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Duality Between Constrained Estimation and
Control

10.1 Overview

The previous chapter showed that the problem of constrained estimation can
be formulated as a constrained optimisation problem. Indeed, this problem
is remarkably similar to the constrained control problem—differing only with
respect to the boundary conditions. (In control, the initial condition is fixed,
whereas in estimation, the initial condition can also be adjusted.) In the cur-
rent chapter we show that the similarity between the two problems of con-
strained estimation and constrained control has deeper implications.

In particular, we derive the Lagrangian dual (see Section 2.6 of Chapter 2)
of a constrained estimation problem and show that it leads to a particular un-
constrained nonlinear optimal control problem. We then show that the origi-
nal (primal) constrained estimation problem has an equivalent formulation as
an unconstrained nonlinear optimisation problem, exposing a clear symmetry
with its dual.

10.2 Lagrangian Duality of Constrained Estimation and
Control

Consider the following system

xk+1 = Axk + Bwk for k = 0, · · · , N − 1,

yk = Cxk + vk for k = 1, · · · , N,
(10.1)

where xk ∈ Rn, wk ∈ Rm, yk ∈ Rp. For clarity of exposition, we begin with
the case where only the process noise sequence {wk} is constrained.1 We thus
assume that {wk} is an i.i.d. sequence having truncated Gaussian distribution

1 The case of general constraints on wk, vk and x0 will be treated in Sections 10.6
and 10.7.
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of the form given in (9.11) of Chapter 9, with Ω1 = Ω. We further assume
that {vk} is an i.i.d. sequence having a Gaussian distribution N(0, R), and x0

has a Gaussian distribution N(µ0, P0).
For (10.1) we consider the optimisation problem defined in (9.29)–(9.35) of

Chapter 9, which yields the joint a posteriori most probable state estimates.
According to the assumptions, we set Ω1 = Ω, Ω2 = Rp, and Ω3 = Rn in
(9.29)–(9.35). Thus, we consider:

Pe : V opt
N (µ0, {yd

k}) � min
x̂k,v̂k,ŵk

VN ({x̂k}, {v̂k}, {ŵk}), (10.2)

subject to:
x̂k+1 = Ax̂k + Bŵk for k = 0, . . . , N − 1, (10.3)

v̂k = yd
k − Cx̂k for k = 1, . . . , N, (10.4)

{x̂0, . . . , x̂N , v̂1, . . . , v̂N , ŵ0, . . . , ŵN−1} ∈ X, (10.5)

where, in (10.5),

X = R
n × · · · × R

n︸ ︷︷ ︸
N+1

×R
p × · · · × R

p︸ ︷︷ ︸
N

×Ω × · · · × Ω︸ ︷︷ ︸
N

. (10.6)

In (10.2), the objective function is

VN ({x̂k}, {v̂k}, {ŵk}) � 1
2
(x̂0 − µ0)tP−1

0 (x̂0 − µ0)

+
1
2

N−1∑
k=0

ŵt
kQ−1ŵk +

1
2

N∑
k=1

v̂t
kR−1v̂k, (10.7)

where P0 > 0, Q > 0, R > 0 are the covariance matrices in (9.11)–(9.13).
The following result establishes duality between the constrained estimation

problem Pe and a particular unconstrained nonlinear optimal control problem.

Theorem 10.2.1 (Dual Problem) Assume Ω in (10.6) is a nonempty
closed convex set. Given the primal constrained fixed horizon estimation prob-
lem Pe defined by equations (10.2)–(10.7), the Lagrangian dual problem is

De : φopt(µ0, {yd
k}) � min

λk,uk

φ({λk}, {uk}), (10.8)

subject to:
λk−1 = Atλk + Ctuk for k = 1, · · · , N, (10.9)
λN = 0, (10.10)
ζk = Btλk for k = 0, · · · , N − 1, (10.11)

ζ̄k = Q−1/2ΠΩ̃Q1/2ζk for k = 0, · · · , N − 1. (10.12)

In (10.8), the objective function is
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φ({λk}, {uk}) � 1
2
(Atλ0 + P−1

0 µ0)tP0(Atλ0 + P−1
0 µ0)

+
1
2

N∑
k=1

(uk − R−1yd
k)tR(uk − R−1yd

k)

+
N−1∑
k=0

[
1
2
ζ̄t
kQζ̄k + (ζk − ζ̄k)tQζ̄k

]
+ γ (10.13)

where γ is the constant term given by

γ � −1
2
µt

0P
−1
0 µ0 − 1

2

N∑
k=1

(yd
k)tR−1yd

k. (10.14)

In (10.12), ΠΩ̃ denotes the minimum Euclidean distance projection onto Ω̃ �
{z : Q1/2z ∈ Ω}, that is,

ΠΩ̃ : R
m −→ Ω̃

s �−→ s̄ = ΠΩ̃s � arg min
z∈Ω̃

‖z − s‖. (10.15)

Moreover, there is no duality gap, that is, the minimum achieved in (10.2) is
equal to minus the minimum achieved in (10.8).

Proof. Consider the primal constrained fixed horizon estimation problem Pe,
defined by equations (10.2)–(10.7). From (2.44) in Chapter 2, the Lagrangian
dual function θ is given by:

θ
({λk}, {uk}

)
= inf

ŵk∈Ω,x̂k,v̂k

L
({x̂k}, {v̂k}, {ŵk}, {λk}, {uk}

)
, (10.16)

where the function L is defined as,

L
({x̂k}, {v̂k}, {ŵk}, {λk}, {uk}

)
= VN ({x̂k}, {v̂k}, {ŵk})

+
N−1∑
k=0

λt
k

[
x̂k+1 − Ax̂k − Bŵk

]

+
N∑

k=1

ut
k

[
yd

k − Cx̂k − v̂k

]
. (10.17)

In (10.17), VN is the primal objective function defined in (10.7), and {λk} and
{uk} are the Lagrange multipliers corresponding, respectively, to the linear
equalities (10.3) and (10.4). Using (10.7) in (10.17), and combining terms, the
function L can be rewritten as
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L
({x̂k}, {v̂k}, {ŵk}, {λk}, {uk}

)
=

1
2
(x̂0 − µ0)tP−1

0 (x̂0 − µ0) − λt
0Ax̂0

+
N∑

k=1

{1
2
v̂t

kR−1v̂k − ut
kv̂k + ut

kyd
k

}

+
N−1∑
k=0

{1
2
ŵt

kQ−1ŵk − λt
kBŵk

}

+
N−1∑
k=1

{
(λk−1 − Atλk − Ctuk)tx̂k

}
+ (λN−1 − CtuN)tx̂N . (10.18)

Notice that the terms that depend on the constrained variables ŵk are inde-
pendent of the other variables, x̂k and v̂k, with respect to which the minimi-
sation (10.16) is carried out. The values that achieve the infimum in (10.16),
denoted ŵ∗

k, x̂∗
k and v̂∗k, can be computed from

ŵ∗
k = arg min

ŵk∈Ω

{1
2
ŵt

kQ−1ŵk − λt
kBŵk

}
for k = 0, · · · , N − 1, (10.19)

∂L(·)
∂x̂0

= P−1
0 (x̂∗

0 − µ0) − Atλ0 = 0, (10.20)

∂L(·)
∂v̂k

= R−1v̂∗k − uk = 0 for k = 1, · · · , N, (10.21)

provided that the following two conditions are satisfied

λk−1 − Atλk − Ctuk = 0 for k = 1, · · · , N − 1, (10.22)
λN−1 − CtuN = 0. (10.23)

Notice from (10.18) that the infimum in (10.16) is −∞ whenever {λk} and
{uk} are such that (10.22) and (10.23) are not satisfied. However, since we will
subsequently choose {λk} and {uk} so as to maximise θ({λk}, {uk}) in (10.16)
(see (2.43) and (2.44) in Chapter 2), we are here interested only in those values
of {λk} and {uk} satisfying (10.22) and (10.23).

We next define the variables

ζk � Btλk, (10.24)

s � Q−1/2ŵk, (10.25)

s∗ � Q−1/2ŵ∗
k, (10.26)

which transform the minimisation problem (10.19) into the minimum Eu-
clidean distance problem

s∗ = arg min
s∈Ω̃,

{1
2
sts − (ζt

kQ1/2)s
}

, (10.27)
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where Ω̃ � {z : Q1/2z ∈ Ω}. The solution to (10.27) can be expressed as

s∗ = s̄ � ΠΩ̃Q1/2ζk, (10.28)

where ΠΩ̃ is the Euclidean projection (10.15). Using (10.26) and (10.28), the
solution to (10.19) is then

ŵ∗
k = Q1/2ΠΩ̃Q1/2ζk. (10.29)

Finally, we define

ζ̄k � Q−1ŵ∗
k = Q−1/2ΠΩ̃Q1/2ζk, (10.30)

and introduce an extra variable, λN � 0, for ease of notation. Thus, from
(10.19)–(10.24) and (10.30), we obtain:

ŵ∗
k = Qζ̄k for k = 0, · · · , N − 1, (10.31)

ζ̄k � Q−1/2ΠΩ̃Q1/2ζk for k = 0, · · · , N − 1, (10.32)

ζk � Btλk for k = 0, · · · , N − 1, (10.33)
λN � 0, (10.34)

λk−1 = Atλk + Ctuk for k = 1, · · · , N, (10.35)
x̂∗

0 = P0A
tλ0 + µ0, (10.36)

v̂∗k = Ruk for k = 1, · · · , N. (10.37)

Substituting (10.31)–(10.37) into (10.18) we obtain, after some algebraic ma-
nipulations, the Lagrangian dual function:

θ
({λk}, {uk}

)
= L

({x̂∗
k}, {v̂∗k}, {ŵ∗

k}, {λk}, {uk}
)

= −1
2
{
λt

0AP0A
tλ0 + 2λt

0Aµ0

}
− 1

2

N∑
k=1

{
ut

kRuk − 2ut
kyd

k

}
+

N−1∑
k=0

{1
2
ζ̄t
kQζ̄k − ζt

kQζ̄k

}
.

(10.38)

Finally, completing the squares in (10.38), and after further algebraic manip-
ulations, we obtain:

θ
({λk}, {uk}

)
= −1

2
(Atλ0 + P−1

0 µ0)tP0(Atλ0 + P−1
0 µ0)

− 1
2

N∑
k=1

(uk − R−1yd
k)tR(uk − R−1yd

k)

−
N−1∑
k=0

[
1
2
ζ̄t
kQζ̄k + (ζk − ζ̄k)tQζ̄k

]
− γ,
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where γ is the constant defined in (10.14). Defining φ � −θ, the formulation of
the dual problem De in (10.8)–(10.15) follows from (2.43)–(2.44) in Chapter 2,
and the fact that max θ = −min(−θ) = −min φ and the optimisers are the
same. Also, from Theorem 2.6.4 in Chapter 2, we conclude that there is no
duality gap, that is, the minimum achieved in (10.2) is equal to minus the
minimum achieved in (10.8). �

We can think of (10.9)–(10.11) as the state equations of a system (running
in reverse time) with input uk and output ζk. Theorem 10.2.1 then shows that
the dual of the primal estimation problem of minimisation with constraints
on the system inputs (the process noise wk) is an unconstrained optimisation
problem using projected outputs ζ̄k in the objective function.

A particular case of Theorem 10.2.1 is the following result for the uncon-
strained case.

Corollary 10.2.2 In the case in which the variables ŵk in the primal problem
Pe are unconstrained (that is, Ω = Rm), the dual problem becomes:

De : min
λk,uk

1
2

{
(Atλ0 + P−1

0 µ0)tP0(Atλ0 + P−1
0 µ0)

+
N∑

k=1

(uk − R−1yd
k)tR(uk − R−1yd

k) +
N−1∑
k=0

λt
kBQBtλk

}
+ γ,

subject to:
λk−1 = Atλk + Ctuk for k = 1, · · · , N,

λN = 0,

where γ is the constant defined in (10.14).

Proof. Note that ζ̄k = ζk in (10.12) since the projection (10.15) reduces to
the identity mapping in the unconstrained case. The result then follows upon
substituting ζ̄k = ζk = Btλk in expression (10.13). �

10.3 An Equivalent Formulation of the Primal Problem

In the previous section we have shown that problem De is dual to problem Pe

in (10.2)–(10.7). We can gain further insight by expressing Pe in a different
way. This is facilitated by the following results.

Lemma 10.3.1 Let Ω̃ ⊂ Rm be a closed convex set with a nonempty interior.
Let s ∈ Rm such that s /∈ Ω̃. Then there exists a unique point s̄ ∈ Ω̃ with min-
imum Euclidean distance from s. Furthermore, s and s̄ satisfy the inequality

(s − s̄)t(s̄ − ξ) > 0 (10.39)

for any point ξ in the interior of Ω̃.
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Proof. By assumption, Ω̃ is a nonempty closed convex set. From Theorem 2.3.1
of Chapter 2, we have that there exists a unique s̄ ∈ Ω̃ with minimum Eu-
clidean distance from s, and s̄ is the minimiser if and only if

(s − s̄)t(z − s̄) ≤ 0 for all z ∈ Ω̃. (10.40)

Now, let ξ ∈ int Ω̃. We will show that (10.39) holds. Since ξ ∈ Ω̃, (10.40)
holds for z = ξ. Thus we only need to show that (10.40) for z = ξ ∈ int Ω̃ can
never be an equality. Suppose, by contradiction, that

(s − s̄)t(ξ − s̄) = 0. (10.41)

Note that ‖s − s̄‖ > 0 since Ω̃ is closed, and s /∈ Ω̃, s̄ ∈ Ω̃. Since ξ ∈ int Ω̃,
there exists an ε > 0 such that the ball Nε(ξ) � {z : ‖z− ξ‖ < ε} is contained
in Ω̃. Define

ξ̃ = ξ + α
s − s̄

‖s − s̄‖ , 0 < α < ε; (10.42)

hence, ‖ξ̃ − ξ‖ = α < ε and ξ̃ ∈ Nε(ξ). We then have, using (10.41) and
(10.42), that

(s − s̄)t(ξ̃ − s̄) = (s − s̄)t(ξ − s̄) + α
(s − s̄)t(s − s̄)

‖s − s̄‖ = α‖s − s̄‖ > 0.

Thus, we have found a point ξ̃ ∈ Ω̃ (since Nε(ξ) is contained in Ω̃) such that
(s − s̄)t(ξ̃ − s̄) > 0, which contradicts (10.40). Thus, (10.39) must be true,
and the result follows. �
Lemma 10.3.2 Let f : Rm → R be any function and let Ω ⊂ Rm be a closed
convex set that contains an interior point c. Consider the optimisation problem

P ′
1 : min

w
V (w), (10.43)

with

V (w) � f(w̄) + (w − w̄)tQ−1(w̄ − c), (10.44)

w̄ � Q1/2ΠΩ̃Q−1/2w, (10.45)

where ΠΩ̃ is the mapping that assigns to any vector s in Rm the vector s̄ in
Ω̃ that is closest to s in Euclidean distance, that is,

ΠΩ̃ : R
m −→ Ω̃

s �−→ s̄ = ΠΩ̃s � arg min
z∈Ω̃

‖z − s‖, (10.46)

and set Ω̃ is defined as

Ω̃ � {z : Q1/2z ∈ Ω}. (10.47)

Then,
V (w̄) < V (w) for all w ∈ R

m\Ω.
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Proof. Suppose that w∗ ∈ Rm\Ω and let

w̄∗ � Q1/2ΠΩ̃Q−1/2w∗. (10.48)

Notice that w̄∗ ∈ Ω since (10.45), with ΠΩ̃ and Ω̃ defined in (10.46) and
(10.47), respectively, defines a projection of Rm onto Ω.

Define,
s∗ � Q−1/2w∗, s̄∗ � Q−1/2w̄∗. (10.49)

Then, by construction, s∗ and s̄∗ satisfy,

s̄∗ = ΠΩ̃s∗, (10.50)

and, in particular, s̄∗ ∈ Ω̃. Using (10.48) and (10.49) in (10.44)–(10.45), we
obtain,

V (w∗) = f(w̄∗)+(w∗−w̄∗)tQ−1(w̄∗−c) = f(Q1/2s̄∗)+(s∗−s̄∗)t(s̄∗−Q−1/2c).
(10.51)

Also, since w̄∗ ∈ Ω, we have (w̄∗) � Q1/2ΠΩ̃Q−1/2w̄∗ = w̄∗. Thus,

V (w̄∗) = f(w̄∗) + (w̄∗ − w̄∗)tQ−1(w̄∗ − c) = f(Q1/2s̄∗). (10.52)

It is easy to see, from the assumptions on Ω, that Ω̃ in (10.47) is a closed
convex set and Q−1/2c ∈ int Ω̃ since Q1/2 > 0. From Lemma 10.3.1, equation
(10.50), the definition of ΠΩ̃ in (10.46), and noticing that s∗ � Q−1/2w∗ /∈ Ω̃,
we conclude that

(s∗ − s̄∗)t(s̄∗ − Q−1/2c) > 0.

Hence, from (10.51) and (10.52), we have

V (w∗) − V (w̄∗) = (s∗ − s̄∗)t(s̄∗ − Q−1/2c) > 0.

The result then follows. �

In the sequel, we consider two optimisation problems to be equivalent if
they both achieve the same optimum and if the optimisers are the same.

Corollary 10.3.3 Under the conditions of Lemma 10.3.2, problem P ′
1 defined

by (10.43)–(10.47) is equivalent to the following problem

P1 : min
w∈Ω

f(w). (10.53)

Proof. It follows from Lemma 10.3.2 that for any point w in Rm\Ω we can find
a point w̄ in Ω that yields a strictly lower objective function value. Hence, we
can perform the minimisation of (10.44) in Ω without losing global optimal
solutions. Since the mapping Q1/2ΠΩ̃Q−1/2 used in (10.45) reduces to the
identity mapping in Ω, we conclude that (10.44) is equal to the objective
function in (10.53) for all w ∈ Ω, and thus the problems are equivalent. �
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Corollary 10.3.4 Let f : Rn × Rm × · · · × Rm → R be any function and let
Ω ⊂ Rm be a closed convex set that contains zero in its interior. Consider the
optimisation problem

P ′
2 : min

x0,w0,...,wN−1
V (x0, w0, . . . , wi, . . . , wN−1), (10.54)

with

V (x0, w0, . . . , wi, . . . , wN−1) � f(x0, w̄0, . . . , w̄i, . . . , w̄N−1)

+
N−1∑
k=0

(wk − w̄k)tQ−1w̄k, (10.55)

and
w̄i = Q1/2ΠΩ̃Q−1/2wi for i = 0, . . . , N − 1, (10.56)

where ΠΩ̃ and Ω̃ are defined as in (10.46) and (10.47), respectively.
Then, if wi ∈ Rm\Ω for some i ∈ {0, . . . , N − 1}, we have

V (x0, w0, . . . , w̄i, . . . , wN−1) < V (x0, w0, . . . , wi, . . . , wN−1)

for all x0 ∈ Rn and w0, . . . , wi−1, wi+1, . . . , wN−1 ∈ Rm.

Proof. Consider the sequence {x∗
0, w

∗
0 , . . . , w

∗
i , . . . , w∗

N−1} and suppose w∗
i ∈

Rm\Ω for some i. Via a similar argument to that used in the proof
of Lemma 10.3.2 (with c = 0), we can show that the sequence
{x∗

0, w
∗
0 , . . . , w̄∗

i , . . . , w∗
N−1}, with w̄∗

i = Q1/2ΠΩ̃Q−1/2w∗
i , gives a lower value

of the objective function (10.55). The result then follows. �
Corollary 10.3.5 Under the conditions of Corollary 10.3.4, problem P ′

2 de-
fined by (10.54)–(10.56) is equivalent to the problem

P2 : min
wk∈Ω,x0

f(x0, w0, . . . , wi, . . . , wN−1). (10.57)

Proof. Similar to the proof of Corollary 10.3.3. �
We are now ready to express the primal estimation problem Pe defined by

equations (10.2)–(10.7) in an equivalent form. This is done in the following
theorem.

Theorem 10.3.6 (Equivalent Primal Formulation) Assume that Ω is a
closed convex set that contains zero in its interior. Then the primal estimation
problem Pe defined by equations (10.2)–(10.7) is equivalent to the following
unconstrained optimisation problem:

P ′
e : V opt

N (µ0, y
d
k) � min

x̂k,v̂k,ŵk

V ′
N ({x̂k}, {v̂k}, {ŵk}), (10.58)

subject to:
x̂k+1 = Ax̂k + Bw̄k for k = 0, · · · , N − 1, (10.59)

v̂k = yd
k − Cx̂k for k = 1, · · · , N, (10.60)

w̄k = Q1/2ΠΩ̃Q−1/2ŵk for k = 0, . . . , N − 1, (10.61)
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where

V ′
N ({x̂k}, {v̂k}, {ŵk}) � 1

2
(x̂0 − µ0)tP−1

0 (x̂0 − µ0) +
1
2

N∑
k=1

v̂t
kR−1v̂k

+
N−1∑
k=0

[
1
2
w̄t

kQ−1w̄k + (ŵk − w̄k)tQ−1w̄k

]
, (10.62)

where ΠΩ̃ and Ω̃ are defined in (10.46) and (10.47), respectively.

Proof. First note that, using the equations (10.3) and (10.4), the objective
function (10.7) can be written in the form

VN

({x̂k}, {v̂k}, {ŵk}
)

= f(x̂0, ŵ0, . . . , ŵi, . . . , ŵN−1).

Since the minimisation of the above objective function is performed for x̂0 ∈
Rn and for ŵk ∈ Ω, we conclude that problem Pe can be written in the form
(10.57). Using Corollary 10.3.5 we can then express Pe in the form of problem
P ′

2 defined by (10.54)–(10.56). However, this is equivalent to (10.58)–(10.62)
(note the presence of w̄k in (10.59)), and the result then follows. �

Theorem 10.3.6 shows that the primal estimation problem of minimisation
with constraints on the system inputs (the process noise wk) can be trans-
formed into an equivalent unconstrained minimisation problem using projected
inputs w̄k both in the objective function and in the state equations (10.59).

Comparing the primal problem in its equivalent formulation (10.58)–
(10.62) with the dual problem (10.8)–(10.13) we observe an interesting sym-
metry between them. This is discussed in the following section.

10.4 Symmetry of Constrained Estimation and Control

In summary, we have shown that the two following problems are dual in the
Lagrangian sense.

Primal Constrained Problem (Equivalent Unconstrained Form)

P ′
e : min

x̂k,v̂k,ŵk

{1
2
(x̂0 − µ0)tP−1

0 (x̂0 − µ0) +
1
2

N∑
k=1

v̂t
kR−1v̂k

+
N−1∑
k=0

[1
2
w̄t

kQ−1w̄k + (ŵk − w̄k)tQ−1w̄k

]}
,

subject to:
x̂k+1 = Ax̂k + Bw̄k for k = 0, · · · , N − 1,

v̂k = yd
k − Cx̂k for k = 1, · · · , N,

w̄k = Q1/2ΠΩ̃Q−1/2ŵk for k = 0, . . . , N − 1.
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−
+

yd
k

v̂kŵk

Q−1/2

w̄k

ΠΩ̃ Q1/2
(A,B, C)

Cx̂k

Figure 10.1. Configuration for the primal problem (equivalent formulation).

Dual Unconstrained Problem

De : min
λk,uk

{1
2
(λ−1 − µ̃0)tP0(λ−1 − µ̃0) +

1
2

N∑
k=1

ût
kRûk

+
N−1∑
k=0

[1
2
ζ̄t
kQζ̄k + (ζk − ζ̄k)tQζ̄k

]}
+ γ,

subject to:
λk−1 = Atλk + Ctuk for k = 1, · · · , N,

λN = 0, λ−1 � Atλ0,

ûk � R−1yd
k − uk for k = 1, · · · , N,

ζk = Btλk for k = 0, · · · , N − 1,

ζ̄k = Q−1/2ΠΩ̃Q1/2ζk for k = 0, · · · , N − 1,

where µ̃0 � −P−1
0 µ0 and γ is the constant defined in (10.14).

ζk =Btλk

Q1/2

ζ̄k

ΠΩ̃ Q−1/2
(At, Ct, Bt)

uk

R−1yd
k+

−

ûk

Figure 10.2. Configuration for the dual problem.

In the above two problems, ΠΩ̃ is the minimum Euclidean distance pro-
jection defined in (10.46) onto the set Ω̃ defined in (10.47).

Figures 10.1 and 10.2 illustrate the primal equivalent problem P ′
e and

the dual problem De, respectively. Note from the figures and corresponding
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equations the symmetry between both problems; namely, input variables take
the role of output variables in the objective function, system matrices are
swapped : A −→ AT , B −→ CT , C −→ BT , time is reversed and input
projections become output projections.

10.5 Scalar Case

The above duality result takes a particularly simple form in the scalar input
case, that is, when m = 1 in (10.1). We assume Ω = {w : |w| ≤ ∆}, where
∆ is a positive constant, and take Q = 1 in the objective function (10.7),
without loss of generality, since we can always scale by this factor. In this
case, Ω̃ = Ω and the minimum Euclidean distance projection reduces to the
usual saturation function defined as sat∆(u) = sign (u) min(|u|, ∆).

The (equivalent) primal and dual problems for the scalar case are then:

Primal Problem

P ′
e : min

x̂k,v̂k,ŵk

{1
2
(x̂0 − µ0)tP−1

0 (x̂0 − µ0)

+
1
2

N∑
k=1

v̂t
kR−1v̂k +

1
2

N−1∑
k=0

[
ŵ2

k − (ŵk − sat∆(ŵk))2
]}

,

subject to:
x̂k+1 = Ax̂k + Bsat∆(ŵk) for k = 0, · · · , N − 1,

v̂k = yd
k − Cx̂k for k = 1, · · · , N.

Dual Problem

De : min
λk,uk

{1
2
(Atλ0 + P−1

0 µ0)tP0(Atλ0 + P−1
0 µ0)

+
1
2

N∑
k=1

ût
kRûk +

1
2

N−1∑
k=0

[
ζ2
k − (ζk − sat∆(ζk))2

]}
+ γ, (10.63)

subject to:
λk−1 = Atλk + Ctuk for k = 1, · · · , N, (10.64)
λN = 0, (10.65)

ûk � R−1yd
k − uk for k = 1, · · · , N, (10.66)

ζk = Btλk for k = 0, · · · , N − 1, (10.67)

where γ is the constant defined in (10.14).
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Example 10.5.1. Consider the model (10.1) with matrices

A =
[

0.50 0.01
−0.70 0.30

]
, B =

[
0.40
0.90

]
and C =

[
0.90 −0.50

]
.

The initial state x0 has a Gaussian distribution N(µ0, P0), with µ0 = [1 2]t.
The output noise {vk} is an i.i.d. sequence having a Gaussian distribution
N(0, R), with R = 0.1. The process noise {wk} has a truncated Gaussian
distribution of the form (9.11) in Chapter 9. For this example, we take Ω1 =
Ω = {w : |w| ≤ 1} and Q = 1. The weighting matrix P0 was obtained from
the steady state error covariance of the Kalman filter for the system above.
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Figure 10.3. Primal problem: constrained estimation. (a) Measurement data. (b)
Optimal primal input estimate. (c),(d) Optimal primal state estimates.

Given the measurement data {yd
k} � {yd

1 , · · · , yd
N} plotted in Fig-

ure 10.3 (a), we solve the primal problem (10.2)–(10.7). Note that by using
equations (10.3)–(10.5) the minimisation is performed for x̂0 and for ŵk ∈ Ω.
We can then use QP to obtain the optimal initial state estimate x̂∗

0, and the
optimal input estimate ω̂∗

k. The latter is plotted in Figure 10.3 (b). In ad-
dition, using the state equations (10.3) with the optimal values x̂∗

0 and ω̂∗
k,
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we obtain the optimal state estimates x̂∗
1,k and x̂∗

2,k, k = 0, . . . , N (the two
components of the state estimate vector x̂∗

k), shown in Figure 10.3 (c) and (d),
respectively.

The dual of the above estimation problem is the nonlinear optimal control
problem (10.63)–(10.67), where the saturation value is ∆ = 1. Note that
using equations (10.64)–(10.67), the decision variables of the minimisation
problem (10.63) are u1, . . . , uN only. The dual problem has swapped the role
of the inputs and outputs in the objective function. In the primal problem,
the system outputs were the measurement data yd

k. For the dual problem (see
(10.66)), yd

k has been scaled as the input reference R−1yd
k to system (10.64)–

(10.65). This scaled input reference is shown in Figure 10.4 (a). We solve the
nonlinear unconstrained optimisation problem (10.63)–(10.67) to obtain the
optimal input u∗

k shown in Figure 10.4 (b). Similarly, the dual system states
λ∗

k, whose components are plotted in Figure 10.4 (c)–(d), respectively, can be
obtained, in reverse time, via equations (10.64)–(10.65) by using the optimal
values of u∗

k.
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Figure 10.4. Dual problem: nonlinear optimal control. (a) Scaled data. (b) Optimal
dual input. (c),(d) Optimal dual states.
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The relation of strong Lagrangian duality between constrained estimation
and control defines a relation between the optimal values in the primal and
dual problems. From equation (10.67), the “dual output” ζ∗k = Btλ∗

k (shown
in Figure 10.5 (a)) is a combination of the states λ∗

k, and from the proof of
Theorem 10.2.1 (see (10.31)–(10.32)), we have

ŵ∗
k = Qζ̄∗k , where ζ̄∗k = sat∆(ζ∗k).

That is, the optimal input values ŵ∗
k of the primal problem are the scaled

projections of the optimal dual outputs ζ∗k , as can be seen by comparing
Figure 10.3 (b) with Figure 10.5 (b). ◦
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Figure 10.5. Relation between optimal values of the primal and dual problems. (a)
Optimal dual output. (b) Optimal primal input equal to scaled projected optimal
dual output.

10.6 More General Constraints

We have seen above that the dual of the estimation problem with constraints
on the process noise sequence {wk} is an unconstrained nonlinear control prob-
lem defined in terms of projected outputs. Here we generalise the estimation
problem by considering constraints on the process noise sequence {wk}, the
measurement noise sequence {vk} and the initial state x0. In this case, the
dual problem will turn out to be an unconstrained nonlinear control problem
defined in terms of projected outputs, projected inputs and projected terminal
states.

Thus, consider the following system

xk+1 = Axk + Bwk for k = 0, · · · , N − 1,

yk = Cxk + vk for k = 1, · · · , N,
(10.68)
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where xk ∈ Rn, wk ∈ Rm, yk ∈ Rp. We assume that {wk}, {vk}, x0 have
truncated Gaussian distributions of the forms given in (9.11), (9.12) and (9.13)
of Chapter 9, respectively, where

wk ∈ Ω1 for k = 0, · · · , N − 1,

vk ∈ Ω2 for k = 1, · · · , N,

x0 ∈ Ω3.

For (10.68) we consider the following optimisation problem:

Pe : V opt
N (µ0, y

d
k) � min

x̂k,v̂k,ŵk

VN ({x̂k}, {v̂k}, {ŵk}), (10.69)

subject to:
x̂k+1 = Ax̂k + Bŵk for k = 0, . . . , N − 1, (10.70)

v̂k = yd
k − Cx̂k for k = 1, . . . , N, (10.71)

{x̂0, x̂1, . . . , x̂N , v̂1, . . . , v̂N , ŵ0, . . . , ŵN−1} ∈ X, (10.72)

where, in (10.72),

X = Ω3 × R
n · · · × R

n︸ ︷︷ ︸
N

×Ω2 × · · · × Ω2︸ ︷︷ ︸
N

×Ω1 × · · · × Ω1︸ ︷︷ ︸
N

, (10.73)

and where, in (10.69), the objective function is

VN ({x̂k}, {v̂k}, {ŵk}) � 1
2
(x̂0 − µ0)tP−1

0 (x̂0 − µ0)

+
1
2

N−1∑
k=0

ŵt
kQ−1ŵk +

1
2

N∑
k=1

v̂t
kR−1v̂k. (10.74)

The following result establishes duality between the constrained estimation
problem Pe and an unconstrained nonlinear optimal control problem.

Theorem 10.6.1 (Dual Problem) Assume Ω1, Ω2, Ω3 in (10.73) are
nonempty closed convex sets such that there exists a feasible solution
{x̂0, x̂1, . . . , x̂N , v̂1, . . . , v̂N , ŵ0, . . . , ŵN−1} ∈ intX for the primal problem Pe.
Given the primal constrained fixed horizon estimation problem Pe defined by
equations (10.69)–(10.74), the Lagrangian dual problem is

De : φopt(µ0, {yd
k}) � min

λk,uk

φ({λk}, {uk}), (10.75)

subject to:
λk−1 = Atλk + Ctuk for k = 1, · · · , N, (10.76)
λN = 0, λ−1 = Atλ0, (10.77)
ζk = Btλk for k = 0, · · · , N − 1. (10.78)



10.7 Symmetry Revisited 233

In (10.75), the objective function is

φ({λk}, {uk}) � 1
2
(λ̄−1 + P−1

0 µ0)tP0(λ̄−1 + P−1
0 µ0)

+ (λ−1 − λ̄−1)tP0(λ̄−1 + P−1
0 µ0)

+
N∑

k=1

[
1
2
(ūk − R−1yd

k)tR(ūk − R−1yd
k)

+ (uk − ūk)tR(ūk − R−1yd
k)
]

+
N−1∑
k=0

[
1
2
ζ̄t
kQζ̄k + (ζk − ζ̄k)tQζ̄k

]
+ γ (10.79)

where γ is the constant term given by

γ � −1
2
µt

0P
−1
0 µ0 − 1

2

N∑
k=1

(yd
k)tR−1yd

k. (10.80)

In (10.79) the projected variables are defined as

λ̄−1 � P
−1/2
0 ΠΩ̃3

P
1/2
0 λ−1, (10.81)

ūk � R−1/2ΠΩ̃2
R1/2uk for k = 1, . . . , N, (10.82)

ζ̄k � Q−1/2ΠΩ̃1
Q1/2ζk for k = 0, . . . , N − 1, (10.83)

where ΠΩ̃i
, i = 1, 2, 3, denote the minimum Euclidean distance projections

(defined as in (10.15)) onto the sets

Ω̃1 � {z : Q1/2z ∈ Ω1}, (10.84)

Ω̃2 � {z : R1/2z ∈ Ω2}, (10.85)

Ω̃3 � {z : P
1/2
0 z + µ0 ∈ Ω3}. (10.86)

Moreover, there is no duality gap, that is, the minimum achieved in (10.69)
is equal to minus the minimum achieved in (10.75).

Proof. The proof follows the same lines as the proof of Theorem 10.2.1, save
that we must consider the constraints on x̂0 and v̂k, as well as on ŵk, when
optimising (10.18). Thus, instead of (10.20) and (10.21), we need to carry out
a constrained optimisation as was done for ŵk in (10.19). �

10.7 Symmetry Revisited

We have seen in Section 10.6 that the Lagrangian dual of the general con-
strained estimation problem is an unconstrained nonlinear control problem
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involving projected variables. The symmetry in this result is revealed by
transforming the primal problem into an equivalent unconstrained estima-
tion problem using projected variables. To derive this equivalent problem, we
will use the following extensions of Corollaries 10.3.4 and 10.3.5:

Corollary 10.7.1 Let f : Z → R and h : Z → Rq, with Z = Rn × Rp ×
· · · × Rp × Rm × · · · × Rm, be any functions and let Ω1 ⊂ Rm, Ω2 ⊂ Rp and
Ω3 ⊂ Rn be closed convex sets. Let 0 ∈ intΩ1, 0 ∈ intΩ2 and µ0 ∈ intΩ3.
Consider the optimisation problem

P ′ : min
x0,vk,wk

V (x0, v1, . . . , vN , w0, . . . , wN−1), (10.87)

subject to:
h(x̄0, v̄1, . . . , v̄N , w̄0, . . . , w̄N−1) = 0, (10.88)

with

V (x0, v1, . . . , vN , w0, . . . , wN−1) � f(x̄0, v̄1, . . . , v̄N , w̄0, . . . , w̄N−1)

+ (x0 − x̄0)tP−1
0 (x̄0 − µ0)

+
N∑

k=1

(vk − v̄k)tR−1v̄k

+
N−1∑
k=0

(wk − w̄k)tQ−1w̄k, (10.89)

and

x̄0 = P
1/2
0 ΠΩ̃3

P
−1/2
0 (x0 − µ0) + µ0, (10.90)

v̄k = R1/2ΠΩ̃2
R−1/2vk for k = 1, . . . , N, (10.91)

w̄k = Q1/2ΠΩ̃1
Q−1/2wk for k = 0, . . . , N − 1, (10.92)

where ΠΩ̃i
, i = 1, 2, 3, are the minimum Euclidean distance projections (de-

fined as in (10.15)) onto the sets (10.84)–(10.86), respectively.
Then any global optimal solution {x∗

0, v
∗
1 , . . . , v∗i , . . . , v∗N , w∗

0 , . . . ,
w∗

i , . . . , w∗
N−1

}
of (10.87)–(10.92) satisfies x∗

0 ∈ Ω3, v∗i ∈ Ω2 for i = 1, . . . , N
and w∗

i ∈ Ω1 for i = 0, . . . , N − 1.

Proof. As in the proof of Corollary 10.3.4 we can show that given any feasible
sequence {x∗

0, v
∗
1 , . . . , v∗i , . . . , v∗N , w∗

0 , . . . , w∗
i , . . . , w∗

N−1} for problem (10.87)–
(10.92) and such that x∗

0 ∈ Rn\Ω3, and/or v∗i ∈ Rp\Ω2 for some i and/or
w∗

i ∈ Rm\Ω1 for some i, a lower value of the objective function is achieved
by replacing these variables by their projected values x̄∗

0 ∈ Ω3, v̄∗i ∈ Ω2 and
w̄∗

i ∈ Ω1, computed as in (10.90)–(10.92). Since the sequence so obtained
satisfies the equality constraint (10.88), it is feasible and hence the result
follows. �



10.7 Symmetry Revisited 235

Corollary 10.7.2 Under the conditions of Corollary 10.7.1, problem P ′ de-
fined by (10.87)–(10.92) is equivalent to the problem

P : min
x0∈Ω3,vk∈Ω2,wk∈Ω1

f(x0, v1, . . . , vN , w0, . . . , wN−1).

Proof. Similar to the proof of Corollary 10.3.3. �
We then have the following equivalent formulation for the primal estima-

tion problem Pe defined by equations (10.69)–(10.74).

Theorem 10.7.3 (Equivalent Primal Formulation Revisited)
Suppose Ω1 ⊂ Rm, Ω2 ⊂ Rp and Ω3 ⊂ Rn are closed convex sets such
that 0 ∈ intΩ1, 0 ∈ intΩ2 and µ0 ∈ intΩ3. Then the primal estimation
problem Pe defined by equations (10.69)–(10.74) is equivalent to the following
unconstrained optimisation problem:

P ′
e : V opt

N (µ0, y
d
k) � min V ′

N (x̂0, {v̂k}, {ŵk}), (10.93)

subject to:
x̄k+1 = Ax̄k + Bw̄k for k = 0, · · · , N − 1, (10.94)

v̄k = yd
k − Cx̄k for k = 1, · · · , N, (10.95)

x̄0 = P
1/2
0 ΠΩ̃3

P
−1/2
0 (x̂0 − µ0) + µ0, (10.96)

v̄k = R1/2ΠΩ̃2
R−1/2v̂k for k = 1, . . . , N, (10.97)

w̄k = Q1/2ΠΩ̃1
Q−1/2ŵk for k = 0, . . . , N − 1, (10.98)

where ΠΩ̃i
, i = 1, 2, 3 are the minimum Euclidean distance projections (defined

as in (10.15)) onto the sets (10.84)–(10.86), respectively, and where

V ′
N (x̂0, {v̂k}, {ŵk}) � 1

2
(x̄0 − µ0)tP−1

0 (x̄0 − µ0)

+ (x̂0 − x̄0)tP−1
0 (x̄0 − µ0)

+
N∑

k=1

[
1
2
v̄t

kR−1v̄k + (v̂k − v̄k)tR−1v̄k

]

+
N−1∑
k=0

[
1
2
w̄t

kQ−1w̄k + (ŵk − w̄k)tQ−1w̄k

]
. (10.99)

Proof. Immediate from Corollary 10.7.2 on interpreting h in (10.88) as

h(x̄0, v̄1, . . . , v̄N , w̄0, . . . , w̄N−1) =⎡⎢⎢⎢⎣
CAx̄0 + v̄1 + CBw̄0 − yd

1

CA2x̄0 + v̄2 + CABw̄0 + CBw̄1 − yd
2

...
CAN x̄0 + v̄N +

∑N−1
k=0 CAN−k−1Bw̄k − yd

N

⎤⎥⎥⎥⎦ .

�
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If we compare the equivalent form of the primal problem (10.93)–(10.99)
with the dual problem (10.75)–(10.83) then aspects of the symmetry between
these problems are revealed. In particular, we see that the following con-
nections hold: time is reversed, system matrices are swapped (A −→ AT ,
B −→ CT , C −→ BT ), input projections become output projections and vice
versa, and initial state projections become terminal state projections. These
connections and other observations are summarised in Table 10.1.

Primal Equivalent Primal Dual

State
equations

x̂k+1 =
Ax̂k + Bŵk

x̄k+1 = Ax̄k + Bw̄k λk−1 = Atλk + Ctuk,
λ−1 = Atλ0

Output
equation

v̂k =
yd

k − Cx̂k

v̄k = yd
k − Cx̄k ζk = Btλk

Input/output
connection

Input
constraints
ŵk ∈ Ω1

Unconstrained minimisation
using the projected input w̄k

in the objective function.
Projected input used in the
state equations: x̄k+1 =
Ax̄k + Bw̄k.

Unconstrained minimisa-
tion using projected out-
put ζ̄k in the objective
function.

Output/input
connection

Output
constraints

v̂k ∈ Ω2

Unconstrained minimisation
using the projected output v̄k

in the objective function.
Projected output required to
satisfy the output equation:
v̄k = yd

k − Cx̄k.

Unconstrained minimisa-
tion using the projected
input ūk in the objective
function.

Initial/final
state

connection

Initial state
constraints

x̂0 ∈ Ω3

Unconstrained minimisation
using the projected initial
state x̄0 in the objective
function.
Projected initial state used
as initial state for the state
equations.

Unconstrained minimisa-
tion using the projected
terminal state λ̄−1 in the
objective function.

Table 10.1. Connections between the primal problem, its equivalent formulation
and the dual problem.

10.8 Further Reading

For complete list of references cited, see References section at the end of book.

General

The relationship between linear estimation and linear quadratic control is
well-known in the unconstrained case. Since the original work of Kalman and
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others (see Kalman 1960b, Kalman and Bucy 1961), many authors have con-
tributed to further understand this relationship. For example, Kailath, Sayed
and Hassibi (2000) have explored duality in the unconstrained case using the
geometrical concepts of dual bases and orthogonal complements. The connec-
tion between the two unconstrained optimisation problems using Lagrangian
duality has also been established in, for example, the recent work of Rao
(2000).

The results in the current chapter are based on Goodwin, De Doná, Seron
and Zhuo (2004).
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