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12.1 Overview

In Chapters 1 through 9 of the book (with the exception of a brief discussion
on observers and integral action in Section 5.5 of Chapter 5) we considered
constrained optimal control problems for systems without uncertainty, that
is, with no unmodelled dynamics or disturbances, and where the full state was
available for measurement. More realistically, however, it is necessary to con-
sider control problems for systems with uncertainty. This chapter addresses
some of the issues that arise in this situation. As in Chapter 9, we adopt
a stochastic description of uncertainty, which associates probability distribu-
tions to the uncertain elements, that is, disturbances and initial conditions.
(See Section 12.6 for references to alternative approaches to model uncer-
tainty.)

When incomplete state information exists, a popular observer-based con-
trol strategy in the presence of stochastic disturbances is to use the certainty
equivalence [CE] principle, introduced in Section 5.5 of Chapter 5 for de-
terministic systems. In the stochastic framework, CE consists of estimating
the state and then using these estimates as if they were the true state in
the control law that results if the problem were formulated as a determinis-
tic problem (that is, without uncertainty). This strategy is motivated by the
unconstrained problem with a quadratic objective function, for which CE is
indeed the optimal solution (Åström 1970, Bertsekas 1976).

One of the aims of this chapter is to explore the issues that arise from
the use of CE in RHC in the presence of constraints. We then turn to the
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obvious question about the optimality of the CE principle. We show that CE
is, indeed, not optimal in general.

We also analyse the possibility of obtaining truly optimal solutions for
single input linear systems with input constraints and uncertainty related to
output feedback and stochastic disturbances. We first find the optimal solution
for the case of horizon N = 1, and then we indicate the complications that
arise in the case of horizon N = 2. Our conclusion is that, for the case of
linear constrained systems, the extra effort involved in the optimal feedback
policy is probably not justified in practice. Indeed, we show by example that
CE can give near optimal performance. We thus advocate this approach in
real applications.

12.2 Problem Statement

We consider the following time-invariant, discrete time linear system with
disturbances

xk+1 = Axk + Buk + wk,

yk = Cxk + vk,
(12.1)

where xk, wk ∈ Rn and uk, yk, vk ∈ R. The control uk is constrained to take
values in the set

U = {u ∈ R : −∆ ≤ u ≤ ∆},
for a given constant value ∆ > 0. The disturbances wk and vk are i.i.d.
random vectors, with probability density functions (pdf) pw( · ) and pv( · ),
respectively. The initial state, x0, is characterised by a pdf px0( · ). We assume
that the pair (A, B) is reachable and that the pair (A, C) is observable.

We further assume that, at time k, the value of the state xk is not avail-
able to the controller. Instead, the following sets of past inputs and outputs,
grouped as the information vector Ik, represent all the information available
to the controller at the time instant k:

Ik =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{y0} if k = 0,

{y0, y1, u0} if k = 1,

{y0, y1, y2, u0, u1} if k = 2,
...

...
{y0, y1, . . . , yN−1, u0, u1, . . . uN−2} if k = N − 1.

Then, Ik ∈ R2k+1, and also Ik+1 = {Ik, yk+1, uk}, where Ik ⊂ Ik+1.
For system (12.1), under the assumptions made, we formulate the optimi-

sation problem:

minimise E

{
F (xN ) +

N−1∑
k=0

L(xk, uk)
}

, (12.2)
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where

F (xN ) = xt
NPxN ,

L(xk, uk) = xt
kQxk + Ru2

k,

subject to the system equations (12.1) and the input constraint uk ∈ U, for
k = 0, . . . , N −1. Note that, under the stochastic assumptions, the expression
F (xN ) +

∑N−1
k=0 L(xk, uk) is a random variable. Hence, it is only meaningful

to formulate the minimisation problem in terms of its statistics. A problem of
practical interest is to minimise the expected value of this expression, which
motivates the choice of the objective function in (12.2).

The result of the above minimisation problem will be a sequence of func-
tions {πopt

0 ( · ), πopt
1 ( · ), . . . , πopt

N−1( · )} that enable the controller to calculate
the desired optimal control action depending on the information available to
the controller at each time instant k, that is, uopt

k = πopt
k (Ik). These functions

also must ensure that the constraints be always satisfied. We thus make the
following definition.

Definition 12.2.1 (Admissible Policies for Incomplete State Infor-
mation) A policy ΠN is a finite sequence of functions πk( · ) : R2k+1 → R for
k = 0, 1, . . . , N − 1, that is,

ΠN =
{
π0( · ), π1( · ), · · · , πN−1(·)

}
.

A policy ΠN is called an admissible control policy if and only if

πk(Ik) ∈ U for all Ik ∈ R
2k+1, for k = 0, . . . , N − 1.

Further, the class of all admissible control policies will be denoted by

Π̄N =
{
ΠN : ΠN is admissible

}
.

◦
Using the above definition, we can then state the optimal control problem of
interest as follows.

Definition 12.2.2 (Stochastic Finite Horizon Optimal Control Prob-
lem) Given the pdfs px0( · ), pw( · ) and pv( · ) of the initial state x0 and the
disturbances wk and vk, respectively, the problem considered is that of finding
the control policy Πopt

N , called the optimal control policy, belonging to the class
of all admissible control policies Π̄N , which minimises the objective function

VN (ΠN ) = E
x0,wk,vk

k=0,...,N−1

{
F (xN ) +

N−1∑
k=0

L(xk, πk(Ik))
}

, (12.3)

subject to the constraints
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xk+1 = Axk + B πk(Ik) + wk,

yk = Cxk + vk,

Ik+1 = {Ik, yk+1, uk},

for k = 0, . . . , N − 1. In (12.3) the terminal state weighting F ( · ) and the
per-stage weighting L( · , · ) are given by

F (xN ) = xt
NPxN ,

L(xk, πk(Ik)) = xt
kQxk + Rπ2

k(Ik),
(12.4)

with P > 0, R > 0 and Q ≥ 0.
The optimal control policy is then

Πopt
N = arg inf

ΠN∈Π̄N

VN (ΠN ),

with the following resulting optimal objective function value

V opt
N = inf

ΠN∈Π̄N

VN (ΠN ). (12.5)

◦
It is important to recognise that the optimisation problem of Defini-

tion 12.2.2 takes into account the fact that new information will be available to
the controller at future time instants. This is called closed loop optimisation, as
opposed to open loop optimisation where the control values {u0, u1, . . . , uN−1}
are selected all at once, at stage zero (Bertsekas 1976). For deterministic sys-
tems, in which there is no uncertainty, the distinction between open loop and
closed loop optimisation is irrelevant, and the minimisation of the objective
function over all sequences of controls or over all control policies yields the
same result.

In what follows, and as in previous chapters, the matrix P in (12.4) will
be taken to be the solution to the algebraic Riccati equation,

P = AtPA + Q − KtR̄K, (12.6)

where
K � R̄−1BtPA, R̄ � R + BtPB. (12.7)

12.3 Optimal Solutions

The problem described in the previous section belongs to the class of the
so-called sequential decision problems under uncertainty (Bertsekas 1976,
Bertsekas 2000). A key feature of these problems is that an action taken at
a particular stage affects all future stages. Thus, the control action has to be
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computed taking into account the future consequences of the current decision.
The only general approach known to address sequential decision problems is
dynamic programming.

The dynamic programming algorithm was introduced in Section 3.4 of
Chapter 3 and was used in Chapters 6 and 7 to derive a closed form solution
of a deterministic finite horizon optimal control problem. We next briefly show
how this algorithm is used to solve the stochastic optimal control problem of
Definition 12.2.2.

We define the functions

L̃N−1(IN−1, πN−1(IN−1)) = E
{
F (xN ) + L(xN−1, πN−1(IN−1))

|IN−1, πN−1(IN−1)
}

,

L̃k(Ik, πk(Ik)) = E
{
L(xk, πk(Ik))|Ik, πk(Ik)

}
for k = 0, . . . , N − 2.

Then, the dynamic programming algorithm for the case of incomplete state
information can be expressed via the following sequential optimisation (sub-)
problems [SOP ]:

SOPN−1 : JN−1(IN−1) = inf
uN−1∈U

L̃N−1(IN−1, uN−1),

subject to:
xN = AxN−1 + BuN−1 + wN−1,

(12.8)

and, for k = 0, . . . , N − 2,

SOPk : Jk(Ik) = inf
uk∈U

[
L̃k(Ik, uk) + E

{
Jk+1(Ik+1)|Ik, uk

}]
,

subject to:
xk+1 = Axk + Buk + wk,

Ik+1 = {Ik, yk+1, uk},
yk+1 = Cxk+1 + vk+1.

The dynamic programming algorithm starts at stage N − 1 by solving
SOPN−1 for all possible values of IN−1. In this way, the law πopt

N−1( · ) is
obtained, in the sense that given the value of IN−1, the corresponding optimal
control is the value uN−1 = πopt

N−1(I
N−1), the minimiser of SOPN−1. The

procedure then continues to solve the sub-problems SOPN−2, . . . ,SOP0 to
obtain the laws πopt

N−2( · ), . . . , πopt
0 ( · ). After the last optimisation sub-problem

is solved, the optimal control policy Πopt
N is obtained and the optimal objective

function (see (12.5)) is

V opt
N = VN (Πopt

N ) = E{J0(I0)} = E{J0(y0)}.
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12.3.1 Optimal Solution for N = 1

In the following proposition, we apply the dynamic programming algorithm
to obtain the optimal solution of the problem in Definition 12.2.2 for the
case N = 1.

Proposition 12.3.1 For N = 1, the solution to the optimal control problem
stated in Definition 12.2.2 is of the form Πopt

1 = {πopt
0 ( · )}, with

uopt
0 = πopt

0 (I0) = −sat∆(K E{x0|I0}) for all I0 ∈ R, (12.9)

where K is given in (12.7) and sat∆ : R → R is the saturation function defined
as

sat∆(z) =

⎧⎪⎨⎪⎩
∆ if z > ∆,

z if |z| ≤ ∆,

−∆ if z < −∆.

Moreover, the last step in the dynamic programming algorithm has the value

J0(I0) = E
{
xt

0Px0|I0
}

+ R̄Φ∆(K E{x0|I0})
+ tr(KtK cov{x0|I0}) + E{wt

0Pw0},
(12.10)

where P and R̄ are defined in (12.6) and (12.7), respectively, and where Φ∆ :
R → R is given by

Φ∆(z) = [z − sat∆(z)]2. (12.11)

Proof. For N = 1, the only optimisation sub-problem to solve is SOP0 (see
(12.8)).

J0(I0) = inf
u0∈U

E
{
F (x1) + L(x0, u0)|I0, u0

}
= inf

u0∈U
E

{
(Ax0 + Bu0 + w0)tP (Ax0 + Bu0 + w0)

+ xt
0Qx0 + Ru2

0|I0, u0

}
.

(12.12)

Using the fact that E{w0|I0, u0} = E{w0} = 0 and that w0 is neither cor-
related with the state x0 nor correlated with the control u0, (12.12) can be
expressed, after distributing and grouping terms, as

J0(I0) = E{wt
0Pw0} + inf

u0∈U
E

{
xt

0(A
tPA + Q)x0

+ 2u0B
tPAx0(BtPB + R)u2

0|I0, u0

}
.

Further, using (12.6) and (12.7), the above becomes
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J0(I0) = E{wt
0Pw0} + inf

u0∈U
E

{
xt

0Px0 + R̄(xt
0K

tKx0

+ 2u0Kx0 + u2
0)|I0, u0

}
= E{wt

0Pw0} + E{xt
0Px0|I0} + R̄ inf

u0∈U
E
{
(u0 + Kx0)2|I0, u0

}
,

where we have used the fact that the conditional pdf of x0 given I0 and
u0 is equal to the pdf where only I0 is given. Finally, using properties of
the expected value of quadratic forms (see, for example, Åström 1970) the
optimisation problem to solve becomes

J0(I0) = E{wt
0Pw0} + E{xt

0Px0|I0} + tr(KtK cov{x0|I0})
+ R̄ inf

u0∈U

[
(u0 + K E{x0|I0})2] .

(12.13)

It is clear from (12.13) that the unconstrained minimum is attained at
u0 = −K E{x0|I0}. In the constrained case, equation (12.9) follows from
the convexity of the quadratic function. The final value (12.10) is obtained by
substituting (12.9) into (12.13). The result is then proved. �

Note that when N = 1 the optimal control law πopt
0 depends on the

information I0 only through the conditional expectation E{x0|I0}. Therefore,
this conditional expectation is a sufficient statistic in this case, that is, it
provides all the necessary information to implement the control.

We observe that the control law given in (12.9) is also the optimal control
law for the cases in which:

• the state is measured (complete state information) and the disturbance
wk is still acting on the system;

• the state is measured and wk is set equal to a fixed value or to its mean
value (see (6.17) in Chapter 6 for the case wk = 0).

Therefore, CE is optimal for horizon N = 1, that is, the optimal control law
is the same law that would result from an associated deterministic optimal
control problem in which some or all uncertain quantities were set to a fixed
value.

12.3.2 Optimal Solution for N = 2

We now consider the case where the optimisation horizon is N = 2.

Proposition 12.3.2 For N = 2, the solution to the optimal control problem
stated in Definition 12.2.2 is of the form Πopt

2 = {πopt
0 ( · ), πopt

1 ( · )}, with

uopt
1 = πopt

1 (I1) = −sat∆(K E{x1|I1}) for all I1 ∈ R
3,
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uopt
0 = πopt

0 (I0) = arg inf
u0∈U

[
R̄(u0 + K E{x0|I0})2

+ R̄ E
{

Φ∆(K E{x1|I1})|I0, u0

}]
for all I0 ∈ R,

(12.14)

where Φ∆( · ) is given in (12.11).

Proof. The first step of the dynamic programming algorithm (see (12.8)) gives

J1(I1) = inf
u1∈U

E
{

F (Ax1 + B u1 + w1) + L(x1, u1)|I1, u1

}
.

We see that J1(I1) is similar to J0(I0) in (12.12). By comparison, we readily
obtain

πopt
1 (I1) = −sat∆(K E{x1|I1}),
J1(I1) = E{wt

1Pw1} + E{xt
1Px1|I1} + tr(KtK cov{x1|I1})

+ R̄Φ∆(K E{x1|I1}).
The second step of the dynamic programming algorithm proceeds as follows:

J0(I0) = inf
u0∈U

[
E{L(x0, u0)|I0, u0} + E

{
J1(I1)|I0, u0

} ]
,

subject to:
x1 = Ax0 + Bu0 + w0,

I1 = {I0, y1, u0},
y1 = Cx1 + v1.

The objective function above can be written as

J0(I0) = inf
u0∈U

[
E{xt

0Qx0 + Ru2
0|I0, u0} + E{wt

1Pw1}
+ E{E{xt

1Px1|I1}|I0, u0} + tr(KtK cov{x1|I1})
+ R̄ E

{
Φ∆(K E{x1|I1})|I0, u0

} ]
.

(12.15)

Since {I0, u0} ⊂ I1, using the properties of successive conditioning (Ash and
Doléans-Dade 2000), we can express the third term inside the inf in (12.15)
as

E{E{xt
1Px1|I1}|I0, u0} = E{xt

1Px1|I0, u0}
= E

{
(Ax0 + Bu0 + w0)tP (Ax0

+ Bu0 + w0)|I0, u0

}
.

Using this, expression (12.15) becomes
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J0(I0) = inf
u0∈U

[
E{xt

0Qx0 + Ru2
0 + (Ax0 + Bu0 + w0)tP (Ax0

+ Bu0 + w0)|I0, u0} + E{wt
1Pw1} + tr(KtK cov{x1|I1})

+ R̄E
{
Φ∆(K E{x1|I1})|I0, u0

} ]
. (12.16)

Note that the first part of (12.16) is identical to (12.12). Therefore, using
(12.13), expression (12.16) can be written as

J0(I0) = E{xt
0Px0|I0} +

1∑
j=0

[
tr(KtK cov{xj |Ij}) + E{wt

j Pwj}
]

+ inf
u0∈U

[
R̄(u2

0 + K E{x0|I0})2 + R̄ E
{
Φ∆(K E{x1|I1})|I0, u0

} ]
,

(12.17)

where tr(KtK cov{x1|I1}) has been left out of the minimisation because it
is not affected by u0 due to the linearity of the system equations (Bertsekas
1987, Bertsekas 2000). By considering only the terms that are affected by u0,
we find the result given in (12.14). �

To obtain an explicit form for πopt
0 , we would need to express E{x1|I1} =

E{x1|I0, y1, u0} explicitly as a function of I0, u0 and y1. The optimal law
πopt

0 ( · ) depends on I0 not only through E{x0|I0}, as was the case for N = 1.
Indeed, Haimovich, Perez and Goodwin (2003) have shown that, even for
Gaussian disturbances, when input constraints are present, the optimal control
law πopt

0 ( · ) depends also on cov{x0|I0}.
To calculate E{x1|I1}, we need to find the conditional pdf px1|I1( · |I1). At

any time instant k, the conditional pdfs pxk|Ik( · |Ik) satisfy the Chapman–
Kolmogorov equation and the observation update equation (see Section 9.8
in Chapter 9):

Time update

pxk|Ik−1,uk−1
(xk|Ik−1, uk−1) =

∫
Rn

pxk|xk−1,uk−1(xk|xk−1, uk−1)

× pxk−1|Ik−1,uk−1
(xk−1|Ik−1, uk−1)dxk−1, (12.18)

Observation update

pxk|Ik(xk|Ik) = pxk|Ik−1,yk,uk−1
(xk|Ik−1, yk, uk−1)

=
pyk|xk

(yk|xk)pxk|Ik−1,uk−1
(xk|Ik−1, uk−1)

pyk|Ik−1,uk−1
(yk|Ik−1, uk−1)

,
(12.19)

where
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pyk|Ik−1,uk−1
(yk|Ik−1, uk−1) =

∫
Rn

pyk|xk
(yk|xk)

× pxk|Ik−1,uk−1
(xk|Ik−1, uk−1)dxk.

Remark 12.3.1. In general, depending on the pdfs of the initial state and the
disturbances, it may be very difficult or even impossible to obtain an explicit
form for the conditional pdfs that satisfy the recursion given by (12.18) and
(12.19). If the pdfs of the initial state and the disturbances are Gaussian,
however, all the conditional densities that satisfy (12.18) and (12.19) are also
Gaussian. In this particular case, (12.18) and (12.19) lead to the well-known
Kalman filter algorithm (see Section 9.6 in Chapter 9). The latter is a recursive
algorithm in terms of the (conditional) expectation and covariance, which
completely define any Gaussian pdf. ◦

Due to the way the information enters the conditional pdfs, it is, in general,
very difficult to obtain an explicit form for the optimal control. On the other
hand, even if the recursion given by (12.18) and (12.19) can be found explicitly,
the implementation of such optimal control may also be complicated and
computationally demanding. We illustrate this point by suggesting a way of
implementing the optimal controller in such a case.

Let us first discretise the set U of admissible control values, and suppose
that the discretised set Ud = {u0i ∈ U : i = 1, 2, . . . , r} contains a finite
number r of elements. We then approximate the optimal control as

uopt
0 ≈ arg inf

u0∈Ud

[
R̄(u0 + K E{x0|I0})2 + R̄E{Φ∆(K E{x1|I1})|I0, u0}

]
.

(12.20)
Hence, to solve the above minimisation, only a finite number of values of u0

have to be considered for a given I0 = y0. To do this, given the measurement
I0 = y0 and for every value u0i, i = 1, . . . , r, of u0, we can evaluate the
expression between square brackets in (12.20) in the following way:

(i) Given y0, we evaluate the function W2( · ) given by

W2(y0) = E{x0|I0} = E{x0|y0} =
∫

Rn

x0 px0|y0(x0|y0)dx0. (12.21)

(ii) Given y0, pv( · ), pw( · ) and px0( · ), we obtain py0|x0( · |x0) and
px1|y0,y1,u0( · |y0, y1, u0) in explicit form (as assumed) using the recursion
(12.18) and (12.19) together with the system and measurement equa-
tions (12.1).

(iii) Using px1|y0,y1,u0( · |y0, y1, u0), the expectation E{x1|y0, y1, u0} can be
written as

h(y0, y1, u0) = E{x1|y0, y1, u0}
=

∫
Rn

x1px1|y0,y1,u0(x1|y0, y1, u0)dx1,
(12.22)
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which may not be expressible in explicit form even if (12.18) and (12.19)
are so expressed. However, it may be evaluated numerically if y0, y1 and
u0 are given.

(iv) Using px0|y0( · |y0), pv( · ), together with the measurement equation,
we can obtain py1|y0,u0( · |y0, u0). We can now express the expectation
E

{
Φ∆ (Kh(y0, y1, u0)) |I0, u0

}
as

W1(y0, u0) = E
{
Φ∆ (Kh(y0, y1, u0)) |I0, u0

}
=

∫
R

Φ∆ (Kh(y0, y1, u0)) py1|y0,u0(y1|y0, u0)dy1.
(12.23)

Note that, in order to calculate this integral numerically, the function
h(y0, y1, u0) has to be evaluated for different values of y1, even if u0 and
y0 are given.

To find the value of the objective function achieved by one of the r values u0i,
expressions (12.21), (12.22) and (12.23) may need further discretisations (for
x0, x1 and y1, respectively).

From the previous comments, it is evident that the approximation of the
optimal solution can be very computationally demanding depending on the
discretisations performed. Note that in the above steps all the pdfs are as-
sumed known in explicit form so that the integrals can be evaluated. As al-
ready mentioned in Remark 12.3.1, this may not always be possible.

As an alternative approach to brute force discretisations, we could use
Markov chain Monte Carlo [MCMC] methods (Robert and Casella 1999).
These methods approximate continuous pdfs by discrete ones by drawing sam-
ples from the pdfs in question or from other approximations. However, save
for some very particular cases, the exponential growth in the number of com-
putations as the optimisation horizon is increased seems to be unavoidable.
We observe, in passing, that the application of MCMC methods to the recur-
sion given by (12.18) and (12.19) gives rise to a special case of the, so-called,
particle filters (Doucet et al. 2001).

The above discussion suggests that, not only does it seem impossible to
analytically proceed with the optimisation for horizons greater than two but
also the implementation of the optimal law (even for N = 2) appears to be
quite intricate and computationally burdensome. This leads us to consider
suboptimal solutions. In the next section, we analyse two alternative subop-
timal strategies.

12.4 Suboptimal Strategies

12.4.1 Certainty Equivalent Control

As mentioned before, certainty equivalent control [CEC] uses the control law
obtained as the solution of an associated deterministic control problem de-
rived from the original problem by removing all uncertainty. Specifically, the
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associated problem is derived by setting the disturbance wk to a fixed typical
value (for example, w̄ = E{wk}) and by also assuming perfect state infor-
mation. The resulting control law is a function of the true state. Then, the
control is implemented using some estimate of the state x̂(Ik) in place of the
true state.

For our problem, we first obtain the optimal policy for the deterministic
problem

Πdet
N =

{
πdet

0 ( · ), . . . , πdet
N−1( · )

}
, (12.24)

where πdet
k : Rn → R for k = 0, 1, . . . , N − 1. Then, the CEC evaluates the

deterministic laws at the estimate of the state, that is,

uce
k = πdet

k

(
x̂(Ik)

)
. (12.25)

As we saw in Section 6.2 of Chapter 6, the associated deterministic prob-
lem for linear systems with a quadratic objective function is an example of
a case where the control policy can be obtained explicitly for any finite op-
timisation horizon. The following example illustrates this for an optimisation
horizon N = 2.

Example 12.4.1 (Closed Loop CEC). For N = 2, the deterministic policy
Πdet

2 = {πdet
0 ( · ), πdet

1 ( · )} is given by (see Theorem 6.2.1 in Chapter 6):

πdet
1 (x) = −sat∆(Kx) for all x ∈ R

n

πdet
0 (x) =

⎧⎪⎨⎪⎩
−sat∆(Gx + h) if x ∈ Z

−,

−sat∆(Kx) if x ∈ Z,

−sat∆(Gx − h) if x ∈ Z+.

K is given by (12.7) and

G =
K + KBKA

1 + (KB)2
, h =

KB

1 + (KB)2
∆.

The sets Z−, Z, Z+ form a partition of Rn, and are given by

Z
− = {x : K(A − BK)x < −∆} ,

Z = {x : |K(A − BK)x| ≤ ∆} ,

Z
+ = {x : K(A − BK)x > ∆} .

Therefore, a closed loop CEC applies the controls

uce
0 = πdet

0

(
x̂(I0)

)
,

uce
1 = πdet

1

(
x̂(I1)

)
,

where the estimate x̂(Ik) can be provided, for example, by the Kalman filter.
◦
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12.4.2 Partially Stochastic CEC

This variant of CEC uses the control law obtained as the solution to an as-
sociated problem that assumes perfect state information but takes stochastic
disturbances into account. To actually implement the controller, the value of
the state is replaced by its estimate x̂k(Ik).

In our case, given a partially stochastic CEC [PS–CEC] admissible policy

ΛN =
{
λ0( · ), . . . , λN−1( · )

}
, (12.26)

that is, a sequence of admissible control laws λk( · ) : Rn → U that map the
(estimates of the) states into admissible control actions, the PS–CEC solves
the following perfect state information problem.

Definition 12.4.1 (PS–CEC Optimal Control Problem) Assuming
that the state x̂k will be available to the controller at time instant k to
calculate the control, and given the pdf pw( · ) of the disturbances wk, find the
admissible control policy Λopt

N =
{
λopt

0 ( · ), . . . , λopt
N−1( · )

}
that minimises the

objective function

V̂N (ΛN ) = E
wk

k=0,...,N−1

{
F (x̂N ) +

N−1∑
k=0

L(x̂k, λk(x̂k))
}

,

subject to x̂k+1 = Ax̂k + Bλk(x̂k) + wk for k = 0, . . . , N − 1. ◦
The optimal control policy for perfect state information thus found will be
used, as in CEC, to calculate the control action based on the estimate x̂k

provided by the estimator; that is,

uk = λopt
k (x̂k).

Next, we apply this suboptimal strategy to the problem of interest for horizons
1 and 2.

PS–CEC for N = 1.

Using the dynamic programming algorithm, we have

Ĵ(x̂0) = inf
u0∈U

E
{

x̂t
1P x̂1 + x̂t

0Qx̂0 + Ru2
0|x̂0, u0

}
.

As with the true optimal solution for N = 1, the PS–CEC optimal control
has the form

ûopt
0 = λopt

0 (x̂0) = −sat∆(Kx̂0),
Ĵ0(x̂0) = x̂t

0P x̂0 + R̄Φ∆(Kx̂0) + E{wt
0Pw0}.

We can see that if x̂0 = E{x0|I0} then the PS–CEC for N = 1 coincides with
the optimal solution.
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PS–CEC for N = 2.

The first step of the dynamic programming algorithm yields

ûopt
1 = λopt

1 (x̂1) = −sat∆(Kx̂1),
Ĵ1(x̂1) = x̂t

1P x̂1 + R̄Φ∆(Kx̂1) + E{wt
1Pw1}.

For the second step, we have, after some algebra, that

Ĵ0(x̂0) = inf
u0∈U

[
E{L(x̂0, u0) + Ĵ1(x̂1)|x̂0, u0}

]
,

subject to:
x̂1 = Ax̂0 + Bu0 + w0,

ûopt
0 = arg inf

u0∈U

[
R̄(u0+Kx̂0)2+R̄E{Φ∆[K(Ax̂0+Bu0+w0)]|x̂0, u0}

]
. (12.27)

Comparing ûopt
0 with expression (12.14) for the optimal control, we can ap-

preciate that, given x̂0, even if E
{
Φ∆[K(Ax̂0 + Bu0 + w0)]|x̂0, u0

}
cannot be

found in explicit form as a function of u0, the numerical implementation of
this suboptimal control action is much less computationally demanding than
its optimal counterpart.

12.5 Simulation Examples

In this section we compare the performance of the suboptimal strategies CEC
and PS–CEC by means of simulation examples. The performance is assessed
by computing the achieved value of the objective function. The objective
function is defined as the expected value of a random variable, which is a
quadratic function of the states and controls in our case. Hence, a comparison
between the values of the objective function incurred by using different policies
is only meaningful in terms of these expected values. To numerically compute
values of the objective function for a given control policy, different realisations
of the initial state plus process and measurement disturbances have to be
obtained and a corresponding realisation of the objective function evaluated.
Then, the expected value can be approximated by averaging over the different
realisations.

The following examples are simulated for the system:

A =
[

0.9713 0.2189
−0.2189 0.7524

]
, B =

[
0.0287
0.2189

]
, C = [0.3700 0.0600].

(12.28)
The disturbances wk are assumed to have a uniform distribution with support
on [−0.5, 0.5] × [−1, 1] and likewise for vk with support on [−0.1, 0.1]. The
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initial state x0 is assumed to have a Gaussian distribution with zero mean and
covariance diag{300−1, 300−1}. A Kalman filter was implemented to provide
the state estimates needed. Although this estimator is not the optimal one
in this case because the disturbances are not Gaussian, it yields the best
linear unbiased estimator for the state. The parameters for the Kalman filter
were chosen as the true mean and covariance of the corresponding variables
in the system. The saturation limit of the control was taken as ∆ = 1. The
optimisation horizon is in both cases N = 2.

For PS–CEC, we discretise the set U so that only 500 values are considered,
and the expected value in (12.27) is approximated by taking 300 samples of
the pdf pw( · ) for every possible value of u0 in the discretised set. For CEC,
we implement the policy given in Example 12.4.1.

We simulated the closed loop system over two time instants and repeated
the simulation a large number of times (between 2000 and 8000). For each
simulation, a different realisation of the disturbances and the initial state
was used. A realisation of the objective function was calculated for every
simulation run for each one of the control policies applied (PS–CEC and
CEC). The sample average of the objective function values achieved by each
policy was computed, and the difference between them was always found to
be less than 0.1%.

Although the examples are based on a simple simulated model, the com-
parison between the objective function values for the two control policies seems
to indicate that the trade-off between better performance and computational
complexity favours the CEC implementation over the PS–CEC.

It would be of interest, from a practical standpoint, to extend the optimi-
sation horizon beyond N = 2. However, as we explained in a previous section
and observed in the examples, due to computational issues this becomes very
difficult. In order to achieve this extension, one is led to conclude that CEC
may be, at this point, the only way forward.

Of course, the ultimate test for the suboptimal strategies would be to con-
trast them with the optimal one. It would be expected that, in this case, an
appreciable difference in the objective function values may be obtained due to
the fact that the optimal strategy takes into account the process and measure-
ment disturbances in a unified manner, as opposed to the above mentioned
suboptimal strategies, which use estimates provided by an estimator as if they
were the true state.

12.6 Further Reading

For complete list of references cited, see References section at the end of book.
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General

For more details on general sequential decision problems under uncertainty
and the use of dynamic programming, the reader is referred to Bellman (1957),
Bertsekas (1976) and Bertsekas (2000).

Section 12.3

The use of CE in RHC, due to its simplicity, has been advocated in the
literature (Muske and Rawlings 1993) and reported in a number of appli-
cations (see, for example, Angeli, Mosca and Casavola 2000, Marquis and
Broustail 1988, Perez, Goodwin and Tzeng 2000).

For RHC literature for uncertain systems using a stochastic uncertainty
description, see Haimovich, Perez and Goodwin (2003) and Perez, Haimovich
and Goodwin (2004) (on which this chapter is based). Also, in Filatov and Un-
behauen (1995) output-feedback predictive control of nonlinear systems with
uncertain parameters is addressed. The control is assumed unconstrained and
only suboptimal solutions are considered. Batina, Stoorvogel and Weiland
(2001) consider the RHC problem for the case of state feedback, input con-
straints and scalar disturbances. The optimal solution is approximated via a
randomised algorithm (Monte Carlo sampling). Examples for an optimisation
horizon of length 1 are presented. In Batina, Stoorvogel and Weiland (2002),
the authors extend their previous result to the state constrained case.

An alternative approach to model uncertainty is via a set-membership
description, which only gives information regarding the sets in which the un-
certain elements take values. When addressing uncertain systems, the RHC
literature has somewhat favoured the set-membership description; see, for ex-
ample, Shamma and Tu (1998) and Lee and Kouvaritakis (2001). For example,
Shamma and Tu (1998) propose an observer-based strategy that assumes un-
known but bounded disturbances, and generates a set of possible states based
on past input and output information. Then, to each estimated state the strat-
egy associates a set of control values that meet the constraint requirements.
The actual control applied to the system is selected to belong to the intersec-
tion of all the control value sets. As another example, Lee and Kouvaritakis
(2001) present an extension of the dual-mode paradigm of Mayne and Michal-
ska (1993), in which invariant sets of estimation errors are used for the case
of unknown-but-bounded measurement noise and disturbances.




