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Regional Characterisation of Constrained

Linear Quadratic Optimal Control

7.1 Overview

In Chapter 6 we provided a global characterisation of receding horizon con-
strained optimal control. This gives practically valuable insights into the form
of the control law. Indeed, for many problems it is feasible to compute, store
and retrieve the function u = KN (x), thus eliminating the need to solve the
associated QP on line.

In other cases, this approach may be too complex. Thus, in Chapter 8
we will explore various numerical algorithms aimed at solving the QP on
line. The current chapter addresses a question with similar motivation but a
different end result. Here we ask the following question: Given that we only
ever apply the first move from the optimal control sequence of length N , is
it possible that the first element of the control law might not change as the
horizon increases beyond some modest size at least locally in the state space?
We will show, via dynamic programming arguments, that this is indeed the
case, at least for special classes of problems. To illustrate the ideas we will
consider single input systems with an amplitude input constraint. This class
of problems is simple and is intended to motivate the idea of local solutions.
In particular, we will consider the simple control law

uk = −sat∆(Kxk), (7.1)

where sat∆( · ) is the saturation function defined in (6.10) of Chapter 6, and K
is the feedback gain resulting from the infinite horizon unconstrained optimal
control problem. We will show that there exists a nontrivial region of the
state space (which we denote by Z̄) such that (7.1) is the constrained optimal
control law with arbitrary large horizon. This is a very interesting result which
has important practical implications. For example, (7.1) can be thought of as
a simple type of anti-windup control law (see Section 7.4) when used in a
certainty equivalence form with an appropriate observer for the system state
and disturbances. Thus, the result establishes a link between anti-windup
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and RHC. Also, the result explains the (local) success of this control law in
Example 1.2.1 of Chapter 1.

We will see that the characterisation of the region Z̄ is relatively compli-
cated for large horizons. Hence, we will first, in Section 7.2, present the result
for horizon N = 2. We will then establish the result for general horizons.

7.2 Regional Characterisation for Horizon 2

We consider again single input, linear, discrete time systems in which the
magnitude of the control input is constrained to be less than or equal to a
positive constant. In particular, let the system be given by

xk+1 = Axk + Buk, (7.2)

where xk ∈ Rn and uk ∈ R. As in Section 6.2 of Chapter 6, we consider the
following fixed horizon optimal control problem with horizon 2:

P2(x) : V opt
2 (x) � min V2({xk}, {uk}), (7.3)

subject to:
xk+1 = Axk + Buk for k = 0, 1,

x0 = x,

uk ∈ U � [−∆, ∆] for k = 0, 1,

where ∆ > 0 is the input constraint level, and the objective function in (7.3)
is

V2({xk}, {uk}) � 1
2
xt

2Px2 +
1
2

1∑
k=0

(xt
kQxk + ut

kRuk) . (7.4)

The matrices Q and R in (7.4) are positive definite and P satisfies the algebraic
Riccati equation

P = AtPA + Q − KtR̄K, (7.5)

where
K � R̄−1BtPA, R̄ � R + BtPB. (7.6)

Let the control sequence that achieves the minimum in (7.3) be

{uopt
0 , uopt

1 }. (7.7)

Then the RHC law is given by the first element of (7.7) (which depends on
the current state x = x0); that is,

K2(x) = uopt
0 . (7.8)

For the above special case, we have the following regional characterisation
of the fixed horizon optimal control (7.7).
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Lemma 7.2.1 (Regional Characterisation of the Fixed Horizon Con-
trol (7.7)) Consider the fixed horizon optimal control problem P2 defined in
(7.3)–(7.6). Then for all x ∈ Z, where

Z � {x : |K(A − BK)x| ≤ ∆} , (7.9)

the optimal control sequence (7.7) that attains the minimum is

uopt
k = −sat∆(Kxk), k = 0, 1. (7.10)

Proof. The result follows from the proof of Theorem 6.2.1 of Chapter 6, in
particular, from equations (6.17) and (6.19). �

The above result is quite remarkable in that it shows that the simple
policy (7.10) provides a solution to the constrained linear quadratic fixed
horizon optimal control problem (7.3)–(7.6) in a region of the state space.
Using induction and similar dynamic programming arguments to the proof
of Theorem 6.2.1, it is possible to show that a characterisation of the form
(7.10) holds for horizon N of arbitrary length. We will establish this result in
Section 7.3. As we will see, in the case of arbitrary horizon the characterisation
is valid in a region Z of the state space having a more complex description
than the one used in Lemma 7.2.1.

In the sequel, we will explore various aspects of the solution provided by
Lemma 7.2.1, including a refinement of the set in which the result holds.

7.2.1 Regional Characterisation of RHC

We have seen above that the simple control law (7.10) solves the fixed horizon
constrained linear quadratic problem in a special region of the state space.
However, before we can use this control law as the solution to the associated
RHC problem (see (7.8)), we need to extend the results to the receding horizon
formulation of the problem. In particular, in order to guarantee that the RHC
mapping (7.8) is regionally given by (7.10), it is essential to know if future
states remain in the region in which the result holds or whether they are
driven outside this region. Clearly, in the former case, we can implement the
RHC algorithm as in (7.10) without further consideration. We thus proceed to
examine the conditions under which the state remains in the region Z where
(7.10) applies. We first define the mapping φnl : Rn → Rn as

φnl(x) � Ax − Bsat∆(Kx), (7.11)

so that when the controller (7.10) is employed, the closed loop system satisfies
xk+1 = φnl(xk). In the sequel we denote by φk

nl the concatenation of φnl with
itself k times; for example, φ0

nl(x) � x, φ1
nl(x) = φnl(x), φ2

nl(x) = φnl(φnl(x)),
and so on.

We also require the following definition.
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Definition 7.2.1 Define the set Z̄ as

Z̄ �
{
x : φk

nl(x) ∈ Z, k = 0, 1, 2, . . .
}

. (7.12)

◦
From its definition it is clear that Z̄ is the maximal positively invari-

ant set contained in Z for the closed loop system xk+1 = φnl(xk) =
Axk − Bsat∆(Kxk) (see Definition 4.4.2 in Chapter 4).

We have from Lemma 7.2.1 that, if the initial state x0 = x ∈ Z, then
K2(x0) = −sat∆(Kx0). But, in general, since Z is not necessarily positively
invariant under φnl(·), after this control is applied there is no guarantee that
the successor state x1 = φnl(x0) will stay in Z. Hence, in general, K2(x1) �=
−sat∆(Kx1). So, in order that the solution (7.10) can be applied to the RHC
problem we must ensure that all successor states belong to Z. We can then
state:

Theorem 7.2.2 For all x ∈ Z̄ defined in (7.12), the RHC law K2 in (7.8) is
given by

K2(x) = −sat∆(Kx). (7.13)

Proof. The proof of the theorem follows from the fact that Z̄ ⊆ Z and that
Z̄ is positively invariant for the system (7.2) under the control K2(x) =
−sat∆(Kx). Then, for all states in Z̄ the future trajectories of the system
will be such that x ∈ Z̄ ⊆ Z, and from Lemma 7.2.1 we conclude that
K2(x) = uopt

0 = −sat∆(Kx). �

Notice that, if the set Z̄, in which the theorem is valid, were small enough
such that the control sequence {uk} = {−sat∆(Kxk)} stayed unsaturated
along the system trajectories, then the result of Theorem 7.2.2 would be triv-
ial, since it would readily follow from the result for the unconstrained case
(see, for example, Anderson and Moore 1989). We will show next that Z̄ is
not smaller than this trivial case.

Consider the maximal output admissible set O∞ (introduced in (5.63) of
Chapter 5), which in this case is defined as

O∞ �
{
x : |K(A − BK)ix| ≤ ∆ for i = 0, 1, . . .

}
. (7.14)

The following proposition shows that the set Z̄ contains O∞.

Proposition 7.2.3 O∞ ⊆ Z̄.

Proof. Z̄ is the maximal positively invariant set in Z for the closed loop system
xk+1 = φnl(xk). The set O∞ is also a positively invariant set for xk+1 =
φnl(xk) (since φnl(x) = (A−BK)x in O∞). It suffices, therefore, to establish
that O∞ ⊆ Z. This is indeed true since, from (7.14), we can write



7.2 Regional Characterisation for Horizon 2 155

O∞ = {x : |Kx| ≤ ∆} ∩ {x : |K(A − BK)x| ≤ ∆}∩{
x : |K(A − BK)2x| ≤ ∆

} ∩ . . .

= {x : |Kx| ≤ ∆} ∩ Z ∩ {
x : |K(A − BK)2x| ≤ ∆

} ∩ . . .

Hence O∞ ⊆ Z and the result then follows. �

We have proved that the set Z̄ contains the maximal positively invariant set
in which the control constraints are avoided. Although a complete characteri-
sation of the set Z̄ is not currently known, examples (see Example 7.3.2 at the
end of the chapter) show that, in general, the set Z̄ is considerably larger than
the set O∞. In other words, that the motions of the system xk+1 = φnl(xk)
involve control sequences {uk} = {−sat∆(Kxk)} which remain saturated for
several steps and, in accordance with Theorem 7.2.2, coincide with the solu-
tion provided by the RHC strategy (see the simulation of Example 7.3.2).

7.2.2 An Ellipsoidal Approximation to the Set Z̄

The set Z̄ is, in general, very difficult to characterise explicitly since it in-
volves nonlinear inequalities. Notice however that, for any positively invariant
set contained in Z̄, the result of Theorem 7.2.2 is also valid. In principle, a
positively invariant inner approximation of the set Z̄ could be obtained by
considering a family of positively invariant sets, which can be represented
with reasonable complexity, and finding the biggest member within this fam-
ily which is contained in Z. The set Z is a polyhedral set, which suggests that
polyhedral sets could be good candidates for this approximation, having also
the advantage of flexibility. However, these sets could be arbitrarily complex
(see, for example, Blanchini 1999).

In this section we will consider an alternative mechanism for obtaining
positively invariant sets under the control u = −sat∆(Kx), based on the
use of ellipsoidal sets. We will show how to construct an ellipsoidal invariant
set E ⊆ Z̄ based on a quadratic Lyapunov function constructed from the
solution P of (7.5)–(7.6). In view of the discussion following Theorem 7.2.2,
we will be interested in positively invariant ellipsoidal sets which extend to
regions wherein the controls are saturated (that is, such that |Kx| > ∆ for
some x in the set). This result is related to the fact that a linear system, with
optimal LQR controller, remains closed loop stable when sector-bounded input
nonlinearities are introduced (see, for example, Anderson and Moore 1989).
This, in turn, translates into bigger positively invariant ellipsoidal sets, under
the control u = −sat∆(Kx), than the case |Kx| ≤ ∆ for all x.

In the sequel we will need the following result.

Lemma 7.2.4 Let K be a nonzero row vector, P a symmetric positive definite
matrix and ρ a positive constant. Then,

min{Kx : xT Px ≤ ρ} = −
√

ρKP−1KT , (7.15)
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and
max{Kx : xT Px ≤ ρ} = +

√
ρKP−1KT . (7.16)

Proof. We first prove (7.15). The KKT conditions (2.32) in Chapter 2 are, in
this case (convex objective function and convex constraint), sufficient for op-
timality. Now, let x̄ be a (the) KKT point and denote by µ ≥ 0 its associated
Lagrange multiplier. From the dual feasibility condition KT +µP x̄ = 0 we can
see that µ > 0 (since KT �= 0) and x̄ = −P−1KT /µ. Moreover, from the com-
plementary slackness condition µ(x̄T P x̄−ρ) = 0 we have that the constraint is
active at x̄, that is x̄T P x̄ = ρ, from where we obtain that µ =

√
KP−1KT /ρ.

Thus, the minimum value is Kx̄ = −KP−1KT /µ = −
√

ρKP−1KT , which
proves (7.15). Finally, (7.16) follows from the fact that max{Kx : xT Px ≤
ρ} = −min{−Kx : xT Px ≤ ρ}. �

We define the ellipsoidal set

E � {x : xtPx ≤ ρ}.
From Lemma 7.2.4 we can see that, if the ellipsoidal radius ρ is computed
from ρ = (1 + β̄)2∆2/(KP−1Kt), β̄ ≥ 0, then the ellipsoid has the property:
|Kx| ≤ (1 + β̄)∆ for all x ∈ E .

Notice that whenever β̄ is bigger than zero the ellipsoid extends to regions
where saturation levels are reached. For this reason, β̄ is called the over-
saturation index. We compute the maximum over-saturation index β̄max from:

β̄max �

⎧⎪⎪⎨⎪⎪⎩
√

KKt
[
R(KKtR̄ − qε) + R̄qε

]
+ qε

KKtR̄ − qε
if

qε

KKtR̄
< 1,

M+ otherwise,

(7.17)

where qε = (1 − ε)λmin(Q), ε ∈ [0, 1) is an arbitrarily small nonnegative
number (introduced to ensure exponential stability; see the result in (7.23)
below), λmin(Q) is the minimum eigenvalue of the matrix Q (strictly positive,
since Q is assumed positive definite), and M+ is an arbitrarily large positive
number.

Then, the maximum radius ρ̄max is computed from

ρ̄max =
(1 + β̄max)2∆2

KP−1Kt
. (7.18)

Theorem 7.2.5 The ellipsoid E = {x : xtPx ≤ ρ}, with radius ρ < ρ̄max,
has the following properties:

(i) E is a positively invariant set for system (7.2) under the control u =
−sat∆(Kx).

(ii) The origin is exponentially stable in E for system (7.2) with control u =
−sat∆(Kx) (and, in particular, E is contained in the region of attraction
of (7.2) for all admissible controls u ∈ U = [−∆, ∆]).
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Proof. Consider the quadratic Lyapunov function: V (x) = xtPx. Let x = xk

and x+ = xk+1. Then, by using the system equation (7.2) with control u =
−sat∆(Kx), and the Riccati equation (7.5), we can express the increment of
V (·) along the system trajectory as

∆V (x) � V (x+) − V (x) = [Ax − Bsat∆(Kx)]tP [Ax − Bsat∆(Kx)] − xtPx

= −εxtQx − (1 − ε)xtQx

+ R̄

[
|Kx|2 − 2|Kx|sat∆(|Kx|) +

BtPB

R̄
sat∆(|Kx|)2

]
.

(7.19)

Next, define the sequence
{
β̄i

}∞
i=1

as

β̄1 = 0, . . . , β̄i+1 =

√
R

R̄
+

qε(1 + β̄i)2

KKtR̄
, . . . , (7.20)

where qε = (1 − ε)λmin(Q) and ε ∈ [0, 1) is an arbitrarily small nonnegative
number. It can be shown that the sequence

{
β̄i

}∞
i=1

grows monotonically,
and converges to β̄max defined by (7.17) in the case when qε/KKtR̄ < 1,
or diverges to +∞ if qε/KKtR̄ ≥ 1, in which case, for any arbitrarily large
positive number M+, there exists i+ such that β̄i > M+ for all i > i+.

Consider now the following cases:

Case (a). |Kx| ≤ (1 + β̄1)∆: Suppose first that x ∈ E , x �= 0, is such that

|Kx| ≤ ∆ = (1 + β̄1)∆,

then ∆V (x) in (7.19) is equal to

∆V (x) = −εxtQx − xt ((1 − ε)Q + KtRK)x < −εxtQx,

(from the positive definiteness of Q and R).

Case (b). (1 + β̄1)∆ < |Kx| ≤ (1 + β̄2)∆: Suppose next that x ∈ E , x �= 0,
is such that

∆ = (1 + β̄1)∆ < |Kx| ≤ (1 + β̄2)∆,

then sat∆(|Kx|) = ∆, and, by the Cauchy-Schwarz inequality we obtain:

|Kx|2 > (1 + β̄1)2 ∆2 ⇒ −xtx < −(1 + β̄1)2
∆2

KKt
. (7.21)

Therefore, an upper bound for ∆V (·) in (7.19) is

∆V (x) < −εxtQx + R̄

[
|Kx|2 − 2|Kx|∆ +

(
BtPB

R̄
− qε(1 + β̄1)2

KKtR̄

)
∆2

]
.

(7.22)
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It is easy to see that the quadratic term in (7.22) is nonpositive if ∆ <
|Kx| ≤ (1 + β̄2)∆, in which case

∆V (x) < −εxtQx.

Case (c). (1 + β̄i)∆ < |Kx| ≤ (1 + β̄i+1)∆, i = 2, 3, . . .: Repeating the above
argument for x ∈ E , x �= 0, such that

∆ < (1 + β̄i)∆ < |Kx| ≤ (1 + β̄i+1)∆,

for i = 2, 3, . . ., and, since β̄i → β̄max (or diverges to +∞, in which case
β̄i eventually becomes bigger than β̄max = M+), we can see that

∆V (x) < −εxtQx

if |Kx| < (1 + β̄max)∆, which (from the construction of E = {x : xtPx ≤
ρ} with ρ < ρ̄max) is true for all x ∈ E .

It follows that,
∆V (x) < −εxtQx for all x ∈ E , (7.23)

and hence:

(i) The trajectories that start in the ellipsoid E � {x : xtPx ≤ ρ} will never
leave it since ∆V (x), along the trajectories, is negative definite on the
ellipsoid. Therefore the ellipsoid E is a positively invariant set under the
control u = −sat∆(Kx).

(ii) From Theorem 4.3.3 in Chapter 4, the origin is exponentially stable in E
for system (7.2) with control u = −sat∆(Kx), with a region of attraction
that includes the ellipsoid E . Notice that if we choose ε = 0 we only
guarantee asymptotic stability.

�
We have thus found an ellipsoidal set E that is positively invariant for the

system (7.2) with control u = −sat∆(Kx). Moreover, this control exponen-
tially stabilises (7.2) with a region of attraction that contains E . However, to
guarantee that u = −sat∆(Kx) is also the receding horizon optimal control
law in E , we need to further restrict the radius of the ellipsoid so that the
trajectories inside E also remain within the set Z̄ defined in (7.12).

Recall that Z̄ is the maximal positively invariant set for the closed loop
system xk+1 = φnl(xk) contained in the set Z given by

Z � {x : |K(A − BK)x| ≤ ∆} . (7.24)

We then compute the ellipsoidal radius equal to

ρ̄ � min
{

(1 + β̄)2∆2

KP−1Kt
,

∆2

(K(A − BK))P−1(K(A − BK))t

}
, (7.25)

where β̄ < β̄max, and β̄max is computed from (7.17) (in practice, one can
choose β̄ arbitrarily close to β̄max). Then we have the following corollary of
Theorems 7.2.2 and 7.2.5.
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Corollary 7.2.6 Consider the ellipsoidal set E = {x : xtPx ≤ ρ̄} where ρ̄ is
computed from (7.25). Then:

(i) The set E is a positively invariant set for system (7.2) under the control
u = −sat∆(Kx).

(ii) The set E is a subset of Z̄.
(iii) The RHC law (7.8) is

K2(x) = −sat∆(Kx) for all x ∈ E . (7.26)

(iv) System (7.2), with the RHC sequence (7.26), is exponentially stable in E.

Proof.

(i) Notice from (7.18), (7.25), and the fact that β̄ < β̄max, that ρ̄ < ρ̄max.
Then it follows from Theorem 7.2.5 (i) that E = {x : xtPx ≤ ρ̄} is
positively invariant.

(ii) From Lemma 7.2.4 and the definitions (7.24) and (7.25) it follows that
x ∈ E ⇒ x ∈ Z, and, since E is positively invariant, this implies that
φk

nl(x) ∈ Z, k = 0, 1, 2, . . .. Clearly then, from the definition of Z̄, x ∈ Z̄.
(iii) This result follows immediately from (ii) above and Theorem 7.2.2.
(iv) This follows from ρ̄ < ρ̄ max and Theorem 7.2.5 (ii).

�

7.3 Regional Characterisation for Arbitrary Horizon

Here we extend the result presented in Section 7.2 to arbitrary horizons. We
will build on the special case presented above. This development is somewhat
involved and the reader might prefer to postpone reading the remainder of this
chapter until a second reading of the book. For clarity of exposition, we present
first in Section 7.3.1 some notation and preliminary results. In particular
various sets in Rn are defined. These sets are used in the characterisation
of the state space regions in which the solution of the form (7.1) holds.

7.3.1 Preliminaries

We consider the discrete time system

xk+1 = Axk + Buk, (7.27)

where xk ∈ Rn and uk ∈ R. The pair (A, B) is assumed to be stabilisable. We
consider the following fixed horizon optimal control problem:
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PN (x) : V opt
N (x) � min VN ({xk}, {uk}), (7.28)

subject to:
xk+1 = Axk + Buk for k = 0, 1, . . . , N − 1,

x0 = x,

uk ∈ U � [−∆, ∆] for k = 0, 1, . . . , N − 1,

where ∆ > 0 is the input saturation level, and the objective function in (7.28)
is

VN ({xk}, {uk}) � 1
2
xt

NPxN +
1
2

N−1∑
k=0

(xt
kQxk + ut

kRuk) . (7.29)

We assume that Q and R are positive definite, and P satisfies the algebraic
Riccati equation (7.5)–(7.6).

Let the control sequence that achieves the minimum in (7.28) be
{uopt

0 , . . . , uopt
N−1}. The associated RHC law, which depends on the current

state x = x0, is
KN (x) = uopt

0 . (7.30)

For each i = 0, 1, 2, . . . , N −1, the partial value function, is defined by (see
similar definitions in (6.8) of Chapter 6)

V opt
N−i(x) � min

uk∈U

VN−i({xk}, {uk}), (7.31)

where VN−i is the partial objective function

VN−i({xk}, {uk}) � 1
2
xt

NPxN +
1
2

N−1∑
k=i

(xt
kQxk + ut

kRuk) ,

with xk, k = i, . . . , N satisfying (7.27) starting from xi = x. We refer to V opt
N−i

as the partial value function (or, just the value function) “at time i,” meaning
that the (partial) value function “starts at time i.” The partial value function
at time N is defined as

V opt
0 (x) � 1

2
xtPx.

We also define the functions δi : Rn → R as

δi(x) � Kx − sat∆i(Kx), i = 1, 2, . . . , N, (7.32)

where the saturation bounds ∆i are defined as

∆i �
(

1 +
i−2∑
k=0

|KAkB|
)

∆, i = 1, 2, . . . , N. (7.33)

In summations, it is to be understood that
∑k2

k=k1
( · ) = 0 whenever k2 < k1,

so that, in (7.33) we have



7.3 Regional Characterisation for Arbitrary Horizon 161

∆1 = ∆, ∆2 = ∆1 + |KB|∆, . . . , ∆i+1 = ∆i + |KAi−1B|∆, . . . .

We define, for future use, the sets Xi ⊆ Rn:

Xi �
{
x : δi

(
Ai−1(A − BK)x

)
= 0

}
, i = 1, 2, . . . , N − 1. (7.34)

Denote
K̄i � KAi−1(A − BK), i = 1, 2, . . . , N − 1.

Then, the sets Xi are given by the set of linear inequalities:

Xi =
{
x : K̄ix ≤ ∆i, −K̄ix ≤ ∆i

}
, i = 1, 2, . . . , N − 1. (7.35)

Recall the definition of the nonlinear mapping φnl in (7.11), which we
repeat here for convenience:

φnl(x) � Ax − Bsat∆(Kx). (7.36)

Also, φ0
nl(x) = x and φk

nl, k ≥ 1, denotes the concatenation of φnl with itself
k times.

We define, for future use, the sets Yi, Zi ⊆ Rn:

Y0 � Y1 � R
n,

Yi =
⋂i−1

j=1Xj , i = 2, 3, . . . , N, (7.37)

Z0 � Z1 � R
n,

Zi �
{
x : φk

nl(x) ∈ Yi−k, k = 0, 1, . . . , i − 2
}

, i = 2, 3, . . . , N, (7.38)

so that

Z2 = Y2,

Z3 = {x : x ∈ Y3, φnl(x) ∈ Y2},
Z4 = {x : x ∈ Y4, φnl(x) ∈ Y3, φ2

nl(x) ∈ Y2},

and so on.
We have the following properties of these sets:

Proposition 7.3.1

(i) Yi+1 = Yi ∩ Xi, i = 1, 2, . . . , N − 1.
(ii) The set sequence {Zi : i = 0, 1, . . . , N} is monotonically nonincreasing

(with respect to inclusion), that is, Zi+1 ⊆ Zi, i = 0, 1, . . . , N − 1.
(iii) Zi+1 = Yi+1 ∩ {x : φnl(x) ∈ Zi}, i = 0, 1, . . . , N − 1.

Proof.

(i) This follows trivially from (7.37).
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(ii) Certainly Zi+1 ⊆ Zi for i = 0 and 1. For i ≥ 2:

Zi+1 =
{
x : φk

nl(x) ∈ ⋂i−k
j=1Xj , k = 0, 1, . . . , i − 1

}
=

{
x : φk

nl(x) ∈ ⋂i−k
j=1Xj , k = 0, 1, . . . , i−2

}
∩ {

x : φi−1
nl (x) ∈ X1

}
=

{
x : φk

nl(x) ∈ ⋂i−k−1
j=1 Xj , k = 0, 1, . . . , i − 2

}
∩ {

x : φk
nl(x) ∈ Xi−k, k = 0, 1, . . . , i − 2

} ∩ {
x : φi−1

nl (x) ∈ X1

}
= Zi ∩

{
x : φk

nl(x) ∈ Xi−k, k = 0, 1, . . . , i − 1
}

.

(iii) This is trivial for i = 0. For i ≥ 1:

Zi+1 =
{
x : φk

nl(x) ∈ ⋂i−k
j=1Xj, k = 0, 1, . . . , i − 1

}
=

{
x : φk+1

nl (x) ∈ ⋂i−k−1
j=1 Xj , k = −1, 0, . . . , i− 2

}
=

{
x : x ∈ ⋂i

j=1Xj

}
∩
{

x : φk
nl(φnl(x)) ∈ ⋂i−k−1

j=1 Xj, k = 0, 1, . . . , i − 2
}

= Yi+1 ∩ {x : φnl(x) ∈ Zi} .
�

Finally, we require the following key result.

Lemma 7.3.2 For any i ∈ {1, 2, . . . , N − 1} define the functions φnl(·) and
δi(·), δi+1(·) as in (7.36) and (7.32), respectively, and the set Xi as in (7.34).
Define, for i ∈ {1, 2, . . . , N − 1} the functions µ1, µ2 : Rn → [0, +∞) as

µ1(x) � δi

(
Ai−1φnl(x)

)2
,

µ2(x) � δi+1

(
Aix

)2
.

Then, µ1(x) = µ2(x) for all x ∈ Xi.

Proof. The functions µ1, µ2 : Rn → [0, +∞) can be written as

µ1(x) � δi

(
Ai−1φnl(x)

)2

=
[
KAix − KAi−1B sat∆(Kx)

−sat∆i

(
KAix − KAi−1B sat∆(Kx)

) ]2

,

µ2(x) � δi+1

(
Aix

)2
=

[
KAix − sat∆i+1

(
KAix

)]2
,

for i ∈ {1, 2, . . . , N − 1}. Notice, from (7.35), that:

x ∈ Xi ⇔
∣∣KAix − KAi−1BKx

∣∣ ≤ ∆i =

(
1 +

i−2∑
k=0

|KAkB|
)

∆. (7.39)
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We will prove that µ1(x) = µ2(x) for all x ∈ Xi by considering two separate
cases, case (a) where x ∈ Xi and |Kx| ≤ ∆, and case (b) where x ∈ Xi and
|Kx| > ∆.

Case (a). x ∈ Xi and |Kx| ≤ ∆:
Suppose

|Kx| ≤ ∆. (7.40)

It follows from (7.39) and (7.40) that

µ1(x) =
[
KAix − KAi−1B sat∆(Kx)

− sat∆i

(
KAix − KAi−1B sat∆(Kx)

) ]2
=

[
KAix − KAi−1BKx − sat∆i

(
KAix − KAi−1BKx

)]2
= 0.

(7.41)

Also, notice from (7.39) and (7.40) that

∆i ≥ |KAix − KAi−1BKx| ≥ |KAix| − |KAi−1B||Kx|
≥ |KAix| − |KAi−1B|∆ (7.42)

⇒
|KAix| ≤ ∆i + |KAi−1B|∆ = ∆i+1, (7.43)

then it follows that

µ2(x) =
[
KAix − sat∆i+1

(
KAix

)]2
= 0, (7.44)

and we conclude that, for case (a):

µ1(x) = µ2(x) = 0.

Case (b). x ∈ Xi and |Kx| > ∆:
Suppose:

|Kx| > ∆. (7.45)

We will consider two cases for case (b): case (b1) where x ∈ Xi satisfies
(7.45) and |KAix| ≤ ∆i+1 and case (b2) where x ∈ Xi satisfies (7.45) and
|KAix| > ∆i+1.

Case (b1). x ∈ Xi, |Kx| > ∆ and |KAix| ≤ ∆i+1:
Suppose

|KAix| ≤ ∆i+1 = ∆i + |KAi−1B|∆. (7.46)

Now, suppose also that KAi−1BKx ≤ 0. Then from (7.39) we have

−KAi−1Bsat∆(Kx) ≤ −KAi−1BKx ≤ −KAix + ∆i, (7.47)

and from (7.45) and (7.46):
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−KAi−1Bsat∆(Kx) = |KAi−1B|∆
≥ |KAix| − ∆i ≥ −KAix − ∆i.

(7.48)

Suppose next KAi−1BKx > 0, then it follows from (7.45) and (7.46)
that

−KAi−1Bsat∆(Kx) = −|KAi−1B|∆
≤ −|KAix| + ∆i ≤ −KAix + ∆i,

(7.47′)

and from (7.39)

−KAi−1Bsat∆(Kx) ≥ −KAi−1BKx ≥ −KAix − ∆i. (7.48′)

We conclude from (7.47) and (7.48) (or, (7.47)′ and (7.48)′) that

|KAix − KAi−1Bsat∆(Kx)| ≤ ∆i, (7.49)

and, hence:

µ1(x) = [KAix − KAi−1Bsat∆(Kx)

− sat∆i

(
KAix − KAi−1Bsat∆(Kx)

)
]2 = 0.

(7.50)

Also, it follows immediately from (7.46) that

µ2(x) =
[
KAix − sat∆i+1

(
KAix

)]2
= 0, (7.51)

and we conclude that, for case (b1),

µ1(x) = µ2(x) = 0.

Case (b2). x ∈ Xi, |Kx| > ∆ and |KAix| > ∆i+1:
Suppose

|KAix| > ∆i+1 = ∆i + |KAi−1B|∆. (7.52)

We will next show that case (b2) is not compatible with

sign(KAix) = −sign(KAi−1BKx). (7.53)

To see this, notice that (7.39), (7.45) and (7.53) imply

∆i ≥ |KAix − KAi−1BKx| = |KAix| + |KAi−1BKx|
> |KAix| + |KAi−1B|∆

⇒
|KAix| < ∆i − |KAi−1B|∆ ≤ ∆i + |KAi−1B|∆,
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which, clearly, contradicts (7.52). We conclude, then, that for
case (b2),

sign(KAix) = sign(KAi−1BKx). (7.54)

We then have from (7.45) and (7.54), that

µ1(x) =
[
KAix − KAi−1Bsat∆(Kx)

− sat∆i

(
KAix − KAi−1Bsat∆(Kx)

)]2
,

= [sign(KAix)(|KAix| − |KAi−1B|∆
− sat∆i

(|KAix| − |KAi−1B|∆)
)]2,

=
[|KAix| − |KAi−1B|∆ − sat∆i

(|KAix| − |KAi−1B|∆)]2
.

(7.55)

Notice, finally, that (7.52) implies

|KAix| − |KAi−1B|∆ > ∆i, (7.56)

which, in turn, implies in (7.55) that

µ1(x) =
[|KAix| − |KAi−1B|∆ − ∆i

]2
=

[|KAix| − ∆i+1

]2
. (7.57)

It also follows from (7.52) that

µ2(x) =
[
KAix − sat∆i+1

(
KAix

)]2
(7.58)

=
[
sign(KAix)|KAix| − sign(KAix)∆i+1

]2
(7.59)

=
[|KAix| − ∆i+1

]2
, (7.60)

and we conclude that, for case (b2),

µ1(x) = µ2(x) =
[|KAix| − ∆i+1

]2
.

We can see that for all the cases considered (which cover all the possibilities
for x ∈ Xi) the equality µ1(x) = µ2(x) is satisfied. �

7.3.2 Main Result

The following theorem gives a characterisation of the partial value function
(7.31). The proof extends to the case of arbitrary horizon the dynamic pro-
gramming arguments used in Theorem 6.2.1 of Chapter 6 for horizon N = 2.

Theorem 7.3.3 For all i ∈ {0, 1, . . . , N}, provided x ∈ ZN−i (see (7.38)),
the partial value function (7.31) is given by

V opt
N−i(x) =

1
2
xtPx +

1
2
R̄

N−i∑
k=1

δk(Ak−1x)2, (7.61)

where δk is the function defined in (7.32).
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Proof. We prove the theorem by induction. We start from the last value func-
tion at i = N , and solve the problem backwards in time by using the principle
of optimality:

V opt
N−i(x) = min

u∈�

{1
2
xtQx +

1
2
utRu + V opt

N−(i+1)(Ax + Bu)
}
,

where u and x denote, u = ui and x = xi, respectively.

(i) The value function V opt
0 (i = N):

By definition, the optimal value function at time N is

V opt
0 (x) � 1

2
xtPx for all x ∈ Z0 ≡ R

n.

(ii) The value function V opt
1 (i = N − 1):

By the principle of optimality, for all x ∈ Rn,

V opt
1 (x) = min

u∈�

{
1
2
xtQx +

1
2
utRu + V opt

0 (Ax + Bu)
}

= min
u∈�

{
1
2
xtQx +

1
2
utRu +

1
2
(Ax + Bu)tP (Ax + Bu)

}
= min

u∈�

{
1
2
xtPx +

1
2
R̄(u + Kx)2

}
. (7.62)

In deriving the last line we have made use of the algebraic Riccati equation
(7.5)–(7.6). It is clear that the unconstrained optimal control is given by
u = −Kx. From the convexity of the function R̄(u + Kx)2 it then follows
that the constrained optimal control law is given by

uopt
N−1 = sat∆(−Kx) = −sat∆(Kx) for all x ∈ Z1 ≡ R

n, (7.63)

and the optimal value function at time N − 1 is

V opt
1 (x) =

1
2
xtPx +

1
2
R̄δ1(x)2 for all x ∈ Z1 ≡ R

n.

(iii) The value function V opt
2 (i = N − 2):

By the principle of optimality, for all x ∈ Rn,

V opt
2 (x) = min

u∈�

{
1
2
xtQx +

1
2
utRu + V opt

1 (Ax + Bu)
}

= min
u∈�

{
1
2
xtQx +

1
2
utRu +

1
2
(Ax + Bu)tP (Ax + Bu)

+
1
2
R̄δ1(Ax + Bu)2

}
= min

u∈�

{
1
2
xtPx +

1
2
R̄(u + Kx)2 +

1
2
R̄δ1(Ax + Bu)2

}
.
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Since δ1(Ax − BKx) = 0 for x ∈ X1 (see (7.34)) the unconstrained min-
imum of the right hand side of the above equation occurs at u = −Kx
if x ∈ X1. Because the right hand side is convex in u, the constrained
minimum occurs at

uopt
N−2 = sat∆(−Kx) = −sat∆(Kx) for all x ∈ Z2 ≡ X1,

and the optimal partial value function at time N − 2 is

V opt
2 (x) =

1
2
xtPx +

1
2
R̄δ1(x)2 +

1
2
R̄δ1(φnl(x))2 for all x ∈ Z2 ≡ X1.

Now we can use the result of Lemma 7.3.2 to express V opt
2 (x) as

V opt
2 (x) =

1
2
xtPx +

1
2
R̄δ1(x)2 +

1
2
R̄δ2(Ax)2

=
1
2
xtPx +

1
2
R̄

2∑
k=1

δk(Ak−1x)2 for all x ∈ Z2 ≡ X1.

(iv) The value functions V opt
N−i and V opt

N−(i−1) (i ∈ {1, 2, . . . , N − 1}):

We have established above the theorem for N − i, i = N , N − 1 and
N − 2. We will now introduce the induction hypothesis. Assume that the
value function V opt

N−i, for some i ∈ {1, 2, . . . , N−1}, is given by the general
expression (7.61). Based on this assumption, we will now derive the partial
value function at time i − 1.
By the principle of optimality,

V opt
N−(i−1) = min

u∈�

{
1
2
xtQx +

1
2
utRu + V opt

N−i(Ax + Bu)
}

= min
u∈�

{
1
2
xtQx +

1
2
utRu +

1
2
(Ax + Bu)tP (Ax + Bu)

+
1
2
R̄

N−i∑
k=1

δk(Ak−1(Ax + Bu))2
}

= min
u∈�

{
1
2
xtPx +

1
2
R̄(u + Kx)2

+
1
2
R̄

N−i∑
k=1

δk(Ak−1(Ax + Bu))2
}

, (7.64)

for all x such that
Ax + Buopt

i−1 ∈ ZN−i, (7.65)

(since the expression used above for V opt
N−i(·) is only valid in ZN−i).

Since δk(Ak−1(Ax − BKx)) = 0 for k = 1, 2, . . . , N − i if x ∈ YN−(i−1) =
X1 ∩X2 ∩· · · ∩XN−i (see (7.34)) the unconstrained minimum of the right
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hand side of (7.64) occurs at u = −Kx if x ∈ YN−(i−1). Because the right
hand side of (7.64) is convex in u, the constrained minimum occurs at:

uopt
i−1 = sat∆(−Kx) = −sat∆(Kx),

for all x ∈ YN−(i−1) =
⋂N−i

j=1 Xj and, such that Ax − Bsat∆(Kx) =
φnl(x) ∈ ZN−i (see (7.65), that is, for all x ∈ ZN−(i−1) (Proposi-
tion 7.3.1 (iii)).

Therefore the optimal partial value function at time i − 1 is

V opt
N−(i−1)(x) =

1
2
xtPx +

1
2
R̄δ1(x)2

+
1
2
R̄

N−i∑
k=1

δk(Ak−1φnl(x))2 for all x ∈ ZN−(i−1),

and, using the result of Lemma 7.3.2, we can express V opt
N−(i−1)( · ) as

V opt
N−(i−1)(x) =

1
2
xtPx +

1
2
R̄δ1(x)2 +

1
2
R̄

N−i∑
k=1

δk+1(Akx)2

=
1
2
xtPx +

1
2
R̄

N−(i−1)∑
k=1

δk(Ak−1x)2 for all x ∈ ZN−(i−1).

This expression for V opt
N−(i−1)(·) is of the same form as that of (7.61) for

V opt
N−i(·). The result then follows by induction.

�

The optimal solution of the fixed horizon control problem PN easily follows
as a corollary of the above result. For a horizon N ≥ 1, consider the set

Z � ZN = R
n, if N = 1,

Z � ZN =
{
x : φk

nl(x) ∈ YN−k, k = 0, 1, . . . , N − 2
}

, if N ≥ 2. (7.66)

Note that, for N = 2, (7.66) coincides with (7.9) since φ0
nl(x) = x and, hence,

Z = Z2 = Y2 = X1 = {x : |K(A − BK)x| ≤ ∆} (see (7.37) and (7.35)) in this
case.

We then have:

Corollary 7.3.4 Consider the fixed horizon optimal control problem PN de-
fined in (7.28)–(7.29), where x denotes the initial state x = x0 of system
(7.27). Then for all x ∈ Z the minimum value is

V opt
N (x) =

1
2
xtPx +

1
2
R̄

N∑
k=1

δk(Ak−1x)2, (7.67)
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and, for all x ∈ Z the minimising sequence {uopt
0 , . . . , uopt

N−1} is

uopt
k = sat∆(−Kxk) = −sat∆(Kxk), (7.68)

for k = 0, 1, . . . , N − 1, where xk = φk
nl(x).

Proof. Equation (7.67) follows from (7.61) for i = 0. From Proposi-
tion 7.3.1 (iii) it follows that x = x0 ∈ Z = ZN ⇒ xk = φk

nl(x) ∈ ZN−k, k =
0, 1, . . .N − 1. Then (7.68) follows from the proof by induction of Theo-
rem 7.3.3. �

The above result extends Lemma 7.2.1 to arbitrary horizons. We next
present a simple example for which the solution (7.68) holds globally.

Example 7.3.1 (Scalar System with Cheap Control). Consider a scalar
system xk+1 = axk + buk, x0 = x, with b �= 0 and weights Q = 1, R = 0,
in the objective function (7.29). Such a design, with no weight on the control
input, is a limiting case of the controller considered known as cheap control.

For this case, the unconstrained optimal control is u = −Kx, where K
computed from (7.6) is K = a/b. Now, notice that, with K = a/b, the gain
A − BK is zero and, hence, the sets in (7.34)–(7.38) are: Xi ≡ Rn, Yi ≡ Rn,
Zi ≡ Rn, for all i. It then follows from Corollary 7.3.4 that the optimal control
sequence for all x ∈ R in this case is

uopt
k = sat∆

(−axk

b

)
= −sat∆

(axk

b

)
, (7.69)

for k = 0, 1, . . . , N − 1, where xk = φk
nl(x). Note that here the result (7.69)

holds globally in the state space. ◦

7.3.3 Regional Characterisation of RHC

As in Section 7.2.1, we turn here to the regional characterisation of the RHC
law. That is, we will extend the regional characterisation given in Corol-
lary 7.3.4 for the fixed horizon optimal control problem to its receding horizon
formulation. To this end, we define the set

Z̄ �
{
x : φk

nl(x) ∈ YN , k = 0, 1, 2, . . .
}

, N ≥ 2. (7.70)

Notice that, from the definitions, Z̄ ⊂ Z ⊂ YN . The set Z̄ is the maximal
positively invariant set contained in Z and YN for the closed loop system
xk+1 = φnl(xk) = Axk − Bsat∆(Kxk). It is easy to see that (7.70) coincides
with the set (7.12) introduced in Definition 7.2.1 for horizon N = 2 (since
Z = Z2 = Y2 in this case, see the discussion after (7.66)).

We then have the following result.

Theorem 7.3.5 For all x ∈ Z̄ the RHC law KN in (7.30) is given by

KN (x) = sat∆(−Kx) = −sat∆(Kx). (7.71)
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Proof. The proof of the theorem follows from the fact that Z̄ ⊆ Z and that Z̄

is positively invariant under the control KN (x) = −sat∆(Kx). Then, for all
states in Z̄ the future trajectories of the system will be such that x ∈ Z̄ ⊆ Z,
and from Corollary 7.3.4 we conclude that KN (x) = uopt

0 = sat∆(−Kx) =
−sat∆(Kx). �

As we discussed before, if the set Z̄, in which the theorem is valid, were
such that the control sequence {uk} = {−sat∆(Kxk)} stayed unsaturated
along the system trajectories, then the result of Theorem 7.3.5 would be triv-
ial. Also, if this set were such that only the first control in the sequence
{uk} = {−sat∆(Kxk)} stayed saturated, then the result would also be triv-
ial (although this is not as evident). This fact can be seen from the proof of
Theorem 7.3.3. Assume, for this purpose, that the horizon is N ≥ 2. Notice
that the step i = N − 1 of the dynamic programming procedure involves
the minimisation of the quadratic function in (7.62), whose constrained min-
imum is simply given by uopt

N−1 = −sat∆(KxN−1) ≡ −KxN−1 (since we are
assuming that only the first control saturates; see (7.63)). Following the same
argument backwards in time, and assuming that the controls uopt

i = −Kxi,
i = N − 1, N − 2, . . . , 1 are not saturated, it can be easily seen—since P sat-
isfies (7.5)—that the same quadratic equation (7.62) will propagate until the
initial step i = 0, in which case no assumption would be needed for the opti-
mal control to be uopt

0 = −sat∆(Kx0). In fact, Z̄ can be considerably bigger
than both of these trivial cases, as we will see later in Example 7.3.2.

Proposition 7.2.3 also extends to the case of horizons of arbitrary length,
that is, the set Z̄ defined in (7.70) contains the maximal output admissible
set O∞, defined in (7.14). We show this below.

Proposition 7.3.6 O∞ ⊆ Z̄.

Proof. As in the proof of Proposition 7.2.3, since Z̄ is the maximal positively
invariant set in YN , it suffices to show that O∞ ⊆ YN �

⋂N−1
i=1 Xi (see (7.37)).

Assume, therefore, that x ∈ O∞, so that (see (7.14))

|KAj
Kx| ≤ ∆, j = 0, 1, . . . , (7.72)

where AK � A − BK. For any i ∈ {1, 2, . . . , N − 1},

Ai
K = (A − BK)Ai−1

K = AAi−1
K − BKAi−1

K

= A(A − BK)Ai−2
K − BKAi−1

K = A2Ai−2
K − ABKAi−2

K − BKAi−1
K

= A2(A − BK)Ai−3
K − ABKAi−2

K − BKAi−1
K

= A3Ai−3
K − A2BKAi−3

K − ABKAi−2
K − BKAi−1

K

...

= Ai−1AK −
i−2∑
j=0

AjBKAi−1−j
K ,
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which implies

KAi−1AKx = KAi
Kx +

i−2∑
j=0

KAjBKAi−1−j
K x. (7.73)

From (7.72) and (7.73), we obtain the inequality

|KAi−1AKx| ≤ |KAi
Kx| +

i−2∑
j=0

|KAjB||KAi−1−j
K x| (7.74)

≤
⎛⎝1 +

i−2∑
j=0

|KAjB|
⎞⎠∆ = ∆i (see (7.33)). (7.75)

This implies x ∈ Xi for all i ∈ {1, 2, . . . , N − 1} (see (7.35)), yielding the
desired result. �

7.3.4 An Ellipsoidal Approximation to the Set Z̄

We can also construct an ellipsoidal inner approximation to the set Z̄, as
was done in Section 7.2.2. To this end, recall that Z̄ is the largest positively
invariant set, under the mapping φnl(·), contained in the set YN �

⋂N−1
i=1 Xi.

Also, recall from (7.35) that the sets Xi are given by

Xi =
{
x : |K̄ix| ≤ ∆i

}
, i = 1, 2, . . . , N − 1.

We then compute the ellipsoidal radius from

ρ̄ = min

{
(1 + β̄)2∆2

KP−1Kt
,

∆2
1

K̄1P−1K̄t
1

,
∆2

2

K̄2P−1K̄t
2

, . . . ,
∆2

N−1

K̄N−1P−1K̄t
N−1

}
,

(7.76)
where β̄ < β̄max, and β̄max is computed from (7.17) (in practice, one can
choose β̄ arbitrarily close to β̄max).

Then we have that Corollary 7.2.6 holds for the ellipsoidal set

E = {x : xtPx ≤ ρ̄},
that is,

(i) E is positively invariant for system (7.27) under the control uk =
−sat∆(Kxk).

(ii) E ⊆ Z̄.
(iii) The RHC law (7.71) holds, and it is optimal, for all x ∈ E .
(iv) System (7.27), with the RHC sequence (7.71), is exponentially stable in E .

The following example illustrates the regional characterisation of RHC and
the different sets used to describe it.
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Example 7.3.2. Consider the system xk+1 = Axk + Buk with

A =
[

1 0
0.4 1

]
, B =

[
0.4
0.08

]
,

which is the zero-order hold discretisation with a sampling period of 0.4 sec
of the double integrator

ẋ1(t) = u(t), ẋ2(t) = x1(t).

The input constraint level is taken as ∆ = 1. The fixed horizon objective
function is of the form (7.29) using N = 10, Q = I and R = 0.25. The
matrix P and the gain K were computed from (7.5) and (7.6). The maximum
over-saturation index was computed from (7.17) with ε = 0 and is equal to
β̄max = 1.3397. We then take β̄ = 1.3396 < β̄max and compute the ellipsoid
radius ρ̄ from (7.76).

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−8

−6

−4

−2

0

2

4

6

8

x1
k

x
2 k

YN

O∞

E

Figure 7.1. Set boundaries for Example 7.3.2.

In Figure 7.1 we show the following sets: YN =
⋂N−1

i=1 Xi (from (7.37)); the
maximal output admissible set O∞; and the ellipsoid E = {x : xtPx ≤ ρ̄}.
In this figure, x1

k and x2
k denote the components of the state vector xk in

the discrete time model. The sets O∞ and E are positively invariant and are
contained in Z̄ (Proposition 7.3.6 and (ii) above), and hence we have that
O∞ ∪ E ⊆ Z̄ ⊆ YN , which gives an estimate of the size of Z̄.

In Figure 7.2 we show the boundaries of the sets discussed above, together
with the result of simulating the system with control u = −sat∆(Kx), and
with RHC performed numerically via quadratic programming, for an initial
condition contained in the invariant ellipsoid E = {x : xtPx ≤ ρ̄}. Notice
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(a) State trajectory: with −sat∆(Kx)
(solid-circle) and with (7.30) (dashdot-
plus).
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(b) Control sequence: −sat∆(Kx)
(solid-circle) and (7.30) (dashdot-plus).

Figure 7.2. State trajectories and control sequence for the initial condition x0 =
[1.27 − 0.1]t. Also shown in the left figure are the set boundaries for YN , O∞, E .
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(a) State trajectory: with −sat∆(Kx)
(solid-circle) and with (7.30) (dashdot-
plus).
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(b) Control sequence: −sat∆(Kx)
(solid-circle) and (7.30) (dashdot-plus).

Figure 7.3. State trajectories and control sequence for the initial condition x0 =
[0.25 4.7]t . Also shown in the left figure are the set boundaries for YN , O∞, E .

that both strategies coincide, and that the control remains saturated during
the initial three steps.

Figure 7.3 shows a case where the initial condition is not contained in
the invariant ellipsoid E = {x : xtPx ≤ ρ̄} but is contained in the set Z̄

(since the trajectory does not leave the set YN ). Therefore, as established in
Theorem 7.3.5, both control sequences coincide and, as Figure 7.3 shows, they
stay saturated during the initial five steps.
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As can be seen from the simulations, the region in which both strate-
gies coincide is such that the control remains saturated during several steps.
Hence, we conclude that this region—the set Z̄—is, in fact, nontrivial (see the
discussion following Theorem 7.3.5). ◦

7.4 Further Reading

For complete list of references cited, see References section at the end of book.

General

Further discussion on the regional solution may be found in De Doná (2000),
De Doná and Goodwin (2000) and De Doná, Goodwin and Seron (2000).

Link to Anti-Windup Strategies

Another line of attack on the problem of input constraints was developed, be-
ginning from a different perspective to the optimisation approach taken here,
grouped under the name of anti-windup techniques. The first versions of these
techniques can be traced back to PID and integral control, where limitations
on the controller’s ability to quickly regulate errors to zero, imposed by input
saturation, led to unnecessarily high values of the state of the controller inte-
grator. The term “anti-windup” is then used to describe the capability of the
technique to prevent the state of the integrator from “winding up” to an ex-
cessively high value. Distinctive characteristics of the anti-windup technique
are (see, for example, Teel 1999): (i) The original controller is used locally as
long as it does not encounter input saturation, and (ii) saturation effects are
minimised by modifying the controller structure when the plant input reaches
its saturation level. In essence, all the algorithms achieve these goals by let-
ting the controller states “know” about saturation being reached. A unified
framework that encompasses many of these algorithms is given in Kothare,
Campo, Morari and Nett (1994). They are prime examples of “evolutionary”
strategies (see Section 1.2 of Chapter 1).

Consider now that the original controller is the static state feedback
u = −Kx, that is, that the controller has no dynamics. Particularising the
unified framework of Kothare et al. (1994) to this case, one easily obtains
that the corresponding anti-windup strategy is equivalent to saturating the
control signal, that is, u = −sat∆(Kx). Comparing with the RHC law (7.71),
we conclude that for all x ∈ Z̄, the RHC and anti-windup strategies have
the identical characterisation u = −sat∆(Kx). That is, the RHC and anti-
windup control laws coincide in the region where RHC has the simple finite
parameterisation (7.71).




