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Introduction

1.1 Overview

The goal of this chapter is to provide a general overview of constrained control
and estimation. This is intended to motivate the material to follow. Section 1.2
treats constrained control, Section 1.3 deals with constrained estimation, and
Section 1.4 draws parallels between these two problems.

1.2 Introduction to Constrained Control

Handling constraints in control system design is an important issue in most,
if not all, real world problems.

It is readily appreciated that all real world control systems have an as-
sociated set of constraints; for example, inputs always have maximum and
minimum values and states are usually required to lie within certain ranges.
Of course, one could proceed by ignoring these constraints and hope that no
serious consequences result from this approach. This simple procedure may be
sufficient at times. On the other hand, it is generally true that higher levels
of performance are associated with operating on, or near, constraint bound-
aries. Thus, a designer really cannot ignore constraints without incurring a
performance penalty.

As an illustration of these facts consider a simple automobile control prob-
lem. We mentioned in the Preface that there exist maximum and minimum
available throttle displacements, that is, the system input is constrained.
Other variables are also subject to constraints; for example, acceleration and
deceleration have to be limited to prevent the vehicle’s wheels from loosing
traction. These factors constitute a constraint on the state of the system.
Thus, modern cars incorporate both traction control (for acceleration) and
anti-skid braking [ABS] (for deceleration). Both mechanisms ensure safe op-
eration when variables are pushed to their limits.
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As another simple example, consider the problem of rudder roll stabil-
isation of ships. The prime function of the rudder is to maintain the ship’s
heading. However, the rudder also imparts a rolling moment to the ship. Thus,
the rudder can be used to achieve a measure of roll stabilisation. Since the
rolling moment induced by the rudder is relatively small, it can be appre-
ciated that large rudder displacements will be called upon, especially under
heavy sea conditions. Of course, practical rudders must operate subject to
constraints on both their total displacement (typically ±30 degrees) and slew
rate (typically ±15 degrees per second). Indeed, it is generally agreed that
rudder roll stabilisation can actually be counterproductive unless appropri-
ate steps are taken to adequately deal with the presence of constraints. We
will devote Chapter 14 to a more comprehensive introduction to rudder roll
stabilisation. Other practical problems are discussed in Chapters 15 and 16.

Most of the existing literature on control theory deals with unconstrained
problems. Nonetheless, as discussed above, there are strong practical reasons
why a system should be operated on constraint boundaries. Thus, this book
is aimed at going a step beyond traditional linear control theory to include
consideration of constraints.

Our view of the existing methods for dealing with constraints in control
system design is that they can be broadly classified under four headings:

• cautious
• serendipitous
• evolutionary
• tactical

In the “cautious” approach, one aims to explicitly deal with constraints
by deliberately reducing the performance demands until the point where the
constraints are not met at all. This has the advantage of allowing one to
essentially use ordinary unconstrained design methods and hence to carry out
a rigorous linear analysis of the problem. On the other hand, this is achieved
at the cost of a potentially important loss in achievable performance since we
expect high performance to be associated with pushing the boundaries, that
is, acting on or near constraints.

In the “serendipitous” approach, one takes no special precautions to handle
constraints, and hence occasional violation of the constraints is possible (that
is, actuators reach saturation, states exceed their allowed values, and so on).
Sometimes this can lead to perfectly acceptable results. However, it can also
have a negative impact on important performance measures, including closed
loop stability, since no special care is taken of the constrained phase of the
response.

In the “evolutionary” approach, one begins with an unconstrained design
philosophy but then adds modifications and embellishments to ensure that
the negative consequences of constraints are avoided, or at least minimised,
whilst ensuring that performance goals are attained. Examples of evolutionary
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approaches include various forms of anti-windup control, high gain-low gain
control, piecewise linear control and switching control.

One might suspect that, by careful design and appropriate use of intu-
ition, one can obtain quite acceptable results from the evolutionary approach
provided one does not push too hard. However, eventually, the constraints
will override the usual linear design paradigm. Under these conditions, there
could be advantages in “starting afresh”. This is the philosophy of the so-
called “tactical” approaches, in which one begins afresh with a formulation
that incorporates constraints from the beginning in the design process. One
way of achieving this is to set the problem up as a constrained optimisation
problem. This will be the approach principally covered in this book.

Of course, the above classification does not cover all possibilities. Indeed,
many methods fall into several categories.

To provide further motivation for this subject, we will present a simple
example illustrating aspects of the cautious, serendipitous and tactical ap-
proaches.

We will base our design on linear quadratic regulator [LQR] theory. Thus,
consider an objective function of the form:

VN ({xk}, {uk}) � 1
2
xt

NPxN +
1
2

N−1∑
k=0

(xt
kQxk + ut

kRuk) , (1.1)

where {uk} denotes the control sequence {u0, u1, . . . , uN−1}, and {xk} denotes
the corresponding state sequence {x0, x1, . . . , xN}. In (1.1), {uk} and {xk} are
related by the linear state equation:

xk+1 = Axk + Buk, k = 0, 1, . . . , N − 1,

where x0, the initial state, is assumed to be known.
In principle one can adjust the following parameters to obtain different

manifestations of performance:

• the optimisation horizon N
• the state weighting matrix Q
• the control weighting matrix R
• the terminal state weighting matrix P

Actually, adjusting one or more of these parameters to manipulate key
performance variables turns out to be one of the principal practical attributes
of constrained linear control. We illustrate some of the basic features of con-
strained control using the objective function (1.1) via the following simple
example.

Example 1.2.1. Consider the specific linear system:

xk+1 = Axk + Buk, (1.2)
yk = Cxk,
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with

A =
[
1 1
0 1

]
, B =

[
0.5
1

]
, C =

[
1 0

]
,

which is the zero-order hold discretisation with sampling period 1 of the double
integrator

d2y(t)
dt2

= u(t).

We take the initial condition (for illustrative purposes) to be x0 =
[−6 0

]t
and suppose that the actuators have maximum and minimum values (satura-
tion) so that the control magnitude is constrained such that |uk| ≤ 1 for all k.
We will design cautious, serendipitous, and tactical feedback controllers for
this system. A schematic of the feedback control loop is shown in Figure 1.1,
where “sat” represents the actuator modelled by the saturation function

sat(u) �

⎧⎪⎨⎪⎩
1 if u > 1,

u if |u| ≤ 1,

−1 if u < −1.

(1.3)

Note that the section of Figure 1.1 in the dashed-line box is part of the
physical reality and is not subject to change (unless, of course, the actuator
is replaced).

uk xk

controller
linear
systemsat

Figure 1.1. Feedback control loop for Example 1.2.1.

(i) Cautious Design

A cautious strategy would be, for example, to design a linear state feedback
with low gain such that the control limits are never reached.

For example, using the objective function (1.1) with infinite horizon (N =

∞, P = 0) and weighting matrices Q = CtC =
[
1 0
0 0

]
and R = 20 gives the

linear state feedback law:
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uk = −Kxk = − [
0.1603 0.5662

]
xk.

This control law never violates the given physical limits on the input for the
given initial condition. The resulting input and output sequences are shown
in Figure 1.2.
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Figure 1.2. uk and yk for the cautious design uk = −Kxk with weights Q = CtC
and R = 20.

We can see from Figure 1.2 that the input uk has a maximum value close
to 1 (achieved at k = 0) which clearly satisfies the given constraint for this
initial condition. However, the achieved output response is rather slow. Indeed,
it can be seen from Figure 1.2 that the “settling time” is of the order of eight
samples.

(ii) Serendipitous Design

Now, suppose that for the same Q = CtC in the infinite horizon objective
function we try to obtain a faster response by reducing the control weight to
R = 2. We expect that this will lead to a control law having “higher gain.”

The resultant higher gain control would give the input and output se-
quences shown in dashed lines in Figure 1.3 provided the input constraint could
be removed (that is, if the saturation block were removed from Figure 1.1).
However, we can see that the input constraints would have been violated in
the presence of actuator saturation. (The input at k = 0 is well beyond the
allowed limit of |uk| = 1.)
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To satisfy the constraints we next incorporate the saturation function (1.3)
in the controller and simply saturate the input signal when it violates the
constraint. This leads to the control law:

uk = sat(−Kxk) = −sat(Kxk).

Note that, in terms of performance, this is equivalent to simply letting the
input saturate through the actuator in Figure 1.1. We call this control law
serendipitous since no special considerations of the presence of the constraints
have been made in the design calculations. The resulting input and output
sequences are shown by circle-solid lines in Figure 1.3.

0 5 10 15 20 25
−1

0

1

2

3

0 5 10 15 20 25
−6

−5

−4

−3

−2

−1

0

1

k

k

u
k

y
k

Figure 1.3. uk and yk for the unconstrained LQR design uk = −Kxk (dashed line),
and for the serendipitous strategy uk = −sat(Kxk) (circle-solid line), with weights
Q = CtC and R = 2.

We see from Figure 1.3 that the amount of overshoot is essentially the
same whether or not the input is constrained. Of course, the response time
achieved with a constrained input is longer than for the case when the input
is unconstrained. However, note that the constraint is part of the physical
reality and cannot be removed unless we replace the actuator. On the other
hand, the serendipitous design (with R = 2) appears to be making better use
of the available control authority than the cautious controller (with R = 20).
Indeed, the settling time is now approximately five samples even when the
input is constrained. This is approximately twice as fast as for the cautious
controller, whose performance was shown in Figure 1.2.
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Encouraged by the above result, we might be tempted to “push our luck”
even further and aim for an even faster response by further reducing the
weighting on the input signal. Accordingly, we decrease the control weighting
in the LQR design even further, for example, to R = 0.1.

In Figure 1.4 we can see the resulting input and output sequences (when
the input constraint, that is, the saturation block in Figure 1.1, is removed)
for the linear controller uk = −Kxk (dashed line). We now observe an un-
constrained settling time of approximately three samples. However, when the
input constraint is taken into account by setting uk = −sat(Kxk), then we
see that significant overshoot occurs and the settling time “blows out” to 12
samples (circle-solid line).

Perhaps we should not be surprised by this result since no special care has
been taken to tailor the design to deal with constraints, that is, the approach
remains serendipitous.
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Figure 1.4. uk and yk for the unconstrained LQR design uk = −Kxk (dashed line),
and for the serendipitous strategy uk = −sat(Kxk) (circle-solid line), with weights
Q = CtC and R = 0.1.

We have seen above that as we try to push the system harder, the serendip-
itous strategy ultimately fails to give a good result leading to the output having
large overshoot and long settling time. We can gain some insight into what
has gone wrong by examining the state space trajectory corresponding to the
serendipitous strategy. This is shown in Figure 1.5, where x1

k and x2
k denote

the components of the state vector xk in the discrete time model (1.2).
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The control law u = −sat(Kx) partitions the state space into three regions
in accordance with the definition of the saturation function (1.3). Hence, the
serendipitous strategy can be characterised as a switched control strategy in
the following way:

u = K(x) =

⎧⎪⎨⎪⎩
−Kx if x ∈ R0,

1 if x ∈ R1,

−1 if x ∈ R2.

(1.4)

Notice that this is simply an alternative way of describing the serendipitous
strategy since for x ∈ R0 the input actually lies between the saturation limits.
The partition is shown in Figure 1.5.
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Figure 1.5. State space trajectory and space partition for the serendipitous strategy
uk = −sat(Kxk), with weights Q = CtC and R = 0.1.

Examination of Figure 1.5 suggests a heuristic argument as to why the
serendipitous control law may not be performing well in this case. We can
think, in this example, of x2 as “velocity” and x1 as “position.” Now, in our
attempt to change the position rapidly (from −6 to 0), the velocity has been
allowed to grow to a relatively high level (+3). This would be fine if the
braking action were unconstrained. However, our input (including braking)
is limited to the range [−1, 1]. Hence, the available braking is inadequate to
“pull the system up”, and overshoot occurs.
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(iii) Tactical Design

Perhaps the above heuristic argument gives us some insight into how we could
remedy the problem. A sensible idea would seem to be to try to “look ahead”
and take account of future input constraints (that is, the limited braking
authority available). To test this idea, we take the objective function (1.1) as
a starting point.

We use a prediction horizon N = 2 and minimise, at each sampling in-
stant i and for the current state xi, the two-step objective function:

V2({xk}, {uk}) =
1
2
xt

i+2Pxi+2 +
1
2

i+1∑
k=i

(xt
kQxk + ut

kRuk) , (1.5)

subject to the equality and inequality constraints:

xk+1 = Axk + Buk,

|uk| ≤ 1,
(1.6)

for k = i and k = i + 1.
In the objective function (1.5), we set, as before, Q = CtC, R = 0.1. The

terminal state weighting matrix P is taken to be the solution of the Riccati
equation P = AtPA+Q−Kt(R+BtPB)K, where K = (R+BtPB)−1BtPA
is the corresponding gain.

As a result of minimising (1.5) subject to (1.6), we obtain an optimal fixed-
horizon control sequence {ui, ui+1}. We then apply the resulting value of ui

to the system. The state evolves to xi+1. We now shift the time instant from
i to i + 1 and repeat this procedure. This is called receding horizon control
[RHC] or model predictive control. RHC has the ability to “look ahead” by
considering the constraints not only at the current time i but also at future
times within the prediction interval [i, i+N −1]. (This idea will be developed
in detail in Chapter 4.)

The input and output sequences for the LQR design u = −Kx (dashed
line) that violates the constraints and the sequences for the receding horizon
design (circle-solid line) are shown in Figure 1.6.

We can see from Figure 1.6 that the output trajectory with constrained
input now has minimal overshoot. Thus, the idea of “looking ahead” and
applying the constraints in a receding horizon fashion has apparently “paid
dividends.”

Actually, we will see in Chapter 6 that the receding horizon strategy de-
scribed above also leads to a partition of the state space into different regions
in which affine control laws hold. The result is shown (for interest) in Fig-
ure 1.7. The region R2 corresponds to the region R2 in Figure 1.5 and repre-
sents the area of state space where u = −1 is applied. Comparing Figure 1.5
and Figure 1.7 we see that the region R2 has been “bent over” in Figure 1.7
so that u = −1 occurs at lower values of x2 (velocity) than was the case in
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Figure 1.6. uk and yk for the unconstrained LQR design uk = −Kxk (dashed line),
and for the receding horizon design (circle-solid line), with weights Q = CtC and
R = 0.1.

Figure 1.5. This is in accordance with our heuristic argument about “needing
to brake earlier.” ◦
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Figure 1.7. State space plot for the receding horizon tactical design.
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Obviously we have not given full details of the above example especially
in relation to the tactical approach; the example has been introduced only to
“wet the readers’ appetite” as to what might appear in the remainder of the
book. Indeed, in forthcoming chapters, we will analyse, in some detail, the
concepts raised in the above simple example.

1.3 Introduction to Constrained Estimation

Constraints are also often present in estimation problems. A classical exam-
ple of a constrained estimation problem is the case in which binary data (say
±1) are transmitted through a communication channel where it suffers dis-
persion causing the data to overlay itself. In the field of communications, this
is commonly referred to as intersymbol interference [ISI]. The associated es-
timation problem is: Given the output of the channel, provide an estimate of
the transmitted signal.

To illustrate some of the ideas involved in the above problem, let us assume,
for simplicity, that the intersymbol interference produced by the channel can
be modelled via a finite impulse response [FIR] model of the form:

yk =
m∑

�=0

g�uk−� + nk, (1.7)

where yk, uk, nk denote the channel output, input and noise, respectively.
Also, (g0 . . . gm) denotes the (finite) impulse response of the channel. We as-
sume here (for simplicity) that g0 . . . gm are known. Also, for simplicity, we
assume that the channel is minimum phase (that is, has a stable inverse).

Now, heuristically, one might expect that one should “invert” the channel
so as to recover the input sequence {uk} from a given sequence of output
data {yk}. Such an inverse can be readily found by utilising feedback ideas.
Specifically, if we expand the channel transfer function as:

G(z) = g0 + . . . + gmz−m = g0 + G̃(z),

then we can form an inverse by the feedback circuit shown in Figure 1.8.
To verify that the circuit of Figure 1.8 does, indeed, produce an inverse,

we see that the transfer function from yk to ũk is

T (z) =

1
g0

1 +
G̃(z)
g0

=
1

g0 + G̃(z)
=

1
G(z)

.

Thus, we have generated an inverse to the system transfer function G(z).
Hence, in the absence of noise and other errors, we can expect that the signal
ũk in Figure 1.8 will converge to uk following an initial transient (note that



14 1. Introduction

1
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G̃(z)

yk ũk+

−

Figure 1.8. Feedback inverse circuit.

we have assumed that G(z) has a stable inverse). Under ideal conditions this
is exactly what does happen. However, in practice, the presence of the noise
term in (1.7) will lead to estimation errors. Indeed, a little thought shows that
ũk may not even belong to the set {+1,−1} even though we know, a priori,
that the true transmitted signal, uk, does.

An improvement seems to be to simply take the nearest value from the set
{+1, −1} corresponding to ũk. This leads to the circuit shown in Figure 1.9,
where

sign(ũk) �
{

+1 if ũk ≥ 0,

−1 if ũk < 0.

Comparing Figure 1.9 with Figure 1.8 may lead us to develop a further

1

g0

G̃(z)

yk ũk

sign
ûk+

−

Figure 1.9. Constrained feedback inverse circuit.

embellishment of this simple idea. In particular, we see in Figure 1.8 that the
feedback path through the transfer function G̃(z) uses the estimated input ũk.
Now, in Figure 1.9 our belief is that ûk should be a better estimate of the input
than ũk since we have forced the constraint ûk ∈ {+1,−1}. This suggests that
we could try feeding back ûk instead of ũk, as shown in Figure 1.10.

The arguments leading to Figure 1.10 are rather heuristic. Nonetheless,
the constrained estimator in Figure 1.10 finds very widespread application in
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1

g0

G̃(z)

yk

sign

ûk+

−

Figure 1.10. Constrained estimation with decision feedback, or “decision feedback
equaliser [DFE].”

digital communications, where it is given a special name—decision feedback
equaliser [DFE].

The reader might now be asking how one could improve on the circuit of
Figure 1.10. We can gain some insight as to from where further improvements
might come by expressing the result shown in Figure 1.10 as the solution to
an optimisation problem. Specifically, assume that we are given (estimates of)
past values of the input, {ûk−1, . . . , ûk−m, . . .}, and that we model the output
ŷk as

ŷk = g0u
′
k + g1ûk−1 + . . . + gmûk−m.

We can now ask what value of u′
k causes ŷk to be, at time k, as close as

possible to the observed output yk. We measure how close ŷk is to yk by the
following one-step objective function:

V1(ŷk, u′
k) = [yk − ŷk]2.

We also require that u′
k ∈ {+1,−1}. The solution to this constrained optimi-

sation problem is readily seen to be:

ûk = sign
{

1
g0

[yk − g1ûk−1 − . . . − gmûk−m]
}

. (1.8)

However, the reader can verify that this precisely corresponds to the arrange-
ment illustrated in Figure 1.10. One might anticipate that by exploiting the
connection with constrained optimisation one can obtain better performance,
since more elaborate objective functions can be employed. How this might be
achieved is discussed below, and a more detailed description will be given in
Chapter 13.

The following example illustrates the above ideas.

Example 1.3.1. Consider the channel model

yk = uk − 1.7uk−1 + 0.72uk−2 + nk,
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where uk is a random binary signal and nk is an independent identically
distributed [i.i.d.] noise having a Gaussian distribution of variance σ2. We
first assume the ideal situation in which the channel has no noise, σ2 = 0.
Since the channel model has a stable inverse, we implement the inversion
estimator depicted in Figure 1.8. The result of the simulation is represented
in Figure 1.11. Notice that the estimator yields perfect signal recovery. This

0 5 10 15 20 25
−4

−3

−2

−1

0

1

2

3

4

k

u
k
,
ũ
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Figure 1.11. Data uk (circle-solid line) and estimate ũk (triangle-solid line) using
the feedback inverse circuit of Figure 1.8. Noise variance: σ2 = 0.

is very encouraging. However, this situation in which no noise is present is
unrealistic.

Next, we simulate the inversion estimator of Figure 1.8 when the received
signal is affected by noise nk of variance σ2 = 0.1. The result of the simulation
is shown in Figure 1.12. Note that in this case the estimate ũk differs from uk

and does not belong to the range ±1. We conclude that not taking account of
the constraints in the estimation leads to a poor result.

We next simulate the estimator represented in Figure 1.9 with noise of
variance σ2 = 0.1. In this implementation, the nearest value of the estimate
of the previous scheme from the set {+1,−1} is taken. The result is shown
in Figure 1.13. It can be observed that now the estimate ûk belongs to the
set {+1,−1}, but the result is still poor. The reason is that we have not
“informed” the estimator about the constrained estimates but have simply
applied the constraint ûk = sign(ũk) ∈ {+1,−1} “after the event.”

As a further improvement to our estimator, we next implement the estima-
tor of Figure 1.10 (the DFE) where we now feed back ûk ∈ {+1,−1} instead
of ũk, thereby informing the estimator about the presence of constraints. The
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Figure 1.12. Data uk (circle-solid line) and estimate ũk (triangle-solid line) using
the feedback inverse circuit of Figure 1.8. Noise variance: σ2 = 0.1.
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Figure 1.13. Data uk (circle-solid line) and estimate ûk (triangle-solid line) using
the constrained feedback inverse circuit of Figure 1.9. Noise variance: σ2 = 0.1.

result of the simulation, for a noise of variance σ2 = 0.1, is shown in Fig-
ure 1.14. Note that, despite the presence of noise in the channel, the DFE
recovers the signal perfectly.



18 1. Introduction

0 5 10 15 20 25
−4

−3

−2

−1

0

1

2

3

4

k

u
k
,
û
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Figure 1.14. Data uk (circle-solid line) and estimate ûk (triangle-solid line) using
the DFE of Figure 1.10. Noise variance: σ2 = 0.1.

One might wonder if the DFE circuit would always perform so well. We
next investigate the performance of the DFE of Figure 1.10 when the noise
variance is increased by a factor of 2; that is, σ2 = 0.2. The result of the
simulation is shown in Figure 1.15. Note that we have poor performance. The
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Figure 1.15. Data uk (circle-solid line) and estimate ûk (triangle-solid line) using
the DFE of Figure 1.10. Noise variance: σ2 = 0.2.
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reason is that we are only considering one observation at a time (as mentioned
earlier, this scheme is equivalent to solving a one-step optimisation problem).
It is a well-known phenomenon with this circuit that, once a detection er-
ror occurs, it may propagate. Thus, errors typically occur in “bursts.” The
reason for this error propagation is that previous estimates are assumed to
be equal to the true signal. As we will study later in Chapter 13, other esti-
mation mechanisms can be implemented in which multiple observations are
considered simultaneously and some “degree of belief” in previous estimates
is incorporated. We will give a first taste of these ideas below. ◦

The reader has probably noticed that there is a very close connection
between the above problem and the tactical approach to the control problem
discussed in Section 1.2. This suggests a route by which we may be able to
improve the estimate given in (1.8). Referring to Example 1.2.1, we found that
looking ahead so as to account for future consequences of current actions was
helpful. Thus, we might be led to ask what would happen if we did not fix
u′

k based only on the observation yk but waited until we had observed both
yk and yk+1. Of course, yk+1 also depends on uk+1, but this consideration
could be dealt with by asking that values of u′

k and u′
k+1 belonging to the

set {+1,−1} be chosen such that the following two-stage objective function
is minimised:

V2(ŷk, ŷk+1, u
′
k, u′

k+1) = [yk − ŷk]2 + [yk+1 − ŷk+1]2, (1.9)

where

ŷk = g0u
′
k + g1ûk−1 + . . . + gmûk−m, (1.10)

ŷk+1 = g0u
′
k+1 + g1u

′
k + g2ûk−1 + . . . + gmûk−m+1, (1.11)

and where the past estimates {ûk−1, ûk−2, . . .} are again assumed fixed and
known.

The solution to the above problem can be readily computed by simple
evaluation of V2 for all possible constrained inputs; that is, for

{u′
k, u′

k+1} ∈ {{−1,−1}, {−1, 1}, {1, 1}, {1,−1}}. (1.12)

Notice that there are four possibilities and the optimal solution is simply the
one that yields the lowest value of V2. We could then fix the estimate of uk

(denoted ûk) as the first element of the solution to this optimisation problem.
We might then proceed to measure yk+2 and re-estimate uk+1, plus obtain a
fresh estimate of uk+2 by minimising:

V2(ŷk+1, ŷk+2, u
′
k+1, u

′
k+2) = [yk+1 − ŷk+1]2 + [yk+2 − ŷk+2]2,

where

ŷk+1 = g0u
′
k+1 + g1ûk + . . . + gmûk−m+1,

ŷk+2 = g0u
′
k+2 + g1u

′
k+1 + g2ûk + . . . + gmûk−m+2,
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and where {ûk, ûk−1, . . .} are now assumed fixed and known.
By the above procedure, we are already generating constrained esti-

mates via a moving horizon estimator [MHE] subject to the constraint
u′

k ∈ {+1,−1}. This kind of estimator will be studied in detail in Chapter 13.

Example 1.3.2. Consider again the channel model of Example 1.3.1. Here we
implement a moving horizon estimator as described above. That is, we min-
imise, at each step, the two-stage objective function (1.9), subject to (1.10)–
(1.11) and the constraints (1.12). We then take as the current estimate ûk the
first value u′

k of the minimising sequence {u′
k, u

′
k+1}.

The corresponding simulation results, for noise variance σ2 = 0.2, are
shown in Figure 1.16. We can see from this figure that the estimator recovers
the signal perfectly. Comparing with Figure 1.15 (which shows the estimate
provided by the DFE for the same noise variance), we can see that “looking
ahead” two steps has been beneficial in this case. ◦
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Figure 1.16. Data uk (circle-solid line) and estimate ûk (triangle-solid line) using
the moving horizon two-step estimator. Noise variance: σ2 = 0.2.

1.4 Connections Between Constrained Control and
Estimation

The brief introduction to constrained control and estimation given in Sec-
tion 1.2 and Section 1.3 will have, no doubt, left the reader with the impression
that these two problems are, at least, very similar. Indeed, both have been
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cast as finite horizon constrained optimisation problems. We will see later
that these problems lead to the same underlying question, the only difference
being a rather minor issue associated with the boundary conditions. Actu-
ally, we will show that a strong connection between constrained control and
estimation problems is revealed when looked upon via a Lagrangian duality
perspective. This will be the topic of Chapter 10.

1.5 The Remainder of the Book

The remainder of the book is devoted to expanding on the ideas introduced
above. We will emphasise constrained optimisation approaches to the topics
of control and estimation. Thus, we begin in the next chapter with a review
of basic optimisation theory. This will be followed in Chapter 3 by a review
of classical optimal control theory, including the discrete minimum principle.
In Chapter 4, and following chapters, we will apply these ideas to the specific
issues that arise in control and estimation problems.

1.6 Further Reading

For complete list of references cited, see References section at the end of book.

General

An introduction to unconstrained (linear) control can be found in a host of
textbooks, such as Anderson and Moore (1989), Åström and Wittenmark
(1990), Bitmead, Gevers and Wertz (1990), Goodwin, Graebe and Salgado
(2001), Zhou, Doyle and Glover (1996).

The following books complement the material presented in the current
chapter and give further information on receding horizon control: Camacho
and Bordons (1999), Maciejowski (2002), Borrelli (2003), Rossiter (2003).

The book Proakis (1995) gives further background on channel equalisation
in digital communications. See also the survey papers Qureshi (1985), Tugnait,
Tong and Ding (2000).




