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Constrained Linear Quadratic Optimal Control

5.1 Overview

Up to this point we have considered rather general nonlinear receding hori-
zon optimal control problems. Whilst we have been able to establish some
important properties for these algorithms (for example, conditions for asymp-
totic stability), the algorithms remain relatively complex. However, remark-
able simplifications occur if we specialise to the particular case of linear sys-
tems subject to linear inequality constraints. This will be the topic of the
current chapter.

We will show how a fixed horizon optimal control problem for linear sys-
tems with a quadratic objective function and linear constraints can be set
up as a quadratic program. We then discuss some practical aspects of the
controller implementation, such as the use of observers to estimate states and
disturbances. In particular, we will introduce the certainty equivalence princi-
ple and address several associated matters including steady state disturbance
rejection (that is, provision of integral action) and how one can treat time
delays in multivariable plants.

Finally, we show how closed loop stability of the receding horizon con-
trol [RHC] implementation can be achieved by specialising the results of Sec-
tions 4.4 and 4.5 in Chapter 4.

5.2 Problem Formulation

We consider a system described by the following linear, time-invariant model:

xk+1 = Axk + Buk, (5.1)
yk = Cxk + dk, (5.2)

where xk ∈ Rn is the state, uk ∈ Rm is the control input, yk ∈ Rm is the
output, and dk ∈ Rm is a time-varying output disturbance.
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We assume that (A, B, C) is stabilisable and detectable and, for the mo-
ment, that one is not an eigenvalue of A. (See Section 5.4, where we relax the
latter assumption.) So as to illustrate the principles involved, we go beyond
the set-up described in Chapter 4 to include reference tracking and distur-
bance rejection.

Thus, we consider the problem where the output yk in (5.2) is required to
track a constant reference y∗ in the presence of the disturbance dk. That is,
we wish to regulate, to zero, the output error

ek � yk − y∗ = Cxk + dk − y∗. (5.3)

Let d̄ denote the steady state value of the output disturbance dk, that is,

d̄ � lim
k→∞

dk, (5.4)

and denote by us, xs, ys and es, the setpoints, or desired steady state values
for uk, xk, yk and ek, respectively. We then have that

ys = y∗ = Cxs + d̄, (5.5)
es = 0, (5.6)

and hence

us = [C(I − A)−1B]−1(y∗ − d̄), (5.7)

xs = (I − A)−1Bus. (5.8)

Without loss of generality, we take the current time as zero.
Here we assume knowledge of the disturbance dk for all k = 0, . . . , N − 1,

and the current state measurement x0 = x. (In practice, these signals will be
obtained from an observer/predictor of some form; see Section 5.5.)

Our aim is to find, for the system (5.1)–(5.3), the M -move control sequence
{u0, . . . , uM−1}, and corresponding state sequence {x0, . . . , xN} and error se-
quence {e0, . . . , eN−1}, that minimise the finite horizon objective function:

VN,M ({xk}, {uk}{ek}) � 1
2
(xN − xs)tP (xN − xs) +

1
2

N−1∑
k=0

et
kQek

+
1
2

M−1∑
k=0

(uk − us)tR(uk − us), (5.9)

where P ≥ 0, Q ≥ 0, R > 0. In (5.9), N is the prediction horizon, M ≤ N is
the control horizon, and us, xs are the input and state setpoints given by (5.7)
and (5.8), respectively. The control is set equal to its steady state setpoint
after M steps, that is, uk = us for all k ≥ M .

In the following section, we will show how the minimisation of (5.9) is
performed under constraints on the input and output.
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The above fixed horizon minimisation problem is solved at each time step
for the current state and disturbance values. Then, the first move of the re-
sulting control sequence is used as the current control, and the procedure is
repeated at the next time step in a RHC fashion, as described in Chapter 4.

5.3 Quadratic Programming

In the presence of linear constraints on the input and output, the fixed hori-
zon optimisation problem described in Section 5.2 can be transformed into a
quadratic program [QP] (see Section 2.5.6 in Chapter 2). We show below how
this is accomplished.

5.3.1 Objective Function Handling

We will begin by showing how (5.9) can be transformed into an objective
function of the form used in QP. We start by writing, from (5.1) with x0 = x,
and using the constraint that uk = us for all k ≥ M , the following set of
equations:

x1 = Ax + Bu0,

x2 = A2x + ABu0 + Bu1,

...

xM = AMx + AM−1Bu0 + · · · + BuM−1,

xM+1 = AM+1x + AMBu0 + · · · + ABuM−1 + Bus,

...

xN = ANx + AN−1Bu0 + · · · + AN−MBuM−1 +
N−M−1∑

i=0

AiBus.

(5.10)

Using xs = Axs + Bus (from (5.8)) recursively, we can write a similar set of
equations for xs as follows:

xs = Axs + Bus,

xs = A2xs + ABus + Bus,

...

xs = AMxs + AM−1Bus + · · · + Bus,

xs = AM+1xs + AMBus + · · · + ABus + Bus,

...

xs = ANxs + AN−1Bus + · · · + AN−MBus +
N−M−1∑

i=0

AiBus.

(5.11)
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We now subtract the set of equations (5.11) from the set (5.10), and rewrite
the resulting difference in vector form to obtain

x− xs = Γ(u − us) + Ω(x − xs), (5.12)

where

x �

⎡⎢⎢⎢⎣
x1

x2

...
xN

⎤⎥⎥⎥⎦ , xs �

⎡⎢⎢⎢⎣
xs

xs

...
xs

⎤⎥⎥⎥⎦ , u �

⎡⎢⎢⎢⎣
u0

u1

...
uM−1

⎤⎥⎥⎥⎦ , us �

⎡⎢⎢⎢⎣
us

us

...
us

⎤⎥⎥⎥⎦ , (5.13)

(xs is an nN × 1 vector, and us is an mM × 1 vector), and where

Γ �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B 0 . . . 0 0
AB B . . . 0 0
...

...
. . .

...
...

AM−1B AM−2B . . . AB B
AMB AM−1B . . . A2B AB

...
...

. . .
...

...
AN−1B AN−2B . . . . . . AN−MB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ω �

⎡⎢⎢⎢⎣
A
A2

...
AN

⎤⎥⎥⎥⎦ . (5.14)

We also define the disturbance vector

d �
[
(d1 − d̄)t (d2 − d̄)t · · · (dN−1 − d̄)t 01×m

]t
, (5.15)

and the matrices

Q � diag{CtQC, . . . , CtQC, P},
R � diag{R, . . . , R},
Z � diag{CtQ, CtQ, . . . , CtQ},

(5.16)

where diag{A1, A2, . . . , Ap} denotes a block diagonal matrix having the ma-
trices Ai as its diagonal blocks. Next, adding −Cxs − d̄ + y∗ = 0 (from (5.5))
to (5.3), we can express the error as

ek = C(xk − xs) + (dk − d̄). (5.17)

We now substitute (5.17) into the objective function (5.9), and rewrite it using
the vector notation (5.13), (5.16) and (5.15), as follows:

VN,M =
1
2
et
0Qe0 +

1
2
(x − xs)tQ(x − xs) +

1
2
(u − us)tR(u− us)

+ (x − xs)tZd +
1
2
dt diag{Q, Q, . . . , Q}d. (5.18)
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Next, we substitute (5.12) into (5.18) to yield

VN,M = V̄ +
1
2
ut(ΓtQΓ + R)u + utΓtQΩ(x − xs)

− ut(ΓtQΓ + R)us + utΓtZd,

� V̄ +
1
2
utHu + ut

[
F (x − xs) − Hus + Dd

]
, (5.19)

where V̄ is independent of u and

H � ΓtQΓ + R, F � ΓtQΩ, D � ΓtZ. (5.20)

The last calculation is equivalent to the elimination of the equality constraints
given by the state equations (5.1)–(5.3) by substitution into the objective
function.

Note that H in (5.20) is positive definite because we have assumed R > 0
in the objective function (5.9).

From (5.19) it is clear that, if the problem is unconstrained, VN,M is min-
imised by taking

u = uopt
uc � −H−1

[
F (x − xs) − Hus + Dd

]
. (5.21)

The vector formed by the first m components of (5.21), uopt
0,uc, has a linear

time-invariant feedback structure of the form

uopt
0,uc = −K(x − xs) + us + Kdd, (5.22)

where K and Kd are defined as the first m rows of the matrices H−1F and
−H−1D, respectively. By appropriate selection of the weightings in the ob-
jective function (5.9), the resulting K is such that the matrix (A − BK) is
Hurwitz, that is, all its eigenvalues have moduli smaller than one (see, for
example, Bitmead et al. 1990). The control law (5.22) is the control used by
the RHC algorithm if the problem is unconstrained. More interestingly, even
in the constrained case, the optimal RHC solution has the form (5.22) in a
region of the state space that contains the steady state setpoint x = xs. This
point will be discussed in detail in Chapters 6 and 7.

5.3.2 Constraint Handling

We now introduce inequality constraints into the problem formulation. Mag-
nitude and rate constraints on the plant input and output can be expressed
as follows:

umin ≤ uk ≤ umax, k = 0, . . . , M − 1,

ymin ≤ yk ≤ ymax, k = 1, . . . , N − 1, (5.23)
δumin ≤ uk − uk−1 ≤ δumax, k = 0, . . . , M − 1,



108 5. Constrained Linear Quadratic Optimal Control

where u−1 is the input used in the previous step of the receding horizon
implementation, which has to be stored for use in the current fixed horizon
optimisation.

More generally, we may require to impose state constraints of the form

xk ∈ Xk for k = 1, . . . , N, (5.24)

where Xk is a polyhedral set of the form

Xk = {x ∈ R
n : Lkx ≤ Wk}. (5.25)

For example, the constraint xN ∈ Xf , where Xf is a set satisfying certain
properties, is useful to establish closed loop stability, as discussed in Chapter 4
(see also Section 5.6).

When constraints are present, we require that the setpoint ys = y∗ and the
corresponding input and state setpoints us and xs be feasible, that is, that they
satisfy the required constraints. For example, in the case of the constraints
given in (5.23), we assume that umin ≤ us ≤ umax, and ymin ≤ y∗ ≤ ymax. When
the desired setpoint is not feasible in the presence of constraints, then one has
to search for a feasible setpoint that is close to the desired setpoint in some
sense. A procedure to do this is described in Section 5.4.

The constraints (5.23)–(5.25) can be written as linear constraints on u of
the form

Lu ≤ W, (5.26)

where

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

IMm

Ψ
E

−IMm

−Ψ
−E

L̃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

umax

ymax

δumax

umin

ymin

δumin

W̃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.27)

In (5.27), IMm is the Mm × Mm identity matrix (where M is the control
horizon and m is the number of inputs). Ψ is the following (N − 1)m × Mm
matrix:

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CB 0 . . . 0 0
CAB CB . . . 0 0

...
...

. . .
...

...
CAM−1B CAM−2B . . . CAB CB
CAMB CAM−1B . . . CA2B CAB

...
...

. . .
...

...
CAN−2B CAN−3B . . . . . . CAN−M−1B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

E is the following Mm × Mm matrix:
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E =

⎡⎢⎢⎢⎣
Im 0 . . . 0
−Im Im . . . 0

. . . . . .
0 . . . −Im Im

⎤⎥⎥⎥⎦ ,

where Im is the m × m identity matrix; and

L̃ � diag{L1, L2, . . . , LN}Γ,

where L1, . . . , LN are the state constraint matrices given in (5.25) and Γ is
given in (5.14).

The vectors forming W in (5.27) are as follows

umax =

⎡⎢⎣umax

...
umax

⎤⎥⎦ , umin =

⎡⎢⎣−umin

...
−umin

⎤⎥⎦ ,

δumax =

⎡⎢⎢⎢⎣
u−1 + δumax

δumax

...
δumax

⎤⎥⎥⎥⎦ , δumin =

⎡⎢⎢⎢⎣
−u−1 − δumin

−δumin

...
−δumin

⎤⎥⎥⎥⎦ ,

ymax =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ymax − CAx − d1

...
ymax − CAMx − dM

ymax − CAM+1x − dM+1 − CBus

...
ymax − CAN−1x − dN−1 −

∑N−M−2
i=0 CAiBus

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

ymin =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ymin + CAx + d1

...
−ymin + CAMx + dM

−ymin + CAM+1x + dM+1 + CBus

...
−ymin + CAN−1x + dN−1 +

∑N−M−2
i=0 CAiBus

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

W̃ � − diag{L1, L2, . . . , LN}

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ax
...

AMx
AM+1x + Bus

AM+2x + ABus

...
ANx +

∑N−M−1
i=0 AiBus

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎣
W1

W2

...
WN

⎤⎥⎥⎥⎦ ,
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where x is the initial state, umax, umin, δumax, δumin, ymax, ymin are the vectors
of constraint limits defined in (5.23) and L1, . . . , LN , W1, . . . , WN are the
matrices and vectors of the state constraint polyhedra (5.25).

5.3.3 The QP Problem

Using the above formalism, we can express the problem of minimising (5.9)
subject to the inequality constraints (5.23)–(5.25) as the QP problem of min-
imising (5.19) subject to (5.26), that is,

min
u

1
2
utHu + ut

[
F (x − xs) − Hus + Dd

]
,

subject to:
Lu ≤ W.

(5.28)

Note that the term V̄ in (5.19) has not been included in (5.28) since it is
independent of u.

The optimal solution uopt(x) to (5.28) is then:

uopt(x) = arg min
Lu≤W

1
2
utHu + ut

[
F (x − xs) − Hus + Dd

]
. (5.29)

The matrix H is called the Hessian of the QP. If the Hessian is positive
definite, the QP is convex. This is indeed the case for H given (5.20), which,
as already mentioned, is positive definite because we have assumed R > 0 in
the objective function (5.9). In Chapter 11 we will investigate the structure
of the Hessian in detail and formulate numerically stable ways to compute it
from the problem data.

Standard numerical procedures (called QP algorithms) are available to
solve the above optimisation problem. In Chapter 8 we will review some of
these algorithms.

Once the QP problem (5.29) is solved, the receding horizon algorithm
applies, at the current time k, only the first control move, formed by the first
m components of the optimal vector uopt(x) in (5.29). This yields a control
law of the form

uk = K(xk, d̄, y∗,d), (5.30)

where xk = x is the current state, and where the dependency on d̄ and y∗ is via
us, xs and d (see (5.7), (5.8), and (5.15)) as data for the optimisation (5.29).
Then the whole procedure is repeated at the next time instant, with the
optimisation horizon kept constant.

5.4 Embellishments

(i) Systems with integrators. In the above development, we have as-
sumed that one is not an eigenvalue of A. This assumption allowed us
to invert the matrix (I − A) in (5.7) and (5.8).
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There are several ways to treat the case when one is an eigenvalue of
A. For example, in the single input-single output case, when one is an
eigenvalue of A, then us = 0. To calculate xs, we can write the state space
model so that the integrator is shifted to the output, that is,

x̃k+1 = Ãx̃k + B̃uk,

x′
k+1 = C̃x̃k + x′

k,

yk = x′
k + dk,

where Ã, B̃, and C̃ correspond to the state space model of the reduced-
order plant, that is, the plant without the integrator.

With this transformation, (Ã − I) is nonsingular, and hence the state
setpoint is ⎡⎢⎢⎣ x̃

x′

⎤⎥⎥⎦
s

=

⎡⎢⎢⎢⎣
0
...
0

y∗ − d̄

⎤⎥⎥⎥⎦ ,

where y∗ is the reference and d̄ is the steady state value of the output
disturbance.

The optimisation problem is then solved in terms of these transformed
state variables.

(ii) Setpoint Calculation for Underactuated Systems. By “underac-
tuation” we mean that the actuators have insufficient authority to cancel
the disturbance and reach the desired setpoint in steady state, that is, the
desired setpoint is not feasible in the presence of constraints. This is not
an uncommon situation. For example, in shape control in rolling mills, the
actuators are cooling water sprays across the strip. These sprays change
the radius of the rolls and hence influence the cross-directional reduction
of the strip. However, these sprays have limited control authority, and thus
they are frequently incapable of cancelling certain disturbances. More will
be said about this cross-directional control problem in Chapter 15.

Under these conditions, it is clear that, in steady state, we will generally
not be able to bring the output to the desired setpoint. Blind applica-
tion of the receding horizon algorithm will lead to a saturated control,
which achieves an optimal (in the quadratic objective function sense) com-
promise. However, there is an unexpected difficulty that arises from the
weighting on the control effort in the objective function. In particular, the
term (uk − us)tR(uk − us) in (5.9), where us is the unconstrained steady
state input required to achieve the desired setpoint ys = y∗ (see (5.7) and
(5.5)) may bias the solution of the optimisation problem.



112 5. Constrained Linear Quadratic Optimal Control

One way to address this issue is to search for a feasible setpoint that is
closest to the desired setpoint in a mean-square sense. In this case, the
values of us and xs that are used in the objective function (5.9) may be
computed from the following quadratic program (see, for example, Muske
and Rawlings 1993):

min
us

[(y∗ − d̄) − Cxs]t[(y∗ − d̄) − Cxs]

subject to:

xs = (I − A)−1Bus,

umin ≤ us ≤ umax,

ymin ≤ Cxs + d̄ ≤ ymax.

(5.31)

The actual value for the output that will be achieved in steady state is
then Cxs + d̄ and us has been automatically defined to be consistent so
that no bias results.

5.5 Observers and Integral Action

The above development has assumed that the system evolves in a deterministic
fashion and that the full state (including disturbances) is measured.

When the state and disturbances are not measured, it is possible to obtain
combined state and disturbance estimates via an observer. Those estimates
can then be used in the control algorithm by means of the certainty equivalence
[CE] principle, which consists of designing the control law assuming knowledge
of the states and disturbances (as was done in Sections 5.2 and 5.3), and then
using their estimates as if they were the true ones when implementing the
controller. (More will be said about the CE principle in Chapter 12.)

In practice, it is also important to ensure that the true system output
reaches its desired steady state value, or setpoint, despite the presence of
unaccounted constant disturbances and modelling errors. In linear control,
this is typically achieved by the inclusion of integrators in the feedback loop;
hence, we say that a control algorithm that achieves this property has integral
action.

In the context of constrained control, there are several alternative ways in
which integral action can be included into a control algorithm. For example,
using CE, the key idea is to include a model for constant disturbances at the
input or output of the system and design an observer for the composite model
including system and disturbance models. Then the control is designed to
reject the disturbance, assuming knowledge of states and disturbance. Finally,
the control is implemented using CE. The resulting observer-based closed loop
system has integral action, as we will next show.

We will consider a model of the system of the form (5.1)-(5.2) with a
constant output disturbance. (One could equally assume a constant input
disturbance.) This leads to a composite model of the form
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xk+1 = Axk + Buk,

dk+1 = dk = d̄, (5.32)
yk = Cxk + dk.

We do not assume that the model (5.32) is a correct representation of the real
system. In fact, we do not assume knowledge of the real system at all, but we
assume that we can measure its output, which we denote yreal

k .
The RHC algorithm described in Sections 5.2 and 5.3 is now applied to

the model (5.32) to design a controller for rejection of the constant output
disturbance (and tracking of a constant reference) assuming knowledge of the
model state and disturbance measurements. At each k the algorithm consists
of solving the QP problem (5.29) for the current state xk = x, with us and
xs computed from (5.7) and (5.8), and with d = 0 (this follows from (5.15),
since dk = d̄ for all k).

To apply the CE principle, we use the model (5.32) and the real system
output yreal

k to construct an observer of the form

x̂k+1 = Ax̂k + Buk + L1[yreal
k − Cx̂k − d̂k],

d̂k+1 = d̂k + L2[yreal
k − Cx̂k − d̂k],

(5.33)

where L1 and L2 are determined via any observer design method (such as the
Kalman filter) that ensures that the matrix[

A − L1C −L1

−L2C I − L2

]
is Hurwitz. Then we simply use the estimates (x̂k, d̂k) given by (5.33) in the
RHC algorithm as if they were the true states, that is, x̂k replaces x (which
is the current state) and d̂k replaces d̄. Specifically, the QP problem (5.29) is
solved at each k for x = x̂k, d = 0 and with us = us,k and xs = xs,k computed
as

us,k � [C(I − A)−1B]−1(y∗ − d̂k), (5.34)

xs,k � (I − A)−1Bus,k. (5.35)

Note that now us,k and xs,k are time-varying variables (compare with (5.7)
and (5.8)). Thus, the resulting CE control law has the form (5.30) evaluated
at xk = x̂k, d̄ = d̂k, y∗ = y∗, and d = 0, that is,

uk = K(x̂k, d̂k, y∗, 0). (5.36)

We will next show how integral action is achieved. We make the following
assumption.

Assumption 5.1 We assume that the real system in closed loop with the
(constrained) control law (5.36) reaches a steady state in which no constraints
are active and where {yreal

k } and {d̂k} converge to the constant values ȳreal, ¯̂
d.
◦
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Note that the assumption of no constraints being active when steady state
is achieved implies that the control law, in steady state, must satisfy equation
(5.22) (with d = 0) evaluated at the steady state values, that is,

ū = −K(¯̂x − x̄s) + ūs, (5.37)

where ū � limk→∞ uk, ¯̂x � limk→∞ x̂k, x̄s � limk→∞ xs,k, and ūs �
limk→∞ us,k. In (5.37), ūs and x̄s satisfy, from (5.34) and (5.35),

ūs = [C(I − A)−1B]−1(y∗ − ¯̂
d), (5.38)

x̄s = (I − A)−1Būs, (5.39)

where ¯̂
d � limk→∞ d̂k.

We make the following assumption on the matrix K in (5.37)

Assumption 5.2 The matrix (A−BK) is Hurwitz, that is, all its eigenvalues
have moduli smaller than one.

We then have the following result.

Lemma 5.5.1 Under Assumptions 5.1 and 5.2, the real system output con-
verges to the desired setpoint y∗, that is

ȳreal = y∗. (5.40)

Proof. From the observer equations (5.33) in steady state we have

(I − A)¯̂x = Bū, (5.41)

ȳreal = C ¯̂x + ¯̂
d. (5.42)

Substituting (5.37) in (5.41) and using (I−A)x̄s = Būs from (5.39), we obtain

(I − A)¯̂x = Būs − BK ¯̂x + BKx̄s = (I − A)x̄s − BK ¯̂x + BKx̄s.

Reordering terms in the above equation yields

(I − A + BK)¯̂x = (I − A + BK)x̄s,

or
¯̂x = x̄s, (5.43)

since (A − BK) is Hurwitz by Assumption 5.2. We then have, from (5.43),
(5.39) and (5.38), that

C ¯̂x = Cx̄s = y∗ − ¯̂
d. (5.44)

Thus, the result (5.40) follows upon substitution of (5.44) into (5.42). �
Note that we have not shown (and indeed it will not be true in general)

that ¯̂
d is equal to the true output disturbance. In fact, the disturbance could

actually be at the system input. Moreover, since we have not assumed that
the model is correct, there need be no connection between x̂ and the states of
the real system. Lemma 5.5.1 is then an important result since it shows that,
subject to the assumption that a steady state is achieved, the required output
setpoint can be achieved despite uncertainty of different sources.
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5.5.1 Observers for Systems with Time Delays

Many systems incorporate time delays between input and output. There is,
thus, an issue of how best to deal with this. Naively, one could simply add
extra states corresponding to the delays on each input. For example, suppose
the delays on inputs 1 to m are τ1 to τm samples, respectively. Let the input
vector at time k be

uk �
[
u1

k u2
k · · · um

k

]t
. (5.45)

Then we can use the model

xk+1 = Axk + Bξk, (5.46)

where
ξk �

[
ξ1
k ξ2

k · · · ξm
k

]t
, (5.47)

and where each component ξi
k, i = 1, . . . , m, has a model of the form

ηi
k+1 =

⎡⎢⎢⎢⎢⎢⎣
0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎤⎥⎥⎥⎥⎥⎦ ηi
k +

⎡⎢⎢⎢⎢⎢⎣
1
0
0
...
0

⎤⎥⎥⎥⎥⎥⎦ui
k,

ξi
k =

[
0 0 · · · 0 1

]
ηi

k,

(5.48)

with ηi
k a vector having τi components. That is, ξi

k is the input ui
k delayed

τi samples. A block diagram illustrating the model (5.46)–(5.48) is shown in
Figure 5.1.

ξ1
k

ξm
k

ξk xk

um
k

u1
k

z−τm

z−τ1

(A,B)

Figure 5.1. Block diagram of the input delayed system modelled by (5.48).

However, there are more parsimonious ways to proceed. As an illustration,
consider the case where all input-output transfer functions contain a common
delay. (This is typical in cases where measurements are made downstream from
a process and all variables suffer the same transport delay. A specific example
is the cross-directional control problem of the type discussed in Chapter 15.)
Let the common delay be τ samples. Then, since the system model is linear,
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we can lump this delay at the output (whether it appears there or not).
Hence, given output data {y0 , . . . , yk}, we can readily estimate x̂k−τ using
a standard observer without considering any delays, other than delaying the
inputs to ensure that we use the correct inputs in the model. By causality,
this will utilise inputs up to uk−τ . The reason is that yk is equivalent to y′

k−τ ,
where y′

k denotes the undelayed output of the system.
For the purpose of the RHC calculations, we need x̂k. Since no measure-

ments are available to compute this value, the best estimate of x̂k is simply
obtained by running the system model in open loop starting from x̂k−τ .

Now we carry out the RHC calculations as usual to evaluate the sequence
{uopt

k , . . . , uopt
k+N} and apply the first element uopt

k to the plant.
The reader will have observed that none of the above calculations have

increased complexity resulting from the delay, save for the step of running the
model forward from x̂k−τ to x̂k. Indeed, those readers who are familiar with
the Smith predictor of classical control (see, for example, Goodwin et al. 2001)
will recognise that the above procedure is a version of the scheme.

Of course, the problem becomes more complicated when there is not a
common delay. In this case, we suggest that one should extract the delay of
minimum value of all delays and treat that as a bulk delay of τ samples as
described above. The residual (interaction) delays can then be dealt with as
in (5.45)–(5.48), save that only the difference between the actual input delay
and the bulk delay needs to be explicitly modelled.

5.6 Stability

In this section, we study closed loop stability of the receding horizon algorithm
described in Sections 5.2 and 5.3. For simplicity, we assume that there are no
reference or disturbance signals (that is, dk = 0 for all k, us = 0 and xs = 0).
Also, in the objective function (5.9) we take M = N , R > 0 and we choose
Q > 0 as the state (rather than output error) weighting matrix. We thus
consider the following optimisation problem:

PN (x) : V opt
N (x) � min

[
F (xN ) +

1
2

N−1∑
k=0

(xt
kQxk + ut

kRuk)

]
, (5.49)

subject to:
xk+1 = Axk + Buk for k = 0, . . . , N − 1, (5.50)
x0 = x, (5.51)
uk ∈ U for k = 0, . . . , N − 1, (5.52)
xk ∈ X for k = 0, . . . , N, (5.53)
xN ∈ Xf ⊂ X, (5.54)

as the underlying fixed horizon optimisation problem for the receding horizon
algorithm.
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Sufficient conditions for stability in the above linear constrained case can
be obtained by specialising the results presented in Sections 4.4 and 4.5 of
Chapter 4. Note that, with the choices Q > 0 and R > 0 in (5.49), condi-
tion B1 of Section 4.4 is satisfied with γ(t) = λmin(Q) t2, where λmin(Q) is
the minimum eigenvalue of the matrix Q. In the remainder of this section we
will assume that the sets U, X and Xf are convex and that the sets U and Xf

contain the origin of their respective spaces (that is, condition B5 is satisfied).
The fixed horizon optimal control problem PN (x) in (5.49)–(5.54) has an

associated set of feasible initial states SN . We recall from Definition 4.4.1
in Chapter 4 that SN is the set of initial states x ∈ X for which there ex-
ist feasible state and control sequences, that is, sequences {x0, x1, . . . , xN},
{u0, u1, . . . , uN−1} satisfying (5.50)–(5.54). The following lemma shows that
SN is convex if the sets U, X and Xf are convex.

Lemma 5.6.1 (Convexity of the Set of Feasible Initial States) Let
the sets U, X and Xf in (5.52)–(5.54) be convex. Then the set SN of feasible
initial states for problem PN (x) in (5.49)–(5.54) is convex.

Proof. Let x ∈ SN . Hence there exist feasible state and control sequences
{x0, x1, . . . , xN}, {u0, u1, . . . , uN−1} satisfying (5.50)–(5.54). Similarly, let x̌ ∈
SN , so that there exist feasible state and control sequences {x̌0, x̌1, . . . , x̌N},
{ǔ0, ǔ1, . . . , ǔN−1} satisfying (5.50)–(5.54).

Let xα � αx + (1 − α)x̌, α ∈ [0, 1], and consider the sequences

{xα
k} � {xα

0 , xα
1 , . . . , xα

N}, (5.55)

{uα
k} � {uα

0 , uα
1 , . . . , uα

N−1}, (5.56)

where xα
k � αxk + (1 − α)x̌k, k = 0, . . . , N , and uα

k � αuk + (1 − α)ǔk,
k = 0, . . . , N − 1. The above sequences are feasible since

xα
k+1 = αxk+1 + (1 − α)x̌k+1

= α(Axk + Buk) + (1 − α)(Ax̌k + Bǔk)
= Axα

k + Buα
k for k = 0, . . . , N − 1,

xα
0 = αx0 + (1 − α)x̌0

= αx + (1 − α)x̌
= xα,

and, also,

uα
k � αuk + (1 − α)ǔk ∈ U for k = 0, . . . , N − 1,

xα
k � αxk + (1 − α)x̌k ∈ X for k = 0, . . . , N,

xα
N � αxN + (1 − α)x̌N ∈ Xf ,

by the convexity of U, X and Xf . Hence, xα ∈ SN , proving that SN is convex.
�
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With the aid of Lemma 5.6.1, we can show that the value function V opt
N ( · )

in (5.49) is convex.

Lemma 5.6.2 (Convexity of the Value Function) Let the sets U, X and
Xf in (5.52)–(5.54) be convex. Suppose that, in (5.49), Q ≥ 0, R ≥ 0 and the
terminal state weighting is of the form F (x) = 1

2xtPx with P ≥ 0. Then the
value function V opt

N ( · ) in (5.49) is convex.

Proof. Let x ∈ SN , with associated optimal (and hence, feasible) state
and control sequences {xopt

k } � {xopt
0 , xopt

1 , . . . , xopt
N } and {uopt

k } �
{uopt

0 , uopt
1 , . . . , uopt

N−1}, respectively, solution of PN (x) in (5.49)–(5.54). Sim-
ilarly, let x̌ ∈ SN , with associated optimal (and hence, feasible) sequences
{x̌opt

k } � {x̌opt
0 , x̌opt

1 , . . . , x̌opt
N } and {ǔopt

k } � {ǔopt
0 , ǔopt

1 , . . . , ǔopt
N−1}.

Let

VN ({xk}, {uk}) � 1
2
xt

NPxN +
1
2

N−1∑
k=0

(xt
kQxk + ut

kRuk).

Then, V opt
N (x) = VN ({xopt

k }, {uopt
k }) and V opt

N (x̌) = VN ({x̌opt
k }, {ǔopt

k }).
Now consider xα � αx + (1 − α)x̌, α ∈ [0, 1]. Similarly to the proof of

Lemma 5.6.1, we can show that the sequences (5.56) and (5.55), with uα
k �

αuopt
k + (1 − α)ǔopt

k , k = 0, . . . , N − 1, and xα
k � αxopt

k + (1 − α)x̌opt
k , k =

0, . . . , N , are feasible. Hence, by optimality, we have that

V opt
N (xα) ≤ VN ({xα

k }, {uα
k}). (5.57)

Also, by convexity of the quadratic functions F (x) = 1
2xtPx and L(x, u) =

1
2 (xtQx + utRu) we have

VN ({xα
k }, {uα

k}) = F (xα
N ) +

N−1∑
k=0

L(xα
k , uα

k )

≤ αF (xopt
N ) + (1 − α)F (x̌opt

N )

+
N−1∑
k=0

[
αL(xopt

k , uopt
k ) + (1 − α)L(x̌opt

k , ǔopt
k )

]
= αVN ({xopt

k }, {uopt
k }) + (1 − α)VN ({x̌opt

k }, {ǔopt
k })

= αV opt
N (x) + (1 − α)V opt

N (x̌). (5.58)

Combining the inequalities in (5.57) and (5.58), it follows that V opt
N ( · ) is

convex, and the result is then proved. �

Lemmas 5.6.1 and 5.6.2 show that V opt
N ( · ) is a convex function defined on

the convex set SN . Since we have assumed that the sets U and Xf contain the
origin of their respective spaces, then 0 ∈ SN and hence SN is nonempty. From
Theorem 2.3.8 in Chapter 2, we conclude that V opt

N ( · ) is continuous on int SN .
This fact will be used below in the proof of asymptotic (exponential) stability.
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We present in the following sections three instances of the application of
the stability theory for receding horizon control developed in Sections 4.4
and 4.5 of Chapter 4.

5.6.1 Open Loop Stable System with Input Constraints

Assume that the matrix A in (5.50) is Hurwitz, that is, all its eigenvalues have
moduli smaller than one. Suppose that there are no state constraints (that is,
X = Xf = Rn in (5.53) and (5.54)) and, as a consequence, SN = Rn. Then,
to apply Theorem 4.4.2 of Chapter 4, we simply choose the terminal state
weighting as

F (x) =
1
2
xtPx, (5.59)

where P satisfies the discrete Lyapunov equation

P = AtPA + Q. (5.60)

A feasible terminal control is

Kf (x) = 0 for all x ∈ Xf = R
n. (5.61)

Note that, by assumption, the system is open loop stable, hence F (x) is the
infinite horizon objective function beginning in state x and using the terminal
control (5.61).

Recall that, as discussed before, conditions B1 and B5 of Theorem 4.4.2
are satisfied from the assumptions on problem PN (x) in (5.49)–(5.54). Clearly
conditions B3 and B4 hold with the above choices for the terminal triple.
Direct calculation yields that F (x) = xtPx satisfies

F (f(x,Kf (x))) − F (x) =
1
2
(Ax + BKf (x))tP (Ax + BKf (x)) − 1

2
xtPx

=
1
2
xt(AtPA − P )x

= −1
2
xtQx

= −L(x,Kf (x))

so that condition B2 is also satisfied. Thus far, we have verified conditions B1–
B5 of Theorem 4.4.2, which establishes global attractivity of the origin. To
prove exponential stability, we further need to show that the conditions in
part (iv) of the theorem are also fulfilled. Note that F (x) ≤ λmax(P )‖x‖2.
Also, as shown above, V opt

N ( · ) is continuous. Hence, exponential stability
holds in any arbitrarily large compact set of the state space.
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5.6.2 General Linear System with Input Constraints

This case is a slight generalisation of the result in Section 5.6.1. Assume that
the system has no eigenvalue with modulus equal to one. Suppose that X = Rn

in (5.53). We factor the system into stable and unstable subsystems as follows:

xs
k+1 = Asx

s
k + Bsuk,

xu
k+1 = Auxu

k + Buuk,

where the eigenvalues of As have moduli less than one, and the eigenvalues
of Au have moduli greater than one. Next, we choose Q > 0 in (5.49) of the
form

Q =
[
Qs 0
0 Qu

]
and use as terminal state weighting

F (x) =
1
2
(xs)tPsx

s,

where Ps satisfies the discrete Lyapunov equation

Ps = At
sPsAs + Qs.

Finally, we choose Kf (x) = 0 and Xf in (5.54) as

Xf =
{

x =
[
xs

xu

]
∈ R

n : xu = 0
}

.

It can be easily verified, as done in Section 5.6.1, that the conditions B1–
B5 of Theorem 4.4.2 are satisfied with the above choices. Hence, if1 0 ∈
int SN , asymptotic stability of the origin follows, as proved in part (iii) of
Theorem 4.4.2.

Note that the condition xu
N = 0 is not very restrictive because the system

xu
k+1 = Auxu

k +Buuk is bounded input-bounded output stable in reverse time.
Hence the set of initial states xu

0 that are taken by feasible control sequences
into any terminal set is largely determined by the constraints on the input
rather than the values of xu

N ; that is,

xu
0 = A−N

u xu
N −

N−1∑
k=0

A−k−1
u Buuk,

and
A−N

u
exp→ 0 as N → ∞.

(See Sections 11.2 and 11.3 in Chapter 11 for further discussion on solving for
unstable modes in reverse time.)
1 This is the case if 0 ∈ int � and N is greater than or equal to the dimension of

xu, since the system is assumed stabilisable.
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5.6.3 General Linear Systems with State and Input Constraints

In this case, F (x) in (5.49) is often chosen to be the value function of the
infinite horizon, unconstrained optimal control problem for the same system
(see Scokaert and Rawlings 1998, Sznaier and Damborg 1987). This problem,
defined as in (4.32)-(4.33) in Chapter 4, but with no constraints (U = Rm, X =
Rn), is a standard linear quadratic regulator problem whose value function
is xtPx, where P is the positive definite solution of the algebraic Riccati
equation

P = AtPA + Q − KtR̄K,

where
K � R̄−1BtPA, R̄ � R + BtPB. (5.62)

The terminal state weighting used in this case is then

F (x) =
1
2
xtPx.

The local controller Kf (x) is chosen to be the optimal linear controller
Kf (x) = −Kx, where K is given by (5.62).

The terminal set Xf is usually taken to be the maximal output admissible
set O∞ (Gilbert and Tan 1991) for the closed loop system using the local
controller Kf (x), defined as

O∞ � {x : K(A−BK)kx ∈ U and (A−BK)kx ∈ X for k = 0, 1, . . .}. (5.63)

O∞ is the maximal positively invariant set for the system xk+1 = (A−BK)xk

(see Definition 4.4.2 in Chapter 4) in which constraints are satisfied.
With the above choice for the terminal triple (Xf ,Kf , F ), conditions B1–

B5 of Theorem 4.4.2 are readily established, similarly to Section 5.6.1. This
proves attractivity of the origin in SN . To prove exponential stability, we
further need to show that the conditions in part (iv) of the theorem are also
fulfilled. Note that F (x) ≤ λmax(P )‖x‖2. Also, as shown above, V opt

N ( · ) is
continuous on int SN . Hence, exponential stability holds in any arbitrarily
large compact subset contained in the interior of SN .

An interesting consequence of this choice for the terminal triple is that
V opt
∞ (x) = F (x) for all x in Xf and that V opt

N (x) = V opt
∞ (x) for all x ∈ SN .

Actually, the horizon N can be chosen large enough for the predicted terminal
state xopt

N (corresponding to the Nth step of the optimal state sequence for
initial state x) to belong to Xf (see Section 5.8 for references to methods to
compute lower bounds on such N). If N is so chosen, the terminal constraint
may be omitted from the optimisation problem PN(x).

5.7 Stability with Observers

A final question raised by the use of observers and the CE principle in RHC
is whether or not closed loop stability is retained when the true states are
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replaced by state estimates in the control law. We will not explicitly address
this issue but, instead, refer the reader, in Section 5.8 below, to recent lit-
erature dealing with this topic. Again, from a practical perspective, it seems
fair to anticipate that, provided the state estimates are reasonably accurate,
then stability should not be compromised; recall that we have established, in
Sections 5.6.1 and 5.6.3, that exponential stability of the origin holds (under
mild conditions) in the case where the states are known.

5.8 Further Reading

For complete list of references cited, see References section at the end of book.

General

The following books give detailed description of receding horizon control in
the linear constrained case: Camacho and Bordons (1999), Maciejowski (2002),
Borrelli (2003), Rossiter (2003). See also the early paper Muske and Rawlings
(1993), as well as the survey paper Bemporad and Morari (1999).

Section 5.6

A method to compute a lower bound on the optimisation horizon N such that
the predicted terminal state xopt

N in the fixed horizon optimal control problem
(5.49)–(5.54) belongs to the terminal set Xf for all initial conditions in a
given compact set is presented in Bemporad, Morari, Dua and Pistikopoulos
(2002); this method, in turn, uses an algorithm proposed in Chmielewski and
Manousiouthakis (1996).

There are various embellishments of the basic idea described in Sec-
tion 5.6.3. For example, a new terminal triple has been provided for receding
horizon control of input constrained linear systems in De Doná, Seron, Good-
win and Mayne (2002). The new triple is an improvement over those previ-
ously used in that the terminal constraint set Xf , which we define below, is
strictly larger than O∞, thus facilitating the solution of the fixed horizon op-
timal control problem. The improved terminal conditions employ the results
of Section 7.3 in Chapter 7 that show that the nonlinear controller

Kf (x) = −sat(Kx) (5.64)

is optimal in a region Z̄, which includes the maximal output admissible set
O∞. The terminal constraint set Xf is then selected as the maximal positively
invariant set for the system xk+1 = Axk − Bsat(Kx). We refer the reader to
the literature to follow up this and related ideas.

Stability of RHC has been established for neutrally stable systems (that is,
systems having nonrepeated roots on the unit circle) using a nonquadratic ter-
minal weighting (see Jadbabaie, Persis and Yoon 2002, Yoon, Kim, Jadbabaie
and Persis 2003).
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Section 5.7

The stability of the CE implementation of RHC has been addressed for con-
strained linear systems in, for example, Zheng and Morari (1995), where global
asymptotic stability is shown for open loop stable systems, and in Muske,
Meadows and Rawlings (1994), where a local stability result is given for gen-
eral linear systems. Local results for nonlinear systems are reported in, for
example, Scokaert et al. (1997), and Magni, De Nicolao and Scattolini (2001).
A stability result for nonlinear systems using a moving horizon observer is
given in Michalska and Mayne (1995).

See also Findeisen, Imsland, Allgöwer and Foss (2003) for a recent survey
and new results on output feedback nonlinear RHC.




