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Global Characterisation of Constrained
Linear Quadratic Optimal Control

6.1 Overview

As stated earlier, a common strategy in applications of receding horizon opti-
mal control is to compute the optimal input uk at time k by solving, on line,
the associated finite horizon optimisation problem. As explained in Chapter 4,
when the system and objective function are time-invariant, then this proce-
dure implicitly defines a time-invariant control policy KN : X → U of the form
KN (x) = uopt

0 (see (4.10) of Chapter 4).
This leads to the obvious question: “Should we repeat the calculation

of KN (x) in the event that x returns to a value that has been previously
visited?” Heuristically, one would immediately answer “No!” to this question.
However, a little more thought reveals that to make this a feasible proposition
in practice, we need to solve three problems; namely,

(i) how to efficiently calculate KN (x) for all x of interest;
(ii) how to store KN (x) as a function of x;
(iii) how to retrieve the value of KN (x) given x.

In a general setting, these problems present substantial difficulties. How-
ever, for the case of constrained linear systems, there exists a relatively simple
finitely parameterised characterisation of KN (x), which can be computed and
stored efficiently for small state dimensions and short horizons. We present
this characterisation in this chapter, leading to an explicit form for the reced-
ing horizon control policy. Even if, on the balance of computational time, one
decides to still solve the quadratic programming [QP] problem at each step,
we believe that this finitely parameterised characterisation of KN (x) gives
practically valuable insights into the nature of the constrained control policy.

We first derive the characterisation using dynamic programming (intro-
duced in Section 3.4 of Chapter 3). We consider systems with a single input
constrained to lie in an interval and optimisation horizon N = 2. We then
analyse the geometric structure of the fixed horizon optimal control problem
PN when seen as a QP of the form discussed in Section 5.3 of Chapter 5.
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Using this geometric structure, we will re-derive the result obtained via dy-
namic programming. This will give insight into the solution by clarifying the
interrelationship between dynamic programming and the inherent geometry
of the QP solution space (the space where the QP is defined).

We then show how the same ideas can be used to characterise the solution
of the fixed horizon optimal control problem PN for cases with arbitrary
horizons and more general linear constraints. As for the simpler case N = 2,
the general solution is obtained by exploiting the geometry of the associated
QP in particular coordinates of its solution space. Once projected onto the
state space, the result is a piecewise affine characterisation, that is, a partition
of the state space into regions in which the corresponding control law is affine.

Finally, we discuss the use of the KKT optimality conditions (Sec-
tions 2.5.4–2.5.5 in Chapter 2) in the derivation of the piecewise affine char-
acterisation.

6.2 Global Characterisation for Horizon 2 via Dynamic
Programming

For ease of exposition, here we will fix the optimisation horizon to N = 2.
We consider single input, linear, discrete time systems in which the mag-

nitude of the control input is constrained to be less than or equal to a positive
constant. In particular, let the system be given by

xk+1 = Axk + Buk, |uk| ≤ ∆, (6.1)

where xk ∈ Rn and ∆ > 0 is the input constraint level. Consider the following
fixed horizon optimal control problem

P2(x) : V opt
2 (x) � min V2({xk}, {uk}), (6.2)

subject to:
xk+1 = Axk + Buk for k = 0, 1,

x0 = x,

uk ∈ U � [−∆, ∆] for k = 0, 1,

where the objective function in (6.2) is

V2({xk}, {uk}) � 1
2
xt

2Px2 +
1
2

1∑
k=0

(xt
kQxk + ut

kRuk) . (6.3)

The matrices Q and R in (6.3) are positive definite and P satisfies the algebraic
Riccati equation

P = AtPA + Q − KtR̄K, (6.4)

where
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K � R̄−1BtPA, R̄ � R + BtPB. (6.5)

Let the control sequence that minimises (6.3) be

{uopt
0 , uopt

1 }. (6.6)

Then the RHC law is given by the first element of (6.6) (which depends on
the current state x0 = x), that is,

K2(x) = uopt
0 . (6.7)

Before proceeding with the solution to the above problem, we observe
that, at this stage, the choice of the matrix P as the solution to (6.4) is not
necessary; however, as we showed in Chapter 5, this choice is useful to establish
stability of the receding horizon implementation given by the state equation
in (6.1) in closed loop with uk = K2(xk). Also, this choice effectively gives an
infinite horizon objective function with the restriction that constraints not be
active after the first two steps. Similarly, the assumption that Q is positive
definite is not required at this stage, but it will be used later in the stability
result of Section 7.2.2 in the following chapter.

In Theorem 6.2.1 below, we will derive the solution of P2 defined in (6.2)–
(6.5) using dynamic programming. Following Section 3.4 of Chapter 3, the
partial value functions at each step of the dynamic programming algorithm,
are defined by

V opt
0 (x2) � 1

2
xt

2Px2, (6.8)

V opt
1 (x1) � min

u1∈U

x2=Ax1+Bu1

1
2
xt

2Px2 +
1
2
xt

1Qx1 +
1
2
ut

1Ru1,

and V opt
2 (x) is the value function of P2 defined in (6.2)–(6.3).

The dynamic programming algorithm makes use of the principle of op-
timality, which states that any portion of the optimal trajectory is itself an
optimal trajectory. That is, for k = 0, 1, (see (3.85) in Chapter 3)

V opt
k (x) = min

u∈U

1
2
xtQx +

1
2
utRu + V opt

k−1(Ax + Bu), (6.9)

where u and x denote, u = uk and x = xk, respectively.
In the sequel we will use the saturation function sat∆(·) defined, for the

saturation level ∆, as

sat∆(u) �

⎧⎪⎨⎪⎩
∆ if u > ∆,

u if |u| ≤ ∆,

−∆ if u < −∆.

(6.10)

The following result gives a finitely parameterised characterisation of the
RHC law (6.7).



128 6. Global Characterisation of Constrained LQ Optimal Control

Theorem 6.2.1 (RHC Characterisation for N = 2) The RHC law (6.7)
has the form

K2(x) =

⎧⎪⎨⎪⎩
−sat∆(Gx + h) if x ∈ Z−,

−sat∆(Kx) if x ∈ Z,

−sat∆(Gx − h) if x ∈ Z+,

(6.11)

where K is given by (6.5), the gain G ∈ R1×n and the constant h ∈ R are
given by

G � K + KBKA

1 + (KB)2
, h � KB

1 + (KB)2
∆, (6.12)

and the sets (Z−, Z, Z+) are defined by

Z
− � {x : K(A − BK)x < −∆} , (6.13)

Z � {x : |K(A − BK)x| ≤ ∆} , (6.14)

Z
+ � {x : K(A − BK)x > ∆} . (6.15)

Proof. We start from the last partial value function (6.8), at time k = N = 2,
and solve the problem backwards in time using (6.9).

(i) The partial value function V opt
0 (k = N = 2):

Here x = x2. By definition, the partial value function at time k = N = 2
is

V opt
0 (x) � 1

2
xtPx for all x ∈ R

n.

(ii) The partial value function V opt
1 (k = N − 1 = 1):

Here x = x1 and u = u1. By the principle of optimality, for all x ∈ Rn,

V opt
1 (x) = min

u∈U

{
1
2
xtQx +

1
2
utRu + V opt

0 (Ax + Bu)
}

= min
u∈U

{
1
2
xtQx +

1
2
utRu +

1
2
(Ax + Bu)tP (Ax + Bu)

}
= min

u∈U

{
1
2
xtPx +

1
2
R̄(u + Kx)2

}
, (6.16)

where R̄ is defined in (6.5). In deriving (6.16) we have made use of (6.4).
It is clear that the unconstrained (u ∈ R) optimal control is given by
u = −Kx. From the convexity of the function R̄(u + Kx)2 it then follows
that the constrained (u ∈ U) optimal control law, which corresponds to
the second element of the sequence (6.6), is given by

uopt
1 = sat∆(−Kx) = −sat∆(Kx) for all x ∈ R

n, (6.17)

and the partial value function at time k = N − 1 = 1 is

V opt
1 (x) =

1
2
xtPx +

1
2
R̄ [Kx − sat∆(Kx)]2 for all x ∈ R

n.
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(iii) The (partial) value function V opt
2 (k = N − 2 = 0):

Here x = x0 and u = u0. By the principle of optimality, we have that, for
all x ∈ R

n,

V opt
2 (x) = min

u∈U

{
1
2
xtQx +

1
2
utRu + V opt

1 (Ax + Bu)
}

= min
u∈U

{
1
2
xtQx +

1
2
utRu +

1
2
(Ax + Bu)tP (Ax + Bu)

+
1
2
R̄ [K(Ax + Bu) − sat∆(K(Ax + Bu))]2

}
=

1
2

min
u∈U

{
xtPx + R̄(u + Kx)2

+ R̄ [KAx + KBu − sat∆(KAx + KBu)]2
}
. (6.18)

Denote the terms in (6.18) by f1(u) � (u + Kx)2, and f2(u) � [KAx +
KBu−sat∆(KAx + KBu)]2. Notice that the function f2(u) has a “cup”
shape formed by three zones: (a) Half-parabola corresponding to the case
KAx + KBu < −∆; (b) a flat zone corresponding to the case |KAx +
KBu| ≤ ∆, and; (c) half-parabola corresponding to the case KAx +
KBu > ∆. Note also that f1 + f2 is convex. With this information, we
can derive the result (6.11) as follows:

Case (a). x ∈ Z−: In this case, the minimiser of f1(u) (that is, u = −Kx)
is such that KAx + KB(−Kx) = K(A − BK)x < −∆ (see (6.13)),
that is, u = −Kx is in zone (a) of function f2(u). Then, the minimum
of f1(u)+f2(u) (situated between the minimum of f1(u), at u = −Kx,
and the minimum of f2(u)) will also fall in zone (a). We conclude that
the value function is

V opt
2 (x) =

1
2

min
u∈U

{
xtPx + R̄(u + Kx)2 + R̄ [KAx + KBu + ∆]2

}
,

whose unconstrained minimum is easily found to be at u = −(Gx+h),
with G and h as given in (6.12). From the convexity of f1(u)+f2(u) it
then follows that the constrained (u ∈ U) optimal control law, which
corresponds to the first element of the sequence (6.6), is given by

uopt
0 = −sat∆(Gx + h) for all x ∈ Z

−.

This shows the result in (6.11) for this case.

Case (b). x ∈ Z: This case corresponds to the situation where u = −Kx
is in zone (b) of f2(u) and hence, the unconstrained minimum of
f1(u) + f2(u) occurs at u = −Kx. Again, using the convexity of
f1(u)+f2(u), it follows that the constrained optimal control law, which
corresponds to the first element of the sequence (6.6), is
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uopt
0 = −sat∆(Kx) for all x ∈ Z. (6.19)

Case (c). x ∈ Z+: The result follows from a similar analysis to the
case (a).

�

We illustrate the above result by a simple example.

Example 6.2.1. Consider again the double integrator of Example 1.2.1 in
Chapter 1. For this system, we consider an input saturation level ∆ = 1.

In the fixed horizon objective function (6.3) we take Q =
[
1 0
0 0

]
, and

R = 0.1. The gain K is computed from (6.4)–(6.5). Equation (6.12) gives
G = [−0.6154 − 1.2870] and h = 0.4156.
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(a) Partition for control law (6.11).
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(b) Partition for control law (6.20).

Figure 6.1. State space partitions for Example 6.2.1.

In Figure 6.1 (a) we show the sets Z−, Z and Z+ that define the controller
(6.11). In this figure, x1

k and x2
k denote the two components of the state

vector xk.
Actually, we can be even more explicit regarding the form of the control

law. In particular, if we discriminate between the regions where each compo-
nent of the controller (6.11) is saturated from the ones where it is not, we
can parameterise the controller (6.11) in the following equivalent, but more
explicit, form:

K2(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∆ if x ∈ R1,

−Gx − h if x ∈ R2,

−Kx if x ∈ R3,

−Gx + h if x ∈ R4,

∆ if x ∈ R5.

(6.20)
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In Figure 6.1 (b) we show the state space partition that corresponds to the
parameterisation (6.20) for this example. ◦

Theorem 6.2.1 shows that the solution to the simple RHC problem (6.2)–
(6.7) has the form of a piecewise affine feedback control law defined on a
partition of the state space. We will see below that a similar characterisation
can be obtained for more general cases. Rather than extending the above
procedure, we will utilise alternative geometric arguments.

6.3 The Geometry of Quadratic Programming

As mentioned in Chapter 5, when the system model is linear and the objective
function quadratic, the fixed horizon optimal control problem PN can be
transformed into a QP of the form (5.28). We will start by re-examining the
optimal control problem for horizon N = 2 defined in (6.2)–(6.5). In this
case, the corresponding QP optimal solution is (see (5.29) in Chapter 5 and
(6.4)–(6.5))

QP: uopt(x) = arg min
u∈Ruc

1
2
utHu + utFx, (6.21)

where

u =
[
u0

u1

]
, H = R̄

[
1 + (KB)2 KB

KB 1

]
, F = R̄

[
K + KBKA

KA

]
,

(6.22)
and Ruc is the square [−∆, ∆] × [−∆, ∆] ⊂ R2. Note that the Hessian H is
positive definite since R̄ = R + BtPB is positive because we have assumed
that R > 0 in (6.3).

The QP in (6.21) has a nice geometric interpretation in the u-space. Con-
sider the equation

1
2
utHu + utFx = c, (6.23)

where c is a constant. This defines ellipsoids in R2 centred at uopt
uc (x) =

−H−1Fx. Then (6.21) can be regarded as the problem of finding the smallest
ellipsoid that intersects the boundary of Ruc, and uopt(x) is the point of
intersection. This is illustrated in Figure 6.2.

The problem can be significantly simplified if we make a coordinate trans-
formation via the square root of the Hessian, that is,

ũ = H1/2u. (6.24)

In the new coordinates defined by (6.24), the constraint set Ruc is mapped
into another set, denoted also by Ruc for simplicity of notation. The ellip-
soids (6.23) take the form of spheres centred at ũopt

uc (x) = −H−1/2Fx. Thus
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Ruc

u0

u1

∆

∆

uopt(x)

uopt
uc (x)

Figure 6.2. Geometric interpretation of QP.

(6.21) is transformed into the problem of finding the point in Ruc that is clos-
est to ũopt

uc (x) in the Euclidean distance. This is qualitatively illustrated in
Figure 6.3.

This transformed geometric picture allows us to immediately write down
the solution to the fixed horizon optimal control problem for this special case.
In particular, the solution of the QP is obtained by partitioning R

2 into nine
regions; the first region is the parallelogram Ruc. The remaining regions, de-
noted by R1 to R8, are delimited by lines that are normal to the faces of
the parallelogram and pass through its vertices, as shown in Figure 6.3. The
optimal constrained solution ũopt(x) is determined by the region in which
the optimal unconstrained solution ũopt

uc (x) lies, in the following way: First,
it is clear that ũopt(x) = ũopt

uc (x) if ũopt
uc (x) ∈ Ruc; that is, the optimal con-

strained solution coincides with the optimal unconstrained solution in Ruc.
Next, the optimal constrained solution in each of the regions R1, R3, R5 and
R7 is simply equal to the vertex that is contained in the region. Finally, the
optimal constrained solution in the regions R2, R4, R6 and R8 is defined by
the orthogonal projection of ũopt

uc (x) onto the faces of the parallelogram. This
can be seen from Figure 6.3, where a case in which the solution falls in R8 is
illustrated.

Whilst we have concentrated on the simple case N = 2, it is easy to see
that this methodology can be applied also to more complex cases. Indeed, in
Section 6.5 we will apply these geometric arguments to arbitrary horizons and
multiple input systems.
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ũopt(x)

ũopt
uc (x)

Figure 6.3. Geometry of QP as a minimum Euclidean distance problem.

We thus see that the geometry of the QP problem gives insight into its
solution. We will expand on these ideas in the following sections.

6.4 Geometric Characterisation for Horizon 2

In this section, we will use the geometric ideas outlined in Section 6.3 to
recover the finitely parameterised characterisation derived via dynamic pro-
gramming in Theorem 6.2.1.

To solve (6.21), we use the transformation (6.24), which maps the square
Ruc into the parallelogram Ruc shown in Figure 6.3. We next note that the
unconstrained solution in the ũ–coordinates is given by

ũopt
uc (x) = −H−1/2Fx. (6.25)

We then derive the constrained solution in the ũ–coordinates using geometric
arguments, and finally use the transformation

ũ = −H−1/2Fx (6.26)

to retrieve the solution in the state space.
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Following Section 6.3, we partition R2 into nine regions; the first region is
the parallelogram Ruc, and the remaining regions, denoted by R1 to R8, are
delimited by lines that are normal to the faces of Ruc and pass through its
vertices, as shown in Figure 6.3.

In Ruc we have

ũopt(x) = ũopt
uc (x) = −H−1/2Fx for all u ∈ Ruc.

That is, in Ruc the optimal constrained solution coincides with the optimal
unconstrained solution.

To describe the solution in regions R1 to R8 in more detail, we introduce
the following notation, which will be used in the remainder of the chapter.

Notation 6.4.1 Given any matrix (column vector) M , and a set of indices 
̄
(with, at most, as many elements as the number of rows of M), the notation
M�̄ identifies the submatrix (subvector) of M formed by selecting the rows with
indices given by the elements of 
̄ and all of its columns. ◦
For example, given H defined in (6.22), and the set 
̄ = {2}, H�̄ = H2 denotes
its second row.

Ruc

R8

n1

n4

f4

ũ0

ũ1

ṽ1

ṽ4

ũopt(x)

ũopt
uc (x)

Figure 6.4. Solution of QP in region R8.

Consider now, for example, region R8 in Figure 6.4. It is delimited by
face f4 and its normals n1 and n4 passing through the vertices ṽ1 and ṽ4,
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respectively. The line that contains face f4 (the line is also denoted by f4,
for simplicity) corresponds to the second control u1 equal to the saturation
level ∆, that is u1 = [0 1]u = ∆ in the original u-coordinates. In the new
ũ-coordinates (6.24), it is then defined by the equation

f4 : [0 1]H−1/2ũ = ∆. (6.27)

Lines normal to f4 are defined by the equation

[1 0]H1/2ũ = c, c ∈ R. (6.28)

Hence, the equation defining n1 is obtained by setting

ũ = ṽ1 = H1/2∆[1 1]t

in (6.28). This yields

n1 : [1 0]H1/2ũ = H1∆[1 1]t. (6.29)

In a similar way, the equation defining n4 is given by

n4 : [1 0]H1/2ũ = H1∆[−1 1]t. (6.30)

Combining (6.27), (6.29) and (6.30), region R8 is defined in the ũ-coordinates
by

R8 :

{
[0 1]H−1/2ũ ≥ ∆
H1∆[−1 1]t ≤ [1 0]H1/2ũ ≤ H1∆[1 1]t,

(6.31)

and, using the transformation (6.26), it is defined in the state space coordi-
nates x ∈ Rn by

R8 :

{
−K(A − BK)x ≥ ∆
H1∆[−1 1]t ≤ −F1x ≤ H1∆[1 1]t.

(6.32)

The optimal constrained solution in R8 is given by the normal projection
of the unconstrained solution ũopt

uc (x) onto face f4; that is, the solution is
obtained by intersecting face f4 with the normal to it passing through ũopt

uc (x).
From (6.27) and (6.28), ũopt(x) satisfies the equations

[0 1]H−1/2ũopt(x) = ∆,

[1 0]H1/2ũopt(x) = [1 0]H1/2ũopt
uc (x).

Using (6.24) and ũopt
uc (x) from (6.25) in the above equations yields

H1

[
uopt

0 (x)
∆

]
= −F1x.

Further substitution of H1 = R̄[1 + (KB)2 KB] and F1 = R̄(K + KBKA)
from (6.22) gives
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uopt
0 (x) = − (K + KBKA)x + KB∆

1 + (KB)2
,

and using the definitions (6.12), we obtain

uopt
0 (x) = −Gx − h. (6.33)

If we proceed in a similar way with the remaining regions, we obtain a
characterisation of the RHC problem (6.2)–(6.7) in the form

K2(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−Kx if x ∈ Ruc,

∆ if x ∈ R1 ∪ R2 ∪ R3,

−Gx + h if x ∈ R4,

−∆ if x ∈ R5 ∪ R6 ∪ R7,

−Gx − h if x ∈ R8,

(6.34)

where

Ruc :

{
|Kx| ≤ ∆
|K(A − BK)x| ≤ ∆

R1 :

{
−F1x ≥ H1∆[1 1]t

−F2x ≥ H2∆[1 1]t

R2 :

{
−Kx ≥ ∆
H2∆[1 − 1]t ≤ −F2x ≤ H2∆[1 1]t

R3 :

{
−F2x ≤ H2∆[1 − 1]t

−F1x ≥ H1∆[1 − 1]t

R4 :

{
−K(A − BK)x ≤ −∆
H1∆[−1 − 1]t ≤ −F1x ≤ H1∆[1 − 1]t

R5 :

{
−F1x ≤ H1∆[−1 − 1]t

−F2x ≤ H2∆[−1 − 1]t

R6 :

{
−Kx ≤ −∆
H2∆[−1 − 1]t ≤ −F2x ≤ H2∆[−1 1]t

R7 :

{
−F2x ≥ H2∆[−1 1]t

−F1x ≤ H1∆[−1 1]t

(6.35)

and R8 is given in (6.32).

Example 6.4.1. Consider again the system and data of Example 6.2.1. In
Figure 6.5 we show the state space partition that corresponds to the con-
troller (6.34)–(6.35) for this example. As can be seen, the RHC law derived
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using geometric arguments coincides with the one obtained in Example 6.2.1
by dynamic programming. (Compare with Figure 6.1 (b).) In the following
section, we will further discuss this relationship. ◦
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Figure 6.5. State space partitions for Example 6.4.1.

6.4.1 Relationship with the Characterisation Obtained via
Dynamic Programming

We will show here that the characterisation (6.11), obtained using dynamic
programming, and the characterisation (6.34), obtained using geometric ar-
guments, are equivalent. Indeed, faces f2 and f4 of the parallelogram Ruc (see
Figure 6.6) correspond to the second control u1 being equal to the saturation
limits −∆ and ∆, respectively. Hence, using the transformation u = −H−1Fx,
the definitions of H and F from (6.22), and equating the second component
of u to −∆ and ∆, we find that these faces are given in the state space by

f2 : − K(A − BK)x = −∆,

f4 : − K(A − BK)x = ∆.

Comparing the above equations with (6.14), we conclude that region Z cor-
responds, in the ũ-coordinates, to the shaded region in Figure 6.6. Similarly,
the half-planes above and below the shaded region in Figure 6.6 correspond
to Z

− and Z
+, defined in (6.13) and (6.15), respectively. Moreover, since faces

f1 and f3 of the parallelogram Ruc (which correspond to the first control u0

equal to the saturation limits ∆ and −∆, respectively) are given in the state
space by
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f1 : − Kx = ∆,

f3 : − Kx = −∆,

it is not difficult to see, using (6.34), (6.35), that K2(x) in Z is given by
−sat∆(Kx), as stated in (6.11).

Ruc

R1

R2

R3

R4

R5

R6

R7

R8

n1

n4

f1

f2

f3

f4

ũ0

ũ1

�

�
+

�
−

Figure 6.6. Regions that characterise the RHC solution in the case N = 2.

On the other hand, substituting (6.26) in (6.29), (6.30), we find that the
normals n1 and n4 are given in the state space by

n1 : − F1x = H1

[
∆ ∆

]t
,

n4 : − F1x = H1

[−∆ ∆
]t

,

and, using H1 = R̄[1+(KB)2 KB], F1 = R̄(K+KBKA), and the definitions
(6.12), we have

n1 : − Gx − h = ∆
n4 : − Gx − h = −∆.

Thus, comparing with (6.33), we can see that n1 and n4 define the switching
lines where K2(x) = −Gx − h saturates to K2(x) = ∆ and K2(x) = −∆,
respectively. Then, using (6.34), (6.35), it is immediately seen that K2(x) in
Z− is given by −sat∆(Gx + h), as stated in (6.11). A similar analysis can be
performed for region Z+.



6.5 Geometric Characterisation for Arbitrary Horizon 139

We have thus far obtained a partition of R2 that gives a complete geometric
picture of the solution to the RHC problem for the case of single input, N = 2.
One may anticipate that this kind of argument can be extended to larger
horizons. This is, indeed, the case, as we will show in Section 6.5, where we
will generalise this procedure to higher dimensional spaces.

6.5 Geometric Characterisation for Arbitrary Horizon

In this section we explore the RHC structure for more general problems. We
again focus on linear, time-invariant, discrete time models with a quadratic
objective function, but we consider arbitrary horizons and more general linear
constraints. For these systems, and under a particular constraint qualification,
we derive a finitely parameterised characterisation of the RHC solution. In
particular, let the system be given by

xk+1 = Axk + Buk, (6.36)

where xk ∈ Rn and uk ∈ Rm. Consider the following fixed horizon optimal
control problem:

PN (x) : V opt
N (x) � min VN ({xk}, {uk}), (6.37)

subject to:
xk+1 = Axk + Buk for k = 0, . . . , N − 1,

x0 = x,

uk ∈ Uk for k = 0, . . . , N − 1, (6.38)
xk ∈ Xk for k = 0, . . . , N, (6.39)

where Uk and Xk are polyhedral constraint sets, whose description we leave
unspecified at this stage. The objective function in (6.37) is

VN ({xk}, {uk}) � 1
2
xt

NPxN +
1
2

N−1∑
k=0

(xt
kQxk + ut

kRuk) , (6.40)

with Q > 0, R > 0 and P ≥ 0.
The associated QP and optimiser are (see (5.29) in Chapter 5)

uopt(x) = arg min
Lu≤W

1
2
utHu + utFx, (6.41)

where u ∈ R
Nm, and where H = ΓtQΓ + R, F = ΓtQΩ, with Γ, Ω, Q, R,

defined as in (5.14) and (5.16) of Chapter 5 (with M = N and C = I).
The constraint set

Lu ≤ W (6.42)
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in (6.41) is a polyhedron in RNm obtained from the sets Uk and Xk in (6.38)
and (6.39), respectively. We will assume that the matrix L and the vector W
have the form

L =
[

Φ
−Φ

]
, W =

[
∆̄
∆

]
+

[−Λ
Λ

]
x. (6.43)

In (6.43), Φ is a q×Nm matrix, ∆̄ and ∆ are q×1 vectors such that ∆̄+∆ > 0
(componentwise), and Λ is a q × n matrix. Note that (6.42)–(6.43) can also
be written as the interval-type constraint −∆ ≤ Φu + Λx ≤ ∆̄. As was
shown in Section 5.3.2 of Chapter 5, the structure of L and W in (6.43)
easily accommodates typical constraint requirements, such as, for example,
magnitude or rate constraints on the inputs or outputs.

As in Section 6.4, we will study the solution to the above RHC problem
using a special coordinate basis for the QP solution space RNm. To this end,
we use the transformation (6.24) to take the original QP coordinates into the
new ũ-coordinates. The convex constraint polyhedron in the u-coordinates
defined by (6.42)–(6.43), is mapped into a convex constraint polyhedron in
the ũ-coordinates, given by

Φ̃ũ ≤ ∆̄ − Λx, (6.44)

−Φ̃ũ ≤ ∆ + Λx, (6.45)

where
Φ̃ � ΦH−1/2.

Notice that the dimension of the constraint polyhedron is the constraint hori-
zon q = rank Φ. A face of the constraint polyhedron is defined by the in-
tersection, with the constraint polyhedron, of the hyperplane defined by a
subset of equalities (or active constraints) within (6.44)–(6.45). To each face
of the constraint polyhedron, we will associate an active pair (
, ∆), whose
elements are defined below. We will use the notation 6.4.1, and introduce the
set J �

{
1, 2, . . . , q

}
of the first q natural numbers. We then define, for each

face with N̄ ∈ J active constraints:

• The active set 
 �
{

1, 
2, . . . , 
N̄ : 
k ∈ J

}
, which identifies the indices

of the constraints that are active; that is, the indices of the rows within
(6.44)–(6.45) that hold as equalities for the face. Note that the gradient of
the active constraints is Φ̃�.

• The active value vector ∆ ∈ RN̄ , which identifies whether the active con-
straint whose index is 
k corresponds to either row 
k of (6.44) or row 
k

of (6.45). More precisely, the kth element of ∆ is given by{
∆k = ∆̄�k

if Φ̃�k
ũ = ∆̄�k

− Λ�k
x,

∆k = −∆�k
if Φ̃�k

ũ = −∆�k
− Λ�k

x.
(6.46)

• The inactive set s � J−
 =
{
s1, s2, . . . , sq−N̄ : sk ∈ J and sk /∈ 


}
, which

identifies the indices of the constraints that are not active in each face. Note
that the gradient of the inactive constraints is Φ̃s.
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In addition, we will impose the constraint qualification that the gradient
of active constraints Φ̃� has full row rank.

Each active pair (
, ∆) fully characterises an active face of the constraint
polyhedron, which is given by the intersection with the constraint polyhedron
of the hyperplane defined by the equality constraint

Φ̃�ũ = ∆ − Λ�x. (6.47)

For example, in Figure 6.7, (6.47) may represent the plane that contains face
f1, in which case one constraint is active, or the line that contains e1, in which
case two constraints are active.

Ruc

R1

f1
f2

f3 e1

(a) Active region associated with a face.

�
�
�
�

�
�
�
�

��
��
��
��

Ruc

R2

f1
f2

f3 e1

v1

v2

(b) Active region associated with an
edge.

Figure 6.7. Illustration of active regions associated with a face and an edge of the
constraint polyhedron.

To each active face, we will then associate an active region of RNm de-
fined as the set of all points v ∈ RNm for which the point of the constraint
polyhedron that is closest to v, in Euclidean distance, belongs to the corre-
sponding active face. For example, region R1 in Figure 6.7 (a) is an active
region associated with face f1 and region R2 in Figure 6.7 (b) is an active
region associated with edge e1. In these regions, the optimal solution ũopt(x)
is simply given by the point on the corresponding active face of the constraint
polyhedron that is closest, in the Euclidean distance, to the unconstrained
solution ũopt

uc (x) = −H−1/2Fx (see, for example, Figure 6.4).
The following lemma characterises, for an arbitrary active pair (
, ∆), the

corresponding active region in RNm.

Lemma 6.5.1 (Active Regions) Suppose that the gradient of active con-
straints Φ̃� has full row rank. Then the active region corresponding to the face
characterised by the equality constraint (6.47) is given by
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S
{
[Φ̃�Φ̃t

� ]
−1[Φ̃�ũ + Λ�x − ∆]

}
≤ 0, (6.48)

−∆s ≤ Φ̃sũ + Λsx − Φ̃sΦ̃t
� [Φ̃�Φ̃t

� ]
−1[Φ̃�ũ + Λ�x − ∆] ≤ ∆̄s, (6.49)

where ∆ is defined in (6.46) and S is a sign diagonal matrix such that its
(k, k)-entry is Skk = 1 if ∆k = −∆�k

and Skk = −1 if ∆k = ∆̄�k
.

Proof. Geometrically, the active region corresponding to the face characterised
by the active constraints (6.47) is delimited by1:

• Each hyperplane that contains the corresponding active face (6.47) and is
normal to one of the faces that share with the active face all but one of
its active constraints. (For example, in Figure 6.7 (b), these hyperplanes
are the two planes delimiting R2 that are normal to faces f1 and f3 and
contain edge e1.)

We will show that these hyperplanes are given by the equality in each row
of (6.48). First, it is easy to see that these equalities contain (6.47) simply
by substitution of (6.47) in (6.48). Next, note that each face that shares
with (6.47) all the active constraints except constraint 
k is characterised
by the equality constraint

Φ̃�−�k
ũ = ∆′ − Λ�−�k

x, (6.50)

where ∆′ is formed from ∆ by eliminating its kth element. We now rewrite
the equality in (6.48) as

Ψũ = [Φ̃�Φ̃t
� ]

−1[−Λ�x + ∆] (6.51)

where Ψ � [Φ̃�Φ̃t
� ]

−1Φ̃�. Since ΨΦ̃t
� = I, it follows that ΨkΦ̃�−�k

=
01×(N̄−1). Hence, the hyperplane defined by the kth row of (6.51) is nor-
mal to the face (6.50), as claimed. Note that this holds for k = 1, . . . , N̄ ,
which covers all rows of (6.48).

• Each hyperplane that is normal to the corresponding active face (6.47)
and contains one of the faces that share with the active face all its ac-
tive constraints and has one more active constraint. (For example, in Fig-
ure 6.7 (b), these hyperplanes are the two parallel planes delimiting R2

that are normal to e1 and contain vertices v1 and v2.)

We will show that these hyperplanes are given by the equalities in each
row of (6.49). The matrix multiplying ũ in (6.49), Φ̃s[I − Φ̃t

� [Φ̃�Φ̃t
� ]

−1Φ̃�],
satisfies

Φ̃s[I − Φ̃t
� [Φ̃�Φ̃t

� ]
−1Φ̃�]Φ̃t

� = Φ̃s[Φ̃t
� − Φ̃t

� I] = 0, (6.52)

and hence each equality in (6.49) is normal to the active face (6.47). Next,
note that each face that shares with the active face (6.47) all its active

1 See, for example, region R2 in Figure 6.7 (b), corresponding to the edge e1.
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constraints and has one more active constraint, sk, say, satisfies both (6.47)
and an additional constraint of the form

Φ̃sk
ũ = ∆̄sk

− Λsk
x, (6.53)

or of the same form with −∆sk
replacing ∆̄sk

. Then, substituting (6.47)
and (6.53) in (6.49) it is easy to see that the kth row satisfies the right
equality constraint. Thus, the hyperplane defined by the kth row of the
right equality in (6.49) contains the face that is characterised by the equal-
ity constraints (6.47) and (6.53). A similar analysis can be done for the
left equality constraint. Note that this holds for k = 1, . . . , q − N̄ , which
covers all rows of (6.49). The result then follows.

�

For each active region characterised in Lemma 6.5.1 we can then compute
the optimal solution ũopt(x) of the QP (6.41) as the point on the correspond-
ing active face of the constraint polyhedron that is closest, in the Euclidean
distance, to the unconstrained solution ũopt

uc (x) = −H−1/2Fx. Also, to each
active region characterised in Lemma 6.5.1 the transformation (6.26) assigns
a corresponding region in the state space. The following theorem summarises
this procedure by characterising for an arbitrary active pair (
, ∆) the cor-
responding active region in the state space and the corresponding optimal
solution of the QP (6.41) with constraints given by (6.42)–(6.43).

Theorem 6.5.2 (QP Solution in an Active Region) Under the condi-
tions of Lemma 6.5.1, the projection X� onto the state space of the active
region defined by (6.48)–(6.49) is given by

S
{
[Φ̃�Φ̃t

� ]
−1[(−Φ̃�H

−1/2F + Λ�)x − ∆]
}
≤ 0,

−Φ̃sH
−1/2Fx + Λsx − Φ̃sΦ̃t

� [Φ̃�Φ̃t
� ]

−1[−Φ̃�H
−1/2Fx + Λ�x − ∆] ≤ ∆̄s,

Φ̃sH
−1/2Fx − Λsx + Φ̃sΦ̃t

� [Φ̃�Φ̃t
� ]

−1[−Φ̃�H
−1/2Fx + Λ�x − ∆] ≤ ∆s.

(6.54)

Moreover, if x ∈ X�, the optimal constrained control uopt(x) in (6.41) is given
by

uopt(x) = H−1/2Φ̃t
� [Φ̃�Φ̃t

� ]
−1(∆−Λ�x)−H−1/2[I − Φ̃t

� [Φ̃�Φ̃t
� ]

−1Φ̃�]H−1/2Fx.
(6.55)

Proof. Equations (6.54) follow immediately upon substitution of (6.26) into
(6.48) and (6.49). We now show that the optimal control inside each region
(6.54) has the form (6.55). Indeed, the optimal constrained control in each
of the active regions is obtained by intersecting the active face (6.47) with
the hyperplane normal to it and passing through the unconstrained solution
ũopt

uc (x). That is, ũopt(x) satisfies both (6.47) and the following equation (see
(6.52)):
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[I − Φ̃t
� [Φ̃�Φ̃t

� ]
−1Φ̃�]ũopt(x) = [I − Φ̃t

� [Φ̃�Φ̃t
� ]

−1Φ̃�]ũopt
uc (x).

Substituting (6.47) and ũopt
uc (x) = −H−1/2Fx from (6.25) into the above

equation, and solving for ũopt(x), yields

ũopt(x) = Φ̃t
� [Φ̃�Φ̃t

� ]
−1(∆ − Λ�x) − [I − Φ̃t

� [Φ̃�Φ̃t
� ]

−1Φ̃�]H−1/2Fx. (6.56)

Equation (6.55) follows using the transformation (6.24). The theorem is then
proved. �

Theorem 6.5.2 gives the solution of the QP (6.41) if x belongs to the region
X� defined by (6.54). The RHC law KN (x) = uopt

0 (x) is then simply obtained
by selecting the first m elements of uopt(x) in (6.55), that is,

KN (x) = uopt
0 (x) =

[
I 0 · · · 0

]
uopt(x). (6.57)

To obtain the complete solution in the state space, one would require a
procedure to enumerate all possible combinations of active constraints and
compute the corresponding region and optimal control for each combina-
tion using Theorem 6.5.2. An algorithm that implements such a procedure
is described in Seron, Goodwin and De Doná (2003). We observe that, if the
state space dimension n is n < Nm, then the image of the transformation
uopt

uc (x) = −H−1Fx is a lower dimensional subspace of RNm, and so some of
the regions X� in (6.54) will be empty. Hence, the partition has to be post-
processed to eliminate redundant inequalities and empty regions. If n ≥ Nm,
then the computation of the region partition using Theorem 6.5.2 combined
with the enumeration of all possible combinations of active constraints directly
gives the complete state space partition with no need for further processing.

We illustrate the procedure with a numerical example.

Example 6.5.1. Consider a system of the form (6.36) with matrices

A =
[
0.8955 −0.1897
0.0948 0.9903

]
, B =

[
0.0948
0.0048

]
.

In the objective function (6.40) we take N = 4, Q =
[
0 0
0 2

]
and R = 0.01. The

terminal state weighting matrix P is chosen as the solution of the algebraic
Riccati equation P = AtPA + Q − KtR̄K, where K � R̄−1BtPA and R̄ �
R + BtPB. We consider constraints of the form (6.42), with m = 1, N = 4,
Φ = I, Λ = 0Nm×n, and ∆ =

[
2 2 2 2

]t.
The state space partition for this case, computed using Theorem 6.5.2 and

the enumeration algorithm of Seron et al. (2003), is shown in Figure 6.8 (a).
A “zoom” of this partition is shown in Figure 6.8 (b) to display the smaller
regions in more detail. The region denoted by X0 is the projection onto the
state space of the constraint polyhedron; in regions X2, X3 and X4 only one
constraint is active; in regions X5 and X6 two constraints are active; in region
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Figure 6.8. State space partition for Example 6.5.1 for N = 4.
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Figure 6.9. State space partition for Example 6.5.1 for N = 2, 3, 4, 5.

X7 three constraints are active; finally, X1 is the union of all regions where
the control is saturated to the value −2.

The resulting RHC law (6.57) is

K4(x) = Gix + hi, ifx ∈ Xi, i = 0, . . . , 7, (6.58)
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where

G0 = −[4.4650 13.5974], h0 = 0,

G1 = [ 0 0 ], h1 = −2,

G2 = −[5.6901 15.9529], h2 = −0.7894,

G3 = −[4.9226 13.8202], h3 = −0.4811,

G4 = −[4.5946 13.3346], h4 = −0.2684,

G5 = −[6.6778 16.8644], h5 = −1.7057,

G6 = −[5.1778 13.4855], h6 = −0.9355,

G7 = −[7.4034 16.8111], h7 = −2.6783.

Similar expressions hold in the remaining unlabelled regions. These can be
obtained by symmetry.

To see how the partitions are affected by the constraint horizon, we take,
successively, N = 2, N = 3, N = 4 and N = 5 in the objective function
(6.40). The state space partitions corresponding to each value of N are shown
in Figure 6.9.

We next consider an initial condition x0 = [−1.2 0.53]t and simulate the
system under the RHC (6.58). Figure 6.10 shows the resulting state space
trajectory. The trajectory starts in region X4 and moves, successively, into
regions X6, X5, X1, X1, X0, and stays in X0 thereafter. Table 6.1 shows the
trajectory points xk for k = 0, . . . , 6, the regions Xi such that xk ∈ Xi, and
the corresponding RHC controls computed using (6.58). ◦

k xk Region Xi RHC control uk

0 [−1.2000 0.5300]t X4 −[4.5946 13.3346]xk − 0.2684

1 [−1.3480 0.4023]t X6 −[5.1778 13.4855]xk − 0.9355

2 [−1.2247 0.2735]t X5 −[6.6778 16.8644]xk − 1.7057

3 [−0.9722 0.1637]t X1 [0 0]xk − 2.0000

4 [−0.7120 0.0796]t X1 [0 0]xk − 2.0000

5 [−0.4630 0.0209]t X0 −[4.4650 13.5974]xk

6 −[0.2495 0.0146]t X0 −[4.4650 13.5974]xk

...
...

...
...

Table 6.1. Example 6.5.1: Trajectory xk, k = 0, . . . , 6, regions Xi such that xk ∈ Xi,
and corresponding RHC controls (6.58).
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Figure 6.10. State space trajectory for Example 6.5.1 with N = 4, x0 =
[−1.2 0.53]t .

6.6 Characterisation Using the KKT Conditions

The parameterisation given in Theorem 6.5.2 can be related to the KKT
optimality conditions studied in Chapter 2. Consider again the QP (6.41)
with constraints given by (6.42)–(6.43). For convenience, we will work in the
ũ-coordinates given by the transformation (6.24), that is, we consider the
following QP with inequality constraints:

minimise
1
2
ũtũ + ũtH−1/2Fx,

subject to:

Φ̃ũ ≤ ∆̄ − Λx,

−Φ̃ũ ≤ ∆ + Λx.

(6.59)

When solved for different values of x, the above problem is sometimes referred
to as a multiparametric quadratic program [mp-QP], that is, a QP in which the
linear term in the objective function and the right hand side of the constraints
depend linearly on a vector of parameters (the state vector x in this case).

Let ũopt(x) be the optimal solution of (6.59). As discussed in Section 2.5.6
of Chapter 2, the KKT optimality conditions are both necessary and sufficient
conditions for this problem. Using (2.41) of Chapter 2, we can write the KKT
conditions for the above problem as
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−∆ ≤ Φ̃ũopt(x) + Λx ≤ ∆̄, (6.60)

ũopt(x) + H−1/2Fx + Φ̃t(µ − σ) = 0, (6.61)
µ ≥ 0, σ ≥ 0, (6.62)

µt[Φ̃ũopt(x) − ∆̄ + Λx] = 0, (6.63)

σt[Φ̃ũopt(x) + ∆ + Λx] = 0, (6.64)

where µ ∈ Rq and σ ∈ Rq are vectors of Lagrange multipliers corresponding
to the two sets of inequality constraints in (6.59).

Consider now an active pair (
, ∆) for ũopt(x), where ∆ satisfies (6.46),
and let s be the corresponding inactive set. We then have that ũopt(x) satisfies
the equality constraints (6.47), that is,

Φ̃�ũopt(x) = ∆ − Λ�x. (6.65)

From the above equation, the complementary slackness conditions (6.63) and
(6.64), the (second) dual feasibility condition (6.62), and equation (6.46), we
have that

µs = 0, σs = 0, (6.66)

µ�k
− σ�k

{
≥ 0 if ∆k = ∆̄�k

,

≤ 0 if ∆k = −∆�k
.

(6.67)

Using (6.66) in the (first) dual feasibility condition (6.61) and solving for
ũopt(x) yields

ũopt(x) = −H−1/2Fx − Φ̃t
� [µ� − σ�]. (6.68)

Using (6.68) in the active constraint equality (6.65) and solving for [µ� − σ�]
gives

[µ� − σ�] = [Φ̃�Φ̃t
� ]

−1[−Φ̃�H
−1/2Fx + Λ�x − ∆]. (6.69)

Substituting the above equation into (6.68) we obtain

ũopt(x) = Φ̃t
� [Φ̃�Φ̃t

� ]
−1(∆ − Λ�x) − [I − Φ̃t

� [Φ̃�Φ̃t
� ]

−1Φ̃�]H−1/2Fx, (6.70)

which is identical to (6.56). We then recover the expression (6.55) for the
optimal solution using the transformation (6.24).

The inequalities (6.54) that define the region in the state space where
the optimal solution (6.55) is valid can be recovered in the following way:
Combining the expression for the difference of Lagrange multipliers (6.69) and
the sign condition (6.67) yields the first set of inequalities in (6.54) (recall that
S is a sign diagonal matrix such that Skk = 1 if ∆k = −∆�k

and Skk = −1 if
∆k = ∆̄�k

). Finally, the second and third sets of inequalities in (6.54) follow
from primal feasibility (see (6.60)) of the inactive constraints, that is,

−∆s ≤ Φ̃sũopt(x) + Λsx ≤ ∆̄s,

upon substitution of the expression (6.70) for the optimal solution.
In summary, we can see that the characterisation of Theorem 6.5.2 is a

particular arrangement of the KKT optimality conditions.
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6.7 Further Reading

For complete list of references cited, see References section at the end of book.

General

The global characterisation presented here is based on the work of Bemporad
et al. (2002) and Seron et al. (2003).

Section 6.5

A related development to the one presented in Section 6.5 is described in
Seron et al. (2003).

Section 6.6

The approach described in Section 6.6 using KKT conditions was used in
Bemporad et al. (2002) to obtain a local characterisation of the QP solution
in an active region of the state space around a specific solution ũopt(x). In
that work, once a nonempty active region has been defined, the rest of the
state space is explored in the search for new active regions.

In the above context, an algorithm to explore and partition the rest of
the state space in polyhedral regions was originally proposed in Dua and
Pistikopoulos (2000). This algorithm recursively reverses the inequalities that
define each active region to obtain a new region partition. In each new region
of the resulting partition a feasible point x is found (possibly by solving a
linear program). Then, a QP of the form (6.59) is solved for that value of x to
determine the active constraints that characterise the active region using the
KKT conditions as described above. One drawback of this algorithm is that
it can split active regions since the regions to be explored are not necessarily
related to the active regions.

A more efficient algorithm to accomplish the state space partitioning was
proposed by Tøndel, Johansen and Bemporad (2002). The main contribution
of this algorithm is that the active constraints in the region of interest can be
determined from the active constraints in a neighbouring region by examining
the separating hyperplane between these regions. Thus, QPs do not need to be
solved to determine the active set of constraints in each region and, moreover,
unnecessary partitioning is avoided.




