , yd

k+1). Hence, to obtain x̂k+1|k+1, we
differentiate (9.66) with respect to x̂k+1, evaluate at x̂k+1 = x̂k+1|k+1 and set
the result to zero, that is,

P−1
k+1|k(x̂k+1|k+1 − x̂k+1|k) − CtR−1(yd

k+1 − Cx̂k+1|k+1) = 0.

Adding and subtracting CtR−1Cx̂k+1|k, and rearranging, we have

(P−1
k+1|k + CtR−1C)x̂k+1|k+1 = (P−1

k+1|k + CtR−1C)x̂k+1|k

+ CtR−1(yd
k+1 − Cx̂k+1|k).

From the above expression we obtain
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x̂k+1|k+1 = x̂k+1|k + (P−1
k+1|k + CtR−1C)−1CtR−1(yd

k+1 − Cx̂k+1|k)

= x̂k+1|k + Pk+1|k(I + CtR−1CPk+1|k)−1CtR−1(yd
k+1 − Cx̂k+1|k)

= x̂k+1|k + Pk+1|kCt(I + R−1CPk+1|kCt)−1R−1(yd
k+1 − Cx̂k+1|k)

= x̂k+1|k + Pk+1|kCt(R + CPk+1|kCt)−1(yd
k+1 − Cx̂k+1|k),

which gives (9.51) for j = k.
Similarly, to find the expression for Pk+1|k+1 used in (9.67), we differentiate

(9.66) twice with respect to x̂k+1. This gives

P−1
k+1|k+1 � P−1

k+1|k + CtR−1C,

which, using the matrix inversion lemma, gives (9.53) for j = k.
Thus, we have established (9.67) and induction completes the proof. �

We can use the characterisation of the partial value functions given in
Lemma 9.6.1 to derive the optimal estimator where we optimise with respect
to both {ŵ0, . . . , ŵk−1} and x̂0 (or, equivalently, x̂k). In particular, we have
the following important result.

Theorem 9.6.2 (Kalman Filter) The optimal estimate x̂k for xk given the
data µ0, yd

1 , . . . yd
k, satisfies

x̂k = x̂k|k,

where x̂k|k satisfies the recursions (9.48) to (9.53).

Proof. The optimal choice x̂k = x̂k|k follows immediately by minimising (9.47)
with respect to x̂k since x̂k is unconstrained here. �

Remark 9.6.1 (Optimal Smoother). Actually, the minimisation of (9.47)
with respect to x̂k yields optimal estimates of all states x0, . . . , xk given
data up to time k. These are called optimal smoothed estimates, and will be
denoted by x̂j|k for j = 0, . . . , k. They can be computed simply by running
x̂k−1 = A−1x̂k − A−1Bŵk−1 backwards starting from x̂k = x̂k|k and using
ŵk−1, ŵk−2, . . . , ŵ0 as in (9.56). Defining ŵj|k � ŵj , for j = 0, . . . , k − 1, the
optimal smoother is then given by the recursion

x̂j|k = A−1x̂j+1|k − A−1Bŵj|k for j = 0, . . . , k − 1,

where

ŵj|k = −
(
BtA−T P−1

j|j A−1B + Q−1
)−1

BtA−T P−1
j|j

(
x̂j|j − A−1x̂j+1|k

)
,

and x̂j|j and Pj|j are given by (9.50)–(9.53). ◦
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9.7 Nonlinear Problems

The above circle of ideas can be extended to nonlinear and/or non-Gaussian
problems. Consider the following nonlinear Markov model:

xk+1 = f(xk, wk), (9.68)
yk = h(xk) + vk, (9.69)

where f and h are continuously differentiable functions of their arguments, and
∂f/∂wk is nonsingular. In (9.68)–(9.69), {wk} and {vk} are i.i.d. sequences
having probability density functions that satisfy

pw(wk) =

{
p1(wk) for wk ∈ Ω1,

0 otherwise,

and such that − ln p1(wk) = 
1(wk); and

pv(vk) =

{
p2(vk) for vk ∈ Ω2,

0 otherwise,

and such that − ln p2(vk) = 
2(vk). Also, we assume

px0(x0) =

{
p3(x0) for x0 ∈ Ω3,

0 otherwise,

and − ln p3(x0) = 
3(x0).
Using the rule of transformation of probability density functions for the

model (9.68)–(9.69) we have:

pyk|xk
(yk = yd

k|xk = x̂k) = pv(vk = yd
k − h(x̂k)),

pxk+1|xk
(xk+1 = x̂k+1|xk = x̂k) = pw(wk = ŵk)

∣∣∣∣∣det
∂xk+1

∂wk

∣∣∣∣
x̂k,ŵk

∣∣∣∣∣
−1

= pw(wk = ŵk)
∣∣∣∣det

∂f(x̂k, ŵk)
∂wk

∣∣∣∣−1

,

for all ŵk ∈ Ω1 such that x̂k+1 = f(x̂k, ŵk).
Then, using the vector definitions in (9.14)–(9.17), the negative logarithm

of the joint probability density function for states and outputs satisfies

− ln pyN ,xN (yN = yd
N ,xN = x̂N ) = 
3(x̂0) +

N∑
k=1


2(yd
k − h(x̂k))

+
N−1∑
k=0

[

1(ŵk) + ln

∣∣∣∣det
∂f(x̂k, ŵk)

∂wk

∣∣∣∣] ,

(9.70)
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subject to the constraints

x̂k+1 = f(x̂k, ŵk) for k = 0, . . . , N − 1, (9.71)
ŵk ∈ Ω1 for k = 0, . . . , N − 1, (9.72)

yd
k − h(x̂k) ∈ Ω2 for k = 1, . . . , N, (9.73)

x̂0 ∈ Ω3. (9.74)

Hence, we can find the JAPMP estimate (9.27) by minimising (9.70) subject
to (9.71)–(9.74) (see (9.28)).

9.8 Relationship to Chapman–Kolmogorov Equation

We next relate the above ideas to the Chapman–Kolmogorov5 equation for
recursive nonlinear filtering. The latter equation allows one to recursively
compute pxk|yk,...,y1(xk|yk, yk−1, . . . , y1). Specifically, using the Markovian
structure of (9.68), (9.69), we have, from Bayes’ rule:

Time Update6 (Chapman-Kolmogorov Equation)

pxk|yk−1,...,y1(xk|yk−1, . . . , y1)

=
∫

Rn

pxk,xk−1|yk−1,...,y1(xk, xk−1|yk−1, . . . , y1)dxk−1 (9.75)

=
∫

Rn

pxk|xk−1,yk−1,...,y1(xk|xk−1, yk−1, . . . , y1)

× pxk−1|yk−1,...,y1(xk−1|yk−1, . . . , y1)dxk−1 (9.76)

=
∫

Rn

pxk|xk−1(xk|xk−1)pxk−1|yk−1,...,y1(xk−1|yk−1, . . . , y1)dxk−1, k ≥ 1.

(9.77)

Observation Update7

pxk|yk,...,y1(xk|yk, . . . , y1)

=
pyk|xk,yk−1,...,y1(yk|xk, yk−1, . . . , y1) pxk|yk−1,...,y1(xk|yk−1, . . . , y1)

pyk|yk−1,...,y1(yk|yk−1, . . . , y1)
(9.78)

=
pyk|xk

(yk|xk) pxk|yk−1,...,y1(xk|yk−1, . . . , y1)
pyk|yk−1,...,y1(yk|yk−1, . . . , y1)

, k ≥ 0, (9.79)

5 Sometimes misspelled in Australia as Kolmogoroo.
6 In passing from (9.75) to (9.76) we use Bayes’ rule, and from (9.76) to (9.77) we

use the Markovian property of (9.68).
7 Equality (9.78) follows from Bayes’ rule, and, in passing from (9.78) to (9.79) we

use the Markovian property of (9.69).
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where

pyk|yk−1,...,y1(yk|yk−1, . . . , y1)

=
∫

Rn

pyk|xk
(yk|xk)pxk|yk−1,...,y1(xk|yk−1, . . . , y1)dxk. (9.80)

Notice that pxk|xk−1 and pyk|xk
, needed in the evaluation of equa-

tions (9.77) and (9.79)–(9.80) are given in Section 9.7 above.
Given pxk|yk,...,y1(xk|yk, . . . , y1), one can then compute various estimates,

for example:

(i) Conditional mean

x̂
[1]
k =

∫
Rn

xk pxk|yk,...,y1(xk|yk, . . . , y1)dxk. (9.81)

(ii) A posteriori most probable

x̂
[3]
k = arg max

xk

pxk|yk,...,y1(xk|yk, . . . , y1). (9.82)

Thus the Chapman–Kolmogorov equation (9.77) and the observation up-
date equation (9.80) offer more flexibility than the optimisation approach
presented in Section 9.3 (for the linear constrained case) and Section 9.7 (for
the nonlinear constrained case) since they describe the entire conditional dis-
tribution of xk given the (past) data y1, . . . , yk. Given this distribution, one
can then compute various estimates, for example, those given in (9.81) and
(9.82). On the other hand, the Chapman–Kolmogorov equation is, in general,
difficult to solve and require various approximations to be used, for exam-
ple, those used in particle filtering (see, for example, Doucet, de Freitas and
Gordon 2001). By way of contrast, the optimisation approach of Sections 9.3
and 9.7 can be solved via optimal control methods.

Finally, we note that the following two estimates are not, in general, equal:

(i) Joint a posteriori most probable [JAPMP][
x̂

[2]
0 , . . . , x̂

[2]
N

]
� arg max

x0,...,xN

px0,...,xN |y1,...,yN
(x0, . . . , xN |y1, . . . , yN ).

(9.83)
(ii) A posteriori most probable [APMP]

x̂
[3]
N � arg max

xN

pxN |y1,...,yN
(xN |y1, . . . , yN) (9.84)

= arg max
xN

∫
Rn×···× Rn

px0,...,xN |y1,...,yN
(x0, . . . , xN |y1, . . . , yN )dx0 . . . dxN−1.

(9.85)
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px1,x2(x1, x2)

joint max a posteriori
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max a posteriori after

integrating by x1

Figure 9.5. Difference between joint a posteriori maximum probability and a pos-
teriori maximum probability.

This is illustrated in Figure 9.5.

However, if we use the conditional mean (9.81) as an estimate then we get
the same answer whether we use the joint distribution for {x0, . . . , xN} or the
marginal distribution for xN . This follows because

x̂
[1]
N =

∫
Rn

xN pxN |yN ,...,y1(xN |yN , . . . , y1)dxN

=
∫

Rn

xN

[∫
Rn×···×Rn

pxN ,...,x0|yN ,...,y1(xN , . . . , x0|yN , . . . , y1) dxN−1 . . . dx0

]
dxN

=
∫

Rn×···×Rn

xN pxN ,...,x0|yN ,...,y1(xN , . . . , x0|yN , . . . , y1)dxN . . . dx0,

since

pxN |yN ,...,y1(xN |yN , . . . , y1)

=
∫

Rn×···×Rn

pxN ,...,x0|yN ,...,y1(xN , . . . , x0|yN , . . . , y1)dxN−1 . . . dx0.
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9.9 Moving Horizon Estimation

As with control, we can readily convert the fixed horizon estimators discussed
above into moving horizon estimators [MHE]. An issue to be addressed in
this context is whether or not the situation allows data-smoothing; that is,
whether one can collect data beyond the time at which the state estimate is
required.

In some applications, for example, control, one requires that the estimate
apply to the most recent state; that is, it is not possible to collect data be-
yond the point where the state estimate is defined. In other applications, for
example, telecommunications, one can tolerate a delay between the last time
at which the data are collected and the time at which the estimate is defined.
In the latter situation we say that a smoothed state estimate is required.

To cover both of the above scenarios, we let i denote the “time” at which
the estimate is required. We also fix integers L1 ≥ 0 and L2 ≥ 0 and suppose
for the moment that

xi−L1 ∼ N(zi−L1 , Pi−L1), (9.86)

where zi−L1 is a given a priori estimate for xi−L1 having a Gaussian distribu-
tion. The matrix P−1

i−L1
reflects the degree of belief in this a priori estimate.

We will treat the data in blocks of length N = L1 + L2. We assume that the
estimate of xi can be based on data collected between i − L1 and i + L2 − 1.
We then formulate the fixed horizon optimisation problem as in (9.29)–(9.35)
over the interval [i−L1, i + L2 − 1]. That is, the corresponding sequences are
indexed by k = i − L1, i − L1 + 1, . . . , i + L2 − 1. This yields the required
estimate (or smoother for L2 > 1, see Remark 9.6.1) of xi.

The next question is how to turn this into a moving horizon procedure.
The idea is to store the final state estimate x̂i+L2−1 obtained from the above
fixed horizon optimisation together with some measure of our degree of belief
in this estimate, which we denote P−1

i+L2−1. The pair (x̂i+L2−1, Pi+L2−1) will
be used to initialise a fixed horizon optimisation problem L1 +L2 steps ahead
(that is, they will take the role of (zi−L1 , Pi−L1) in (9.86)).

We use again a Gaussian approximation when we return to this estimate.
Of course, due to the constraints, we appreciate that the a posteriori distri-
bution of the state will not be Gaussian. However, a Gaussian approach is
justified on the following grounds:

(i) The “initial state information” is of diminishing importance as the block
length N increases.

(ii) Making a Gaussian approximation greatly simplifies the problems.
(iii) We can, at least, be compatible with the unconstrained case by determin-

ing Pi−L1 from ordinary linear estimation theory.

Finally, the MHE is organised as illustrated in Figure 9.6. (Note that we
need storage for L1 + L2 past state estimates to initialise subsequent blocks.)
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Figure 9.6. Graphical representation of MHE.

We next illustrate the idea of constrained estimation by three simple ex-
amples.

Example 9.9.1. Consider the same model as used in Example 1.3.1 of Chap-
ter 1, which we repeat here for convenience:

yk = wk − 1.7wk−1 + 0.72wk−2 + vk. (9.87)

Rather than a binary signal, we here consider that the input noise wk has a
truncated Gaussian distribution. We assume that the measurement noise vk

has a Gaussian distribution. The details are:

• input noise variance prior to truncation: Q = 1;
• input noise mean prior to truncation: µw = 0;
• measurement noise variance: R = 0.2;
• truncation interval: wk ∈ [−1, 1];
• input noise variance after truncation: ≈ 0.293;
• input noise mean after truncation: 0.
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Two estimators were compared, namely the MHE using N = L1 + 1 = 2,
L2 = 1, incorporating the constraint |wk| ≤ 1, and a standard linear Kalman
filter based on R = 0.2 and the true input variance of 0.293. The initial
estimates as in (9.86) were selected as follows: zi−N is stored and propagated
as in Figure 9.6; Pi−N is set equal to the corresponding value for the Kalman
filter. The results are shown in Figure 9.7. Some observations from this figure
are:

(i) The linear Kalman filter performs quite well in this example. (This is not
surprising since it is, after all, the best linear unbiased estimator.)

(ii) The estimates provided by the linear Kalman filter occasionally lie out-
side the range ±1. (Again, this is not surprising since this estimator is
unconstrained.)

(iii) The MHE is slightly better but the result is marginal. (Again, this is not
surprising in view of observation (i).) ◦

0 5 10 15 20 25

−1

0

1

k

Noise Variance R = 0.2, Horizon Length = 2

Data w
k

MHE
KF

Figure 9.7. Comparison of MHE and Kalman filter with correct variance: data
(circle-solid line), estimate provided by the MHE (triangle-dashed line) and estimate
provided by the Kalman filter (star-dashed line).

Example 9.9.2. Here we consider the same model (9.87) as in Example 9.9.1,
save that we change the input to a nonzero-mean truncated Gaussian distri-
bution as illustrated in Figure 9.2. The details are:
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• input noise variance prior to truncation: Q = 1;
• input noise mean prior to truncation: µw = 1.5;
• truncation interval: wk ∈ [−1.5, 0.5];
• input noise variance after truncation: ≈ 0.175;
• input noise mean after truncation: ≈ 0.
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Figure 9.8. Comparison of mean square estimation error achieved by the MHE
(dashed line) and the Kalman filter with correct variance (solid line).

Two estimators were compared, namely, MHE with N = L1 + 1 = 5,
L2 = 1, and using the given constraints; and a standard linear Kalman filter
based on the true variance. Figure 9.8 compares the mean square estimation
errors for a range of measurement noise variances R.

It can be seen from Figure 9.8 that the MHE outperforms the Kalman
filter save in the presence of large measurement noise. This result is in good
accord with intuition since, for large measurement noise, the observations are
basically ignored. This means that the Kalman filter gives the a priori mean,
which is zero, whereas the MHE gives wk = 0.5 since this corresponds to the
point where the a priori probability is maximal.

◦
Example 9.9.3. Here we consider the same channel model (9.87) as in Ex-
amples 9.9.1 and 9.9.2, save that now the input wk is distributed as the combi-
nation of two nonoverlapping, nonzero-mean truncated Gaussian distributions
as in Figure 9.9. The distribution can be described by two regions: the “left re-
gion” is a Gaussian distribution N(−1.5, 0.1) truncated between [−1, 0], and
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the “right region” is a Gaussian distribution N(1.5, 0.1) truncated between
[0, 1]. The resulting distribution has mean ≈ 0 and variance ≈ 0.872.

1.5−1.5 0−1 1

0.10.1

Ω

Figure 9.9. Combining the tails of two truncated Gaussian distributions.

We will compare the performance of the Kalman filter and the MHE for the
above problem. The Kalman filter assumes a Gaussian approximation of the
distribution, with zero mean and variance 0.872. For the MHE, we consider
no smoothing, that is, L2 = 1. The initial weighting P is set equal to the
value of the steady state error covariance of the Kalman filter, and the initial
estimate is forwarded as in Figure 9.6. To find the optimal input sequence
{ŵ0, . . . , ŵN−1} the estimator solves, at each step, 2N separate QP problems
(see Section 9.4.2). The global optimum is the minimum of the individual
sub-problems.

In Figure 9.10, we compare the Kalman filter estimates with those of the
MHE for different measurement noise variances and different horizon lengths.
In Figure 9.10 (a), incorporating mixed distributions with the MHE method
and horizon 1 gives estimates that are closer to the boundary. On the other
hand, the unconstrained Kalman filter exceeds the limits and tends to esti-
mate near the zero mean. In Figure 9.10 (b) we see that the MHE performs
more poorly as more measurement noise is introduced, since, in this case, the
MHE tends to give the point where the a priori probability is maximal. By in-
creasing the horizon length to 2 (see Figure 9.10 (c)), the estimator uses more
data, resulting in better estimates. However, the number of sub-problems also
increases. In Figure 9.10 (d), the horizon was increased to 4, showing a slight
improvement in performance.

It should be observed that, since the distribution of the data points wk is
close to the boundary, and with additive measurement noise, the MHE will
give estimates that are close to the boundary. In the limiting case, when the
distribution approaches a point mass distribution, the estimation problem will
resemble that of the finite alphabet estimation problem, which is discussed in
Chapter 13.

◦
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Figure 9.10. Data wk (circle-solid line), Kalman filter estimates (star-dashed line),
MHE estimates (triangle-dashed line) for different measurement noise variances R
and different horizons N .

9.10 Further Reading

For complete list of references cited, see References section at the end of book.

General

A useful introduction to estimation is given in Jazwinski (1970). The original
derivation of the discrete Kalman filter used the concept of orthogonal projec-
tion (Kalman 1960a). The variational approach to estimation was first taken
by Bryson and Frazier (1963). The solution of the continuous least square
problem via dynamic programming was first given by Cox (1964).

Section 9.4.3

The idea of utilising constraints in the context of approximating arbitrary
distributions appears in Robertson and Lee (2002).
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Section 9.9

Early work on moving horizon estimation appears in Michalska and Mayne
(1995). See also Rao, Rawlings and Lee (2001) and Rao, Rawlings and Mayne
(2003).




