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Finite Alphabet Controllers and Estimators

Contributed by Daniel Quevedo

13.1 Introduction

In this chapter we address the issue of control and estimation when the deci-
sion variables must satisfy a finite set constraint. We will distinguish between
finite alphabet control and estimation problems. As in the case of convex con-
straints, the essential difference is whether or not the initial state is given or
can be considered a decision variable.

Finite alphabet control occurs in many practical situations including: on-
off control, relay control, control where quantisation effects are important (in
principle this covers all digital control systems and control systems over digital
communication networks), and switching control of the type found in power
electronics.

Exactly the same design methodologies can be applied in other areas; for
example, the following problems can be directly formulated as finite alphabet
control problems:

• quantisation of audio signals for compact disc production;
• design of filters where the coefficients are restricted to belong to a finite

set (it is common in digital signal processing to use coefficients that are
powers of two to facilitate implementation issues);

• design of digital-to-analog [D/A] and analog-to-digital [A/D] converters.

Finite alphabet estimation problems are also frequently encountered in
practice. Common examples are:
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• estimation of transmitted signals in digital communication systems where
the signals are known to belong to a finite alphabet (say ±1);

• state estimation problems where a disturbance is known to take only a
finite set of values (for example, either “on” or “off”).

In this chapter we show how these problems can be formulated in the same
general framework as described in earlier chapters. However, special care is
needed to address the finite set nature of the constraints. In particular, this
restriction gives rise to a hard combinatorial optimisation problem, which is
exponential in the dimension of the problem. Thus, various approximation
techniques are necessary to deal with optimisation problems in which the
horizon is large. Commonly used strategies are variants of well-known branch
and bound algorithms (Land and Doig 1960, Bertsekas 1998).

We will show how the receding horizon principle can be used in these
problems. A key observation in this context is the fact that often the “first”
decision variable is insensitive to increasing the optimisation horizon beyond
some modest value (typically 3 to 10 in many real world problems).

Also, a closed form expression for the control law is derived by exploiting
the geometry of the underlying optimisation problem. The solution can also
be characterised by means of a partition of the state space, which is closely
related to the partition induced by the interval-constrained solution,1 as de-
veloped in Chapter 6. As a consequence, the controller can be implemented
without relying upon on-line numerical optimisation. Furthermore, the insight
obtained from this viewpoint into the nature of the control law can be used
to study the dynamic behaviour of the closed loop system.

13.2 Finite Alphabet Control

Consider a linear system having a scalar input uk and state vector xk ∈ Rn

described by
xk+1 = Axk + Buk. (13.1)

(Here we treat only the scalar input case, but the extension to multiple inputs
presents no additional conceptual difficulties.) A key consideration here is that
the input is restricted to belong to the finite set

U = {s1, s2, . . . , snU
}, (13.2)

where si ∈ R and si < si+1 for i = 1, 2, . . . , nU − 1.
We will formulate the input design problem as a receding horizon quadratic

regulator problem with finite set constraints. Thus, given the state xk = x,
we seek the optimising sequence of present and future control inputs:

1 The explicit solution in problems with “interval-type” constraints of the form
|u| ≤ ∆.
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uopt(x) � arg min
uk∈U

N

VN (x,uk), (13.3)

where

uk �

⎡⎢⎢⎢⎣
uk

uk+1

...
uk+N−1

⎤⎥⎥⎥⎦ , U
N � U × · · · × U. (13.4)

As in previous chapters, in (13.3) VN is the finite horizon quadratic objective
function2

VN (x,uk) � ‖xk+N‖2
P +

k+N−1∑
t=k

(‖xt‖2
Q + ‖ut‖2

R), (13.5)

with Q = Qt > 0, P = P t > 0, R = Rt > 0 and where xk = x. Note that, as
usual, the formulation of VN ( · , · ), uses predictions of future plant states.

Whilst we concentrate here upon plant state deviations from the origin,
nonzero references can also be encompassed within this framework. In order
to accomplish this, the objective function (13.5) needs to be modified by con-
sidering shifted coordinates as is common when dealing with nonzero constant
references in standard receding horizon control schemes (see Chapter 5).

The minimisation of (13.5) subject to the finite set constraint on uk and
the plant dynamics expressed in (13.1) yields the optimal sequence uopt(x).
It is a function only of the current state value xk = x.

Following the usual receding horizon principle (see Chapter 4), only the
first control action, namely

uopt(x) �
[
1 0 · · · 0

]
uopt(x), (13.6)

is applied. At the next time instant, the optimisation is repeated with a new
initial state and the finite horizon window shifted by one.

In the next section we present a closed form expression for uopt(x). This is
directly analogous to the geometric interpretation of the constrained solution
developed in Chapter 6. This result will allow us to characterise the control law
as a partition of the state space and provide a tool for studying the dynamic
behaviour of the resulting closed loop system.

13.3 Nearest Neighbour Characterisation of the Solution

Since the constraint set U
N is finite, the optimisation problem (13.3) is non-

convex. Indeed, it is a hard combinatorial optimisation problem whose solution
requires a computation time that is exponential in the horizon length. Thus,

2 ‖ν‖2
S denotes νtSν, where ν is any vector and S is a matrix.
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one needs either to use a relatively small horizon or to resort to approximate
solutions. We will adopt the former strategy based on the premise that, due
to the receding horizon technique, the first decision variable is all that is of
interest. Moreover, it is a practical observation that this first decision variable
is often insensitive to increasing the horizon length beyond some relative mod-
est value. To proceed, it is useful to vectorise the objective function (13.5) as
follows:

Define

xk �

⎡⎢⎢⎢⎣
xk+1

xk+2

...
xk+N

⎤⎥⎥⎥⎦ , Φ �

⎡⎢⎢⎢⎣
B 0 . . . 0 0

AB B . . . 0 0
...

...
. . .

...
...

AN−1B AN−2B . . . AB B

⎤⎥⎥⎥⎦ , Λ �

⎡⎢⎢⎢⎣
A
A2

...
AN

⎤⎥⎥⎥⎦ , (13.7)

so that, given xk = x and by iterating (13.1), the predictor xk satisfies

xk = Φuk + Λx. (13.8)

Hence, the objective function (13.5) can be re-written as

VN (x,uk) = V̄N (x) + ut
kHuk + 2ut

kFx, (13.9)

where

H � ΦtQΦ + R ∈ R
N×N , F � ΦtQΛ ∈ R

N×n,

Q � diag{Q, . . . , Q, P} ∈ R
Nn×Nn, R � diag{R, . . . , R} ∈ R

N×N ,

and V̄N (x) does not depend upon uk.
By direct calculation, it follows that the minimiser to (13.9), without tak-

ing into account any constraints on uk, is

uopt
uc (x) = −H−1Fx. (13.10)

Our subsequent development will utilise a nearest neighbour vector quan-
tiser in order to characterise the constrained optimiser. This is defined as
follows:

Definition 13.3.1 (Nearest Neighbour Vector Quantiser) Given a
countable (not necessarily finite) set of nonequal vectors B = {b1, b2, . . . } ⊂
RnB , the nearest neighbour quantiser is defined as a mapping qB : RnB → B

that assigns to each vector c ∈ RnB the closest element of B (as measured by
the Euclidean norm), that is, qB(c) = bi ∈ B if and only if c belongs to the
region{

c ∈ R
nB : ‖c − bi‖2 ≤ ‖c − bj‖2 for all bj �= bi, bj ∈ B

}
\{c ∈ R

nB : there exists j < i such that ‖c − bi‖2 = ‖c− bj‖2
}

. (13.11)

◦
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Note that in the special case, when nB = 1, this vector quantiser reduces
to the standard scalar quantiser.

In the above definition, the zero measure set of points that satisfy (13.11)
with equality have been arbitrarily assigned to the element having the smallest
index. This is done in order to avoid ambiguity in the case of frontier points,
that is, points equidistant to two or more elements of B. If this aspect does
not matter, then expression (13.11) can be simplified to{

c ∈ R
nB : ‖c − bi‖2 ≤ ‖c− bj‖2 for all bj �= bi, bj ∈ B

}
. (13.12)

Given Definition 13.3.1, we can now restate the solution to (13.3). This
leads to:

Theorem 13.3.1 (Closed Form Solution) Let U
N = {v1, v2, . . . , vr},

where r = (nU)N . Then the optimiser uopt(x) in (13.3) is given by

uopt(x) = H−1/2q
Ũ

N (−H−t/2Fx), (13.13)

where the nearest neighbour quantiser q
Ũ

N (·) maps RN to Ũ
N , defined as

Ũ
N � {ṽ1, ṽ2, . . . , ṽr}, ṽi = H1/2vi, vi ∈ U

N . (13.14)

Proof. For fixed x, the level sets of the objective function (13.9) are ellip-
soids in the input sequence space RN . These are centred at the point uopt

uc (x)
defined in (13.10). Thus, the optimisation problem (13.3) can be geometri-
cally interpreted as the one where we find the point uk ∈ U

N that belongs to
the smallest ellipsoid defined by (13.9) (that is, the point which provides the
smallest objective function value whilst satisfying the constraints).

In order to simplify the problem, we introduce the same coordinate trans-
formation utilised in Chapter 6, that is,

ũk = H1/2uk, (13.15)

which transforms the constraint set U
N into Ũ

N defined in (13.14). The opti-
miser uopt(x) can be defined in terms of this auxiliary variable as

uopt(x) = H−1/2 arg min
ũk∈Ũ

N

JN (x, ũk), (13.16)

where
JN (x, ũk) � ũt

kũk + 2ũt
kH−t/2Fx. (13.17)

The level sets of JN are spheres in RN , centred at

ũopt
uc (x) � −H−t/2Fx. (13.18)

Hence, the constrained optimiser (13.3) is given by the nearest neighbour to
ũopt

uc (x), namely

arg min
ũk∈Ũ

N
JN (x, ũk) = q

Ũ
N (−H−t/2Fx). (13.19)

The result (13.13) follows by substituting (13.19) into (13.16). �
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We observe that, with N > 1, the optimiser uopt(x) provided in Theo-
rem 13.3.1 is, in general, different to the sequence obtained by direct quanti-
sation of the unconstrained minimum (13.10), namely, q

U
N (uopt

uc (x)).
As a consequence of Theorem 13.3.1, the receding horizon controller (13.6)

satisfies
uopt(x) =

[
1 0 · · · 0

]
H−1/2q

Ũ
N (−H−t/2Fx). (13.20)

This solution can be illustrated as the composition of the following transfor-
mations:

x ∈ R
n −H− t

2 F−−−−−−−→ ũopt
uc ∈ R

N
H− 1

2 q
Ũ

N (·)
−−−−−−−−−→ uopt ∈ U

N [1 0 · · · 0]−−−−−−−→ uopt ∈ U .
(13.21)

It is worth noticing that q
Ũ

N (·) is a memoryless nonlinearity, so
that (13.20) corresponds to a time-invariant nonlinear state feedback law.
In a direct implementation, at each time step, the quantiser needs to perform
r − 1 comparisons. However, in some cases, it is possible to exploit the na-
ture of the problem to obtain more efficient search algorithms (Quevedo and
Goodwin 2003a).

13.4 State Space Partition

Expression (13.11) partitions the domain of the quantiser into polyhedra,
called Voronoi partition. Since the constrained optimiser uopt(x) in (13.13)
(see also (13.21)) is defined in terms of q

Ũ
N (·), an equivalent partition of the

state space can be derived, as shown next.

Theorem 13.4.1 The constrained optimising sequence uopt(x) in (13.13)
can be characterised as

uopt(x) = vi ⇐⇒ x ∈ Ri,

where

Ri �
{
z ∈ R

n : 2(vi − vj)tFz ≤ ‖vj‖2
H − ‖vi‖2

H for all vj �= vi, vj ∈ U
N
}

\
{
z ∈ R

n : there exists j < i such that 2(vi − vj)tFz = ‖vj‖2
H − ‖vi‖2

H

}
.

(13.22)

Proof. From expressions (13.13) and (13.14) it follows that uopt(x) = vi if
and only if q

Ũ
N (−H−t/2Fx) = ṽi. On the other hand,

‖ − H−t/2Fx − ṽi‖2 = ‖H−t/2Fx‖2 + ‖ṽi‖2 + 2ṽt
i H−t/2Fx,

so that
‖ − H−t/2Fx − ṽi‖2 ≤ ‖ − H−t/2Fx − ṽj‖2
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holds if and only if

2(ṽi − ṽj)tH−t/2Fx ≤ ‖ṽj‖2 − ‖ṽi‖2.

This inequality together with expressions (13.14) and (13.11) shows that

q
Ũ

N (−H−t/2Fx) = ṽi

if and only if x belongs to the region Ri defined in (13.22). This fact completes
the proof. �

The nN
U

regions Ri defined in (13.22) are polyhedra. Without taking into
account constraint borders, we can write these in a compact form as

Ri =
{
x ∈ R

n : Dix ≤ hi

}
,

where the rows of Di are equal to all terms 2(vi − vj)tF as required, whilst
the vector hi contains the scalars ‖vj‖2

H − ‖vi‖2
H .

Some of the inequalities in (13.22) may be redundant. In these cases, the
corresponding regions do not share a common edge, that is, they are not
adjacent. This phenomenon is illustrated in Figure 13.4 of Example 13.8.1,
where the regions R1 and R4 are not adjacent. The inequality separating
them is redundant.

Also, depending upon the matrix H−t/2F , some of the regions Ri may be
empty. This might happen, in particular, if N > n. In this case, the rank of
F is smaller than N and the transformation H−t/2F does not span the entire
space RN . Figure 13.1 illustrates this for the case n = 1, nU = 2 and N = 2.
As can be seen from this figure, depending on the unconstrained optimum
locus given by the (dashed) line −H−t/2Fx, x ∈ R, there exist situations in
which some sequences ṽj will never be optimal, thus yielding empty regions
in the state space.

On the other hand, if the pair (A, B) is completely controllable and A is
invertible, then the rank of F is equal to min (N, n). In this case, if n ≥ N ,
then H−t/2F is onto, so that for every ṽj ∈ Ũ

N there exists at least one x
such that q

Ũ
N (−H−t/2Fx) = ṽj and none of the regions Ri are empty.

13.5 The Receding Horizon Case

In the receding horizon law (13.20), only nU instead of (at most) (nU)N regions
are needed to characterise the control law. Each of these nU regions is given
by the union of all regions Ri that correspond to vertices vi having the same
first element. The appropriate extension of Theorem 13.4.1 is presented below.
This result follows directly from Theorem 13.4.1.

Corollary 13.5.1 (State Space Partition) Let the constraint set U be
given in (13.2) and consider the partition into equivalence classes
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��

��

��

��

ṽ3

ṽ1

ṽ2

ṽ4
are empty
No regions

Regions R2 and R3

are empty

Figure 13.1. Partition of the transformed input sequence space with N = 2 (solid
lines) and two examples of −H−t/2Fx, x ∈ � (dashed lines).

U
N =

⋃
i=1,...,nU

U
N
i ,

where
U

N
i �

{
v ∈ U

N :
[
1 0 · · · 0

]
v = si

}
.

Then, the receding horizon control law (13.20) is equivalent to

uopt(x) = si, if x ∈ Xi, i = 1, 2, . . . nU. (13.23)

Here, the polyhedra Xi are given by

Xi �
⋃

j : vj∈U
N
i

Xij ,

where

Xij �
{

z ∈ R
n : 2(vj − vk)tFz ≤ ‖vk‖2

H − ‖vj‖2
H for all vk ∈ U

N\U
N
i

}
\
{
z ∈ R

n : there exists vk ∈ U
N\U

N
i , k < j, such that

2(vj − vk)tFz = ‖vk‖2
H − ‖vj‖2

H

}
.

It should be emphasised that this description requires evaluation of less
inequalities than the direct calculation of the union of all Rj (as defined in
(13.22)) with vj ∈ U

N
i , since inequalities corresponding to internal borders

are not evaluated. Moreover, the definition of Xi (and of Ri) can be simplified
if the ambiguity problem is not addressed.

The state space partition obtained can be calculated off-line so that on-
line computational burden can be reduced. The partition induced is related
to the partition that characterises the interval-constrained case, as detailed in
the following section.
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13.6 Relation to Interval Constraints

If in the setup described above, the input is not constrained to belong to a
finite set U, but instead, needs to satisfy the interval-type constraint

−∆ ≤ uk ≤ ∆ for all k, (13.24)

where ∆ ∈ R is fixed, then a convex optimisation problem is obtained.
For this case, as shown in Chapter 6, the control law can be finitely param-

eterised and calculated off-line. The state space is partitioned into polytopes
in which the receding horizon controller is piecewise affine in the state.

The partition of the ũ-space using the transformation (13.15) and a ge-
ometric argument similar to the one used in the proof of Theorem 13.3.1 is
sketched in Figure 13.2 for the case N = 2 and the restriction (13.24). In Fig-
ure 13.2, the polytope Θ0 is obtained by applying the transformation (13.15)
to the region in which the constraints are not active. It is the allowed set. The
regions denoted as Θsi are adjacent to a face of Θ0.

��

��

��

��

Θ0 Θs2

Θs4

Θs3

ũopt
uc

ũopt
I

Θs1

Figure 13.2. Partitions of ũ-space with the interval constraint set (13.24).

As shown in Section 13.3, in the finite set-constrained case, the constrained
solution uopt is related to ũopt

uc by means of a nearest neighbour quantiser as
stated in (13.13). (For ease of notation, the dependence on x of this and other
vectors to follow has not been explicitly included.) A similar result holds in the
interval-constrained case. Given (13.24), the constrained optimiser, denoted
here as ũopt

I , is related to ũopt
uc via a minimum Euclidean distance projection

to the allowed set. This result was shown earlier in Chapter 6 and can be
summarised as follows:

Remark 13.6.1. (Projection in the Interval-Constrained Case) If ũopt
uc

lies inside of Θ0, then it holds that ũopt
I = ũopt

uc . On the other hand, if ũopt
uc �∈
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Θ0, then the constrained solution is obtained by the minimum Euclidean
distance projection (see, for example, (10.15) in Chapter 10) onto the border
of Θ0. In particular, if the unconstrained solution lies in any of the regions
adjacent to a face of Θ0, then ũopt

I is obtained by an orthogonal projection
onto the nearest face (as illustrated in Figure 13.2 by means of a dotted line).

◦
As a consequence of the foregoing discussion, we obtain the following the-

orem, which establishes a connection between the partition of the ũ-space
in the interval-constrained case and the Voronoi partition of the quantiser
defining the solution with a special finite set constraint.

Theorem 13.6.1 (Relationship Between the Binary and Interval-
Constrained Cases) Consider the binary constraint set U = {−∆, ∆} and
the region outside of Θ0. Then, the borders of the Voronoi partition of the
quantiser in (13.13) are parallel and equidistant to the borders of those regions
of the interval-constrained case, which are adjacent to an (N −1)-dimensional
face of Θ0. (These regions are denoted in Figure 13.2 as Θsi.)

Proof. From (13.18) it follows that the solution (13.13) can be stated alter-
natively as uopt(x) = H−1/2q

Ũ
N (ũopt

uc (x)). The result is a consequence of the
fact that, as can be seen in Figure 13.3, the borders of the regions Θsi are
formed by orthogonal projections to ṽi, and that the Voronoi partition is
formed by equidistant hyperplanes, which are also orthogonal to the corre-
sponding (N − 1)-dimensional face of Θ0. �

This result is illustrated in Figure 13.3, where the Voronoi partition is
depicted via dashed lines. Due to linearity of the mapping H−t/2F in (13.21),
the induced partition of the state space given the constraint (13.24) and the
partition defined in (13.22) are similarly related.

13.7 Stability

In Chapters 4 and 5, we found that, for the case of interval-type constraints,
one could utilise the value function of the optimal control problems as a can-
didate Lyapunov function to establish stability. The situation in the finite
alphabet case is more difficult. Indeed, asymptotic stability is, in general, too
strong a requirement for the finite alphabet problem. In this section we explore
various stability issues associated with this case.

The closed loop that results when controlling the plant (13.1) with the
receding horizon law (13.23) is described via the following piecewise-affine
map, which follows from Corollary 13.5.1:

xk+1 = g(xk),

g(xk) � Axk + Bsi, if xk ∈ Xi, i = 1, 2, . . . nU.
(13.25)
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Θ0 Θs2

Θs4

Θs3

ṽ3

ṽ1

ṽ2

ṽ4

Θs1

Figure 13.3. Relationship between partitions induced by binary constraints
(dashed line) and interval-type constraints (solid line).

Piecewise-affine maps are mixed mappings and also form a special class of
hybrid systems with underlying discrete time dynamics (see, for example, Be-
mporad, Ferrari-Trecate and Morari (2000), Heemels, De Schutter and Bem-
porad (2001) and the references therein). They also appear in connection with
some signal processing problems, namely arithmetic overflow of digital filters
(Chua and Lin 1988) and Σ∆-modulators (Feely 1997, Norsworthy, Schreier
and Temes 1997) and have also been studied in a more theoretical mathe-
matical context (see, for example, Adler, Kitchens and Tresser 2001, Wu and
Chua 1994).

Since there exist fundamental differences in the dynamic behaviour
of (13.25), depending on whether the plant (13.1) is open loop stable or un-
stable, that is, on whether the matrix A is Hurwitz or not, it is convenient to
divide the discussion that follows accordingly.

13.7.1 Stable Plants

If the plant (13.1) is stable, then its states are always bounded when controlled
by means of any finite set constraint law. This follows directly from the fact
that U is always bounded.

Moreover, it can also be shown that all state trajectories3 of (13.25) either
converge towards a fixed point or towards a limit cycle (see, for example, Wu
and Chua 1994, Ramadge 1990).

The properties stated so far apply to general systems described by (13.25),
where Xi defines any partition of the state space. In contrast, the following
theorem is more specific. It utilises the fact that the control law uopt(x) is
optimising in a receding horizon sense in order to establish a stronger result.
3 Exceptions are limited to trajectories that emanate from initial conditions be-

longing to a zero-measure set.
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Theorem 13.7.1 (Asymptotic Stability) If A is Hurwitz, 0 ∈ U and P =
P t > 0 satisfies the Lyapunov equation AtPA + Q = P , then the closed
loop (13.25) has a globally attractive, locally asymptotically stable, equilibrium
point at the origin.

Proof. The proof follows standard techniques used in the receding horizon
control framework as summarised in Chapter 4 (see also Section 5.6.1 in
Chapter 5). In particular, we will use Theorem 4.4.2 of Chapter 4. We choose
Xf = Rn and Kf (x) = 0 for all x ∈ Xf . Clearly conditions B1, B3, B4 and
B5 hold and SN = Rn.

Direct calculation yields that F (x) = xtPx satisfies

F (f(x,Kf (x))) − F (x) + L(x,Kf (x)) = (Ax + BKf (x))tP (Ax + BKf (x))
− xtPx + xtQx + (Kf (x))tRKf (x)

= xt(AtPA + Q − P )x
= 0 for all x ∈ Xf ,

so that condition B2 is also satisfied. Global attractivity of the origin then
follows from Theorem 4.4.2.

Next, note that there exists a region containing an open neighbourhood
of the origin where uopt(x) = 0, hence local asymptotic stability of the origin
follows since A is Hurwitz. �

As can be seen, if the conditions of this theorem are satisfied, then the
receding horizon law (13.6) ensures that the origin is not only a fixed point,
but also that it has region of attraction Rn.

It should be emphasised here that, in a similar manner, it can be shown
that a finite alphabet control law can steer the plant state asymptotically
to any point x�, such that there exist si ∈ U that allow one to write x� =
(I − A)−1Bsi.

13.7.2 Unstable Plants

In case of strictly unstable plants (13.1), the situation becomes more involved.
Although fixed points and periodic sequences may be admissible, they are
basically nonattractive.

Moreover, with control signals that are limited in magnitude, as is the case
with finite set constraints (and also with interval constraints), there always
exists an unbounded region, such that initial states contained in it lead to
unbounded state trajectories. This does not mean that every state trajectory
of (13.25) is unbounded. Despite the fact that the unstable open loop dynamics
(as expressed in A) makes neighbouring trajectories diverge locally, under
certain circumstances the control law may keep the state trajectory bounded.

As a consequence of the highly nonlinear (non-Lipschitz) dynamics result-
ing from the quantiser defining the control law (13.13), in the bounded case
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the resulting closed loop trajectories may be quite complex. In order to anal-
yse them without exploring their fine geometrical structure, it is useful that
we relax the usual notion of asymptotic stability of the origin. A more useful
characterisation here is that of ultimate boundedness of state trajectories. This
notion refers to convergence towards a bounded region of Rn, instead of to a
point or a specific periodic orbit (Blanchini 1999). (Ultimate boundedness has
also been considered in Li and Soh (1999), and by several other authors in the
context of practical stability.) We refer the reader to the literature, especially
Quevedo, De Doná and Goodwin (2002), where these more detailed issues are
discussed and analysed for the case of finite alphabet receding horizon control
of unstable open loop plants.

13.8 Examples

13.8.1 Open Loop Stable Plant

Consider an open loop stable plant described by

xk+1 =
[
0.1 2
0 0.8

]
xk +

[
0.1
0.1

]
uk, (13.26)

and the binary constraint set U = {−1, 1}. The receding horizon control law
with R = 0 and

P = Q =
[
1 0
0 1

]
, (13.27)

partitions the state space into the regions depicted in Figure 13.4, for con-
straint horizons N = 2 and N = 3. In this figure x1

k and x2
k denote the two

components of the state vector xk.
The receding horizon control law is

uopt(x) =

{
−1 if x ∈ X1,
1 if x ∈ X2,

where

X1 =
⋃

i=2N−1+1,2N−1+2,...,2N

Ri, X2 =
⋃

i=1,2,...,2N−1

Ri.

13.8.2 Open Loop Unstable Plant

We next analyse a situation when the plant is open loop unstable. For that
purpose, consider

xk+1 =
[
1.02 2
0 1.05

]
xk +

[
0.1
0.1

]
uk, (13.28)
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Figure 13.4. State space partition for the plant (13.26).

controlled with a receding horizon controller with parameters U, P , Q and R
as in Example 13.8.1 above. The constraint horizon is chosen to be N = 2.

Figure 13.5 illustrates the induced state space partition and a closed loop
trajectory, which starts at x = [−10 0]t. As can be seen, due to the limited
control action available, the trajectory becomes unbounded.

The situation is entirely different when the initial condition is chosen as
x = [0.7 0.2]t. As depicted in Figure 13.6, the closed loop trajectory now
converges to a bounded region, which contains the origin in its interior. Within
that region, the behaviour is not periodic, but appears to be random, despite
the fact that the system is deterministic. Neighbouring trajectories diverge
due to the action of the unstable poles of the plant. However, the control law
manifests itself by maintaining the plant state ultimately bounded. As already
mentioned in Section 13.7.2, the complex dynamic behaviour obtained is a
consequence of the insertion of a nonsmooth nonlinearity in the feedback loop.
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Figure 13.5. State trajectories of the controlled plant (13.28) with initial condition
x = [−10 0]t.
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Figure 13.6. State trajectories of the controlled plant (13.28) with initial condition
x = [0.7 0.2]t .
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13.9 Finite Alphabet Estimation

As we have seen in Chapter 9, the problems of constrained control and esti-
mation are very similar (differing essentially only with respect to the nature of
the boundary conditions). Here we give a brief description of finite alphabet
estimation. To fix ideas, we refer to the specific problem of estimating a signal
drawn from a given finite alphabet that has been transmitted over a noisy
dispersive communication channel.

This problem, which is commonly referred to as one of channel equal-
isation, can be formulated as a fixed-delay maximum likelihood detection
problem. The resultant detector estimates each symbol based upon the entire
sequence received to a point in time and hence constitutes, in principle, a
growing memory structure. In the case of finite impulse response [FIR] chan-
nels, the Viterbi algorithm can be used for solving the resultant optimisation
problem. However, for more general infinite impulse response [IIR] channels,
the complexity of the Viterbi Algorithm is infinite. This is a direct conse-
quence of the requirement to take into account the finite alphabet nature of
the transmitted signal, which makes this a hard combinatorial optimisation
problem.

In order to address this problem, various simplified detectors of fixed mem-
ory and complexity have been proposed. The simplest such scheme is the deci-
sion feedback equaliser [DFE] (Qureshi 1985), which is a symbol-by-symbol de-
tector. It basically corresponds to the scheme depicted in Figure 1.10 in Chap-
ter 1. It is a feedback loop comprising linear filters and a scalar quantiser. The
DFE is extended and outperformed by more complex multistep detector struc-
tures, which estimate channel inputs based upon blocks of sampled outputs
of fixed size (see, for example, Williamson, Kennedy and Pulford 1992, Duel-
Hallen and Heegard 1989).

In these schemes, decision feedback (also called genie-aided feedback) is
used to overcome the growing memory problem. The information contained in
the sampled outputs received before the block where the constraints are taken
into account explicitly is summarised by means of an estimate of the channel
state. This estimate is based upon previous decisions, which are assumed to
be correct. Not taking into account that various decisions may contain errors
can lead to error propagation problems (see also Cantoni and Butler 1976).

Here we show how the idea of the “benevolent genie” can be extended by
means of an a priori state estimate and a measure of its degree of belief.

13.10 Maximum Likelihood Detection Utilising An A
Priori State Estimate

Consider a linear channel (which may include a whitening matched filter and
any other pre-filter) with scalar input uk drawn from a finite alphabet U. The
channel output yk is scalar and is assumed to be perturbed by zero-mean
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additive white Gaussian noise nk of variance r, denoted by nk ∼ N(0, r),
yielding the state space model

xk+1 = Axk + Buk,

yk = Cxk + Duk + nk,
(13.29)

where xk ∈ Rn. The above model may equivalently be expressed in transfer
function form as

yk = H(ρ)uk + nk, H(ρ) = D + C(ρI − A)−1B = h0 +
∞∑

i=1

hiρ
−i,

where4

h0 = D, hi = CAi−1B, i = 1, 2, . . . . (13.30)

We incorporate an a priori state estimate into the problem formulation.
This is achieved as follows:

As described in Section 9.9 of Chapter 9, we fix integers L1 ≥ 0, L2 ≥ 1
and suppose, for the moment, that

xk−L1 ∼ N(zk−L1 , P ), (13.31)

that is, zk−L1 is a given a priori estimate for xk−L1 which has a Gaussian
distribution. The matrix P−1 reflects the degree of belief in this a priori state
estimate. Absence of prior knowledge of xk−L1 can be accommodated by using
P−1 = 0, and decision feedback is achieved by taking P = 0, which effectively
locks xk−L1 at zk−L1 .

Additionally, we define the vectors

uk �
[
uk−L1 uk−L1+1 · · · uk+L2−1

]t
,

yk �
[
yk−L1 yk−L1+1 · · · yk+L2−1

]t
.

The vector yk gathers time samples of the channel output and uk contains
channel inputs, which are the decision variables of the estimation problem
considered here.

The maximum a posteriori [MAP] sequence detector, which at time t = k
provides an estimate of uk and xk−L1 based upon the received data contained
in yk, maximises the probability density function (see Chapter 9 for further
discussion)5

p

([
uk

xk−L1

] ∣∣∣ yk

)
=

p

(
yk

∣∣∣ [ uk

xk−L1

])
p

([
uk

xk−L1

])
p (yk)

, (13.32)

4 ρ denotes the forward shift operator, ρvk = vk+1, where {vk} is any sequence.
5 For ease of notation, in what follows we will denote all (conditional) probability

density functions by p. The specific function referred to will be clear from the
context.
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where we have utilised Bayes’ rule.
Note that only the numerator of this expression influences the maximisa-

tion. Assuming that uk and xk−L1 are independent (which is a consequence
of (13.29) if uk is white), it follows that

p

([
uk

xk−L1

])
= p (xk−L1) p (uk) .

Hence, if all finite alphabet-constrained symbol sequences uk are equally likely
(an assumption that we make in what follows), then the MAP detector that
maximises (13.32) is equivalent to the following maximum likelihood sequence
detector [

ûk

x̂k−L1

]
� arg max

uk,xk−L1

{
p

(
yk

∣∣∣ [ uk

xk−L1

])
p (xk−L1)

}
. (13.33)

Here,
ûk �

[
ûk−L1 ûk−L1+1 · · · ûk · · · ûk+L2−1

]t
, (13.34)

and uk needs to satisfy the constraint

uk ∈ U
N , U

N � U× · · · × U, N � L1 + L2, (13.35)

in accordance with the restriction uk ∈ U. Our working assumption
(see (13.31)) is that the initial channel state xk−L1 has a Gaussian proba-
bility density function

p (xk−L1) =
1

(2π)n/2(detP )1/2
exp

{−‖xk−L1 − zk−L1‖2
P−1

2

}
. (13.36)

In order to derive analytic expressions for the other probability density
functions in (13.33), we rewrite the channel model (13.29) at time instants
t = k − L1, k − L1 + 1, . . . , k + L2 − 1 in block form as

yk = Ψuk + Γxk−L1 + nk.

Here,

nk �

⎡⎢⎢⎢⎣
nk−L1

nk−L1+1

...
nk+L2−1

⎤⎥⎥⎥⎦ , Γ �

⎡⎢⎢⎢⎣
C

CA
...

CAN−1

⎤⎥⎥⎥⎦ , Ψ �

⎡⎢⎢⎢⎢⎣
h0 0 . . . 0

h1 h0
. . .

...
...

. . . . . . 0
hN−1 . . . h1 h0

⎤⎥⎥⎥⎥⎦ .

The entries of Ψ obey (13.30), that is, its columns contain truncated impulse
responses of the model (13.29).

Since the noise nk is assumed Gaussian with variance r, it follows that



13.11 Information Propagation 313

p

(
yk

∣∣∣ [ uk

xk−L1

])
=

1
(2π)N/2(det R)1/2

exp
{−‖yk − Ψuk − Γxk−L1‖2

R−1

2

}
,

(13.37)
where the matrix R � diag{r, . . . , r} ∈ RN×N .

After substituting expressions (13.36) and (13.37) into (13.33) and apply-
ing the natural logarithm, one obtains the sequence detector[

ûk

x̂k−L1

]
= arg min

uk,xk−L1

V (uk, xk−L1), (13.38)

subject to the constraint (13.35). In (13.38), the objective function V is defined
as

V (uk, xk−L1 ) � ‖xk−L1 − zk−L1‖2
P−1 + ‖yk − Ψuk − Γxk−L1‖2

R−1

= ‖xk−L1 − zk−L1‖2
P−1 + r−1

k+L2−1∑
j=k−L1

(yj − Cx̌j − Duj)2,

(13.39)

and the vectors x̌j denote predictions of the channel states xj . They sat-
isfy (13.29), that is,

x̌j+1 = Ax̌j + Buj for j = k − L1, . . . , k + L2 − 1,

x̌k−L1 = xk−L1 .
(13.40)

Remark 13.10.1. (Notation) Since ûk and x̂k−L1 in (13.33) are calculated
using data up to time t = k +L2 − 1, they could perhaps be more insightfully
denoted as ûk|k+L2−1 and x̂k−L1|k+L2−1, respectively (see Chapter 9). How-
ever, in order to keep the notation simple, we will here avoid double indexing,
in anticipation that the context will always allow for correct interpretation.

◦

As a consequence of considering the joint probability density func-
tion (13.32), the objective function (13.39) includes a term which allows one
to obtain an a posteriori state estimate x̂k−L1 which differs from the a priori
estimate zk−L1 as permitted by the confidence matrix P−1.

13.11 Information Propagation

Having set up the fixed horizon estimator as the finite alphabet opti-
miser (13.38)–(13.40), in this section we show how this information can be
utilised as part of a moving horizon scheme. Here we essentially follow the
methodology outlined in Section 9.9 of Chapter 9.
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13.11.1 Moving Horizon Implementation

Minimisation of the objective function V in (13.39) yields the entire optimising
sequence ûk defined in (13.38). However, following our usual procedure, we
will utilise a moving horizon approach in which only the present value6

ûopt
k �

[
0L1 1 0L2−1

]
ûk, (13.41)

will be delivered at the output of the detector.
At the next time instant the optimisation is repeated, providing ûopt

k+1 and
so on. Thus, the data window “slides” (or moves) forward in time. The scheme
previews L2 − 1 samples, hence has a decision-delay of L2 − 1 time units.

The window length N = L1 +L2 fixes the complexity of the computations
needed in order to minimise (13.39). It is intuitively clear that good perfor-
mance of the detector can be ensured if N is sufficiently large. However, in
practice, there is a strong incentive to use small values for L1 and L2, since
large values give rise to high complexity in the associated computations to be
performed at each time step.

13.11.2 Decision-Directed Feedback

The provision of an a priori estimate, zk−L1 , together with an associated
degree of belief via the term ‖xk−L1−zk−L1‖2

P−1 in (13.39) provides a means of
propagating the information contained in the data received before t = k−L1.
Consequently, an information horizon of growing length is effectively obtained
in which the computational effort is fixed by means of the window length N .

One possible approach to choose the a priori state estimate is as follows:
Each optimisation step provides estimates for the channel state and input
sequence (see (13.38)). These decisions can be re-utilised in order to formulate
a priori estimates for the channel state xk. We propose that the estimates be
propagated in blocks according to7

zk = AN x̂k−N + M ûk−L2 ,

where M �
[
AN−1B AN−2B . . . AB B

]
. In this way, the estimate obtained

in the previous block is rolled forward. Indeed, in order to operate in a moving
horizon manner, it is necessary to store N a priori estimates. This is depicted
graphically in Figure 13.7.

13.11.3 The Matrix P as a Design Parameter

Since channel states depend on the finite alphabet input, one may well ques-
tion the assumption made in Section 13.10 that xk−L1 is Gaussian. (This
6 The row vector 0m ∈ �1×m contains only zeros.
7 Since zk is based upon channel outputs up to time k − 1, it could alternatively

be denoted as x̂k|k−1; see also Remark 13.10.1.
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Figure 13.7. Information propagation with parameters L1 = 1 and L2 = 2.

situation is similar to that of other detectors that utilise Gaussian approxi-
mations; (see, for example, Lawrence and Kaufman 1971, Thielecke 1997, Bac-
carelli, Fasano and Zucchi 2000). However, we could always use this structure
by interpreting the matrix P in (13.39) as a design parameter.

As a guide for tuning P , we recall that in the unconstrained case, where
the channel input and initial state are Gaussian, that is, uk ∼ N(0, Q) and
x0 ∼ N(µ0, P0), the Kalman filter provides the minimum variance estimate
for xk−L1 (see, for example, Anderson and Moore 1979). Its covariance matrix
Pk−L1 obeys the Riccati difference equation (see Chapter 9),

Pk+1 = APkAt − Kk(CPkCt + r + DQDt)Kt
k + BQBt, k ≥ 0, (13.42)

where Kk � (APkCt + BQDt)(CPkCt + r + DQDt)−1.
A further simplification occurs if we replace the recursion (13.42) by its

steady state equivalent. In particular, it is well-known (Goodwin and Sin 1984)
that, under reasonable assumptions, Pk converges to a steady state value P
as k → ∞. The matrix P satisfies the following algebraic Riccati equation:

P = APAt − K(CPCt + r + DQDt)Kt + BQBt, (13.43)

where K = (APCt + BQDt)(CPCt + r + DQDt)−1. Of course, the Gaus-
sian assumption on uk is not valid in the constrained case. However, the
choice (13.43) may still provide good performance. Alternatively, one may
simply use P as a design parameter and test different choices via simulation
studies.

13.12 Closed Loop Implementation of the Finite
Alphabet Estimator

Here we follow similar arguments to those used with respect to finite alphabet
control in Section 13.3 to obtain a closed form expression for the solution to
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the finite alphabet estimation problem. This closed form expression utilises a
vector quantiser as defined earlier in Definition 13.3.1.

For general recursive channels, it is useful to assume that, whilst the input
is always constrained to a finite alphabet, the channel state xk in (13.29) is
left unconstrained. In this case, the optimisers (13.38) are characterised as
follows:

Lemma 13.12.1 (Closed Form Solution) The optimisers corresponding
to (13.38) given the constraint uk ∈ U

N are given by

ûk = Ω−1/2q
Ũ

N

(
Ω−1/2(Λ1yk − Λ2zk−L1)

)
, (13.44)

x̂k−L1 = Υ
(
P−1zk−L1 + ΓtR−1yk − ΓtR−1Ψûk

)
, (13.45)

where

Ω = Ψt
(
R−1 − R−1ΓΥΓtR−1

)
Ψ, Ωt/2Ω1/2 = Ω,

Υ = (P−1 + ΓtR−1Γ)−1,

Λ1 = Ψt
(
R−1 − R−1ΓΥΓtR−1

)
,

Λ2 = ΨtR−1ΓΥP−1.

(13.46)

The nonlinear function q
Ũ

N (·) is the nearest neighbour vector quantiser de-
scribed in Definition 13.3.1. The image of this mapping is the set

Ũ
N = Ω1/2

U
N � {ṽ1, ṽ2, . . . , ṽr} ⊂ R

N , with ṽi = Ω1/2vi, vi ∈ U
N . (13.47)

Proof. The objective function (13.39) can be expanded as

V (uk, xk−L1) = ‖xk−L1‖2
Υ−1 + ‖zk−L1‖2

P−1 + ‖yk‖2
R−1

+ ‖uk‖2
ΨtR−1Ψ + ut

kΨtR−1Γxk−L1 + xt
k−L1

ΓtR−1Ψuk

− 2
[
ut

kΨtR−1yk + xt
k−L1

(
P−1zk−L1 + ΓtR−1yk

)]
, (13.48)

with Υ defined in (13.46). This expression can be written as

V (uk, xk−L1) = α(uk,yk, zk−L1) + ‖xk−L1‖2
Υ−1

− 2xt
k−L1

[
P−1zk−L1 + ΓtR−1yk − ΓtR−1Ψuk

]
,

where α(uk,yk, zk−L1) does not depend upon xk−L1 .
Since xk−L1 is assumed unconstrained, it follows that, for every fixed

value of uk, the objective function is minimised by means of xopt
uc =

Υ
(
P−1zk−L1 + ΓtR−1yk − ΓtR−1Ψuk

)
from where (13.45) follows.

In order to obtain the constrained optimiser ûk ∈ U
N , observe that

ûk = arg min
uk∈U

N

J(uk), (13.49)

where J(uk) � V (uk, xopt
uc ). Substitution of (13.45) into (13.48) yields
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J(uk) = β(yk, zk−L1) + ut
kΩuk − 2ut

k(Λ1yk − Λ2zk−L1), (13.50)

where Ω, Λ1 and Λ2 are defined in (13.46) and β(yk, zk−L1) does not depend
upon uk.

As in the proof of Theorem 13.3.1, it is useful to introduce the coordinate
transformation ũk � Ω1/2uk. This transforms U

N into Ũ
N defined in (13.47).

Equation (13.50) then allows one to rewrite (13.49) as

ûk = Ω−1/2 arg min
ũk∈Ũ

N

J̃(ũk), (13.51)

with J̃(ũk) � ũt
kũk − 2ũt

kΩ−1/2(Λ1yk − Λ2zk−L1). The level sets of J̃ are
spheres in RN , centred at Ω−1/2(Λ1yk − Λ2zk−L1). Hence,

arg min
ũk∈Ũ

N

J̃(ũk) = q
Ũ

N

(
Ω−1/2(Λ1yk − Λ2zk−L1)

)
,

which, after substituting into (13.51) yields (13.44). �

13.13 Example

Consider an FIR channel described by

H(z) = 1 + 2z−1 + 2z−2. (13.52)

In order to illustrate the performance of the multistep optimal equaliser pre-
sented, we carry out simulations of this channel with an input consisting of
10000 independent and equiprobable binary digits drawn from the alphabet
U = {−1, 1}. The system is affected by Gaussian noise with different vari-
ances. The following detection architectures are used: direct quantisation of
the channel output, decision feedback equalisation and moving horizon esti-
mation, with parameters (L1, L2) = (1, 2) and also with (L1, L2) = (2, 3).

Figure 13.8 documents the results. It contains the empirical probabilities of
symbol errors obtained at several noise levels. It can be appreciated how mov-
ing horizon estimation clearly outperforms direct quantisation of the channel
output and also the DFE for this example.

13.14 Conclusions

In this chapter we have presented an approach that addresses control and
estimation problems where the decision variables are constrained to belong to
a finite alphabet.

It turns out that concepts introduced in previous chapters, namely re-
ceding horizon optimisation, exploration of the geometry of the underlying
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Figure 13.8. Bit error rates of the communication systems simulated.

optimisation problem and information propagation can be readily utilised.
It is also apparent that some aspects, such as dynamics and stability of the
closed loop, demand for other, more specialised, tools.

Bearing in mind the wide range of applications that can be cast as fi-
nite alphabet-constrained control and estimation problems, we invite the
reader to apply the acquired expertise in these nontraditional areas. The
cross-fertilisation of ideas gives new insight and may lead to improved de-
sign methodologies in various realms of application.

13.15 Further Reading

General

A more detailed presentation of the ideas outlined in this chapter, including
several application studies can be found in Quevedo and Goodwin (2004c).
More information on computational complexity of combinatorial optimisation
problems can be found in Garey and Johnson (1979). Vector quantisers and
Voronoi partitions are described thoroughly in Gersho and Gray (1992), Gray
and Neuhoff (1998).

Finite Set Control

In relation to finite set-constrained control problems, Quevedo, Goodwin and
De Doná (2004) forms the basis of our presentation. Alternative views are
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given, for example, in Brockett and Liberzon (2000), Ishii and Francis (2003),
Richter and Misawa (2003), Sznaier and Damborg (1989), and Bicchi, Marigo
and Piccoli (2002).

Channel Equalisation

Channel equalisation is an important problem in digital communications. It
is described in standard textbooks, such as Proakis (1995) and also in the
survey papers Qureshi (1985), Tugnait et al. (2000). The presentation given
in this chapter follows basically Quevedo, Goodwin and De Doná (2003) and
is also related to the multistep estimation schemes described in Williamson
et al. (1992), Duel-Hallen and Heegard (1989).

Other Application Areas

Design of networked control systems based upon the ideas presented in this
chapter can be found, for example, in Quevedo, Goodwin and Welsh (2003),
Goodwin, Haimovich, Quevedo and Welsh (2004), Kiihtelys (2003) and also
in Chapter 16. Other interesting references include Bushnell (ed.) (2001),
Wong and Brocket (1999), Ishii and Francis (2002), Zhivoglyadov and Mid-
dleton (2003), Hristu and Morgansen (1999), Elia and Mitter (2001). The
related problem of state estimation with quantised measurements has also
been treated in Curry (1970) and Delchamps (1989), Haimovich, Goodwin
and Quevedo (2003). (See also Chapter 16.)

Applications to the design of FIR filters with finite set constrained coeffi-
cients can be found in Quevedo and Goodwin (2003b), Goodwin, Quevedo and
De Doná (2003). These problems have been studied extensively in the signal-
processing literature, see, for example, Evangelista (2002), Lim and Parker
(1983b), Kodek (1980), Lim and Parker (1983a).

Audio quantisation and A/D conversion can be dealt with in a way sim-
ilar to finite alphabet-constrained control problems, as detailed in Goodwin,
Quevedo and McGrath (2003), Quevedo and Goodwin (2003a), Quevedo and
Goodwin (2004b). Other references include Norsworthy et al. (1997), Lip-
schitz, Vanderkooy and Wannamaker (1991) and the collection Candy and
Temes (1992).

Applications of finite set-constrained control in power electronics abound.
One particular case resides in the design of the switching signal for switch-
mode power supplies, as described in Quevedo and Goodwin (2004a). The
book Rashid (1993) is a good introductory level textbook on power electronics.
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