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Receding Horizon Optimal Control
with Constraints

4.1 Overview

The goal of this chapter is to introduce the principle of receding horizon
optimal control. The idea is to start with a fixed optimisation horizon, of
length N say, using the current state of the plant as the initial state. We
then optimise the objective function over this fixed interval accounting for
constraints, obtain an optimal sequence of N control moves, and apply only
the first control move to the plant. Time then advances one step and the
same N -step optimisation problem is considered using the new state of the
plant as the initial state. Thus one continuously revises the current control
action based on the current state and accounting for the constraints over an
optimisation horizon of length N . This chapter will expand on this intuitively
reasonable idea.

4.2 The Receding Horizon Optimisation Principle

Fixed horizon optimisation leads to a control sequence {ui, . . . , ui+N−1},
which begins at the current time i and ends at some future time i + N − 1.
This fixed horizon solution suffers from two potential drawbacks:

(i) Something unexpected may happen to the system at some time over the
future interval [i, i + N − 1] that was not predicted by (or included in)
the model. This would render the fixed control choices {ui, . . . , ui+N−1}
obsolete.

(ii) As one approaches the final time i+N−1, the control law typically “gives
up trying” since there is too little time to go to achieve anything useful in
terms of objective function reduction. Of course, there do exist problems
where time does indeed “run out” because the problem is simply such
that no further time is available. This is typical of so-called, batch control
problems. However, in other cases, the use of a fixed optimisation horizon
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is principally dictated by computational needs rather than the absolute
requirement that everything must be “wrapped up” at some fixed future
time i + N − 1.

The above two problems are addressed by the idea of receding horizon
optimisation. As foreshadowed in Section 4.1, this idea can be summarised as
follows:

(i) At time i and for the current state xi, solve an optimal control problem
over a fixed future interval, say [i, i + N − 1], taking into account the
current and future constraints.

(ii) Apply only the first step in the resulting optimal control sequence.
(iii) Measure the state reached at time i + 1.
(iv) Repeat the fixed horizon optimisation at time i+1 over the future interval

[i + 1, i + N ], starting from the (now) current state xi+1.

Of course, in the absence of disturbances, the state measured at step (iii)
will be the same as that predicted by the model. Nonetheless, it seems prudent
to use the measured state rather than the predicted state just to be sure. The
above description assumes that the state is indeed measured at time i + 1.
In practice, the available measurements would probably cover only a subset
of the full state vector. In this case, it seems reasonable that one should use
some form of observer to estimate xi+1 based on the available data. More
will be said about the use of observers in Section 5.5 of Chapter 5, and on
the general topic of output feedback in Chapter 12. For the moment, we will
assume that the full state vector is indeed measured and we will ignore the
impact of disturbances.

If the model and objective function are time invariant, then it is clear that
the same input ui will result whenever the state takes the same value. That is,
the receding horizon optimisation strategy is really an “alibi” for generating a
particular time-invariant feedback control law. In particular, we can set i = 0
in the formulation of the open loop control problem without loss of generality.
Then at the current time, and for the current state x, we solve:

PN (x) : V opt
N (x) � min VN ({xk}, {uk}), (4.1)

subject to:
xk+1 = f(xk, uk) for k = 0, . . . , N − 1, (4.2)
x0 = x, (4.3)
uk ∈ U for k = 0, . . . , N − 1, (4.4)
xk ∈ X for k = 0, . . . , N, (4.5)
xN ∈ Xf ⊂ X, (4.6)

where
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VN ({xk}, {uk}) � F (xN ) +
N−1∑
k=0

L(xk, uk), (4.7)

and where {xk}, xk ∈ R
n, {uk}, uk ∈ R

m, denote the state and con-
trol sequences {x0, . . . , xN} and {u0, . . . , uN−1}, respectively, and U ⊂ Rm,
X ⊂ Rn, and Xf ⊂ Rn are constraint sets. All sequences {u0, . . . , uN−1}
and {x0, . . . , xN} satisfying the constraints (4.2)–(4.6) are called feasible se-
quences. A pair of feasible sequences {u0, . . . , uN−1} and {x0, . . . , xN} consti-
tute a feasible solution of (4.1)–(4.7). The functions F and L in the objective
function (4.7) are the terminal state weighting and the per-stage weighting,
respectively.

In the sequel we make the following assumptions:

• f , F and L are continuous functions of their arguments;
• U ⊂ R

m is a compact set, X ⊂ R
n and Xf ⊂ R

n are closed sets;
• there exists a feasible solution to the optimisation problem (4.1)–(4.7).

Because N is finite, these assumptions are sufficient to ensure the existence
of a minimum by Weierstrass’ theorem (see Theorem 2.2.2 of Chapter 2).
Typical choices for the weighting functions F and L are quadratic functions
of the form F (x) = xtPx and L(x, u) = xtQx + utRu, where P = P t ≥ 0,
Q = Qt ≥ 0 and R = Rt > 0. More generally, one could use functions of
the form F (x) = ‖Px‖p and L(x, u) = ‖Qx‖p + ‖Ru‖p , where ‖y‖p with
p = 1, 2, . . . ,∞, is the p-norm of the vector y.

Denote the minimising control sequence, which is a function of the current
state xi, by

U opt
xi

� {uopt
0 , uopt

1 , . . . , uopt
N−1} ; (4.8)

then the control applied to the plant at time i is the first element of this
sequence, that is,

ui = uopt
0 . (4.9)

Time is then stepped forward one instant, and the above procedure is re-
peated for another N -step-ahead optimisation horizon. The first element of
the new N -step input sequence is then applied. The above procedure is re-
peated endlessly. The idea is illustrated in Figure 4.1 for a horizon N = 5.
In this figure, each plot shows the minimising control sequence U opt

xi
given in

(4.8), computed at time i = 0, 1, 2. Note that only the shaded inputs are actu-
ally applied to the system. We can see that we are continually looking ahead
to judge the impact of current and future decisions on the future response
before we “lock in” the current input by applying it to the plant.

The above receding horizon procedure implicitly defines a time-invariant
control policy KN : X → U of the form

KN (x) = uopt
0 . (4.10)

Note that the strict definition of the function KN (·) requires the minimiser to
be unique. Most of the problems treated in this book are convex and hence



88 4. Receding Horizon Optimal Control with Constraints

0

0

0

1

1

1

2

2

2

3

3

3

4

4

4

5

5

6

i

i

i

U opt
x0

U opt
x1

U opt
x2

Figure 4.1. Receding horizon optimisation principle. The shaded rectangles indi-
cate the inputs actually applied to the plant.
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satisfy this condition. One exception is the “finite alphabet” optimisation case
of Chapter 13, where the minimiser is not necessarily unique. However, in such
cases, one can adopt a rule to select one of the minimisers (see, for example,
the discussion following Definition 13.3.1 in Chapter 13).

It is common in receding horizon control applications to compute numer-
ically, at time i, and for the current state xi = x, the optimal control move
KN (x). In this case, we call it an implicit receding horizon optimal policy. In
some cases, we can explicitly evaluate the control law KN (·). In this case, we
say that we have an explicit receding horizon optimal policy. We will expand on
the above skeleton description of receding horizon optimal constrained control
as the book evolves. For example, we will treat linear constrained problems
in subsequent chapters. When the system model is linear, the objective func-
tion quadratic and the constraint sets polyhedral, the fixed horizon optimal
control problem PN(·) is a quadratic programme of the type discussed in Sec-
tion 2.5.6 of Chapter 2. In Chapters 5 to 8 we will study the solution of this
quadratic program in some detail. If, on the other hand, the system model is
nonlinear, PN (·) is, in the general case, nonconvex, so that only local solutions
are available.

The remainder of the present chapter is devoted to the analysis of the
stability properties of receding horizon optimal control. However, before we
embark on these issues, we pause to review concepts from stability theory. As
for the results on optimisation presented in Chapter 2, the results on stability
presented below in Section 4.3 find widespread application beyond constrained
control and estimation.

4.3 Background on Stability Theory

4.3.1 Notions of Stability

We will utilise the following notions of stability:

Definition 4.3.1 (Stability Properties) Let S be a set in Rn that contains
the origin. Let f : Rn → Rn be such that f(S) ⊂ S. Suppose that the system

xi+1 = f(xi), (4.11)

with xi ∈ Rn, has an equilibrium point at the origin x = 0, that is, f(0) = 0.
Let x0 ∈ S and let {xi} ⊂ S, i ≥ 0, be the resulting sequence satisfying (4.11).

We say that the equilibrium point is:

(i) (Lyapunov) stable in S: if for any ε > 0, there exists δ > 0 such that

x0 ∈ S and ‖x0‖ < δ =⇒ ‖xi‖ < ε for all i ≥ 0 ; (4.12)

(ii) attractive in S: if there exists η > 0 such that

x0 ∈ S and ‖x0‖ < η =⇒ lim
i→∞

xi = 0 ;
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(iii) globally attractive in S: if

x0 ∈ S =⇒ lim
i→∞

xi = 0 ;

(iv) asymptotically stable in S: if it is both stable in S and attractive in S;
(v) exponentially stable in S: if there exist constants θ > 0 and ρ ∈ (0, 1)

such that
x0 ∈ S =⇒ ‖xi‖ ≤ θ‖x0‖ρi for all i ≥ 0 ; (4.13)

In cases (iii), and (v) above, we say that the set S is contained in the
region of attraction1 of the equilibrium point. ◦

4.3.2 Tests for Stability

Testing for stability properties is facilitated if one can find a function V :
S → [0,∞) (called a Lyapunov function) satisfying certain conditions. The
following results use this fact.

Theorem 4.3.1 (Attractivity in S) Let S be a nonempty set in Rn. Let
f : Rn → Rn be such that f(0) = 0 and f(S) ⊂ S. Assume that there exists a
(Lyapunov) function V : S → [0,∞) satisfying the following properties:2

(i) V (·) decreases along the trajectories of (4.11) that start in S in the follow-
ing way: there exists a continuous function γ : [0,∞) → [0,∞), γ(t) > 0
for all t > 0, such that

V (f(x)) − V (x) ≤ −γ(‖x‖) for all x ∈ S . (4.14)

(ii)for every unbounded sequence {yi} ⊂ S there is some j such that 3

lim sup
i→∞

V (yi) > V (yj) .

Then:

(a) 0 ∈ cl S, and
(b) For all x0 ∈ S, the resulting sequence {xi}, i ≥ 0, satisfying (4.11) is such

that limi→∞ xi = 0, that is, if 0 ∈ S, the origin is globally attractive in S.

1 The region of attraction of an equilibrium point of (4.11) is the set of all initial
states x0 ∈ �

n that originate state trajectories {xi}, i ≥ 0, solution of (4.11),
which converge to the equilibrium point as i → ∞.

2 Property (ii) can be omitted if � is bounded.
3 We recall that, if {ai} is a sequence in [−∞,∞], and bk = sup{ak, ak+1, ak+2, . . . },

k = 1, 2, 3, . . . , then the upper limit of {ai}, denoted by β = lim supi→∞ ai, is
defined as β � inf{b1, b2, b3, . . . }.
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Proof. Let x0 ∈ S and let {xi}, i ≥ 0, be the resulting sequence satisfying
(4.11). The associated sequence of Lyapunov function values {V (xi)} ⊂ [0,∞)
is nonincreasing, since, from (4.14),

V (xi+1) = V (f(xi)) ≤ V (xi) − γ(‖xi‖) ≤ V (xi) .

Hence, c = limi→∞ V (xi) ≥ 0, exists.
The sequence {xi} is bounded; otherwise, from property (ii) above, there

would exist j such that c > V (xj), but c ≤ V (xi) for all i. Thus, there exists
R > 0 such that ‖xi‖ ≤ R for all i ≥ 0.

Now assume that there exists µ, 0 < µ < R, such that ‖xi‖ ≥ µ for
infinitely many i. Let

α = min
µ≤t≤R

γ(t) .

Note that α exists by Weierstrass’ theorem (Theorem 2.2.2 in Chapter 2) and
that α > 0 since γ(t) > 0 for all t > 0. From

V (xk) = V (x0) +
k−1∑
j=0

V (xj+1) − V (xj),

it follows that

c = V (x0) +
∞∑

j=0

V (xj+1) − V (xj)

≤ V (x0) −
∞∑

j=0

γ(‖xj‖)

= −∞,

since γ(‖xj‖) ≥ α > 0 for infinitely many j and γ(t) ≥ 0 for all t ≥ 0. The
above is a contradiction since c ≥ 0. It follows that xi converges to 0 as i tends
to infinity, showing that 0 ∈ clS and that, if 0 ∈ S, the origin is attractive in
S for (4.11). The theorem is then proved. �

Remark 4.3.1. If the Lyapunov function V : S → [0,∞) is continuous, and
f : S → S in (4.11) is continuous, S is closed, and V (0) = 0, then inequality
(4.14) in Theorem 4.3.1 can be replaced by

V (f(x)) − V (x) < 0 for all x ∈ S, x �= 0 .

◦
Theorem 4.3.2 (Stability) Let S be a set in R

n that contains an open
neighbourhood of the origin Nη(0) � {x ∈ Rn : ‖x‖ < η}. Let f : Rn → Rn

be such that f(0) = 0 and f(S) ⊂ S. Assume that there exists a (Lyapunov)
function V : S → [0,∞), V (0) = 0, satisfying the following properties:
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(i) V (·) is continuous on Nη(0);
(ii) if {yk} ⊂ S is such that limk→∞ V (yk) = 0 then limk→∞ yk = 0;
(iii) V (f(x)) − V (x) ≤ 0 for all x ∈ Nη(0).

Then the origin is a stable equilibrium point for (4.11) in S.

Proof. Let ε ∈ (0, η) and Nε(0) � {x ∈ Rn : ‖x‖ < ε}. We first show that
there exists β > 0 such that V −1[0, β] � {x ∈ S : V (x) ∈ [0, β]} ⊂ Nε(0). Sup-
pose no such β exists. Then for every k = 1, 2, . . . , there exists yk ∈ V −1[0, 1

k ]
such that ‖yk‖ > ε. But, from property (ii), we have that limk→∞ yk = 0,
which is a contradiction. Thus,

V −1[0, β] ⊂ Nε(0) . (4.15)

Since V (·) is continuous on Nη(0) and V (0) = 0, there exists δ ∈ (0, ε) such
that ‖x‖ < δ =⇒ V (x) < β. Then, combining with (4.15), we have

‖x‖ < δ =⇒ V (x) < β =⇒ x ∈ V −1[0, β] =⇒ ‖x‖ < ε .

Now let ‖x0‖ < δ. We show by induction that xi ∈ V −1[0, β] for all i ≥ 0.
It clearly holds for i = 0. Suppose xi ∈ V −1[0, β]. Note that, from (4.15),
‖xi‖ < ε, so that xi ∈ Nη(0). Then, using property (iii), we have

V (xi+1) = V (f(xi)) ≤ V (xi) ≤ β =⇒ xi+1 ∈ V −1[0, β] .

Hence, ‖x0‖ < δ =⇒ x0 ∈ V −1[0, β] =⇒ xi ∈ V −1[0, β] for all i ≥ 0 =⇒
‖xi‖ < ε for all i ≥ 0. We have thus shown that given ε ∈ (0, η) there exists
δ > 0 such that (4.12) holds. The result then follows. �

The following theorem gives a sufficient condition for exponential stability.

Theorem 4.3.3 (Exponential Stability) Let S be a set in Rn containing
a nonzero element. Let f : Rn → Rn be such that f(0) = 0 and f(S) ⊂ S.
Assume that there exists a (Lyapunov) function V : S → R, and positive
constants a, b, c and σ satisfying

(i) a‖x‖σ ≤ V (x) ≤ b‖x‖σ for all x ∈ S,
(ii) V (f(x)) − V (x) ≤ −c‖x‖σ for all x ∈ S.

Then, if 0 ∈ S, the origin is exponentially stable in S for the system (4.11).

Proof. Let f0(x) � x, f1(x) � f(x), . . . , f i+1(x) � f i(f(x)). We first show
that

V (f i(x)) ≤
(
1 − c

b

)i

V (x), for all x ∈ S, (4.16)

for all i ≥ 0. Clearly, (4.16) holds for i = 0. Moreover, from the assumptions
on V (x), we have

V (f(x)) − V (x) ≤ −c‖x‖σ ≤ −c

b
V (x) .
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Thus,
V (f(x)) ≤

(
1 − c

b

)
V (x) for all x ∈ S .

Choose 0 �= y ∈ S. Then V (y) ≥ a‖y‖σ > 0. Thus, 1 − c
b ≥ 0, and therefore

0 ≤ 1 − c
b < 1.

Now assume that (4.16) holds for some i ≥ 1. Then,

V (f i+1(x)) = V (f i(f(x))) ≤
(
1 − c

b

)i

V (f(x)) ≤
(
1 − c

b

)i+1

V (x) .

Hence, by induction, (4.16) holds for all i ≥ 0. Finally, for all x ∈ S and all
i ≥ 0, we have that

∥∥f i(x)
∥∥σ ≤ 1

a
V (f i(x)) ≤ 1

a

(
1 − c

b

)i

V (x) ≤ b

a

(
1 − c

b

)i

‖x‖σ,

from which (4.13) follows with θ =
(

b
a

)1/σ
> 0 and ρ =

(
1 − c

b

)1/σ ∈ (0, 1).
�

4.4 Stability of Receding Horizon Optimal Control

4.4.1 Ingredients

We now return to receding horizon control as described in Section 4.2. Al-
though the receding horizon control idea seems intuitively reasonable, it is
important that one be able to establish concrete results about its associated
properties. Here we examine the question of closed loop stability which is a
minimal performance goal.

Unfortunately, proving/guaranteeing that an optimisation scheme (such
as receding horizon optimal control) leads to a stable closed loop system is a
nontrivial task. One may well ask what possible tool could be used. After all,
the only thing we know is that the fixed horizon control sequence is optimal.
Luckily, optimality can be turned into a notion of stability by utilising the
value function (that is, the function V opt

N (x) in (4.1), which is a function of
the initial state x only) as a Lyapunov function.

However, another difficulty soon arises. Namely, the optimisation problems
that we are solving are only defined over a finite future horizon, yet stability
is a property that must hold over an infinite future horizon. A trick that is
frequently utilised to resolve this conflict is to add an appropriate weighting
on the terminal state in the finite horizon problem so as to account for the
impact of events that lie beyond the end of the fixed horizon. This effectively
turns the fixed horizon problem into an infinite horizon one.

Following this line of reasoning, we will define a terminal control law and
an associated terminal state weighting in the objective function that captures
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the impact of using the terminal control law over infinite time. Usually, the
chosen terminal control laws are relatively simple and only “feasible” in a re-
stricted (local) region. This implies that one must be able to steer the system
into this restricted terminal region over the finite time period available in the
optimisation window. (More will be said about this crucial point later.) It
is also important to ensure that the terminal region is invariant under the
terminal control law, that is, once the state reaches the terminal set, it re-
mains inside the set if the terminal control law is used. Thus, in summary, the
ingredients typically employed to provide sufficient (though by no means nec-
essary) conditions for stability are captured by the following terminal triple:

Ingredients for Stability: The Terminal Triple (Xf ,Kf , F )

(i) a terminal constraint set Xf in the state space which is invariant under
the terminal control law;

(ii) a feasible terminal control law Kf that holds in the terminal constraint
set;

(iii) a terminal state weighting F on the finite horizon optimisation problem,
which usually corresponds to the objective function value generated by
the use of the terminal control law over infinite time.

We will show below how, based on these “ingredients,” Lyapunov-like tests,
such as those described in Section 4.3.2, can be used to establish stability of
receding horizon control.

4.4.2 Stability Results for Receding Horizon Control

As mentioned above, we will employ the value function V opt
N (x) of the fixed

horizon optimal control problem (4.1)–(4.7) as a Lyapunov function to estab-
lish asymptotic stability of the receding horizon implementation. We will first
establish stability under simplifying assumptions. A more general stability
analysis will be given later; however, this will follow essentially the same lines
as the simplified “prototype” proof given below.

Let us define the set SN of feasible initial states.

Definition 4.4.1 The set SN of feasible initial states is the set of initial
states x ∈ X for which there exist feasible state and control sequences for the
fixed horizon optimal control problem PN (x) in (4.1)–(4.7). ◦

We also require the following definition.

Definition 4.4.2 The set S ⊂ Rn is said to be positively invariant for the
system xi+1 = f(xi, ui) under the control ui = K(xi) (or positively invariant
for the closed loop system xi+1 = f(xi,K(xi))) if f(x,K(x)) ∈ S for all x ∈ S.

◦
We make the following assumptions on the data of problem PN (x) in

(4.1)–(4.7).
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A1 The terminal constraint set in (4.6) is the origin, that is, Xf = {0}.
A2 The control constraint set in (4.4) contains the origin, that is, 0 ∈ U.
A3 L(x, u) in (4.7) satisfies L(0, 0) = 0 and L(x, u) ≥ γ(‖x‖) for all x ∈

SN , u ∈ U, where γ : [0,∞) → [0,∞) is continuous, γ(t) > 0 for all t > 0,
and limt→∞ γ(t) = ∞.

A4 There is no terminal state weighting in the objective function, that is,
F (x) ≡ 0 in (4.7).

Under these conditions, we have the following stability result:

Theorem 4.4.1 Consider the system

xi+1 = f(xi, ui) for i ≥ 0, f(0, 0) = 0, (4.17)

controlled by the receding horizon algorithm (4.1)–(4.9) and subject to As-
sumptions A1–A4 above. Then:

(i) The set SN of feasible initial states is positively invariant for the closed
loop system.

(ii) The origin is globally attractive in SN for the closed loop system.
(iii) If, in addition to A1–A4, 0 ∈ int SN and the value function V opt

N (x) in
(4.1) is continuous on some neighbourhood of the origin, then the origin
is asymptotically stable in SN for the closed loop system.

Proof. (i) Positive invariance of SN .

Let xi = x ∈ SN . At step i, and for the current state xi = x, the receding
horizon algorithm solves the optimisation problem PN(x) in (4.1)–(4.7)
to obtain the optimal control and state sequences

U opt
x � {uopt

0 , uopt
1 , . . . , uopt

N−1}, (4.18)

X opt
x � {xopt

0 , xopt
1 , . . . , xopt

N−1, x
opt
N } . (4.19)

Then the actual control applied to (4.17) at time i is the first element of
(4.18), that is,

ui = KN (x) = uopt
0 . (4.20)

Note that, in the optimal state sequence (4.19), we have, from Assump-
tion A1, that

xopt
N = 0 . (4.21)

Let x+ � xi+1 = f(x,KN (x)) = f(x, uopt
0 ) be the successor state. A

feasible (but not necessarily optimal) control sequence, and corresponding
feasible state sequence for the next step i + 1 in the receding horizon
computation PN(x+) are then
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Ũ = {uopt
1 , . . . , uopt

N−1, 0}, (4.22)

X̃ = {xopt
1 , . . . , xopt

N−1, 0, 0}, (4.23)

where the last two zeros in (4.23) follow from (4.21) and f(0, 0) = 0.
Thus, there exist feasible sequences (4.22) and (4.23) for the successor
state x+ = f(x,KN (x)) and hence x+ ∈ SN . This shows that SN is
positively invariant for the closed loop system x+ = f(x,KN (x)).

(ii) Attractivity.

Note first that, since L(0, 0) = 0, F (0) = 0, 0 ∈ U and 0 ∈ Xf , then
the optimal sequences in (4.1)–(4.7) corresponding to x = 0 have all their
elements equal to zero. Thus, KN (0) = 0. Since, in addition, f(0, 0) = 0,
then the origin is an equilibrium point for the closed loop system x+ =
f(x,KN (x)).

We will next use the value function V opt
N (·) in (4.1) as a Lyapunov func-

tion. We first show that V opt
N (·) satisfies property (i) in Theorem 4.3.1.

Let x ∈ SN . The increment of the Lyapunov function, upon using the true
optimal input (4.20) and moving from x to x+ = f(x,KN (x)), satisfies

V opt
N (x+) − V opt

N (x) = VN (X opt
x+ , U opt

x+ ) − VN (X opt
x , U opt

x ) . (4.24)

However, by optimality we know that

VN (X opt
x+ , U opt

x+ ) ≤ VN (X̃ , Ũ ), (4.25)

where Ũ and X̃ are the feasible sequences defined in (4.22)–(4.23). Com-
bining (4.24) and (4.25) yields

V opt
N (x+) − V opt

N (x) ≤ VN (X̃ , Ũ ) − VN (X opt
x , U opt

x ) . (4.26)

Substituting (4.18), (4.19), (4.22) and (4.23) in the objective function
expression (4.7), and using the fact that the optimal and feasible sequences
share common terms, we obtain that the right hand side of (4.26) is equal
to −L(x,KN (x)). It then follows that

V opt
N (x+) − V opt

N (x) ≤ −L(x,KN (x))
≤ −γ(‖x‖),

where, in the last inequality, we have used Assumption A3. Thus, V opt
N (·)

satisfies property (i) in Theorem 4.3.1.

In addition, from Assumptions A3 and A4, V opt
N (·) satisfies

V opt
N (x) ≥ L(x, uopt

0 ) ≥ γ(‖x‖) for all x ∈ SN . (4.27)
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Hence, from the assumption on γ, V opt
N (x) → ∞ when ‖x‖ → ∞, and

therefore V opt
N (·) satisfies property (ii) in Theorem 4.3.1. It then follows

from Theorem 4.3.1 that the origin is globally attractive in SN for the
closed loop system.

(iii) Asymptotic stability.

To show asymptotic stability of the origin, note first that V opt
N (0) = 0

(since, as shown before, the optimal sequences in (4.1)–(4.7) corresponding
to x = 0 have all their elements equal to zero). Next, note from (4.27) and
the properties of γ that V opt

N (·) satisfies property (ii) in Theorem 4.3.2
with S = SN . If, in addition, 0 ∈ int SN and V opt

N (·) is continuous on some
neighbourhood of the origin, then Theorem 4.3.2 shows that the origin
is a stable equilibrium point for the closed loop system, and hence it is
asymptotically stable in SN (that is, both stable and attractive in SN ).

�

Assumptions A1 to A4 were made to keep the proof of Theorem 4.4.1 sim-
ple in order to introduce the reader to the core idea of the stability proof. The
assumptions can be relaxed. (For example, Assumption A1 can be replaced
by the assumption that xN enters a terminal set in which “nice properties”
hold. Similarly, Assumption A3 can be relaxed to requiring that the system
be “detectable” in the objective function.)

We next modify the assumptions given above to provide a more compre-
hensive result by specifying some more general terminal conditions.

Conditions for Stability:

B1 The per-stage weighting L(x, u) in (4.7) satisfies L(0, 0) = 0 and L(x, u) ≥
γ(‖x‖) for all x ∈ SN , u ∈ U, where γ : [0,∞) → [0,∞) is continuous,
γ(t) > 0 for all t > 0, and limt→∞ γ(t) = ∞.

B2 The terminal state weighting F (x) in (4.7) satisfies F (0) = 0, F (x) ≥
0 for all x ∈ Xf , and the following property: there exists a termi-
nal control law Kf : Xf → U such that F (f(x,Kf (x))) − F (x) ≤
−L(x,Kf (x)) for all x ∈ Xf .

B3 The set Xf is positively invariant for the system (4.17) under Kf (x), that
is, f(x,Kf (x)) ∈ Xf for all x ∈ Xf .

B4 The terminal control Kf (x) satisfies the control constraints in Xf , that is,
Kf (x) ∈ U for all x ∈ Xf .

B5 The sets U and Xf contain the origin of their respective spaces.

Using the above conditions, which include more general conditions on the
terminal triple (Xf ,Kf , F ), we obtain the following more general theorem.

Theorem 4.4.2 (Stability of Receding Horizon Control) Consider
the closed loop system formed by system (4.17), controlled by the receding
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horizon algorithm (4.1)–(4.9), and suppose that Conditions B1 to B5 are
satisfied. Then:

(i) The set SN of feasible initial states is positively invariant for the closed
loop system.

(ii) The origin is globally attractive in SN for the closed loop system.
(iii) If, in addition to B1–B5, 0 ∈ int SN and the value function V opt

N (·) in
(4.1) is continuous on some neighbourhood of the origin, then the origin
is asymptotically stable in SN for the closed loop system.

(iv) If, in addition to B1–B5, 0 ∈ int Xf , SN is compact, γ(t) ≥ atσ in B1,
F (x) ≤ b‖x‖σ for all x ∈ Xf in B2, where a > 0, b > 0 and σ > 0 are
some real constants, and the value function V opt

N (·) in (4.1) is continuous
on SN , then the origin is exponentially stable in SN for the closed loop
system.

Proof. (i) Positive invariance of SN .

We will use the optimal sequences (4.18), (4.19) for the initial state x ∈
SN , and the following feasible sequences for the successor state x+ =
f(x,KN (x):

Ũ = {uopt
1 , . . . , uopt

N−1,Kf (xopt
N )}, (4.28)

X̃ = {xopt
1 , . . . , xopt

N−1, x
opt
N , f(xopt

N ,Kf (xopt
N ))} . (4.29)

Indeed, the first N − 1 elements of (4.28) lie in U (see the control con-
straint (4.4)) since they are elements of (4.18); also, by B4, the last el-
ement of (4.28) lies in U since xopt

N ∈ Xf . Finally, by B3, the terminal
state f(xopt

N ,Kf (xopt
N )) in (4.29) also lies in Xf . Thus, there exist feasible

sequences (4.28) and (4.29) for the successor state x+ = f(x,KN (x)) and
hence x+ ∈ SN . This shows the result (i) that SN is positively invariant
for the closed loop system x+ = f(x,KN (x)).

(ii) Attractivity.

As in Theorem 4.4.1, we can show that the origin is an equilibrium point
for the closed loop system x+ = f(x,KN (x)).

We next show that the value function V opt
N (·) satisfies property (i) in

Theorem 4.3.1. The increment of V opt
N (·), upon using the receding hori-

zon optimal input (4.20) and moving from x ∈ SN to x+ = f(x,KN (x))
satisfies (4.24), and, by optimality, (4.25) also holds for the feasible se-
quences (4.28), (4.29). We thus have, in a fashion similar to the proof of
Theorem 4.4.1,

V opt
N (x+) − V opt

N (x) ≤ VN (X̃ , Ũ ) − VN (X opt
x , U opt

x )
= −L(x,KN(x)) + L(xopt

N ,Kf (xopt
N ))

+ F (f(xopt
N ,Kf (xopt

N ))) − F (xopt
N ) .
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From B2, and since xopt
N ∈ Xf , the sum of the last three terms on the

right hand side of the above inequality is less than or equal to zero. Thus,

V opt
N (x+) − V opt

N (x) ≤ −L(x,KN (x)) ≤ −γ(‖x‖) for all x ∈ SN , (4.30)

where, in the last inequality, we have used the bound in Condition B1.
Thus V opt

N (·) satisfies property (i) of Theorem 4.3.1. In a fashion similar
to the proof of Theorem 4.4.1, we can show that

V opt
N (x) ≥ γ(‖x‖) for all x ∈ SN , (4.31)

and hence V opt
N (·) also satisfies property (ii) of Theorem 4.3.1. We then

conclude using Theorem 4.3.1 that the origin is globally attractive in SN

for the closed loop system. The result (ii) is then proved.

(iii) Asymptotic stability.

As in Theorem 4.4.1, we can show that the value function V opt
N (·) satisfies

property (ii) in Theorem 4.3.2 with S = SN , and that V opt
N (0) = 0. If, in

addition, the origin is in the interior of SN and V opt
N (·) is continuous on a

neighbourhood of the origin, then Theorem 4.3.2 shows that the origin is a
stable equilibrium point for the closed loop system, and hence, combined
with attractivity in SN , it is asymptotically stable in SN . This shows the
result (iii).

(iv) Exponential stability.

By assumption, F (x) ≤ b‖x‖σ for all x ∈ Xf , for some constants b > 0 and
σ > 0. It is easily shown that V opt

N (x) ≤ F (x) for all x ∈ Xf . To see this,
let x be an arbitrary point in Xf and denote by {xf

k(x) : k = 0, 1, 2, . . .},
xf

0 (x) � x, the state sequence resulting from initial state x and controller
Kf (x) in (4.17). Then, by B2,

F (x) ≥
N−1∑
k=0

L(xf
k(x),Kf (xf

k(x))) + F (xf
N (x)),

where, by B3, xf
k(x) ∈ Xf for all k = 0, 1, . . . , N and, by B4, Kf (xf

k(x)) ∈
U for all k = 0, 1, . . . , N − 1. Note that the above state and control se-
quences are feasible since xf

N (x) ∈ Xf . Hence, by optimality,

V opt
N (x) ≤

N−1∑
k=0

L(xf
k(x),Kf (xf

k(x))) + F (xf
N (x)).

Thus, V opt
N (x) ≤ F (x) ≤ b‖x‖σ for all x ∈ Xf . We now show that there

exists a constant b̄ > 0 such that V opt
N (x) ≤ b̄‖x‖σ for all x ∈ SN . Consider

the function h : SN → R defined as
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h(x) �
{

V opt
N (x)
‖x‖σ if x �= 0,

b if x = 0 .

Then h(x) is continuous on the compact set cl (SN \Xf ), since V opt
N (x) is

continuous on SN and Xf contains a neighbourhood of the origin. Hence,
h(x) is bounded in cl (SN \ Xf ), say h(x) ≤ M . It then follows that

V opt
N (x) ≤ b̄‖x‖σ for all x ∈ SN ,

where b̄ ≥ max{b, M}. Combining the above inequality with (4.30) and
(4.31), and using the assumption that γ(t) ≥ atσ for some constant a > 0,
it follows from Theorem 4.3.3 that the closed loop system has an exponen-
tially stable equilibrium point at the origin. This shows (iv) and concludes
the proof of the theorem. �

4.5 Terminal Conditions for Stability

In this section, we consider possible choices for the terminal triple (Xf ,Kf , F )
that satisfy conditions B1–B5 of Theorem 4.4.2.

One choice for the terminal state weighting F (x) is the value function
V opt∞ (x) for the associated infinite horizon constrained optimal control prob-
lem, defined as follows:

P∞(x) : V opt
∞ (x) � min V∞({xk}, {uk}), (4.32)

subject to:
xk+1 = f(xk, uk) for k = 0, 1, . . . ,

x0 = x,

uk ∈ U for k = 0, 1, . . . ,

xk ∈ X for k = 0, 1, . . . ,

where {xk} and {uk} are now infinite sequences, and

V∞({xk}, {uk}) �
∞∑

k=0

L(xk, uk) . (4.33)

Note that P∞(x) does not have either a terminal state weighting nor a ter-
minal state constraint; both are irrelevant since, if a solution to the problem
exists, the state must converge to zero as k → ∞ (since L is assumed to sat-
isfy condition B1). In this case, it follows from the principle of optimality (see
Section 3.4 of Chapter 3) that the finite horizon value function for problem
PN (x) in (4.1) is V opt

N (x) = V opt
∞ (x). With this choice, on-line optimisation

is unnecessary, and the advantages of an infinite horizon problem automati-
cally accrue. However, constraints generally render this approach impossible.
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Usually, then, Xf is chosen to be an appropriate neighbourhood of the origin
in which V opt∞ (x) is exactly (or approximately) known, and F (x) is set equal
to V opt

∞ (x) or its approximation.
In the rather general framework discussed so far, it is hard to visualise

how Theorem 4.4.2 might be utilised in practice. However, when we specialise
to linear constrained control problems it turns out that it is rather easy to
satisfy the required conditions. This will be taken up in the next chapter.

4.6 Further Reading

For complete list of references cited, see References section at the end of book.

General

General treatment of nonlinear receding horizon control can be found in the
book Allgöwer and Zhen (2000), and in, for example, the papers Keerthi and
Gilbert (1988), Mayne and Michalska (1990), Alamir and Bornard (1994),
Jadbabaie, Yu and Hauser (2001). See also the recent special issue Magni
(2003).

An overview of industrial applications of receding horizon control is given
in Qin and Badgwell (1997).

For a more detailed treatment of stability for general discrete time systems
see Vidyasagar (2002), Kalman and Bertram (1960), Scokaert, Rawlings and
Meadows (1997).

Stability for continuous-time nonlinear systems is thoroughly covered in
several recent books, including Khalil (1996), Sastry (1999) and Vidyasagar
(2002).

Section 4.4

The idea of using terminal state weighting to turn the finite horizon optimisa-
tion problem into an infinite horizon problem can be traced back to Kleinman
(1970), Thomas (1975), and Kwon and Pearson (1977). More recent work
appears in Chen and Shaw (1982), Kwon, Bruckstein and Kailath (1983),
Garcia, Prett and Morari (1989), Bitmead et al. (1990). Related results for
input-output systems appear in Mosca, Lemos and Zhang (1990), Clarke and
Scattolini (1981) and Mosca and Zhang (1992).

The three main “ingredients” for stability used in Section 4.4 are implicit
(in various combinations) in early literature dealing with constrained receding
horizon control, see Sznaier and Damborg (1987), (1990), Keerthi and Gilbert
(1988), Mayne and Michalska (1990), Rawlings and Muske (1993), Bemporad,
Chisci and Mosca (1995), Chmielewski and Manousiouthakis (1996), De Nico-
lao, Magni and Scattolini (1996), Scokaert and Rawlings (1998). The form in
which we have presented them is based on the clear and elegant synthesis
provided by Mayne, Rawlings, Rao and Scokaert (2000).




