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Overview of Optimisation Theory

2.1 Overview

As foreshadowed in Chapter 1, the core idea underlying the approach de-
scribed in this book to constrained control and estimation will be optimisa-
tion theory. This will be the topic of the current chapter. Optimisation theory
has huge areas of potential application which extend well beyond the bound-
aries of control and estimation. However, control and estimation do present
an ideal framework within which the basic elements of optimisation theory
can be presented.

Key ideas that we present in this chapter include convexity, the Karush–
Kuhn–Tucker optimality conditions and Lagrangian duality. These ideas will
be drawn upon in following chapters when we apply them to the specific
topics of constrained control and estimation. The material for this chapter has
been extracted mainly from Bazaraa, Sherali and Shetty (1993). We refer the
reader to this reference, as well as to the others mentioned in Section 2.8, for a
more complete treatment of optimisation theory and a number of illustrative
examples.

2.2 Preliminary Concepts

In this section we review some basic topological properties of sets that will be
used throughout the book. Also, we review the definition of differentiability
of real-valued functions defined on a subset S of Rn.

2.2.1 Sets and Sequences

Given a point x ∈ Rn, an ε-neighbourhood around x is defined as the set
Nε(x) = {y ∈ Rn : ||y − x|| < ε}, for ε > 0, where || · || denotes the Euclidean
norm of a vector in Rn.
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Let S be an arbitrary set in Rn. A point x is said to be in the closure of S,
denoted by cl S, if S ∩Nε(x) �= ∅ for every ε > 0. In other words, the closure
of a set S is the set of all points that are arbitrarily close to S. If S = cl S,
then S is called closed. A point x ∈ S is in the interior of S, denoted by int S,
if Nε(x) ⊂ S for some ε > 0. If S = intS, then S is called open.

A point x is in the boundary of S, denoted by ∂S, if Nε(x) contains at least
one point in S and one point not in S for every ε > 0. Hence, a set S is closed
if and only if it contains all its boundary points. Moreover, cl S ≡ S ∪ ∂S is
the smallest closed set containing S. Similarly, a set S is open if and only if
it does not contain any of its boundary points. Clearly, a set may be neither
open nor closed, and the only sets in Rn that are both open and closed are the
empty set and R

n itself. Also, note that any point x ∈ S must be either an
interior or a boundary point of S. However, in general, S �= intS ∪ ∂S, since
S need not contain its boundary points. On the other hand, since int S ⊆ S,
we have, int S = S − ∂S, whilst, in general, ∂S �= S − intS.

A sequence of points, or vectors, {x1, x2, x3, . . .}, is said to converge to the
limit point x̄ if ||xk − x̄|| → 0 as k → ∞; that is, if for any given ε > 0, there
is a positive integer N such that ||xk − x̄|| < ε for all k ≥ N . The sequence
will be denoted by {xk}, and the limit point x̄ is represented by xk → x̄
as k → ∞. Any converging sequence has a unique limit point. By deleting
certain elements of a sequence {xk}, we obtain a subsequence, denoted by
{xk}K , where K is a subset of all positive integers. To illustrate, let K be
the set of all even positive integers, then {xk}K denotes the subsequence
{x2, x4, x6, . . .}.

An equivalent definition of closed sets, that is useful when demonstrating
that a set is closed, is based on sequences of points contained in S. A set S is
closed if and only if, for any convergent sequence of points {xk} contained in
S with limit point x̄, we also have x̄ ∈ S.

A set is bounded if it can be contained in a neighbourhood of sufficiently
large but bounded radius. A compact set is one that is both closed and
bounded. For every sequence {xk} in a compact set S, there is a convergent
subsequence with a limit in S.

2.2.2 Differentiable Functions

We next investigate differentiability of a real-valued function f defined on a
subset S of Rn.

Definition 2.2.1 (Differentiable Function) Let S be a set in Rn with a
nonempty interior, and let f : S → R. Then, f is said to be differentiable at
x̄ ∈ int S if there exists a vector ∇f(x̄)t ∈ Rn, called the gradient vector,1

and a function α : Rn → R, such that

1 Although nonstandard, here we will consider the gradient vector ∇f a row vector
to be consistent with notation used in the remainder of the book.
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f(x) = f(x̄) + ∇f(x̄)(x − x̄) + ‖x − x̄‖α(x̄, x − x̄) for all x ∈ S, (2.1)

where limx→x̄ α(x̄, x − x̄) = 0. The function f is said to be differentiable on
the open set S′ ⊆ S if it is differentiable at each point in S′. The above
representation of f is called a first-order (Taylor series) expansion of f at x̄.

◦
Note that if f is differentiable at x̄, then there can be only one gradient vector,
and this vector consists of the partial derivatives, that is,

∇f(x̄) =
(

∂f(x̄)
∂x1

,
∂f(x̄)
∂x2

, . . . ,
∂f(x̄)
∂xn

)
.

Definition 2.2.2 (Twice-Differentiable Function) Let S be a set in Rn

with a nonempty interior, and let f : S → R. Then, f is said to be twice-
differentiable at x̄ ∈ int S if there exists a vector ∇f(x̄)t ∈ Rn, and an
n × n symmetric matrix H(x̄), called the Hessian matrix, and a function
α : Rn → R, such that

f(x) = f(x̄) + ∇f(x̄)(x − x̄) +
1
2
(x − x̄)tH(x̄)(x − x̄)+

‖x − x̄‖2α(x̄, x − x̄) for all x ∈ S,

where limx→x̄ α(x̄, x− x̄) = 0. The function f is said to be twice-differentiable
on the open set S′ ⊆ S if it is twice-differentiable at each point in S′. The
above representation of f is called a second-order (Taylor series) expansion of
f at x̄. ◦
For a twice-differentiable function, the Hessian matrix H(x̄) comprises the
second-order partial derivatives, that is, the element in row i and column j of
the Hessian matrix is the second partial derivative ∂2f(x̄)/∂xi∂xj .

A useful theorem, which applies to differentiable functions defined on a
convex set, is the mean value theorem, stated below. (Convex sets are formally
defined in the next section.)

Theorem 2.2.1 (Mean Value Theorem) Let S be a nonempty open con-
vex set in Rn, and let f : S −→ R be differentiable. Then, for every x1 and
x2 in S, we must have

f(x2) = f(x1) + ∇f(x)(x2 − x1),

where x = λx1 + (1 − λ)x2 for some λ ∈ (0, 1). ◦

2.2.3 Weierstrass’ Theorem

The following result, based on the foregoing concepts, relates to the exis-
tence of a minimising solution for an optimisation problem. We shall say
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that min{f(x) : x ∈ S} exists if there exists a minimising solution x̄ ∈ S
such that f(x̄) ≤ f(x) for all x ∈ S. On the other hand, we say that
α = inf{f(x) : x ∈ S} if α is the greatest lower bound of f on S. We now
prove that if S is nonempty, closed and bounded, and if f is continuous on S,
then a minimum exists.

Theorem 2.2.2 (Weierstrass’ Theorem: Existence of a Solution)
Let S ⊂ Rn be a nonempty, compact set, and let f : S −→ R be continuous
on S. Then f(x) attains its minimum in S, that is, there exists a minimising
solution to the problem min{f(x) : x ∈ S}.
Proof. Since f is continuous on S, and S is both closed and bounded, f is
bounded below on S. Consequently, since S �= ∅, there exists a greatest lower
bound α = inf{f(x) : x ∈ S}. Now, let 0 < ε < 1, and consider the set Sk =
{x ∈ S : α ≤ f(x) ≤ α + εk} for k = 1, 2, . . .. By the definition of an infimum,
Sk �= ∅ for each k, and so we can construct a sequence of points {xk} ⊆ S by
selecting a point xk ∈ Sk for each k = 1, 2, . . .. Since S is bounded, there exists
a convergent subsequence {xk}K → x̄, indexed by the set K. By the closedness
of S, we have x̄ ∈ S; and by the continuity of f , since α ≤ f(xk) ≤ α + εk

for all k, we have α = limk→∞,k∈K f(xk) = f(x̄). Hence, we have shown that
there exists a solution x̄ ∈ S such that f(x̄) = α = inf{f(x) : x ∈ S}, and so
x̄ is a minimising solution. This completes the proof. �

2.3 Convex Analysis

One of the main concepts that underpins optimisation theory is that of con-
vexity. Indeed, the big divide in optimisation is between convex problems and
nonconvex problems, rather than between, say, linear and nonlinear problems.
Thus, understanding the notion of convexity can be a crucial step in solving
many real world problems.

2.3.1 Convex Sets

We have the following definition of a convex set.

Definition 2.3.1 (Convex Set) A set S ⊂ Rn is convex if the line segment
joining any two points of the set also belongs to the set. In other words, if
x1, x2 ∈ S then λx1 + (1 − λ)x2 must also belong to S for each λ ∈ [0, 1]. ◦

Figure 2.1 below illustrates the notions of convex and nonconvex sets. Note
that in Figure 2.1 (b), the line segment joining x1 and x2 does not lie entirely
in the set.

The following are some examples of convex sets:

(i) Hyperplane. S = {x : ptx = α}, where p is a nonzero vector in Rn,
called the normal to the hyperplane, and α is a scalar.
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Figure 2.1. Illustration of a convex and a nonconvex set.

(ii) Half-space. S = {x : ptx ≤ α}, where p is a nonzero vector in Rn, and
α is a scalar.

(iii) Open half-space. S = {x : ptx < α}, where p is a nonzero vector in Rn

and α is a scalar.
(iv) Polyhedral set. S = {x : Ax ≤ b}, where A is an m × n matrix, and

b is an m vector. (Here and in the remainder of the book the inequality
should be interpreted elementwise.)

(v) Polyhedral cone. S = {x : Ax ≤ 0}, where A is an m × n matrix.
(vi) Cone spanned by a finite number of vectors. S = {x : x =∑m

j=1 λjaj , λj ≥ 0, for j = 1, . . . , m}, where a1, . . . , am are given vectors
in Rn.

(vii) Neighbourhood. Nε(x̄) = {x ∈ Rn : ||x − x̄|| < ε}, where x̄ is a fixed
vector in Rn and ε > 0.

Some of the geometric optimality conditions presented in this chapter use
convex cones, defined below.

Definition 2.3.2 (Convex Cone) A nonempty set C in Rn is called a cone
with vertex zero if x ∈ C implies that λx ∈ C for all λ ≥ 0. If, in addition, C
is convex, then C is called a convex cone. ◦
Figure 2.2 shows an example of a convex cone and an example of a nonconvex
cone.

2.3.2 Separation and Support of Convex Sets

Almost all optimality conditions and duality relationships use some sort of
separation or support of convex sets. We begin by stating the geometric facts
that, given a closed convex set S and a point y �∈ S, there exists a unique
point x̄ ∈ S with minimum distance from y (Theorem 2.3.1) and a hyperplane
that separates y and S (Theorem 2.3.2).

Theorem 2.3.1 (Closest Point Theorem) Let S be a nonempty, closed
convex set in Rn and y �∈ S. Then, there exists a unique point x̄ ∈ S with
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Figure 2.2. Examples of cones.

minimum distance from y. Furthermore, x̄ is the minimising point, or closest
point to y, if and only if (y − x̄)t(x − x̄) ≤ 0 for all x ∈ S.

Proof. We first establish the existence of a closest point. Since S �= ∅, there
exists a point x̂ ∈ S, and we can confine our attention to the set S̄ = S ∩ {x :
‖y − x‖ ≤ ‖y − x̂‖} in seeking the closest point. In other words, the closest
point problem inf{‖y − x‖ : x ∈ S} is equivalent to inf{‖y − x‖ : x ∈ S̄}.
However, the latter problem involves finding the minimum of a continuous
function over a nonempty, compact set S̄, and so by Weierstrass’ theorem
(Theorem 2.2.2) we know that there exists a minimising point x̄ in S that is
closest to the point y.

Next, we prove that the closest point is unique. Suppose that there is an
x̄′ ∈ S such that ‖y − x̄‖ = ‖y − x̄′‖ = γ. By convexity of S, 1

2 x̄ + 1
2 x̄′ ∈ S.

By the triangle inequality, we obtain∥∥∥∥y −
(

1
2
x̄ +

1
2
x̄′
)∥∥∥∥ ≤ 1

2
‖y − x̄‖ +

1
2
‖y − x̄′‖ = γ.

If strict inequality holds, we have a contradiction to x̄ being the closest point
to y. Therefore, equality holds, and we must have y − x̄ = λ(y − x̄′) for some
λ. Since ‖y − x̄‖ = ‖y − x̄′‖ = γ, |λ| = 1. Clearly, λ �= −1, because otherwise
we would have y = 1

2 x̄ + 1
2 x̄′ ∈ S, contradicting the assumption that y �∈ S.

So, λ = 1, x̄′ = x̄, and uniqueness is established.
Finally, we prove that (y− x̄)t(x− x̄) ≤ 0 for all x ∈ S is both a necessary

and sufficient condition for x̄ to be the point in S closest to y. To prove
sufficiency, let x ∈ S. Then,

‖y − x‖2 = ‖y − x̄ + x̄ − x‖2 = ‖y − x̄‖2 + ‖x̄ − x‖2 + 2(x̄ − x)t(y − x̄).

Since ‖x̄−x‖2 ≥ 0 and (x̄−x)t(y−x̄) ≥ 0 by assumption, ‖y−x‖2 ≥ ‖y−x̄‖2,
and x̄ is the minimising point. Conversely, assume that ‖y − x‖2 ≥ ‖y − x̄‖2



2.3 Convex Analysis 29

for all x ∈ S. Let x ∈ S and note that x̄ + λ(x − x̄) ∈ S for all 0 ≤ λ ≤ 1 by
the convexity of S. Therefore,

‖y − x̄ − λ(x − x̄)‖2 ≥ ‖y − x̄‖2. (2.2)

Also

‖y − x̄ − λ(x − x̄)‖2 = ‖y − x̄‖2 + λ2‖x − x̄‖2 − 2λ(y − x̄)t(x − x̄). (2.3)

From (2.2) and (2.3), we obtain

2λ(y − x̄)t(x − x̄) ≤ λ2‖x − x̄‖2, (2.4)

for all 0 ≤ λ ≤ 1. Dividing (2.4) by any such λ > 0 and letting λ → 0+, the
result follows. �

The above theorem is illustrated in Figure 2.3.
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Figure 2.3. Closest point to a closed convex set.

Definition 2.3.3 (Separation of Sets) Let S1 and S2 be nonempty sets in
Rn. A hyperplane H = {x : ptx = α} separates S1 and S2 if ptx ≥ α for
each x ∈ S1 and ptx ≤ α for each x ∈ S2. If, in addition, ptx ≥ α + ε for
each x ∈ S1 and ptx ≤ α for each x ∈ S2, where ε is a positive scalar, then
the hyperplane H is said to strongly separate the sets S1 and S2. (Notice that
strong separation implies separation of sets.)

Figure 2.4 illustrates the concepts of separation and strong separation of
sets.

The following is the most fundamental separation theorem.

Theorem 2.3.2 (Separation Theorem) Let S be a nonempty closed con-
vex set in Rn and y �∈ S. Then, there exists a nonzero vector p and a scalar
α such that pty > α and ptx ≤ α for each x ∈ S.
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Figure 2.4. Separation and strong separation of sets.

Proof. S is a nonempty closed convex set and y �∈ S. Hence, by Theorem 2.3.1
there exists a unique minimising point x̄ ∈ S such that (y − x̄)t(x − x̄) ≤ 0
for each x ∈ S. Letting p = (y − x̄) �= 0 and α = (y − x̄)tx̄ = ptx̄, we obtain
ptx ≤ α for each x ∈ S. We also have pty−α = (y− x̄)t(y− x̄) = ‖y− x̄‖2 > 0
and, hence, pty > α. This completes the proof. �

Closely related to the above concept is the notion of a supporting hyper-
plane.

Definition 2.3.4 (Supporting Hyperplane at a Boundary Point)
Let S be a nonempty set in R

n, and let x̄ ∈ ∂S. A hyperplane
H = {x : pt(x − x̄) = 0} is called a supporting hyperplane of S at x̄
if either pt(x − x̄) ≥ 0 for each x ∈ S, or else, pt(x − x̄) ≤ 0 for each x ∈ S.

Figure 2.5 shows an example of a supporting hyperplane.
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Figure 2.5. Supporting hyperplane.

The next result shows that a convex set has a supporting hyperplane at
each boundary point. As a corollary, a result similar to Theorem 2.3.2, where
S is not required to be closed, follows.

Theorem 2.3.3 (Supporting Hyperplane) Let S be a nonempty convex
set in Rn, and let x̄ ∈ ∂S. Then there exists a hyperplane that supports S at
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x̄; that is, there exists a nonzero vector p such that pt(x − x̄) ≤ 0 for each
x ∈ cl S.

Proof. Since x̄ ∈ ∂S, there exists a sequence {yk} not in cl S such that
yk → x̄. By Theorem 2.3.2, corresponding to each yk there exists a pk such that
pt

kyk > pt
kx for each x ∈ cl S. Without loss of generality, we can normalise the

vector in Theorem 2.3.2 by dividing it by its norm, such that ‖pk‖ = 1. Since
{pk} is bounded, it has a convergent subsequence {pk}K with limit p whose
norm is also equal to 1. Considering this subsequence, we have pt

kyk > pt
kx

for each x ∈ cl S. Fixing x ∈ cl S and taking limits as k ∈ K approaches
∞, we obtain, pt(x − x̄) ≤ 0. Since this is true for each x ∈ cl S, the result
follows. �

Corollary 2.3.4 Let S be a nonempty convex set in R
n and x̄ �∈ int S. Then

there is a nonzero vector p such that pt(x − x̄) ≤ 0 for each x ∈ clS.

Proof. If x̄ �∈ cl S, then the result follows from Theorem 2.3.2 choosing y = x̄.
On the other hand, if x̄ ∈ ∂S, the result follows from Theorem 2.3.3. �

The next theorem shows that, if two convex sets are disjoint, then they
can be separated by a hyperplane.

Theorem 2.3.5 (Separation of Two Disjoint Convex Sets) Let S1 and
S2 be nonempty convex sets in Rn and suppose that S1 ∩ S2 is empty. Then
there exists a hyperplane that separates S1 and S2; that is, there exists a
nonzero vector p in Rn such that

inf{ptx : x ∈ S1} ≥ sup{ptx : x ∈ S2}.
Proof. Consider the set S = S1 � S2 � {x1 − x2 : x1 ∈ S1 and x2 ∈ S2}.
Note that S is convex. Furthermore, 0 �∈ S, because otherwise S1 ∩ S2 would
be nonempty. By Corollary 2.3.4, there exists a nonzero p ∈ Rn such that
ptx ≥ 0 for all x ∈ S. This means that ptx1 ≥ ptx2 for all x1 ∈ S1 and
x2 ∈ S2, and the result follows. �

The following corollary shows that the above result holds true even if the two
sets have some points in common, as long as their interiors are disjoint.

Corollary 2.3.6 Let S1 and S2 be nonempty convex sets in Rn. Suppose
that int S2 is not empty and that S1 ∩ int S2 is empty. Then, there exists a
hyperplane that separates S1 and S2; that is, there exists a nonzero p such
that

inf{ptx : x ∈ S1} ≥ sup{ptx : x ∈ S2}.
Proof. Replace S2 by int S2, apply Theorem 2.3.5, and note that

sup{ptx : x ∈ S2} = sup{ptx : x ∈ int S2}.
The result then follows. �
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2.3.3 Convex Functions

Convex functions have many important properties for optimisation problems.
For example, any local minimum of a convex function over a convex set is
also a global minimum. We present here some properties of convex functions,
beginning with their definition.

Definition 2.3.5 (Convex Function) Let f : S → R, where S is a
nonempty convex set in Rn. The function f is convex on S if

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2)

for each x1, x2 ∈ S and for each λ ∈ (0, 1).
The function f is strictly convex on S if the above inequality is true as a

strict inequality for each distinct x1, x2 ∈ S and for each λ ∈ (0, 1).
The function f is (strictly) concave on S if −f is (strictly) convex on S.

◦
The geometric interpretation of a convex function is that the value of f

at the point λx1 + (1 − λ)x2 is less than the height of the chord joining the
points [x1, f(x1)] and [x2, f(x2)]. For a concave function, the chord is below
the function itself. Figure 2.6 shows some examples of convex and concave
functions.

Convex function Concave function
Neither convex
nor concave

x1x1x1
x2x2x2

ff

f

λx1+(1−λ)x2λx1+(1−λ)x2

Figure 2.6. Examples of convex and concave functions.

The following are useful properties of convex functions.

(i) Let f1, f2, . . . , fk : Rn → R be convex functions. Then
• f(x) =

∑k
j=1 αjfj(x), where αj > 0 for j = 1, 2, . . . k, is a convex

function;
• f(x) = max{f1(x), f2(x), . . . , fk(x)} is a convex function.

(ii) Suppose that g : Rn → R is a concave function. Let S = {x : g(x) > 0},
and define f : S → R as f(x) = 1/g(x). Then f is convex over S.
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(iii) Let g : R → R be a nondecreasing, univariate, convex function, and let
h : Rn → R be a convex function. Then the composite function f : Rn → R

defined as f(x) = g(h(x)) is a convex function.
(iv) Let g : Rm → R be a convex function, and let h : Rn → Rm be an affine

function of the form h(x) = Ax + b, where A is an m × n matrix, and b
is an m × 1 vector. Then the composite function f : Rn → R defined as
f(x) = g(h(x)) is a convex function.

Associated with a convex function f is the level set Sα defined as Sα =
{x ∈ S : f(x) ≤ α}, α ∈ R. We then have:

Lemma 2.3.7 (Convexity of Level Sets) Let S be a nonempty convex set
in Rn and let f : S → R be a convex function. Then the level set Sα = {x ∈
S : f(x) ≤ α}, where α ∈ R, is a convex set.

Proof. Let x1, x2 ∈ Sα. Thus, x1, x2 ∈ S, and f(x1) ≤ α and f(x2) ≤ α.
Now, let λ ∈ (0, 1) and x = λx1 + (1 − λ)x2 ∈ S (by the convexity of S).
Furthermore, by convexity of f ,

f(x) ≤ λf(x1) + (1 − λ)f(x2) ≤ λα + (1 − λ)α = α.

Hence, x ∈ Sα, and we conclude that Sα is convex. �

An important property of convex functions is that they are continuous on
the interior of their domain, as we prove next.

Theorem 2.3.8 (Continuity of Convex Functions) Let S be a nonempty
convex set in Rn and let f : S → R be a convex function. Then f is continuous
on the interior of S.

Proof. Let x̄ ∈ int S. Hence, there exists a δ′ > 0 such that ||x − x̄|| ≤ δ′

implies that x ∈ S. Consider the vector ei ∈ Rn having all elements equal to
zero except for a 1 in the ith position. Now, construct

θ � max
1≤i≤n

{max [f(x̄ + δ′ei) − f(x̄), f(x̄ − δ′ei) − f(x̄)]} . (2.5)

Note, from the convexity of f , that we have:

f(x̄) = f

[
1
2
(x̄ + δ′ei) +

1
2
(x̄ − δ′ei)

]
≤ 1

2
f(x̄ + δ′ei) +

1
2
f(x̄ − δ′ei),

for all 1 ≤ i ≤ n, from where we conclude that θ ≥ 0.
Now, for any given ε > 0, define:

δ � min
{

δ′

n
,
εδ′

nθ

}
. (2.6)

Choose an x with ||x − x̄|| ≤ δ. Let vi denote the ith element of a vector v.
If xi − x̄i ≥ 0, define zi = δ′ei, otherwise define zi = −δ′ei. Then, x − x̄ =∑n

i=1 αizi, for some αi ≥ 0, 1 ≤ i ≤ n. Furthermore,
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‖x − x̄‖ = δ′
(

n∑
i=1

α2
i

) 1
2

≤ δ. (2.7)

It follows from (2.6) and (2.7) that αi ≤ 1/n and αi ≤ ε/nθ, for i = 1, 2, . . . , n.
From the convexity of f , and since 0 ≤ nαi ≤ 1, we obtain

f(x) = f

(
x̄ +

n∑
i=1

αizi

)
= f

(
1
n

n∑
i=1

(x̄ + nαizi)

)
≤ 1

n

n∑
i=1

f(x̄ + nαizi)

=
1
n

n∑
i=1

f [(1 − nαi)x̄ + nαi(x̄ + zi)]

≤ 1
n

n∑
i=1

[(1 − nαi)f(x̄) + nαif(x̄ + zi)].

Therefore, f(x) − f(x̄) ≤ ∑n
i=1 αi[f(x̄ + zi) − f(x̄)]. From (2.5) and the defi-

nition of zi it follows that f(x̄ + zi) − f(x̄) ≤ θ for each i; and since αi ≥ 0,
it follows that

f(x) − f(x̄) ≤ θ
n∑

i=1

αi. (2.8)

As noted above, αi ≤ ε/nθ, for i = 1, 2, . . . , n and, thus, it follows from (2.8)
that f(x) − f(x̄) ≤ ε.

Now, let y = 2x̄ − x and note that ‖y − x̄‖ ≤ δ. Hence, as above, we
have f(y) − f(x̄) ≤ ε. But, x̄ = 1

2y + 1
2x, and by the convexity of f , we have

f(x̄) ≤ 1
2f(y) + 1

2f(x). Combining the last two inequalities, it follows that
f(x̄) − f(x) ≤ ε.

Summarising, we have shown that for any ε > 0 there exists a δ > 0
(defined as in (2.6)) such that ‖x − x̄‖ ≤ δ implies that f(x) − f(x̄) ≤ ε and
that f(x̄) − f(x) ≤ ε; that is, that |f(x) − f(x̄)| ≤ ε. Hence, f is continuous
at x̄ ∈ int S, and the proof is complete. �

2.3.4 Generalisations of Convex Functions

We present various types of functions that are similar to convex or concave
functions but share only some of their desirable properties.

Definition 2.3.6 (Quasiconvex Function) Let f : S → R, where S is a
nonempty convex set in Rn. The function f is quasiconvex if, for each x1, x2 ∈
S, the following inequality is true:

f(λx1 + (1 − λ)x2) ≤ max {f(x1), f(x2)} for eachλ ∈ (0, 1).

The function f is quasiconcave if −f is quasiconvex. ◦
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Note, from the definition, that a convex function is quasiconvex.
From the above definition, a function f is quasiconvex if, whenever f(x2) ≥

f(x1), f(x2) is greater than or equal to f at all convex combinations of x1 and
x2. Hence, if f increases locally from its value at a point along any direction, it
must remain nondecreasing in that direction. Figure 2.7 shows some examples
of quasiconvex and quasiconcave functions.

(a) (b) (c)

Figure 2.7. (a) Quasiconvex function. (b) Quasiconcave function. (c) Neither qua-
siconvex nor quasiconcave.

The following result states that a quasiconvex function is characterised by
the convexity of its level sets.

Theorem 2.3.9 (Level Sets of a Quasiconvex Function) Let f : S →
R, where S is a nonempty convex set in Rn. The function f is quasiconvex if
and only if Sα = {x ∈ S : f(x) ≤ α} is convex for each real number α.

Proof. Suppose that f is quasiconvex, and let x1, x2 ∈ Sα. Therefore, x1, x2 ∈
S and max {f(x1), f(x2)} ≤ α. Let λ ∈ (0, 1), and let x = λx1 +(1−λ)x2. By
the convexity of S, x ∈ S. Furthermore, by the quasiconvexity of f , f(x) ≤
max {f(x1), f(x2)} ≤ α. Hence, x ∈ Sα, and thus Sα is convex. Conversely,
suppose that Sα is convex for each real number α. Let x1, x2 ∈ S and take
α = max {f(x1), f(x2)}. Hence, x1, x2 ∈ Sα. Furthermore, let λ ∈ (0, 1) and
x = λx1 +(1−λ)x2. By assumption, Sα is convex, so that x ∈ Sα. Therefore,
f(x) ≤ α = max {f(x1), f(x2)}. Hence, f is quasiconvex, and the proof is
complete. �

We will next define strictly quasiconvex functions.

Definition 2.3.7 (Strictly Quasiconvex Function) Let f : S → R,
where S is a nonempty convex set in Rn. The function f is strictly quasi-
convex if, for each x1, x2 ∈ S with f(x1) �= f(x2), the following inequality is
true

f(λx1 + (1 − λ)x2) < max {f(x1), f(x2)} for eachλ ∈ (0, 1).

The function f is strictly quasiconcave if −f is strictly quasiconvex. ◦
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Note from the above definition that a convex function is also strictly quasicon-
vex. Figure 2.8 shows some examples of quasiconvex and strictly quasiconvex
functions.

(a) (b) (c)

Figure 2.8. (a) Strictly quasiconvex function. (b) Strictly quasiconvex function. (c)
Quasiconvex function but not strictly quasiconvex.

Notice that the definition precludes any flat spots from occurring anywhere
except at extremising points. This, in turn, implies that a local optimal solu-
tion of a strictly quasiconvex function over a convex set is also a global optimal
solution. (Local and global optima for constrained optimisation problems will
be formally defined in Definition 2.5.1.)

We observe that strictly quasiconvex functions are not necessarily quasi-
convex. However, if f is lower semicontinuous2, then it can be shown that
strict quasiconvexity implies quasiconvexity.

We will next introduce another type of function that generalises the con-
cept of a convex function, called a pseudoconvex function. Pseudoconvex func-
tions share the property of convex functions that, if ∇f(x̄) = 0 at some point
x̄, then x̄ is a global minimum of f . (See Theorem 2.4.5.)

Definition 2.3.8 (Pseudoconvex Function) Let S be a nonempty open
set in Rn, and let f : S → R be differentiable on S. The function f is pseudo-
convex if, for each x1, x2 ∈ S with ∇f(x1)(x2 − x1) ≥ 0, then f(x2) ≥ f(x1);
or, equivalently, if f(x2) < f(x1), then ∇f(x1)(x2 − x1) < 0.

The function f is pseudoconcave if −f is pseudoconvex.
The function f is strictly pseudoconvex if, for each distinct x1, x2 ∈ S

with ∇f(x1)(x2 − x1) ≥ 0, then f(x2) > f(x1); or, equivalently, if for each
distinct x1, x2 ∈ S, f(x2) ≤ f(x1), then ∇f(x1)(x2 − x1) < 0. ◦

Note that the definition asserts that if the directional derivative of a pseu-
doconvex function at any point x1 in the direction x2 − x1 is nonnegative,
2 A function f : S → �, where S is a nonempty set in �n , is lower semicontinuous

at x̄ ∈ S if for each ε > 0 there exists a δ > 0 such that x ∈ S and ‖x − x̄‖ < δ
imply that f(x)− f(x̄) > −ε. Obviously, a continuous function at x̄ is also lower
semicontinuous at x̄.
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then the function values are nondecreasing in that direction. Figure 2.9 shows
examples of pseudoconvex and pseudoconcave functions.

(a) (b) (c)

Inflection point

Figure 2.9. (a) Pseudoconvex function. (b) Both pseudoconvex and pseudoconcave.
(c) Neither pseudoconvex nor pseudoconcave.

Several relationships among the different types of convexity can be es-
tablished. For example, one of these relationships is that every pseudoconvex
function is both strictly quasiconvex and quasiconvex. Figure 2.10 summarises
the implications among the different types of convexity. In the particular case
of a quadratic function f it can be shown that f is pseudoconvex if and only
if f is strictly quasiconvex, which holds true if and only if f is quasiconvex.

Convexity at a Point

In some optimisation problems, the requirement of convexity may be too
strong and not essential, and convexity at a point may be all that is needed.
Hence, we present below several types of convexity at a point that are relax-
ations of the various forms of convexity presented so far.

Definition 2.3.9 (Various Types of Convexity at a Point) Let S be a
nonempty convex set in Rn, and f : S → R. We then have the following
definitions:

Convexity at a point. The function f is said to be convex at x̄ ∈ S if
f(λx̄ + (1 − λ)x) ≤ λf(x̄) + (1 − λ)f(x) for each λ ∈ (0, 1) and each
x ∈ S.

Strict convexity at a point. The function f is strictly convex at x̄ ∈ S if
f(λx̄ + (1 − λ)x) < λf(x̄) + (1 − λ)f(x) for each λ ∈ (0, 1) and each
x ∈ S, x �= x̄.

Quasiconvexity at a point. The function f is quasiconvex at x̄ ∈ S if
f(λx̄ + (1 − λ)x) ≤ max {f(x̄), f(x)} for each λ ∈ (0, 1) and each x ∈ S.

Strict quasiconvexity at a point. The function f is strictly quasiconvex at x̄ ∈
S if f(λx̄ + (1 − λ)x) < max {f(x̄), f(x)} for each λ ∈ (0, 1) and each
x ∈ S such that f(x) �= f(x̄).
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Strictly
convex

Convex

Pseudoconvex

   Strictly
quasiconvex

Quasiconvex

     Strictly
pseudoconvex

Under differentiability

Under differentiability

Under lower
semicontinuity

Figure 2.10. Relationship among various types of convexity. The arrows mean
implications and, in general, the converses do not hold. (See Bazaraa et al. (1993)
for a more complete picture of the relationships among the types of convexity.)

Pseudoconvexity at a point. Suppose f is differentiable at x̄ ∈ intS. Then f is
pseudoconvex at x̄ if ∇f(x̄)(x− x̄) ≥ 0 for x ∈ S implies that f(x) ≥ f(x̄).

Strict pseudoconvexity at a point. Suppose f is differentiable at x̄ ∈ intS.
Then f is strictly pseudoconvex at x̄ if ∇f(x̄)(x − x̄) ≥ 0 for x ∈ S ,
x �= x̄, implies that f(x) > f(x̄). ◦

Figure 2.11 illustrates some types of convexity at a point.

2.4 Unconstrained Optimisation

An unconstrained optimisation problem is a problem of the form

minimise f(x), (2.9)

without any constraint on the vector x. Our ultimate goal in this book is
constrained optimisation problems. However, we start by reviewing uncon-
strained problems because optimality conditions for constrained problems are
a logical extension of the conditions for unconstrained problems.
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(a)

(b)

f

f

x1

x1

x2

x2

Figure 2.11. Convexity at a point. (a) f is quasiconvex but not strictly quasi-
convex at x1; f is both quasiconvex and strictly quasiconvex at x2. (b) f is both
pseudoconvex and strictly pseudoconvex at x1; f is pseudoconvex but not strictly
pseudoconvex at x2.

Let us first define local and global minima for unconstrained problems.

Definition 2.4.1 (Local and Global Minima) Consider the problem of
minimising f(x) over Rn and let x̄ ∈ Rn. If f(x̄) ≤ f(x) for all x ∈ Rn,
then x̄ is called a global minimum. If there exists an ε-neighbourhood Nε(x̄)
around x̄ such that f(x̄) ≤ f(x) for each x ∈ Nε(x̄), then x̄ is called a local
minimum, whilst if f(x̄) < f(x) for all x ∈ Nε(x̄), x �= x̄, for some ε > 0,
then x̄ is called a strict local minimum. Clearly, a global minimum is also a
local minimum. ◦

Given a point x ∈ Rn, we wish to determine, if possible, whether or not
the point is a local or global minimum of a function f . For differentiable
functions, there exist conditions that provide this characterisation, as we will
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see below. We will first present a result that allows the characterisation of
descent directions of differentiable functions.

Theorem 2.4.1 (Descent Direction) Suppose that f : Rn → R is differ-
entiable at x̄. If there exists a vector d such that ∇f(x̄)d < 0, then there exists
a δ > 0 such that f(x̄ + λd) < f(x̄) for each λ ∈ (0, δ), so that d is a descent
direction of f at x̄.

Proof. By the differentiability of f at x̄, we have

f(x̄ + λd) = f(x̄) + λ∇f(x̄)d + λ‖d‖α(x̄, λd),

where α(x̄, λd) → 0 as λ → 0. Rearranging the terms and dividing by λ,
λ �= 0, we obtain

f(x̄ + λd) − f(x̄)
λ

= ∇f(x̄)d + ‖d‖α(x̄, λd).

Since ∇f(x̄)d < 0 and α(x̄, λd) → 0 as λ → 0, there exists a δ > 0 such
that the right hand side above is negative for all λ ∈ (0, δ). The result then
follows. �

Corollary 2.4.2 Suppose that f : Rn → R is differentiable at x̄. If x̄ is a
local minimum, then ∇f(x̄) = 0.

Proof. Suppose that ∇f(x̄) �= 0. Then, letting d = −∇f(x̄)t, we get ∇f(x̄)d =
−‖∇f(x̄)‖2 < 0, and by Theorem 2.4.1 there is a δ > 0 such that f(x̄ +
λd) < f(x̄) for each λ ∈ (0, δ), contradicting the assumption that x̄ is a local
minimum. Hence, ∇f(x̄) = 0. �

The above condition uses the gradient vector, whose components are the first
partial derivatives of f ; hence, it is called a first-order condition. Necessary
conditions can also be stated in terms of the Hessian matrix H , which com-
prises the second derivatives of f , and are then called second-order conditions.
One such condition is given below.

Theorem 2.4.3 (Necessary Condition for a Minimum) Suppose that
f : Rn → R is twice-differentiable at x̄. If x̄ is a local minimum, then ∇f(x̄) =
0 and H(x̄) is positive semidefinite.

Proof. Consider an arbitrary direction d. Then, since by assumption f is twice-
differentiable at x̄, we have

f(x̄ + λd) = f(x̄) + λ∇f(x̄)d +
1
2
λ2dtH(x̄)d + λ2‖d‖2α(x̄, λd), (2.10)

where α(x̄, λd) → 0 as λ → 0. Since x̄ is a local minimum, from Corollary 2.4.2
we have ∇f(x̄) = 0. Rearranging the terms in (2.10) and dividing by λ2 > 0,
we obtain
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f(x̄ + λd) − f(x̄)
λ2

=
1
2
dtH(x̄)d + ‖d‖2α(x̄, λd) . (2.11)

Since x̄ is a local minimum, f(x̄ + λd) ≥ f(x̄) for sufficiently small λ . From
(2.11), it is thus clear that 1

2dtH(x̄)d + ‖d‖2α(x̄, λd) ≥ 0 for sufficiently
small λ. By taking the limit as λ → 0, it follows that dtH(x̄)d ≥ 0; and,
hence, H(x̄) is positive semidefinite. �

The conditions presented so far are necessary conditions for a local mini-
mum. We now give a sufficient condition for a local minimum.

Theorem 2.4.4 (Sufficient Condition for a Local Minimum) Suppose
that f : Rn → R is twice-differentiable at x̄. If ∇f(x̄) = 0 and H(x̄) is
positive definite, then x̄ is a strict local minimum.

Proof. Since f is twice-differentiable at x̄, we must have, for each x ∈ R
n,

f(x) = f(x̄) + ∇f(x̄)(x − x̄) +
1
2
(x − x̄)tH(x̄)(x − x̄) + ‖x − x̄‖2α(x̄, x − x̄) ,

(2.12)
where α(x̄, x − x̄) → 0 as x → x̄. Suppose, by contradiction, that x̄ is not a
strict local minimum; that is, suppose there exists a sequence {xk} converging
to x̄ such that f(xk) ≤ f(x̄), xk �= x̄, for each k. Considering this sequence,
noting that ∇f(x̄) = 0 and f(xk) ≤ f(x̄), and denoting (xk − x̄)/‖xk − x̄‖ by
dk, (2.12) then implies that

1
2
dt

kH(x̄)dk + α(x̄, xk − x̄) ≤ 0 for eachk. (2.13)

But ‖dk‖ = 1 for each k; and, hence, there exists an index set K such that
{dk}K converges to d, where ‖d‖ = 1. Considering this subsequence, and the
fact that α(x̄, xk − x̄) → 0 as k ∈ K approaches infinity, then (2.13) implies
that dtH(x̄)d ≤ 0. This contradicts the assumption that H(x̄) is positive
definite since ‖d‖ = 1. Therefore, x̄ is indeed a strict local minimum. �

As is generally the case with optimisation problems, more powerful results
exist under (generalised) convexity conditions. The following result shows that
the necessary condition ∇f(x̄) = 0 is also sufficient for x̄ to be a global
minimum if f is pseudoconvex at x̄.

Theorem 2.4.5 (Necessary and Sufficient Condition for Pseudocon-
vex Functions) Let f : Rn → R be pseudoconvex at x̄. Then x̄ is a global
minimum if and only if ∇f(x̄) = 0.

Proof. By Corollary 2.4.2, if x̄ is a global minimum then ∇f(x̄) = 0. Now,
suppose that ∇f(x̄) = 0, so that ∇f(x̄)(x − x̄) = 0 for each x ∈ Rn. By the
pseudoconvexity of f at x̄, it then follows that f(x) ≥ f(x̄) for each x ∈ Rn,
and the proof is complete. �
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2.5 Constrained Optimisation

We now proceed to the main topic of interest in this book; namely, constrained
optimisation. We first derive optimality conditions for a problem of the fol-
lowing form:

minimise f(x), (2.14)
subject to:
x ∈ S.

We will first consider a general constraint set S. Later, the set S will be
more explicitly defined by a set of equality and inequality constraints. For
constrained optimisation problems we have the following definitions.

Definition 2.5.1 (Feasible and Optimal Solutions) Let f : Rn → R

and consider the constrained optimisation problem (2.14), where S is a
nonempty set in Rn.

• A point x ∈ S is called a feasible solution to problem (2.14).
• If x̄ ∈ S and f(x) ≥ f(x̄) for each x ∈ S, then x̄ is called an optimal

solution, a global optimal solution, or simply a solution to the problem.
• The collection of optimal solutions is called the set of alternative optimal

solutions.
• If x̄ ∈ S and if there exists an ε-neighbourhood Nε(x̄) around x̄ such that

f(x) ≥ f(x̄) for each x ∈ S ∩ Nε(x̄), then x̄ is called a local optimal
solution.

• If x̄ ∈ S and if f(x) > f(x̄) for each x ∈ S∩Nε(x̄), x �= x̄, for some ε > 0,
then x̄ is called a strict local optimal solution. ◦

Figure 2.12 illustrates examples of local and global minima for problem (2.14).

[ ]

A

B

C D
E

Global minimum
Local minima

S

f

Figure 2.12. Local and global minima.

The function f and the constraint set S are shown in the figure. The points
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in S corresponding to A, B and E are also strict local minima, whereas those
corresponding to the flat segment of the graph between C and D are local
minima that are not strict.

In Chapter 13 we will treat a class of problems in which the constraint
set S is not convex. However, in most of the book we will be concerned with
problems in which the function f and set S in problem (2.14) are, respectively,
a convex function and a convex set. Such a problem is known as a convex
programming problem. The following result shows that each local minimum of
a convex program is also a global minimum.

Theorem 2.5.1 (Local Minima of Convex Programs are Global Min-
ima) Consider problem (2.14), where S is a nonempty convex set in Rn, and
f : S → R is convex on S. If x̄ ∈ S is a local optimal solution to the prob-
lem, then x̄ is a global optimal solution. Furthermore, if either x̄ is a strict
local minimum, or if f is strictly convex, then x̄ is the unique global optimal
solution.

Proof. Since x̄ is a local optimal solution, there exists an ε-neighbourhood
Nε(x̄) around x̄ such that

f(x) ≥ f(x̄) for each x ∈ S ∩ Nε(x̄). (2.15)

By contradiction, suppose that x̄ is not a global optimal solution so that
f(x̂) < f(x̄) for some x̂ ∈ S. By the convexity of f , we have that:

f(λx̂ + (1 − λ)x̄) ≤ λf(x̂) + (1 − λ)f(x̄) < λf(x̄) + (1 − λ)f(x̄) = f(x̄),

for each λ ∈ (0, 1). But, for λ > 0 and sufficiently small, λx̂ + (1 − λ)x̄ =
x̄ + λ(x̂− x̄) ∈ S ∩Nε(x̄). Hence, the above inequality contradicts (2.15), and
we conclude that x̄ is a global optimal solution.

Next, suppose that x̄ is a strict local minimum. Then, as just proven, x̄
is a global minimum. Now, suppose that x̄ is not the unique global optimal
solution. That is, suppose that there exist an x̂ ∈ S such that f(x̂) = f(x̄).
Then, defining xλ = λx̂ + (1 − λ)x̄ for 0 ≤ λ ≤ 1, we have, by the convexity
of f and S, that f(xλ) ≤ λf(x̂) + (1 − λ)f(x̄) = f(x̄), and xλ ∈ S for all
0 ≤ λ ≤ 1. By taking λ → 0+ we can make xλ ∈ Nε(x̄) ∩ S for any ε > 0.
However, this contradicts the strict local optimality of x̄ and, hence, x̄ is the
unique global minimum.

Finally, suppose that x̄ is a local optimal solution and that f is strictly
convex. Since strict convexity implies convexity then, as proven earlier, x̄ is
a global optimal solution. By contradiction, suppose that x̄ is not the unique
global optimal solution so that there exists an x̃ ∈ S, x̃ �= x̄, such that f(x̃) =
f(x̄). By strict convexity, we have that f(1

2 x̃ + 1
2 x̄) < 1

2f(x̃) + 1
2f(x̄) = f(x̄).

Since S is convex, 1
2 x̃ + 1

2 x̄ ∈ S, and the above inequality contradicts global
optimality of x̄. Hence, x̄ is the unique global minimum, and this completes
the proof. �
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2.5.1 Geometric Necessary Optimality Conditions

In this section we give a necessary optimality condition for problem (2.14)
using the cone of feasible directions defined below. Note that, in the sequel
and in Sections 2.5.2– 2.5.4, we do not assume problem (2.14) to be a convex
program. As a consequence of this generality, only necessary conditions for
optimality will be derived. In a later section, Section 2.5.5, we will impose
suitable convexity conditions to the problem in order to obtain sufficiency
conditions for optimality.

Definition 2.5.2 (Cones of Feasible Directions and of Improving Di-
rections) Let S be a nonempty set in R

n and let x̄ ∈ cl S. The cone of feasible
directions of S at x̄, denoted by D, is given by

D = {d : d �= 0, and x̄ + λd ∈ S for all λ ∈ (0, δ) for some δ > 0}.
Each nonzero vector d ∈ D is called a feasible direction. Moreover, given a
function f : R

n → R, the cone of improving directions at x̄, denoted by F , is
given by

F = {d : f(x̄ + λd) < f(x̄) for all λ ∈ (0, δ) for some δ > 0}.
Each direction d ∈ F is called an improving direction, or a descent direction
of f at x̄. ◦
We will now consider the function f to be differentiable at the point x̄. We
can then define the sets

F0 � {d : ∇f(x̄)d < 0}, (2.16)

F ′
0 � {d �= 0 : ∇f(x̄)d ≤ 0}. (2.17)

Observe that the set F0 defined in (2.16) is an open half-space defined in terms
of the gradient vector. Note also that, from Theorem 2.4.1, if ∇f(x̄)d < 0,
then d is an improving direction. It then follows that F0 ⊆ F . Hence, the set
F0 gives an algebraic description of the set of improving directions F . Also,
if d ∈ F , we must have ∇f(x̄)d ≤ 0, or else, analogous to Theorem 2.4.1,
∇f(x̄)d > 0 would imply that d is an ascent direction. Hence, we have

F0 ⊆ F ⊆ F ′
0. (2.18)

The following theorem states that a necessary condition for local optimal-
ity is that every improving direction in F0 is not a feasible direction.

Theorem 2.5.2 (Geometric Necessary Condition for Local Optimal-
ity Using the Sets F0 and D) Consider the problem to minimise f(x) sub-
ject to x ∈ S, where f : R

n → R and S is a nonempty set in R
n. Suppose

that f is differentiable at a point x̄ ∈ S. If x̄ is a local optimal solution then
F0 ∩ D = ∅, where F0 = {d : ∇f(x̄)d < 0} and D is the cone of feasible
directions of S at x̄.
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Proof. Suppose, by contradiction, that there exists a vector d ∈ F0 ∩D. Since
d ∈ F0, then, by Theorem 2.4.1, there exists a δ1 > 0 such that

f(x̄ + λd) < f(x̄) for eachλ ∈ (0, δ1). (2.19)

Also, since d ∈ D, by Definition 2.5.2, there exists a δ2 > 0 such that

x̄ + λd ∈ S for eachλ ∈ (0, δ2). (2.20)

The assumption that x̄ is a local optimal solution is not compatible with (2.19)
and (2.20). Thus, F0 ∩ D = ∅. �

The necessary condition for local optimality of Theorem 2.5.2 is illustrated in
Figure 2.13, where the vertices of the cones F0 and D are translated from the
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Figure 2.13. Illustration of the necessary condition for local optimality of Theo-
rem 2.5.2: F0 ∩ D = ∅.

origin to x̄ for convenience.

2.5.2 Problems with Inequality and Equality Constraints

We next consider a specific description for the feasible region S as follows:

S = {x ∈ X : gi(x) ≤ 0, i = 1, . . . , m, hi(x) = 0, i = 1, . . . , l} ,
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where gi : Rn → R for i = 1, . . . , m, hi : Rn → R for i = 1, . . . , 
, and X is
a nonempty open set in Rn. This gives the following nonlinear programming
problem with inequality and equality constraints:

minimise f(x),
subject to:
gi(x) ≤ 0 for i = 1, . . . , m, (2.21)
hi(x) = 0 for i = 1, . . . , 
,

x ∈ X.

The following theorem shows that if x̄ is a local optimal solution to prob-
lem (2.21), then either the gradients of the equality constraints are linearly
dependent at x̄, or else F0 ∩G0 ∩H0 = ∅, where F0 is defined as in (2.16) and
the sets G0 and H0 are defined in the statement of the theorem.

Theorem 2.5.3 (Geometric Necessary Condition for Problems with
Inequality and Equality Constraints) Let X be a nonempty open set in
Rn, and let f : Rn → R, gi : Rn → R for i = 1, . . . , m, hi : Rn → R for
i = 1, . . . , 
. Consider the problem defined in (2.21). Suppose that x̄ is a local
optimal solution, and let I = {i : gi(x̄) = 0} be the index set for the binding or
active constraints. Furthermore, suppose that each gi for i /∈ I is continuous
at x̄, that f and gi for i ∈ I are differentiable at x̄, and that each hi for
i = 1, . . . , 
 is continuously differentiable at x̄. If ∇hi(x̄)t for i = 1, . . . , 
 are
linearly independent, then F0 ∩ G0 ∩ H0 = ∅, where

F0 = {d : ∇f(x̄)d < 0},
G0 = {d : ∇gi(x̄)d < 0 for i ∈ I}, (2.22)
H0 = {d : ∇hi(x̄)d = 0 for i = 1, . . . , 
}.

Proof. We use contradiction. Suppose there exists a vector y ∈ F0 ∩G0 ∩H0;
that is, ∇f(x̄)y < 0, ∇gi(x̄)y < 0 for each i ∈ I, and ∇h(x̄)y = 0, where ∇h(x̄)
is the 
 × n Jacobian matrix whose ith row is ∇hi(x̄). We now construct a
feasible arc from x̄. For λ ≥ 0, define α : R → R

n by the following differential
equation and boundary condition:

dα(λ)
dλ

= P(λ)y, α(0) = x̄, (2.23)

where P(λ) is the matrix that projects any vector into the null space of
∇h(α(λ)). For sufficiently small λ, the above equation is well-defined and
solvable because ∇h(x̄) has full row rank and hi, i = 1, . . . , 
, are continu-
ously differentiable at x̄, so that P is continuous in λ. Obviously, α(λ) → x̄
as λ → 0+.

We now show that for sufficiently small λ > 0, α(λ) is feasible and
f(α(λ)) < f(x̄), thus contradicting local optimality of x̄. By the chain rule of
differentiation and using (2.23), we obtain
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dgi(α(λ))
dλ

= ∇gi(α(λ))P(λ)y, (2.24)

for each i ∈ I. In particular, y is in the null space of ∇h(x̄), and so for λ = 0,
we have P(0)y = y. Hence, from (2.24) and the fact that ∇gi(x̄)y < 0, we
obtain

dgi(α(λ))
dλ

∣∣∣∣
λ=0

= ∇gi(x̄)y < 0, (2.25)

for i ∈ I. Recalling that gi(α(0)) = gi(x̄) = 0 for all i ∈ I, this and (2.25)
further imply that gi(α(λ)) < 0 for sufficiently small λ > 0, and for each
i ∈ I. For i �∈ I, gi(x̄) < 0, and gi is continuous at x̄, and thus gi(α(λ)) < 0
for sufficiently small λ. By the mean value theorem (Theorem 2.2.1), we have

hi(α(λ)) = hi(α(0)) + λ
dhi(α(λ))

dλ

∣∣∣∣
λ=µ

= λ
dhi(α(λ))

dλ

∣∣∣∣
λ=µ

, (2.26)

for some µ ∈ (0, λ). However, by the chain rule of differentiation and similarly
to (2.24), we obtain

dhi(α(λ))
dλ

∣∣∣∣
λ=µ

= ∇hi(α(µ))P(µ)y.

By construction, P(µ)y is in the null space of ∇hi(α(µ)) and, hence, from the

above equation we obtain
dhi(α(λ))

dλ

∣∣∣∣
λ=µ

= 0. Substituting in (2.26), it follows

that hi(α(λ)) = 0 for all i. Also, since X is open, α(λ) ∈ X for sufficiently
small λ.

We have, so far, established that the arc α(λ) defined by (2.23) is a fea-
sible solution to the problem (2.21) for each sufficiently small λ > 0, since
gi(α(λ)) < 0 for all i = 1, . . . , m, hi(α(λ)) = 0 for all i = 1, . . . , 
, and
α(λ) ∈ X . To complete the proof by contradiction we next prove that such
a feasible arc α(λ) would constitute an arc of improving solutions. By an
argument similar to that leading to (2.25), we obtain

df(α(λ))
dλ

∣∣∣∣
λ=0

= ∇f(x̄)y < 0,

and, hence, f(α(λ)) < f(x̄) for sufficiently small λ > 0. This contradicts local
optimality of x̄. Hence, F0 ∩ G0 ∩ H0 = ∅, and the proof is complete. �

2.5.3 The Fritz John Necessary Conditions

In this section we express the geometric optimality condition F0∩G0∩H0 = ∅
of Theorem 2.5.3 in a more usable algebraic form known as the Fritz John
conditions.
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Theorem 2.5.4 (The Fritz John Necessary Conditions) Let X be a
nonempty open set in Rn, and let f : Rn → R, gi : Rn → R for i = 1, . . . , m,
hi : R

n → R for i = 1, . . . , 
. Consider the optimisation problem defined in
(2.21). Let x̄ be a feasible solution, and let I = {i : gi(x̄) = 0}. Furthermore,
suppose that each gi for i /∈ I is continuous at x̄, that f and gi for i ∈ I are
differentiable at x̄, and that each hi for i = 1, . . . , 
 is continuously differen-
tiable at x̄. If x̄ locally solves problem (2.21), then there exist scalars u0 and
ui for i ∈ I, and vi for i = 1, . . . , 
, such that

u0∇f(x̄)t +
∑
i∈I

ui∇gi(x̄)t +
�∑

i=1

vi∇hi(x̄)t = 0,

u0, ui ≥ 0 for i ∈ I,

(u0, uI , v) �= (0, 0, 0),

(2.27)

where uI and v are vectors whose components are ui, i ∈ I, and vi, i =
1, . . . , 
, respectively. Furthermore, if gi, i /∈ I are also differentiable at x̄,
then the above conditions can be written as

u0∇f(x̄)t +
m∑

i=1

ui∇gi(x̄)t +
�∑

i=1

vi∇hi(x̄)t = 0,

uigi(x̄) = 0 for i = 1, . . . , m,

u0, ui ≥ 0 for i = 1, . . . , m,

(u0, u, v) �= (0, 0, 0),

(2.28)

where u and v are vectors whose components are ui, i = 1, . . . , m, and vi, i =
1, . . . , 
, respectively.

Proof. In the case where the vectors ∇hi(x̄)t for i = 1, . . . , 
 are linearly
dependent, then one can find scalars v1, . . . , v�, not all zero, such that∑�

i=1 vi∇hi(x̄)t = 0. Letting u0 and ui for i ∈ I equal to zero, conditions
(2.27) hold trivially.

Now suppose that ∇hi(x̄)t for i = 1, . . . , 
 are linearly independent. Then,
from Theorem 2.5.3, local optimality of x̄ implies that the sets defined in (2.22)
satisfy:

F0 ∩ G0 ∩ H0 = ∅. (2.29)

Let A1 be the matrix whose rows are ∇f(x̄) and ∇gi(x̄) for i ∈ I, and let A2

be the matrix whose rows are ∇hi(x̄) for i = 1, . . . , 
. Then, it is easy to see
that condition (2.29) is satisfied if and only if the system:

A1d < 0,

A2d = 0,

is inconsistent. Now consider the following two sets:
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S1 = {(z1, z2) : z1 = A1d, z2 = A2d, d ∈ R
n},

S2 = {(z1, z2) : z1 < 0, z2 = 0}.
Note that S1 and S2 are nonempty convex sets and, since the system A1d < 0,
A2d = 0 has no solution, then S1 ∩ S2 = ∅. Then, by Theorem 2.3.5, there
exists a nonzero vector pt = (pt

1, p
t
2) such that

pt
1A1d + pt

2A2d ≥ pt
1z1 + pt

2z2,

for each d ∈ Rn and (z1, z2) ∈ cl S2. Noting that z2 = 0 and since each
component of z1 can be made an arbitrarily large negative number, it follows
that p1 ≥ 0. Also, letting (z1, z2) = (0, 0) ∈ cl S2, we must have (pt

1A1 +
pt
2A2)d ≥ 0 for each d ∈ Rn. Letting d = −(At

1p1 + At
2p2), it follows that

−‖At
1p1 + At

2p2‖2 ≥ 0, and thus At
1p1 + At

2p2 = 0. Summarising, we have
found a nonzero vector pt = (pt

1, p
t
2) with p1 ≥ 0 such that At

1p1 + At
2p2 = 0.

Denoting the components of p1 by u0 and ui, i ∈ I, and letting p2 = v,
conditions (2.27) follow. The equivalent form (2.28) is readily obtained by
letting ui = 0 for i /∈ I, and the proof is complete. �

In the Fritz John conditions (2.28) the scalars u0, ui for i = 1, . . . , m,
and vi for i = 1, . . . , 
, are called the Lagrange multipliers associated, re-
spectively, with the objective function, the inequality constraints gi(x) ≤ 0,
i = 1, . . . , m, and the equality constraints hi(x) = 0, i = 1, . . . , 
. Observe
that the vi are unrestricted in sign. The condition that x̄ be feasible for the
optimisation problem (2.21) is called the primal feasibility [PF] condition. The

requirements u0∇f(x̄)t +
m∑

i=1

ui∇gi(x̄)t +
�∑

i=1

vi∇hi(x̄)t = 0, with u0, ui ≥ 0

for i = 1, . . . , m, and (u0, u, v) �= (0, 0, 0) are called the dual feasibility [DF]
conditions. The condition uigi(x̄) = 0 for i = 1, . . . , m is called the comple-
mentary slackness [CS] condition; it requires that ui = 0 if the corresponding
inequality is nonbinding (that is, gi(x̄) < 0), and allows for ui > 0 only for
those constraints that are binding. Together, the PF, DF and CS conditions
are called the Fritz John [FJ] optimality conditions. Any point x̄ for which
there exist Lagrange multipliers ū0, ūi, i = 1, . . . , m, v̄i, i = 1, . . . , 
, such that
the FJ conditions are satisfied is called an FJ point.

The FJ conditions can also be written in vector form as follows:

∇f(x̄)tu0 + ∇g(x̄)tu + ∇h(x̄)tv = 0,

utg(x̄) = 0,

(u0, u) ≥ (0, 0),
(u0, u, v) �= (0, 0, 0),

(2.30)

where ∇g(x̄) is the m× n Jacobian matrix whose ith row is ∇gi(x̄), ∇h(x̄) is
the 
 × n Jacobian matrix whose ith row is ∇hi(x̄), and g(x̄) is the m vector
function whose ith component is gi(x̄). Also, u and v are, respectively, an m
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vector and an 
 vector, whose elements are the Lagrange multipliers associated
with, respectively, the inequality and equality constraints.

At this point it is important to note that, given an optimisation problem,
there might be points that satisfy the FJ conditions trivially. For example,
if a feasible point x̄ (not necessarily an optimum) satisfies ∇f(x̄) = 0, or
∇gi(x̄) = 0 for some i ∈ I, or ∇hi(x̄) = 0 for some i = 1, . . . , 
, then we
can let the corresponding Lagrange multiplier be any positive number, set
all the other multipliers equal to zero, and satisfy conditions (2.27). In fact,
given any feasible solution x̄ we can always add a redundant constraint to
the problem to make x̄ an FJ point. For example, we can add the constraint
‖x − x̄‖2 ≥ 0, which holds true for all x ∈ Rn, is a binding constraint at x̄
and whose gradient is zero at x̄.

2.5.4 Karush–Kuhn–Tucker Necessary Conditions

In the previous section we stated the FJ necessary conditions for optimality.
We saw that the FJ conditions relate to the existence of scalars u0, ui ≥ 0 and
vi, not all zero, such that the conditions (2.27) are satisfied. We also saw that
there are instances where there are points that satisfy the conditions trivially,
for example, when the gradient of some binding constraint (which might even
be redundant) vanishes.

It is also possible that, at some feasible point x̄, the FJ conditions (2.27)
are satisfied with Lagrange multiplier associated with the objective func-
tion u0 = 0. In such cases, the FJ conditions become virtually useless since
the objective function gradient does not play a role in the optimality condi-
tions (2.27) and the conditions merely state that the gradients of the binding
inequality constraints and of the equality constraints are linearly dependent.
Thus, when u0 = 0, the FJ conditions are of no practical value in locating an
optimal point. Under suitable assumptions, referred to as constraint qualifica-
tions [CQ], u0 is guaranteed to be positive and the FJ conditions become the
Karush–Kuhn–Tucker [KKT] conditions, which will be presented next. There
exist various constraint qualifications for problems with inequality and equal-
ity constraints. Here, we use a typical constraint qualification that requires
that the gradients of the inequality constraints for i ∈ I and the gradients of
the equality constraints at x̄ be linearly independent.

Theorem 2.5.5 (Karush–Kuhn–Tucker Necessary Conditions) Let
X be a nonempty open set in Rn, and let f : Rn → R, gi : Rn → R for
i = 1, . . . , m, hi : Rn → R for i = 1, . . . , 
. Consider the problem defined in
(2.21). Let x̄ be a feasible solution, and let I = {i : gi(x̄) = 0}. Suppose that
f and gi for i ∈ I are differentiable at x̄, that each gi for i /∈ I is continu-
ous at x̄, and that each hi for i = 1, . . . , 
 is continuously differentiable at x̄.
Furthermore, suppose that ∇gi(x̄)t for i ∈ I and ∇hi(x̄)t for i = 1, . . . , 
 are
linearly independent. If x̄ is a local optimal solution, then there exist unique
scalars ui for i ∈ I, and vi for i = 1, . . . , 
, such that
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∇f(x̄)t +
∑
i∈I

ui∇gi(x̄)t +
�∑

i=1

vi∇hi(x̄)t = 0,

ui ≥ 0 for i ∈ I.

(2.31)

Furthermore, if gi, i /∈ I are also differentiable at x̄, then the above conditions
can be written as

∇f(x̄)t +
m∑

i=1

ui∇gi(x̄)t +
�∑

i=1

vi∇hi(x̄)t = 0,

uigi(x̄) = 0 for i = 1, . . . , m,

ui ≥ 0 for i = 1, . . . , m.

(2.32)

Proof. We have, from the FJ conditions (Theorem 2.5.4), that there exist
scalars û0 and ûi, i ∈ I, and v̂i, i = 1, . . . , 
, not all zero, such that

û0∇f(x̄)t +
∑
i∈I

ûi∇gi(x̄)t +
�∑

i=1

v̂i∇hi(x̄)t = 0,

û0, ûi ≥ 0 for i ∈ I.

(2.33)

Note that the assumption of linear independence of ∇gi(x̄)t for i ∈ I and
∇hi(x̄)t for i = 1, . . . , 
, together with (2.33) and the fact that at least one of
the multipliers is nonzero, implies that û0 > 0. Then, letting ui = ûi/û0 for
i ∈ I, and vi = v̂i/û0 for i = 1, . . . , 
 we obtain conditions (2.31). Furthermore,
the linear independence assumption implies the uniqueness of these Lagrange
multipliers. The equivalent form (2.32) follows by letting ui = 0 for i /∈ I.
This completes the proof. �

As in the FJ conditions, the scalars ui and vi are called the
Lagrange multipliers. Observe that the vi are unrestricted in sign.
The condition that x̄ be feasible for the optimisation problem (2.21)
is called the primal feasibility [PF] condition. The requirement that

∇f(x̄)t +
m∑

i=1

ui∇gi(x̄)t +
�∑

i=1

vi∇hi(x̄)t = 0, with ui ≥ 0 for i = 1, . . . , m

is called the dual feasibility [DF] condition. The condition uigi(x̄) = 0 for
i = 1, . . . , m is called the complementary slackness [CS] condition; it requires
that ui = 0 if the corresponding inequality is nonbinding (that is, gi(x̄) < 0),
and it permits ui > 0 only for those constraints that are binding. Together,
the PF, DF and CS conditions are called the Karush–Kuhn–Tucker [KKT]
optimality conditions. Any point x̄ for which there exist Lagrange multipli-
ers ūi, i = 1, . . . , m, v̄i, i = 1, . . . , 
, that, together with x̄, satisfy the KKT
conditions is called a KKT point.

The KKT conditions can also be written in vector form as follows:
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∇f(x̄)t + ∇g(x̄)tu + ∇h(x̄)tv = 0,

utg(x̄) = 0,

u ≥ 0,

(2.34)

where ∇g(x̄) is the m× n Jacobian matrix whose ith row is ∇gi(x̄), ∇h(x̄) is
the 
 × n Jacobian matrix whose ith row is ∇hi(x̄), and g(x̄) is the m vector
function whose ith component is gi(x̄). Also, u and v are, respectively, an m
vector and an 
 vector, whose elements are the Lagrange multipliers associated
with, respectively, the inequality and equality constraints.

2.5.5 Karush–Kuhn–Tucker Sufficient Conditions

In the previous section we derived the KKT necessary conditions for optimal-
ity from the FJ optimality conditions. This derivation was done by asserting
that the multiplier associated with the objective function is positive at a local
optimum whenever a linear independence constraint qualification is satisfied.
It is important to notice that the linear independence constraint qualifica-
tion is only a sufficient condition3 placed on the behaviour of the constraints
to ensure that an FJ point (and hence, from Theorem 2.5.4, any local opti-
mum) be a KKT point. Thus, the importance of the constraint qualifications
is to guarantee that, by examining only KKT points, we do not lose out on
optimal solutions. There is an important special case; namely, when the con-
straints are linear, in which case the KKT conditions are always necessary
optimality conditions irrespective of the behaviour of the objective function.
(Although we will not prove this result here, it comes from the fact that a
more general constraint qualification to that of linear independence, known as
Abadie’s constraint qualification—see Abadie 1967—is automatically satisfied
when the constraints are linear.) However, we are still left with the problem
of determining, among all the points that satisfy the KKT conditions, which
ones constitute local optimal solutions. The following result shows that, under
moderate convexity assumptions, the KKT conditions are also sufficient for
local optimality.

Theorem 2.5.6 (Karush–Kuhn–Tucker Sufficient Conditions) Let X
be a nonempty open set in Rn, and let f : Rn → R, gi : Rn → R for i =
1, . . . , m, hi : Rn → R for i = 1, . . . , 
. Consider the problem defined in
(2.21). Let x̄ be a feasible solution, and let I = {i : gi(x̄) = 0}. Suppose that
the KKT conditions hold at x̄; that is, there exist scalars ūi ≥ 0 for i ∈ I, and
v̄i for i = 1, . . . , 
, such that

∇f(x̄)t +
∑
i∈I

ūi∇gi(x̄)t +
�∑

i=1

v̄i∇hi(x̄)t = 0. (2.35)

3 It is possible, in some optimisation problems, for a local optimum to be a KKT
point and yet not satisfy the linear independence constraint qualification.
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Let J = {i : v̄i > 0} and K = {i : v̄i < 0}. Further, suppose that f is
pseudoconvex at x̄, gi is quasiconvex at x̄ for i ∈ I, hi is quasiconvex at x̄ for
i ∈ J , and hi is quasiconcave at x̄ (that is, −hi is quasiconvex at x̄) for i ∈ K.
Then x̄ is a global optimal solution to problem (2.21). In particular, if these
generalised convexity assumptions on the objective and constraint functions
are restricted to the domain Nε(x̄) for some ε > 0, then x̄ is a local minimum
for problem (2.21).

Proof. Let x be any feasible solution to problem (2.21). (In the case where
we need to restrict the domain to Nε(x̄), then let x be a feasible solution to
problem (2.21) that also lies within Nε(x̄).) Then, for i ∈ I, gi(x) ≤ gi(x̄),
since gi(x) ≤ 0 and gi(x̄) = 0. By the quasiconvexity of gi at x̄ it follows that

gi(x̄ + λ(x − x̄)) = gi(λx + (1 − λ)x̄) ≤ max{gi(x), gi(x̄)} = gi(x̄),

for all λ ∈ (0, 1). This implies that gi does not increase by moving from x̄ along
the direction x − x̄. Thus, by an analogous result to that of Theorem 2.4.1,
we must have

∇gi(x̄)(x − x̄) ≤ 0 for i ∈ I. (2.36)

Similarly, since hi is quasiconvex at x̄ for i ∈ J and hi is quasiconcave at x̄
for i ∈ K, we have

∇hi(x̄)(x − x̄) ≤ 0 for i ∈ J, (2.37)
∇hi(x̄)(x − x̄) ≥ 0 for i ∈ K. (2.38)

Multiplying (2.36), (2.37) and (2.38) by ūi ≥ 0, v̄i > 0, and v̄i < 0, respec-
tively, and adding the terms, we obtain∑

i∈I

ūi∇gi(x̄)(x − x̄) +
∑

i∈J∪K

v̄i∇hi(x̄)(x − x̄) ≤ 0. (2.39)

Transposing (2.35), multiplying by (x−x̄) and noting that v̄i = 0 for i /∈ J∪K,
then (2.39) implies that

∇f(x̄)(x − x̄) ≥ 0.

By the pseudoconvexity of f at x̄, we must have f(x) ≥ f(x̄), and the proof
is complete. �

An important point to note is that, despite the sufficiency of the KKT
conditions under the generalised convexity assumptions of Theorem 2.5.6, the
KKT conditions are not necessary for optimality for these problems. (This
situation, however, only arises when the constraint qualification does not hold
at a local optimal solution, and hence the local solution is not captured by
the KKT conditions.)
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2.5.6 Quadratic Programs

Quadratic programs represent a special class of nonlinear programs in which
the objective function is quadratic and the constraints are linear. Thus, a
quadratic programming [QP] problem can be written as

minimise
1
2
xtHx + xtc, (2.40)

subject to:
At

Ix ≤ bI ,

At
Ex = bE ,

where H is an n × n matrix, c is an n vector, AI is an n × mI matrix, bI is
an mI vector, AE is an n × mE matrix and bE is an mE vector.

As mentioned in the previous section, since the constraints are linear we
have that a constraint qualification, known as Abadie’s constraint qualifica-
tion, is automatically satisfied and, hence, a local minimum x̄ is necessar-
ily a KKT point. Also, since the constraints are linear, the constraint set
S = {x : At

Ix ≤ bI , At
Ex = bE} is a (polyhedral) convex set. Thus, the QP

problem (2.40) is a convex program if and only if the objective function is
convex; that is, if and only if H is symmetric and positive semidefinite. In
this case we have, from Theorem 2.5.1, that x̄ is a local minimum if and only
if x̄ is a global minimum. And, from Theorems 2.5.5 and 2.5.6 (and from the
automatic fulfilment of Abadie’s constraint qualification), we have that the
above is true if and only if x̄ is a KKT point. Furthermore, if H is positive
definite, then we have that the objective function is strictly convex and we
can conclude from Theorem 2.5.1 that x̄ is the unique global minimum for
problem (2.40).

The KKT conditions (2.34) for the QP problem defined in (2.40) are:

PF: At
I x̄ ≤ bI ,

At
E x̄ = bE,

DF: Hx̄ + c + AIu + AEv = 0,
u ≥ 0,

CS: ut(At
I x̄ − bI) = 0,

(2.41)

where u is an mI vector of Lagrange multipliers corresponding to the inequal-
ity constraints and v is an mE vector of Lagrange multipliers corresponding
to the equality constraints.

2.6 Lagrangian Duality

In this section we present the concept of Lagrangian duality. Given a nonlin-
ear programming problem, known as the primal problem, there exists another
nonlinear programming problem, closely related to it, that receives the name
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of the Lagrangian dual problem. As we will see later in Section 2.6.3, under cer-
tain convexity assumptions and suitable constraint qualifications, the primal
and dual problems have equal optimal objective values.

2.6.1 The Lagrangian Dual Problem

We will first define the primal and dual problems as separate optimisation
problems. Later we will see that these two problems are closely related.

Thus, first consider the following nonlinear programming problem, called
the primal problem.

Primal Problem P

minimise f(x), (2.42)
subject to:
gi(x) ≤ 0 for i = 1, . . . , m,

hi(x) = 0 for i = 1, . . . , 
,

x ∈ X.

Then the Lagrangian dual problem is defined as the following nonlinear
programming problem.

Lagrangian Dual Problem D

maximise θ(u, v), (2.43)
subject to:
u ≥ 0,

where

θ(u, v) = inf{f(x) +
m∑

i=1

uigi(x) +
�∑

i=1

vihi(x) : x ∈ X} (2.44)

is the Lagrangian dual function.
In the dual problem (2.43)–(2.44), the vectors u and v have as their compo-

nents the Lagrange multipliers ui for i = 1, . . . , m, and vi for i = 1, . . . , 
. Note
that the Lagrange multipliers ui, corresponding to the inequality constraints
gi(x) ≤ 0, are restricted to be nonnegative, whereas the Lagrange multipliers
vi, corresponding to the equality constraints hi(x) = 0, are unrestricted in
sign.

Given the primal problem P (2.42), several Lagrangian dual problems D of
the form of (2.43)–(2.44) can be devised, depending on which constraints are
handled as gi(x) ≤ 0 and hi(x) = 0, and which constraints are handled by the
set X . Hence, an appropriate selection of the set X must be made, depending
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on the nature of the problem and the goal of formulating or solving the dual
problem D.

The primal and dual problems can also be written in vector form.
Consider the function f : Rn → R and the vector functions g : Rn → Rm and
h : Rn → R�, whose ith components are gi and hi, respectively. Then, we can
write:

Primal Problem P

minimise f(x), (2.45)
subject to:
g(x) ≤ 0,

h(x) = 0,

x ∈ X.

Lagrangian Dual Problem D

maximise θ(u, v), (2.46)
subject to:
u ≥ 0,

where θ(u, v) = inf{f(x) + utg(x) + vth(x) : x ∈ X}.
The relationship between the primal and dual problems will be explored

below.

2.6.2 Geometric Interpretation of the Lagrangian Dual

An interesting geometric interpretation of the dual problem can be made by
considering a simpler problem with only one inequality constraint and no
equality constraint. Consider the following primal problem P:

Primal Problem P

minimise f(x), (2.47)
subject to:
g(x) ≤ 0,

x ∈ X,

where f : Rn → R and g : Rn → R, and define the following set in R2:

G = {(y, z) : y = g(x), z = f(x) for some x ∈ X},
that is, G is the image of X under the (g, f) map. Figure 2.14 shows an
example of the set G. Then, the primal problem consists of finding a point in
G with y ≤ 0 that has minimum ordinate z. Obviously this point in Figure 2.14
is (ȳ, z̄).



2.6 Lagrangian Duality 57

xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx

X

x

G

(g, f)

y

z
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Figure 2.14. Geometric interpretation of Lagrangian duality: case with no duality
gap.

Now, consider the Lagrangian dual problem D:

Lagrangian Dual Problem D

maximise θ(u), (2.48)
subject to:
u ≥ 0.

The solution of the Lagrangian dual problem (2.48) requires one to first
solve the following Lagrangian dual subproblem:

θ(u) = inf{f(x) + ug(x) : x ∈ X}. (2.49)

Given u ≥ 0, problem (2.49) is equivalent to minimise z+uy over points (y, z)
in G. Note that z + uy = α is the equation of a straight line with slope −u
that intercepts the z-axis at α. Thus, in order to minimise z + uy over G we
need to move the line z + uy = α parallel to itself as far down as possible,
whilst it remains in contact with G. The last intercept on the z-axis thus
obtained is the value of θ(u) corresponding to the given u ≥ 0, as shown in
Figure 2.14. Finally, to solve the dual problem (2.48), we have to find the
line with slope −u (u ≥ 0) such that the last intercept on the z-axis, θ(u), is
maximal. Such a line is shown in Figure 2.14. It has slope −ū and supports
the set G (recall Definition 2.3.4) at the point (ȳ, z̄). Thus, the solution to the
dual problem (2.48) is ū, and the optimal dual objective value is z̄. It can be
seen that, in the example illustrated in Figure 2.14, the optimal primal and
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dual objective values are equal. In such cases, it is said that there is no duality
gap. In the next section we will develop conditions such that no duality gap
exists.

2.6.3 Weak and Strong Duality

In this section we explore the relationships between the primal problem P
and its Lagrangian dual problem D. In particular, we are interested in the
conditions that the primal problem P must satisfy for the primal and dual
objective values to be equal; this situation is known as strong duality. The
first result shows that the objective value of any feasible solution to the dual
problem constitutes a lower bound for the objective value of any feasible
solution to the primal problem.

Theorem 2.6.1 (Weak Duality Theorem) Consider the primal prob-
lem P given by (2.45) and its Lagrangian dual problem D given by (2.46).
Let x be a feasible solution to P; that is, x ∈ X, g(x) ≤ 0, and h(x) = 0. Also,
let (u, v) be a feasible solution to D; that is, u ≥ 0. Then:

f(x) ≥ θ(u, v).

Proof. We use the definition of θ given in (2.44), and the facts that x ∈ X ,
u ≥ 0, g(x) ≤ 0 and h(x) = 0. We then have

θ(u, v) = inf{f(x̃) + utg(x̃) + vth(x̃) : x̃ ∈ X}
≤ f(x) + utg(x) + vth(x) ≤ f(x),

and the result follows. �

Corollary 2.6.2

inf{f(x) : x ∈ X, g(x) ≤ 0, h(x) = 0} ≥ sup{θ(u, v) : u ≥ 0}. (2.50)

◦
Note from (2.50) that the optimal objective value of the primal problem

is greater than or equal to the optimal objective value of the dual problem.
If (2.50) holds as a strict inequality, then it is said that there exists a duality
gap. Figure 2.15 shows an example for the primal and dual problems defined
in (2.47) and (2.48)–(2.49), respectively. Notice that, in the case shown in
the figure, there exists a duality gap. We see, by comparing Figure 2.15 with
Figure 2.14, that the presence of a duality gap is due to the nonconvexity of
the set G. As we will see in Theorem 2.6.4 below, if some suitable convexity
conditions are satisfied, then there is no duality gap between the primal and
dual optimisation problems. Before stating the conditions that guarantee the
absence of a duality gap, we need the following result.
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Figure 2.15. Geometric interpretation of Lagrangian duality: case with duality
gap.

Lemma 2.6.3 Let X be a nonempty convex set in Rn. Let α : Rn → R and
g : Rn → Rm be convex,4 and h : Rn → R� be affine (that is, assume h is
of the form h(x) = Ax − b). Also, let u0 be a scalar, u ∈ Rm and v ∈ R�.
Consider the following two systems:

System 1: α(x) < 0, g(x) ≤ 0, h(x) = 0 for some x ∈ X.

System 2: u0α(x) + utg(x) + vth(x) ≥ 0 for some (u0, u, v) �= (0, 0, 0),
(u0, u) ≥ (0, 0) and for all x ∈ X.

If System 1 has no solution x, then System 2 has a solution (u0, u, v). Con-
versely, if System 2 has a solution (u0, u, v) with u0 > 0, then System 1 has
no solution.

Proof. Assume first that System 1 has no solution. Define the set:

S = {(p, q, r) : p > α(x), q ≥ g(x), r = h(x) for some x ∈ X}.
The reader can easily verify that, since X , α and g are convex and h is affine,
the set S is convex. Since System 1 has no solution, we have that (0, 0, 0) /∈ S.
We then have, from Corollary 2.3.4, that there exists a nonzero vector (u0, u, v)
such that

(u0, u, v)t[(p, q, r) − (0, 0, 0)] = u0p + utq + vtr ≥ 0, (2.51)
4 That is, each component of the vector-valued function g is a convex function.
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for each (p, q, r) ∈ cl S. Now, fix an x ∈ X . Noticing, from the defini-
tion of S, that p and q can be made arbitrarily large, we have that in or-
der to satisfy (2.51), we must have u0 ≥ 0 and u ≥ 0. Also, note that
[α(x), g(x), h(x)] ∈ clS and we have from (2.51) that

u0α(x) + utg(x) + vth(x) ≥ 0.

Since the above inequality is true for each x ∈ X , System 2 has a solution.
To prove the converse, assume that System 2 has a solution (u0, u, v) such

that u0 > 0 and u ≥ 0, and u0α(x) + utg(x) + vth(x) ≥ 0 for each x ∈ X .
Suppose that x ∈ X is such that g(x) ≤ 0 and h(x) = 0. From the previous
inequality we conclude that u0α(x) ≥ −utg(x) ≥ 0, since u ≥ 0 and g(x) ≤ 0.
But, since u0 > 0, we must then have that α(x) ≥ 0. Hence, System 1 has no
solution. This completes the proof. �

The following result, known as the strong duality theorem, shows that, under
suitable convexity assumptions and under a constraint qualification, there is
no duality gap between the primal and dual optimal objective function values.

Theorem 2.6.4 (Strong Duality Theorem) Let X be a nonempty convex
set in Rn. Let f : Rn → R and g : Rn → Rm be convex, and h : Rn → R�

be affine. Suppose that the following constraint qualification is satisfied. There
exists an x̂ ∈ X such that g(x̂) < 0 and h(x̂) = 0, and 0 ∈ inth(X), where
h(X) = {h(x) : x ∈ X}. Then,

inf{f(x) : x ∈ X, g(x) ≤ 0, h(x) = 0} = sup{θ(u, v) : u ≥ 0}, (2.52)

where θ(u, v) = inf{f(x) + utg(x) + vth(x) : x ∈ X}. Furthermore, if the inf
is finite, then sup{θ(u, v) : u ≥ 0} is achieved at (ū, v̄) with ū ≥ 0. If the inf
is achieved at x̄, then ūtg(x̄) = 0.

Proof. Let γ = inf{f(x) : x ∈ X, g(x) ≤ 0, h(x) = 0}. By assumption there
exists a feasible solution x̂ for the primal problem and hence γ < ∞. If γ =
−∞, we then conclude from Corollary 2.6.2 that sup{θ(u, v) : u ≥ 0} = −∞
and, hence, (2.52) is satisfied. Thus, suppose that γ is finite, and consider the
following system:

f(x) − γ < 0, g(x) ≤ 0 h(x) = 0, for some x ∈ X.

By the definition of γ, this system has no solution. Hence, from Lemma 2.6.3,
there exists a nonzero vector (u0, u, v) with (u0, u) ≥ (0, 0) such that

u0[f(x) − γ] + utg(x) + vth(x) ≥ 0 for all x ∈ X. (2.53)

We will next show that u0 > 0. Suppose, by contradiction that u0 = 0.
By assumption, there exists an x̂ ∈ X such that g(x̂) < 0 and h(x̂) = 0.
Substituting in (2.53) we obtain utg(x̂) ≥ 0. But, since g(x̂) < 0 and u ≥ 0,
utg(x̂) ≥ 0 is only possible if u = 0. From (2.53), u0 = 0 and u = 0 imply
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that vth(x) ≥ 0 for all x ∈ X . But, since 0 ∈ inth(X), we can choose an
x ∈ X such that h(x) = −λv, where λ > 0. Therefore, 0 ≤ vth(x) = −λ‖v‖2,
which implies that v = 0. Thus, it has been shown that u0 = 0 implies that
(u0, u, v) = (0, 0, 0), which is a contradiction. We conclude, then, that u0 > 0.
Dividing (2.53) by u0 and denoting ū = u/u0 and v̄ = v/u0, we obtain

f(x) + ūtg(x) + v̄th(x) ≥ γ for all x ∈ X. (2.54)

This implies that θ(ū, v̄) = inf{f(x)+ ūtg(x)+ v̄th(x) : x ∈ X} ≥ γ. We then
conclude, from Theorem 2.6.1, that θ(ū, v̄) = γ and, from Corollary 2.6.2,
that (ū, v̄) solves the dual problem. Finally, to complete the proof, assume
that x̄ is an optimal solution to the primal problem; that is, x̄ ∈ X , g(x̄) ≤ 0,
h(x̄) = 0 and f(x̄) = γ. From (2.54), letting x = x̄, we get ūtg(x̄) ≥ 0. Since
ū ≥ 0 and g(x̄) ≤ 0, we get ūtg(x̄) = 0. This completes the proof. �

2.7 Multiconvex Problems

We have emphasised convex optimisation problems since these have many
desirable properties, for example, all local minima are global minima, absence
of duality gap, and so on. Sometimes a problem is nonconvex but can be
partitioned into a finite number of subproblems, each of which is convex within
a convex region. In this case, we can solve each of the convex problems using
constraints to restrict the solution to the appropriate region. Then one can
simply compare the resulting objective values and decide which is best. Of
course, the disadvantage of this idea is that one has to solve as many convex
problems as there are convex regions. Nonetheless, this is a useful strategy in
many problems of interest in practice (see, for example, Chapter 9).

This completes our brief introduction to optimisation theory. Of course,
this is a rich topic and many more results are available in the literature. We
refer the reader to some of the books listed in Section 2.8. However, our brief
introduction will suffice for the problems addressed here. Indeed, we will make
extensive use of the concepts outlined in this chapter. As a prelude of what is
to follow, we note that in Chapter 3 we will use the KKT optimality conditions
in the context of nonlinear optimal control; and in Chapter 10 we will utilise
strong Lagrangian duality to connect constrained control and estimation.

2.8 Further Reading

For complete list of references cited, see References section at the end of book.

General

This chapter is mainly based on Bazaraa et al. (1993).
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The following books complement and extend the material presented in this
chapter: Boyd and Vandenberghe (2003), Nocedal and Wright (1999), Nash
and Sofer (1996), Floudas (1995), Fiacco and McCormick (1990), Fletcher
(2000), Luenberger (1984), (1989), Fiacco (1983), Gill, Murray and Wright
(1981), Abadie (1967).




