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State Feedback Receding Horizon Controls

3.1 Introduction

In this chapter, state feedback receding horizon controls for linear systems
will be given for both quadratic and H∞ performance criteria.

The state feedback receding horizon LQ controls will be extensively inves-
tigated because they are bases for the further developments of other receding
controls. The receding horizon control with the quadratic performance cri-
terion will be derived with detailed procedures. Time-invariant systems are
dealt with with simple notations. The important monotonicity of the opti-
mal cost will be introduced with different conditions, such as a free terminal
state and a fixed terminal state. A nonzero terminal cost for the free terminal
state is often termed a free terminal state thereafter, and a fixed terminal
state as a terminal equality constraint thereafter. Stability of the receding
horizon controls is proved under cost monotonicity conditions. Horizon sizes
for guaranteeing the stability are determined regardless of terminal weight-
ing matrices. Some additional properties of the receding horizon controls are
presented.

Similar results are given for the H∞ controls that are obtained from the
minimax criterion. In particular, monotonicity of the saddle-point value and
stability of the state feedback receding horizon H∞ controls are discussed.

Since cost monotonicity conditions look difficult to obtain, we introduce
easy computation of receding horizon LQ and H∞ controls by the LMI.

In order to explain the concept of a receding horizon, we introduce the pre-
dictive form, say xk+j , and the referenced predictive form, say xk+j|k, in this
chapter. Once the concept is clearly understood by using the reference predic-
tive form, we will use the predictive form instead of the reference predictive
form.

The organization of this chapter is as follows. In Section 3.2, predictive
forms for systems and performance criteria are introduced. In Section 3.3, re-
ceding horizon LQ controls are extensively introduced with cost monotonicity,
stability, and internal properties. A special case of input–output systems is
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investigated for GPC. In Section 3.4, receding horizon H∞ controls are dealt
with with cost monotonicity, stability, and internal properties. In Section 3.5,
receding horizon LQ control and H∞ control are represented via batch and
LMI forms.

3.2 Receding Horizon Controls in Predictive Forms

3.2.1 Predictive Forms

Consider the following state-space model:

xi+1 = Axi + Bui (3.1)
zi = Czxi (3.2)

where xi ∈ �n and ui ∈ �m are the state and the input respectively. zi in
(3.2) is called a controlled output. Note that the time index i is an arbitrary
time point. This time variable will also be used for recursive equations.

With the standard form (3.1) and (3.2) it is not easy to represent the
future time from the current time. In order to represent the future time from
the current time, we can introduce a predictive form

xk+j+1 = Axk+j + Buk+j (3.3)
zk+j = Czxk+j (3.4)

where k and j indicate the current time and the time distance from it re-
spectively. Note that xk+j , zk+j , and uk+j mean future state, future output,
and future input at time k + j respectively. In the previous chapter it was
not necessary to identify the current time. However, in the case of the RHC
the current time and the specific time points on the horizon should be dis-
tinguished. Thus, k is used instead of i for RHC, which offers a clarification
during the derivation procedure. The time on the horizon denoted by k + j
means the time after j from the current time. This notation is depicted in
Figure 3.1. However, the above predictive form also does not distinguish the
current time if they are given as numbers. For example, k = 10 and j = 3
give xk+j = x13. When x13 is given, there is no way to know what the current
time is. Therefore, in order to identify the current time we can introduce a
referenced predictive form

xk+j+1|k = Axk+j|k + Buk+j|k (3.5)
zk+j|k = Czxk+j|k (3.6)

with the initial condition xk|k = xk. In this case, when k = 10 and j = 3,
xk+j|k can be represented as x13|10. We can see that the current time k is 10
and the distance j from the current time is 3. A referenced predictive form
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Fig. 3.1. Times in predictive forms

improves understanding. However, a predictive form will often be used in this
book because the symbol k indicates the current time.

For a minimax problem, the following system is considered:

xi+1 = Axi + Bui + Bwwi (3.7)
zi = Czxi (3.8)

where wi is a disturbance. In order to represent the future time we can intro-
duce a predictive form

xk+j+1 = Axk+j + Buk+j + Bwwk+j (3.9)
zk+j = Czxk+j (3.10)

and a referenced predictive form

xk+j+1|k = Axk+j|k + Buk+j|k + Bwwk+j (3.11)
zk+j|k = Czxk+j|k (3.12)

with the initial condition xk|k = xk.
In order to explain the concept of a receding horizon, we introduce the

predictive form and the referenced predictive form. Once the concept is clearly
understood by using the referenced predictive form, we will use the predictive
form instead of the referenced predictive form for notational simplicity.

3.2.2 Performance Criteria in Predictive Forms

In the minimum performance criterion (2.31) for the free terminal cost, i0 can
be arbitrary and is set to k so that we have



86 3 State Feedback Receding Horizon Controls

J(xk, xr
· , u·) =

if−1∑
i=k

[
(xi − xr

i )
T Q(xi − xr

i ) + uT
i Rui

]
+ (xif

− xr
if

)T Qf (xif
− xr

if
) (3.13)

where xr
i is given for i = k, k + 1, · · · , if .

The above minimum performance criterion (3.13) can be represented by

J(xk, xr
k+·, uk+·) =

if−k−1∑
j=0

[
(xk+j − xr

k+j)
T Q(xk+j − xr

k+j) + uT
k+jRuk+j

]
+ (xif

− xr
if

)T Qf (xif
− xr

if
) (3.14)

in a predictive form. The performance criterion (3.14) can be rewritten as

J(xk|k, xr, uk+·|k) =
if−k−1∑

j=0

[
(xk+j|k − xr

k+j|k)T Q(xk+j|k − xr
k+j|k)

+uT
k+j|kRuk+j|k

]
+(xif |k − xr

if |k)T Qf (xif |k − xr
if |k) (3.15)

in a referenced predictive form, where xr is used instead of xr
k+·|k for simplicity.

As can be seen in (3.13), (3.14), and (3.15), the performance criterion
depends on the initial state, the reference trajectory, and the input on the
horizon. If minimizations are taken for the performance criteria, then we de-
note them by J∗(xk, xr) in a predictive form and J∗(xk|k, xr) in a referenced
predictive form. We can see that the dependency of the input disappears for
the optimal performance criterion.

The performance criterion for the terminal equality constraint can be given
as in (3.13), (3.14), and (3.15) without terminal costs, i.e. Qf = 0. The ter-
minal equality constraints are represented as xif

= xr
if

in (3.13) and (3.14)
and xif |k = xr

if |k in (3.15).
In the minimax performance criterion (2.128) for the free terminal cost, i0

can be arbitrary and is set to k so that we have

J(xk, xr, u·, w·) =
if−1∑
i=k

[
(xi − xr

i )
T Q(xi − xr

i ) + uT
i Rui − γ2wT

i Rwwi

]
+ (xif

− xr
if

)T Qf (xif
− xr

if
) (3.16)

where xr
i is given for i = k, k + 1, · · · , if .

The above minimax performance criterion (3.16) can be represented by

J(xk, xr, uk+·, wk+·) =
if−k−1∑

j=0

[
(xk+j − xr

k+j)
T Q(xk+j − xr

k+j) + uT
k+jRuk+j

− γ2wT
k+jRwwk+j

]
+(xif

− xr
if

)T Qf (xif
− xr

if
) (3.17)
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in a predictive form. The performance criterion (3.17) can be rewritten as

J(xk|k, xr, uk+·|k, wk+·|k) =
if−k−1∑

j=0

[
(xk+j|k − xr

k+j|k)T Q(xk+j|k − xr
k+j|k)

+ uT
k+j|kRuk+j|k − γ2wT

k+j|kRwwk+j|k

]
+ (xif |k − xr

if |k)T Qf (xif |k − xr
if |k) (3.18)

in a referenced predictive form.
Unlike the minimization problem, the performance criterion for the min-

imaxization problem depends on the disturbance. Taking the minimization
and the maximization with respect to the input and the disturbance respec-
tively yields the optimal performance criterion that depends only on the ini-
tial state and the reference trajectory. As in the minimization problem, we
denote the optimal performance criterion by J∗(xk, xr) in a predictive form
and J∗(xk|k, xr) in a referenced predictive form.

3.3 Receding Horizon Control Based on Minimum
Criteria

3.3.1 Receding Horizon Linear Quadratic Control

Consider the following discrete time-invariant system of a referenced predictive
form:

xk+j+1|k = Axk+j|k + Buk+j|k (3.19)
zk+j|k = Czxk+j|k (3.20)

A state feedback RHC for the system (3.19) and (3.20) is introduced in a
tracking form. As mentioned before, the current time and the time distance
from the current time are denoted by k and j for clarification. The time vari-
able j is used for the derivation of the RHC.

Free Terminal Cost

The optimal control for the system (3.19) and (3.20) and the free terminal
cost (3.18) can be rewritten in a referenced predictive form as

u∗
k+j|k = −R−1BT [I + Kk+j+1,if |kBR−1BT ]−1

× [Kk+j+1,if |kAxk+j|k + gk+j+1,if |k] (3.21)

where
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Kk+j,if |k = AT [I + Kk+j+1,if |kBR−1BT ]−1Kk+j+1,if |kA + Q

gk+j,if |k = AT [I + Kk+j+1,if |kBR−1BT ]−1gk+j+1,if |k − Qxr
k+j|k

with Kif ,if |k = Qf and gif ,if |k = −Qfxr
if |k.

The receding horizon concept was introduced in the introduction chapter
and is depicted in Figure 3.2. The optimal control is obtained first on the
horizon [k, k + N ]. Here, k indicates the current time and k + N , is the final
time on the horizon. Therefore, if = k + N , where N is the horizon size. The

Fig. 3.2. Concept of receding horizon

performance criterion can be given in a referenced predictive form as

J(xk|k, xr, uk+·|k) =
N−1∑
j=0

[
(xk+j|k − xr

k+j|k)T Q(xk+j|k − xr
k+j|k)

+uT
k+j|kRuk+j|k

]
+(xk+N |k − xr

k+N |k)T Qf (xk+N |k − xr
k+N |k) (3.22)

The optimal control on the interval [k, k+N ] is given in a referenced predictive
form by

u∗
k+j|k = −R−1BT [I + Kk+j+1,k+N |kBR−1BT ]−1

× [Kk+j+1,k+N |kAxk+j|k + gk+j+1,k+N |k] (3.23)
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where Kk+j+1,k+N |k and gk+j+1,k+N |k are given by

Kk+j,k+N |k = AT [I + Kk+j+1,k+N |kBR−1BT ]−1Kk+j+1,k+N |kA

+ Q (3.24)
gk+j,k+N |k = AT [I + Kk+j+1,k+N |kBR−1BT ]−1gk+j+1,k+N |k

− Qxr
k+j|k (3.25)

with

Kk+N,k+N |k = Qf (3.26)
gk+N,k+N |k = −Qfxr

k+N |k (3.27)

The receding horizon LQ control at time k is given by the first control uk|k
among uk+i|k for i = 0, 1, · · · , k + N − 1 as in Figure 3.2. It can be obtained
from (3.23) with j = 0 as

u∗
k|k = −R−1BT [I + Kk+1,k+N |kBR−1BT ]−1

× [Kk+1,k+N |kAxk + gk+1,k+N |k] (3.28)

where Kk+1,k+N |k and gk+1,k+N |k are computed from (3.24) and (3.25).
The above notation in a referenced predictive form can be simplified to a

predictive form by dropping the reference value.
It simply can be represented by a predictive form

u∗
k+j = −R−1BT [I + Kk+j+1,if

BR−1BT ]−1

× [Kk+j+1,if
Axk+j + gk+j+1,if

] (3.29)

where

Kk+j,if
= AT [I + Kk+j+1,if

BR−1BT ]−1Kk+j+1,if
A + Q (3.30)

gk+j,if
= AT [I + Kk+j+1,if

BR−1BT ]−1gk+j+1,if
− Qxr

k+j (3.31)

with Kif ,if
= Qf and gif ,if

= −Qfxr
if

. Thus, uk|k and Kk+1,k+N |k are re-
placed by uk and Kk+1,k+N so that we have

u∗
k = −R−1BT [I + Kk+1,k+NBR−1BT ]−1[Kk+1,k+NAxk + gk+1,k+N ] (3.32)

where Kk+1,k+N and gk+1,k+N are computed from

Kk+j,k+N = AT [I + Kk+j+1,k+NBR−1BT ]−1Kk+j+1,k+NA + Q (3.33)
gk+j,k+N = AT [I + Kk+j+1,k+NBR−1BT ]−1gk+j+1,k+N − Qxr

k+j (3.34)

with

Kk+N,k+N = Qf (3.35)
gk+N,k+N = −Qfxr

k+N (3.36)
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Note that I +Kk+j,k+NBR−1BT is nonsingular since Kk+j,k+N is guaranteed
to be positive semidefinite and the nonsingularity of I + MN implies that of
I + NM for any matrices M and N .

For the zero reference signal xr
i becomes zero, so that for the free terminal

state, we have

u∗
k = −R−1BT [I + Kk+1,k+NBR−1BT ]−1Kk+1,k+NAxk (3.37)

from (3.32).

Terminal Equality Constraint

So far, the free terminal costs are utilized for the receding horizon track-
ing control (RHTC). The terminal equality constraint can also be considered
for the RHTC. In this case, the performance criterion is written as

J(xk, xr, uk+·|k) =
N−1∑
j=0

[
(xk+j|k − xr

k+j|k)T Q(xk+j|k − xr
k+j|k)

+ uT
k+j|kRuk+j|k

]
(3.38)

where

xk+N |k = xr
k+N |k (3.39)

The condition (3.39) is often called the terminal equality condition. The RHC
for the terminal equality constraint with a nonzero reference signal is obtained
by replacing i and if by k and k + N in (2.103) as follows:

uk = −R−1BT (I + Kk+1,k+NBR−1BT )−1

[
Kk+1,k+NAxk + Mk+1,k+N

× S−1
k+1,k+N (xr

k+N − MT
k,k+Nxk − hk,k+N ) + gk+1,k+N

]
(3.40)

where Kk+·,k+N , Mk+·,k+N , Sk+·,k+N , gk+·,k+N , and hk+·,k+N are as follows:

Kk+j,k+N = AT Kk+j+1,k+N (I + BR−1BT Kk+j+1,k+N )−1A + Q

Mk+j,k+N = (I + BR−1BT Kk+j+1,k+N )−T Mk+j+1,k+N

Sk+j,k+N = Sk+j+1,k+N

− MT
k+j+1,k+NB(BT Kk+j+1,k+NB + R)−1BT Mk+j+1,k+N

gk+j,k+N = AT gk+j+1,k+N

− AT Kk+j+1,k+N (I + BR−1BT Kk+j+1,k+N )−1BR−1BT

× gk+j+1,k+N − Qxr
k+j

hk+j,k+N = hk+j+1,k+N

− MT
k+j+1,k+N (I + BR−1BT Kk+j+1,k+N )−1BR−1BT gk+j+1,k+N
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The boundary conditions are given by

Kk+N,k+N = 0,Mk+N,k+N = I, Sk+N,k+N = 0, gk+N,k+N = 0, hk+N,k+N = 0

For the regulation problem, (3.40) is reduced to

u∗
k = −R−1BT (I + Kk+1,k+NBR−1BT )−1

[
Kk+1,k+NA

− Mk+1,k+NS−1
k+1,k+NMT

k,k+N

]
xk (3.41)

From (2.68), u∗
k in (3.41) is represented in another form

u∗
k = −R−1BT P−1

k+1,k+N+1Axk (3.42)

where Pk+1,k+N+1 is computed from (2.65)

Pk+j,k+N+1 = A−1
[
I + Pk+j+1,k+N+1A

−T QA−1
]−1

Pk+j+1,k+N+1A

+ BR−1BT (3.43)

with

Pk+N+1,k+N+1 = 0 (3.44)

Note that the system matrix A should be nonsingular in Riccati Equation
(3.43). However, this requirement can be relaxed in the form of (3.41) or with
the batch form, which is left as a problem at the end of this chapter.

3.3.2 Simple Notation for Time-invariant Systems

In previous sections the Riccati equations have had two arguments, one of
which represents the terminal time. However, only one argument is used for
time-invariant systems in this section for simplicity. If no confusion arises,
then one argument will be used for Riccati equations throughout this book,
particularly for Riccati equations for time-invariant systems.

Time-invariant homogeneous systems such as xi+1 = f(xi) have a special
property known as shift invariance. If the initial condition is the same, then
the solution depends on the distance from the initial time. Let xi,i0 denote
the solution at i with the initial i0, as can be seen in Figure 3.3. That is

xi,i0 = xi+N,i0+N (3.45)

for any N with xi0,i0 = xi0+N,i0+N .

Free Terminal Cost

Since (3.33) is also a time-invariant system, the following equation is satisfied:

Kk+j,k+N = Kj,N (3.46)
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Time

Fig. 3.3. Property of shift invariance

with KN,N = Kk+N,k+N = Qf .
Since N is fixed, we denote Kj,N by simply Kj and Kj satisfies the fol-

lowing equation:

Kj = AT Kj+1A − AT Ki+1B[R + BT Kj+1B]−1BT Kj+1A + Q

= AT Kj+1[I + BR−1BT Kj+1]−1A + Q (3.47)

with the boundary condition

KN = Qf (3.48)

Thus, the receding horizon control (3.32) can be represented as

u∗
k = −R−1BT [I + K1BR−1BT ]−1[K1Axk + gk+1,k+N ] (3.49)

where K1 is obtained from (3.47) and gk+1,k+N is computed from

gk+j,k+N = AT [I + Kj+1BR−1BT ]−1gk+j+1,k+N − Qxr
k+j (3.50)

with the boundary condition

gk+N,k+N = −Qfxr
k+N (3.51)

It is noted that (3.34) is not a time-invariant system due to a time-varying
signal, xr

k+j . If xr
k+j is a constant signal denoted by x̄r, then

gj = AT [I + Kj+1BR−1BT ]−1gj+1 − Qx̄r (3.52)

with the boundary condition
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gN = −Qf x̄r (3.53)

The control can be written as

uk = −R−1BT [I + K1BR−1BT ]−1(K1Axk + g1) (3.54)

It is noted that from shift invariance with a new boundary condition

KN−1 = Qf (3.55)

K1 in (3.49) and (3.54) becomes K0.
For the zero reference signal xr

i becomes zero, so that for the free terminal
cost we have

u∗
k = −R−1BT [I + K1BR−1BT ]−1K1Axk (3.56)

from (3.32).

Terminal Equality Constraint

The RHC (3.40) for the terminal equality constraint with a nonzero refer-
ence can be represented as

uk = −R−1BT [I + K1BR−1BT ]−1

[
K1Axk

+ M1S
−1
1 (xr

k+N − MT
0 xk − hk,k+N ) + gk+1,k+N

]
(3.57)

where Kj , Mj , Sj , gk+j,k+N , and hk+j,k+N are as follows:

Kj = AT Kj+1(I + BR−1BT Kj+1)−1A + Q

Mj = (I + BR−1BT Kj+1)−T Mj+1

Sj = Sj+1 − MT
j+1B(BT Kj+1B + R)−1BT Mj+1

gk+j,k+N = AT gk+j+1,k+N

− AT Kj+1(I + BR−1BT Kj+1)−1BR−1BT gk+j+1,k+N

− Qxr
k+j

hk+j,k+N = hk+j+1,k+N

− MT
k+j+1,k+N (I + BR−1BT Kj+1)−1BR−1BT gk+j+1,k+N

The boundary conditions are given by

KN = 0, MN = I, SN = 0, gk+N,k+N = 0, hk+N,k+N = 0

For the regulation problem, (3.57) is reduced to

u∗
k = −R−1BT [I + K1BR−1BT ]−1

[
K1A − M1S

−1
1 MT

0

]
xk (3.58)
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From (3.42), u∗
k in (3.58) is represented in another form

u∗
k = −R−1BT P−1

1 Axk (3.59)

where P1 is computed from

Pj = A−1
[
I + Pj+1A

−T QA−1
]−1

Pj+1A + BR−1BT (3.60)

with

PN+1 = 0 (3.61)

Note that it is assumed that the system matrix A is nonsingular.

Forward Computation

The computation of (3.47) is made in a backward way and the following
forward computation can be introduced by the transformation

−→
K j = KN−j+1 (3.62)

Thus, K1 starting from KN = Qf is obtained as

Qf =
−→
K1 = KN ,

−→
K2 = KN−1, · · · ,

−→
KN = K1

The Riccati equation can be written as

−→
K j+1 = AT−→K jA − AT−→K jB[R + BT−→K jB]−1BT−→K jA + Q

(3.63)

= AT−→K j [I + BR−1BT−→K j ]−1A + Q, (3.64)

with the initial condition
−→
K1 = Qf (3.65)

In the same way as the Riccati equation, g1 starting from gN = −Qf x̄r is
obtained as

−→g j+1 = AT [I +
−→
K jBR−1BT ]−1−→g j − Qx̄r (3.66)

where −→g 1 = −Qf x̄r. The relation and dependency among Kj ,
−→
K j , gj , and

−→g j are shown in Figure 3.4 and Figure 3.5.
The control is represented by

uk = −R−1BT [I +
−→
KNBR−1BT ]−1(

−→
KNAxk + −→g N ) (3.67)

For forward computation, the RHC (3.42) and Riccati Equation (3.43) can
be written as
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index

(a)

(b) (c)

(d)

Fig. 3.4. Computation of Ki and K̂i. Initial conditions i = 0 in (a), i = 1 in (b),
i = N − 1 in (c), and i = N in (d)

Fig. 3.5. Relation between Ki and gi

u∗
k = −R−1BT−→P −1

N Axk (3.68)

where
−→
P N is computed by

−→
P j+1 = A−1−→P j [I + A−T QA−1−→P j ]−1A−T + BR−1BT (3.69)

with
−→
P 1 = 0.

3.3.3 Monotonicity of the Optimal Cost

In this section, some conditions are proposed for time-invariant systems which
guarantee the monotonicity of the optimal cost. In the next section, under the
proposed cost monotonicity conditions, the closed-loop stability of the RHC
is shown. Since the closed-loop stability can be treated with the regulation
problem, the gi can be zero in this section.



96 3 State Feedback Receding Horizon Controls

It is noted that the cost function J (3.13)–(3.15) depends on several vari-
ables, such as the initial state xi, input ui+·, initial time i, and terminal time
if . Thus, it can be represented as J(xi, ui+·, i, if ) and the optimal cost can
be given as J∗(xi, i, if ).

Define δJ∗(xτ , σ) as δJ∗(xτ , σ) = J∗(xτ , τ, σ + 1) − J∗(xτ , τ, σ). If
δJ∗(xτ , σ) ≤ 0 or δJ∗(xτ , σ) ≥ 0 for any σ > τ , then it is called a cost
monotonicity. We will show first that the cost monotonicity condition can be
easily achieved by the terminal equality condition. Then, the more general
cost monotonicity condition is introduced by using a terminal cost.

For the terminal equality condition, i.e. xif
= 0, we have the following

result.

Theorem 3.1. For the terminal equality constraint, the optimal cost J ∗(xi, i, if )
satisfies the following cost monotonicity relation:

J∗(xτ , τ, σ + 1) ≤ J∗(xτ , τ, σ), τ ≤ σ (3.70)

If the Riccati solution exists for (3.70), then we have

Kτ,σ+1 ≤ Kτ,σ (3.71)

Proof. This can be proved by contradiction. Assume that u1
i and u2

i are opti-
mal controls to minimize J(xτ , τ, σ + 1) and J(xτ , τ, σ) respectively. If (3.70)
does not hold, then

J∗(xτ , τ, σ + 1) > J∗(xτ , τ, σ)

Replace u1
i by u2

i up to σ − 1 and then u1
i = 0 at i = σ. In this case,

x1
σ = 0, u1

σ = 0, and thus x1
σ+1 = 0. Therefore, the cost for this control

is J̄(xτ , τ, σ + 1) = J∗(xτ , τ, σ). Since this control may not be optimal for
J(xτ , τ, σ + 1), we have J̄(xτ , τ, σ + 1) ≥ J∗(xτ , τ, σ + 1), which implies that

J∗(xτ , τ, σ) ≥ J∗(xτ , τ, σ + 1) (3.72)

This is a contradiction to (3.70). This completes the proof.

For the time-invariant systems we have

Kτ ≤ Kτ+1

The above result is for the terminal equality condition. Next, the cost
monotonicity condition using a free terminal cost is introduced.

Theorem 3.2. Assume that Qf in (3.15) satisfies the following inequality:

Qf ≥ Q + HT RH + (A − BH)T Qf (A − BH) (3.73)

for some H ∈ �m×n.
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For the free terminal cost, the optimal cost J∗(xi, i, if ) then satisfies the
following monotonicity relation:

J∗(xτ , τ, σ + 1) ≤ J∗(xτ , τ, σ), τ ≤ σ (3.74)

and thus

Kτ,σ+1 ≤ Kτ,σ (3.75)

Proof. u1
i and u2

i are the optimal controls to minimize J(xτ , τ, σ + 1) and
J(xτ , τ, σ) respectively. If we replace u1

i by u2
i up to σ − 1 and u1

σ = −Hxσ,
then the cost for this control is given by

J̄(xτ , σ + 1)
�
=

σ−1∑
i=τ

[x2T
i Qx2

i + u2T
i Ru2

i ] + x2T
σ Qx2

σ + x2T
σ HT RHx2

σ

+ x2T
σ (A − BH)T Qf (A − BH)x2

σ

≥ J∗(xτ , σ + 1) (3.76)

where the last inequality comes from the fact that this control may not be
optimal. The difference between the adjacent optimal cost is less than or equal
to zero as

J∗(xτ , σ + 1) − J∗(xτ , σ) ≤ J̄(xτ , σ + 1) − J∗(xτ , σ)
= x2T

σ Qx2
σ + x2T

σ HT RHx2
σ

+ x2T
σ (A − BH)T Qf (A − BH)x2

σ − x2T
σ Qfx2

σ

= x2T
σ {Q + HT RH + (A − BH)T Qf (A − BH) − Qf}x2

σ

≤ 0 (3.77)

where

J∗(xτ , σ) =
σ−1∑
i=τ

[x2T
i Qx2

i + u2T
i Ru2

i ] + x2T
σ Qfx2

σ (3.78)

From (3.77) we have

�J∗(xτ , σ) = xT
τ [Kτ,σ+1 − Kτ,σ]xτ ≤ 0 (3.79)

for all xτ , and thus Kτ,σ+1 − Kτ,σ ≤ 0. This completes the proof.

It looks difficult to find out Qf and H satisfying (3.73). One approach
is as follows: if H that makes A − BH Hurwitz is given, then Qf can be
systematically obtained. First choose one matrix M > 0 such that M ≥ Q +
HT RH. Then, calculate the solution Qf to the following Lyapunov equation:

(A − BH)T Qf (A − BH) − Qf = −M (3.80)
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It can be easily seen that Qf obtained from (3.80) satisfies (3.73). Qf can be
explicitly expressed as

Qf =
∞∑

i=0

(A − BH)TiM(A − BH)i (3.81)

Another approach to find out Qf and H satisfying (3.73) is introduced in
Section 3.5.1, where LMIs are used.

It is noted that for time-invariant systems the inequality (3.75) implies

Kτ,σ+1 ≤ Kτ+1,σ+1 (3.82)

which leads to

Kτ ≤ Kτ+1 (3.83)

The monotonicity of the optimal cost is presented in Figure 3.6. There are

Fig. 3.6. Cost monotonicity of Theorem 3.1

several cases that satisfy the condition of Theorem 3.2.

Case 1:

Qf ≥ AT Qf [I + BR−1BT Qf ]−1A + Q (3.84)

If H is replaced by a matrix H = [R + BT QfB]−1BT QfA, then we have

Qf ≥ Q + HT RH + (A − BH)T Qf (A − BH)
= Q + AT QfB[R + BT QfB]−1R[R + BT QfB]−1BT QA

+ (A − B[R + BT QfB]−1BT QfA)T Qf (A − B[R + BT QfB]−1BT QfA)
= Q + AT QfA − AT QfB[R + BT QfB]−1BT QfA

= AT Qf [I + BR−1BT Qf ]−1A + Q (3.85)
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which is a special case of (3.73). All Qf values satisfying the inequality (3.85)
are a subset of all Qf values satisfying (3.73).

It can be seen that (3.73) implies (3.85) regardless of H as follows:

Qf − Q − AT Qf [I + BR−1BT Qf ]−1A

≥ −AT Qf [I + BR−1BT Qf ]−1A + HT RH + (A − BH)T Qf (A − BH)

=
[
AT QfB(R + BT QfB)−1 − H

]T (
R + BT QfB

)
×[(R + BT QfB)−1BT QfA − H

]
≥ 0 (3.86)

Therefore, all Qf values satisfying (3.73) also satisfy (3.85), and thus are a
subset of all Qf values satisfying (3.85). Thus, (3.73) is surprisingly equivalent
to (3.85).

Qf that satisfies (3.85) can also be obtained explicitly from the solution
to the following Riccati equation:

Q∗
f = β2AT Q∗

f [I + γBR−1BT Q∗
f ]−1A + αQ (3.87)

with α ≥ 1, β ≥ 1, and 0 ≤ γ ≤ 1. It can be easily seen that Q∗
f satisfies

(3.85), since

Q∗
f = β2AT Q∗

f [I + γBR−1BT Q∗
f ]−1A + αQ

≥ AT Q∗
f [I + BR−1BT Q∗

f ]−1A + Q

Case 2:

Qf = Q + HT RH + (A − BH)T Qf (A − BH) (3.88)

This Qf is a special case of (3.73) and has the following meaning. Note
that ui is unknown for the interval [τ σ− 1] and defined as ui = −Hxi on the
interval [σ, ∞]. If a pair (A,B) is stabilizable and ui = −Hxi is a stabilizing
control, then

J =
∞∑

i=τ

[xT
i Qxi + uT

i Rui]

=
σ−1∑
i=τ

[xT
i Qxi + uT

i Rui]

+ xT
σ

∞∑
i=σ

(AT − HT BT )i−σ[Q + HT RH](A − BH)i−σxσ

=
σ−1∑
i=τ

[xT
i Qxi + uT

i Rui] + xT
σ Qfxσ (3.89)

where Qf satisfies Qf = Q + HT RH + (A − BH)T Qf (A − BH). Therefore,
Qf is related to the steady-state performance with the control ui = −Hxi.
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It is noted that, under (3.73), ui = −Hxi will be proved to be a stabilizing
control in Section 3.3.4.

Case 3:

Qf = AT Qf [I + BR−1BT Qf ]−1A + Q (3.90)

This is actually the steady-state Riccati equation and is a special case of
(3.85), and thus of (3.73). This Qf is related to the steady-state optimal per-
formance with the optimal control.

Case 4:

Qf = Q + AT QfA (3.91)

If the system matrix A is stable and ui is identically equal to zero for
i ≥ σ ≥ τ , then Qf satisfies Qf = Q + AT QfA, which is also a special case of
(3.73).

Proposition 3.3. Qf satisfying (3.73) has the following lower bound:

Qf ≥ K̄ (3.92)

where K̄ is the steady-state solution to the Riccati equation in (3.90) and
assumed to exist uniquely.

Proof. By the cost monotonicity condition, the solution to the recursive Ric-
cati equation starting from Qf satisfying Case 3 can be ordered

Qf = Ki0 ≥ Ki0+1 ≥ Ki0+2 ≥ · · · (3.93)

where

Ki+1 = AT Ki[I + BR−1BT Ki]−1A + Q (3.94)

with Ki0 = Qf .
Since Ki is composed of two positive semidefinite matrices, Ki is also

positive semidefinite, or bounded below, i.e. Ki ≥ 0.
Ki is decreasing and bounded below, so that Ki has a limit value, which

is denoted by K̄. Clearly, it can be easily seen that

Qf ≥ Ki ≥ K̄ (3.95)

for any i ≥ i0.
The only thing we have to do is to guarantee that K̄ satisfies the condition

corresponding to Case 3. Taking the limitation on both sides of (3.94), we have

lim
i→∞

Ki+1 = lim
i→∞

AT Ki[I + BR−1BT Ki]−1A + Q (3.96)

K̄ = AT K̄[I + BR−1BT K̄]−1A + Q (3.97)

The uniqueness of the solution to the Riccati equation implies that K̄ is the
solution that satisfies Case 3. This completes the proof.
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Theorem 3.2 discusses the nonincreasing monotonicity for the optimal cost.
In the following, the nondecreasing monotonicity of the optimal cost can be
obtained.

Theorem 3.4. Assume that Qf in (3.15) satisfies the inequality

Qf ≤ AT Qf [I + BR−1BT Qf ]−1A + Q (3.98)

The optimal cost J∗(xi, i, if ) then satisfies the relation

J∗(xτ , τ, σ + 1) ≥ J∗(xτ , τ, σ), τ ≤ σ (3.99)

and thus

Kτ,σ+1 ≥ Kτ,σ (3.100)

Proof. u1
i and u2

i are the optimal controls to minimize J(xτ , τ, σ + 1) and
J(xτ , τ, σ) respectively. If we replace u2

i by u1
i up to σ−1, then by the optimal

principle we have

J∗(xτ , σ) =
σ−1∑
i=τ

[x2T
i Qx2

i + u2T
i Ru2

i ] + x2T
σ Qfx2

σ (3.101)

≤
σ−1∑
i=τ

[x1T
i Qx1

i + u1T
i Ru1

i ] + x1T
σ Qfx1

σ (3.102)

The difference between the adjacent optimal cost can be expressed as

δJ∗(xτ , σ) =
σ∑

i=τ

[x1T
i Qx1

i + u1T
i Ru1

i ] + x1T
σ+1Qfx1

σ+1

−
σ−1∑
i=τ

[x2T
i Qx2

i + u2T
i Ru2

i ] − x2T
σ Qfx2

σ (3.103)

Combining (3.102) and (3.103) yields

δJ∗(xτ , σ) ≥ x1T
σ Qx1

σ + u1T
σ Ru1

σ + x1T
σ+1Qfx1

σ+1 − x1T
σ Qfx1

σ

= x1T
σ {Q + AT Qf [I + BR−1BT Qf ]−1A − Qf}x1

σ

≥ 0 (3.104)

where u1
σ = −Hx1

σ, x1
σ+1 = (A−BH)x1

σ and H = −(R+BT QfB)−1BT QfA.
The second equality of (3.104) comes from the following fact:

HT RH + (A − BH)T Qf (A − BH) =
AT Qf [I + BR−1BT Qf ]−1A (3.105)

as can be seen in (3.85). The last inequality of (3.104) comes from (3.98).
From (2.49) and (3.99) we have

δJ∗(xτ , σ) = xT
τ [Kτ,σ+1 − Kτ,σ]xτ ≥ 0 (3.106)

for all xτ . Thus, Kτ,σ+1 − Kτ,σ ≥ 0. This completes the proof.
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It is noted that the relation (3.100) on the Riccati equation can be repre-
sented simply by one argument as

Kτ ≥ Kτ+1 (3.107)

for time-invariant systems.
The monotonicity of the optimal cost in Theorem 3.4 is presented in Figure

3.7.

Fig. 3.7. Cost monotonicity of Theorem 3.2

We have at least one important case that satisfies the condition of Theo-
rem 3.4.

Case 1: Qf = 0

It is noted that the free terminal cost with the zero terminal weighting,
Qf = 0, satisfies (3.98). Thus, Theorem 3.4 includes the monotonicity of the
optimal cost of the free terminal cost with the zero terminal weighting.

The terminal equality condition is more conservative than the free terminal
cost. Actually, it is a strong requirement that the nonzero state must go to zero
within a finite time. Thus, the terminal equality constraint has no solution for
the small horizon size N , whereas the free terminal cost always gives a solution
for any horizon size N . The free terminal cost requires less computation than
the terminal equality constraint. However, the terminal equality constraint
provides a simple approach for guaranteeing stability.

It is noted that the cost monotonicity in Theorems 3.1, 3.2 and 3.4 are
obtained from the optimality. Thus, the cost monotonicity may hold even for
nonlinear systems, which will be explained later.

In the following theorem, it will be shown that when the monotonicity of
the optimal cost or the Riccati equations holds once, it holds for all subsequent
times.
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Theorem 3.5.

(a) If

J∗(xτ ′ , τ
′
, σ + 1) ≤ J∗(xτ ′ , τ

′
, σ) (or ≥ J∗(xτ ′ , τ

′
, σ)) (3.108)

for some τ
′
, then

J∗(xτ ′′ , τ
′′
, σ + 1) ≤ J∗(xτ ′′ , τ

′′
, σ) (or ≥ J∗(xτ ′′ , τ

′′
, σ)) (3.109)

where τ0 ≤ τ
′′ ≤ τ

′
.

(b) If

Kτ ′ ,σ+1 ≤ Kτ ′ ,σ (or ≥ Kτ ′ ,σ) (3.110)

for some τ
′
, then

Kτ ′′ ,σ+1 ≤ Kτ ′′ ,σ (or ≥ Kτ ′′ ,σ) (3.111)

where τ0 ≤ τ
′′ ≤ τ

′
.

Proof. We first prove the part (a). u1
i and u2

i are the optimal controls to
minimize J(xτ ′′ , τ

′′
, σ + 1) and J(xτ ′′ , τ

′′
, σ) respectively. If we replace u1

i by
u2

i up to τ ′ − 1, then by the optimal principle we have

J∗(xτ ′′ , σ + 1) =
τ
′−1∑

i=τ ′′
[x1T

i Qx1
i + u1T

i Ru1
i ] + J∗(x1

τ ′ , τ
′
, σ + 1)

≤
τ
′−1∑

i=τ ′′
[x2T

i Qx2
i + u2T

i Ru2
i ] + J∗(x2

τ ′ , τ
′
, σ + 1) (3.112)

The difference between the adjacent optimal cost can be expressed as

δJ∗(xτ ′′ , σ) =
τ
′−1∑

i=τ ′′
[x1T

i Qx1
i + u1T

i Ru1
i ] + J∗(x1

τ ′ , τ
′
, σ + 1)

−
τ
′−1∑

i=τ ′′
[x2T

i Qx2
i + u2T

i Ru2
i ] − J∗(x2

τ ′ , τ
′
, σ) (3.113)

Combining (3.112) and (3.113) yields

δJ∗(xτ ′′ , σ) ≤
τ
′−1∑

i=τ ′′
[x2T

i Qx2
i + u2T

i Ru2
i ] + J∗(x2

τ ′ , τ
′
, σ + 1)

−
τ
′−1∑

i=τ ′′
[x2T

i Qx2
i + u2T

i Ru2
i ] − J∗(x2

τ ′ , τ
′
, σ)

= J∗(x2
τ ′ , τ

′
, σ + 1) − J∗(x2

τ ′ , τ
′
, σ)

= δJ∗(x2
τ ′ , σ) ≤ 0 (3.114)
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Replacing u2
i by u1

i up to τ
′ − 1 and taking similar steps we have

δJ∗(xτ ′′ , σ) ≥ δJ∗(x1
τ ′ , σ) (3.115)

from which δJ∗(x1
τ ′ , σ) ≥ 0 implies δJ∗(xτ ′′ , σ) ≥ 0.

Now we prove the second part of the theorem. From (2.49), (3.108), and
(3.109), the monotonicities of the Riccati equations hold. From the inequality

J∗(xτ ′′ , τ
′′
, σ + 1) − J∗(xτ ′′ , τ

′′
, σ) = xT

τ ′′ [Kτ ′′ ,σ+1 − Kτ ′′ ,σ]xτ ′′

≤ (≥) 0

Kτ ′′ ,σ+1 ≤ (≥)Kτ ′′ ,σ is satisfied. This completes the proof.

For time-invariant systems the above relations can be simplified. If

Kτ ′ ≤ Kτ ′+1 (or ≥ Kτ ′+1) (3.116)

for some τ ′, then

Kτ ′′ ≤ Kτ ′′+1 (or ≥ Kτ ′′+1) (3.117)

for τ0 < τ
′′

< τ
′
.

Part (a) of Theorem 3.5 may be extended to constrained and nonlinear
systems, whereas part (b) is only for linear systems.

Computation of the solutions of cost monotonicity conditions (3.73),
(3.84), and (3.98) looks difficult to solve, but it can be easily solved by using
LMI, as seen in Section 3.5.1.

3.3.4 Stability of Receding Horizon Linear Quadratic Control

For the existence of a stabilizing feedback control, we assume that the pair
(A, B) is stabilizable. In this section it will be shown that the RHC is a stable
control under cost monotonicity conditions.

Theorem 3.6. Assume that the pairs (A,B) and (A,Q
1
2 ) are stabilizable and

observable respectively, and that the receding horizon control associated with
the quadratic cost J(xi, i, i+N) exists. If J∗(xi, i, i+N +1) ≤ J∗(xi, i, i+N),
then asymptotical stability is guaranteed.

Proof. For time-invariant systems, the system is asymptotically stable if the
zero state is attractive. We show that the zero state is attractive. Since
J∗(xi, i, σ + 1) ≤ J∗(xi, i, σ),

J∗(xi, i, i + N) = xT
i Qxi + u∗T

i Ru∗
i + J∗(x(i + 1;xi, i, u

∗
i ), i + 1, i + N)

≥ xT
i Qxi + u∗T

i Ru∗
i

+ J∗(x(i + 1;xi, i, u
∗
i ), i + 1, i + N + 1) (3.118)



3.3 Receding Horizon Control Based on Minimum Criteria 105

Note that ui is the receding horizon control since it is the first control on the
interval [i, i + N ]. From (3.118) we have

J∗(xi, i, i + N) ≥ J∗(x(i + 1;xi, i, u
∗
i ), i + 1, i + N + 1) (3.119)

Recall that a nonincreasing sequence bounded below converges to a constant.
Since J∗(xi, i, i + N) is nonincreasing and J∗(xi, i, i + N) ≥ 0, we have

J∗(xi, i, i + N) → c (3.120)

for some nonnegative constant c as i → ∞. Thus, as i → ∞,

u∗T
i Ru∗

i + xT
i Qxi → 0 (3.121)

and
i+l−1∑
j=i

xT
j Qxj + u∗T

j Ru∗
j = xT

i

i+l−1∑
j=i

(AT − LT
f BT )j−i(Q + LT

f RLf )

× (A − BLf )j−ixi = xT
i Go

i,i+lxi −→ 0,

where Lf is the feedback gain of the RHC and Go
i,i+l is an observability

Gramian of (A − BLf , (Q + LT
f RLf )

1
2 ). However, since the pair (A,Q

1
2 ) is

observable, it is guaranteed that Go
i,i+l is nonsingular for l ≥ nc by Theorem

B.5 in Appendix B. This means that xi → 0 as i → ∞, independently of i0.
Therefore, the closed-loop system is asymptotically stable. This completes the
proof.

Note that if the condition Q > 0 is added in the condition of Theorem 3.6,
then the horizon size N could be greater than or equal to 1.

The observability in Theorem 3.6 can be weakened with the detectability
similarly as in [KK00].

It was proved in the previous section that the optimal cost with the termi-
nal equality constraint has a nondecreasing property. Therefore, we have the
following result.

Theorem 3.7. Assume that the pairs (A,B) and (A,Q
1
2 ) are controllable and

observable respectively. The receding horizon control (3.42) obtained from the
terminal equality constraint is asymptotically stable for nc ≤ N < ∞.

Proof. The controllability and nc ≤ N < ∞ are required for the existence of
the optimal control, as seen in Figure 2.3. Then it follows from Theorem 3.1
and Theorem 3.6.

Note that if the condition Q > 0 is added in the condition of Theorem 3.7,
then the horizon size N could be max(nc) ≤ N < ∞.

So far, we have discussed a terminal equality constraint. For the free ter-
minal cost we have a cost monotonicity condition in Theorem 3.2 for the
stability.
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Theorem 3.8. Assume that the pairs (A,B) and (A,Q
1
2 ) are stabilizable and

observable respectively. For Qf ≥ 0 satisfying (3.73) for some H, the system
(3.4) with the receding horizon control (3.56) is asymptotically stable for 1 ≤
N < ∞.

Theorem 3.8 follows from Theorems 3.2 and 3.6. Qf in the four cases in
Section 3.3.3 satisfies (3.73) and thus the condition of Theorem 3.8.

What we have talked about so far can be seen from a different perspective.
The difference Riccati equation (3.47) for j = 0 can be represented as

K1 = AT K1A − AT K1B[R + BT K1B]−1BT K1A + Q̄ (3.122)
Q̄ = Q + K1 − K0 (3.123)

Equation (3.122) no longer looks like a recursion, but rather an algebraic
equation for K1. Therefore, Equation (3.122) is called the fake ARE (FARE).

The closed-loop stability of the RHC obtained from (3.122) and (3.123)
requires the condition Q̄ ≥ 0 and the detectability of the pair (A, Q̄

1
2 ). The

pair (A, Q̄
1
2 ) is detectable if the pair (A,Q

1
2 ) is detectable and K1 − K0 ≥ 0.

The condition K1 − K0 ≥ 0 is satisfied under the terminal inequality (3.73).

The free parameter H obtained in Theorem 3.8 is combined with the
performance criterion to guarantee the stability of the closed-loop system.
However, the free parameter H can be used itself as a stabilizing control gain.

Theorem 3.9. Assume that the pairs (A,B) and (A,Q
1
2 ) are stabilizable and

observable respectively. The system (3.4) with the control ui = −Hxi is asymp-
totically stable where H is obtained from the inequality (3.73).

Proof. Let

V (xi) = xT
i Qfxi (3.124)

where we can show that Qf is positive definite as follows. As just said before,
Qf of (3.73) satisfies the inequality (3.84). If � is defined as

� = Qf − AT Qf [I + BR−1BT Qf ]−1A − Q ≥ 0 (3.125)

we can consider the following Riccati equation:

Qf = AT Qf [I + BR−1BT Qf ]−1A + Q + � (3.126)

The observability of (A,Q
1
2 ) implies the observability of (A, (Q + �)

1
2 ), so

that the unique positive solution Qf comes from (3.126). Therefore, V (xi)
can be considered to be a candidate of Lyapunov functions.

Subtracting V (xi) from V (xi+1) yields
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V (xi+1) − V (xi) = xT
i [(A − BH)T Qf (A − BH) − Qf ]xi

≤ xT
i [−Q − HT RH]xi ≤ 0

In order to use LaSalle’s theorem, we try to find out the set S = {xi|V (xi+l+1)−
V (xi+l) = 0, l = 0, 1, 2, · · · }. Consider the following equation:

xT
i (A − BH)lT [Q + HT RH](A − BH)lxi = 0 (3.127)

for all l ≥ 0. According to the observability of (A,Q
1
2 ), the only solution that

can stay identically in S is the trivial solution xi = 0. Thus, the system driven
by ui = −Hxi is asymptotically stable. This completes the proof.

Note that the control in Theorem 3.8 considers both the performance and
the stability, whereas the one in Theorem 3.9 considers only the stability.

These results of Theorems 3.7 and 3.8 can be extended further. The matrix
Q in Theorems 3.7 and 3.8 must be nonzero. However, it can even be zero in
the extended result.

Let us consider the receding horizon control introduced in (3.59)

ui = −R−1BT P−1
1 Axi (3.128)

where P1 is computed from

Pi = A−1Pi+1[I + A−T QA−1Pi+1]−1A−T + BR−1BT (3.129)

with the boundary condition for the free terminal cost

PN = Q−1
f + BR−1BT (3.130)

and PN = BR−1BT for the terminal equality constraint. However, we will
assume that PN can be arbitrarily chosen from now on and is denoted by Pf ,
PN = Pf .

In the theorem to follow, we will show the stability of the closed-loop
systems with the receding horizon control (3.128) under a certain condition
that includes the well-known condition Pf = 0.

In fact, Riccati Equation (3.129) with the condition Pf ≥ 0 can be obtained
from the following system:

x̂i+1 = A−T x̂i + A−T Q
1
2 ûi (3.131)

with a performance criterion

Ĵ(x̂i0 , i0, if ) =
if−1∑
i=i0

[x̂T
i BR−1BT x̂i + ûT

i ûi] + x̂T
if

Pf x̂if
(3.132)

The optimal performance criterion (3.132) for the system (3.131) is given by
Ĵ∗(x̂i, i, if ) = x̂T

i Pi,if
x̂i.
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The nondecreasing monotonicity of (3.132) is given in the following corol-
lary by using Theorem 3.4.

Assume that Pf in (3.132) satisfies the following inequality:

Pf ≤ A−1Pf [I + A−T QA−1Pf ]−1A−T + BR−1BT (3.133)

From Theorem 3.4 we have

Pτ,σ+1 ≥ Pτ,σ (3.134)

For time-invariant systems we have

Pτ ≥ Pτ+1 (3.135)

It is noted that Inequality (3.134) is the same as (3.71). The well-known
condition for the terminal equality constraint Pf = 0 satisfies (3.133), and
thus (3.134) holds.

Before investigating the stability under the condition (3.133), we need
knowledge of an adjoint system. The two systems x1,i+1 = Ax1,i and x2,i+1 =
A−T x2,i are said to be adjoint to each other. They generate state trajectories
while making the value of xT

i xi fixed. If one system is shown to be unstable
for any initial state the other system is guaranteed to be stable. Note that all
eigenvalues of the matrix A are located outside the unit circle if and only if
the system is unstable for any initial state. Additionally, it is noted that the
eigenvalues of A are inverse to those of A−T .

Now we are in a position to investigate the stability of the closed-loop
systems with the control (3.128) under the condition (3.133) that includes the
well-known condition Pf = 0.

Theorem 3.10. Assume that the pair (A,B) is controllable and A is nonsin-
gular.

(1) If Pi+1 ≤ Pi for some i, then the system (3.4) with the receding horizon
control (3.128) is asymptotically stable for nc + 1 ≤ N < ∞.

(2) If Pf ≥ 0 satisfies (3.133), then the system (3.4) with the receding horizon
control (3.128) is asymptotically stable for nc + 1 ≤ N < ∞.

Proof. Consider the adjoint system of the system (3.4) with the control (3.128)

x̂i+1 = [A − BR−1BT P−1
1 A]−T x̂i (3.136)

and the associated scalar-valued function

V (x̂i) = x̂T
i A−1P1A

−T x̂i (3.137)

Note that the inverse of (3.136) is guaranteed to exist since, from (3.129), we
have
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P1 = A−1P2[I + A−T QA−1P2]−1A−T + BR−1BT

> BR−1BT

for nonsingular, A and P2. Note that P1 > 0 and (P1 − BR−1BT )P−1
1 is

nonsingular so that A − BR−1BT P−1
1 A is nonsingular.

Taking the subtraction of functions at time i and i + 1 yields

V (x̂i) − V (x̂i+1)
= x̂T

i A−1P1A
−T x̂i − x̂T

i+1A
−1P1A

−T x̂i+1

= x̂T
i+1

[
(A − BR−1BT P−1

1 A)A−1P1A
−T (A − BR−1BT P−1

1 A)T

− A−1P1A
−T

]
x̂T

i+1

= −x̂T
i+1

[
P1 − 2BR−1BT + BR−1BT P−1

1 BR−1BT

− A−1P1A
−T

]
x̂T

i+1 (3.138)

We have

P1 = (AT P−1
2 A + Q)−1 + BR−1BT

= A−1(P−1
2 + A−T QA−1)−1A−T + BR−1BT

= A−1

[
P2 − P2A

−T Q
1
2 (Q

1
2 A−1P2A

−T Q
1
2 + I)−1Q

1
2 A−1P2

]
× A−T + BR−1BT

= A−1P2A
−T + BR−1BT − Z (3.139)

where

Z = A−1P2A
−T Q

1
2 (Q

1
2 A−1P2A

−T Q
1
2 + I)−1Q

1
2 A−1P2A

−T

Substituting (3.139) into (3.138) we have

V (x̂i) − V (x̂i+1) = x̂T
i+1[−BR−1BT + BR−1BT P−1

1 BR−1BT ]x̂i+1

+ x̂T
i+1[A

−1(P2 − P1)A−T − Z]x̂i+1

Since P2 < P1 and Z ≥ 0 we have

V (x̂i) − V (x̂i+1) ≤ x̂T
i+1[−BR−1BT + BR−1BT P−1

1 BR−1BT ]x̂i+1

= x̂T
i+1BR− 1

2 [−I + R− 1
2 BT P−1

1 BR− 1
2 ]R− 1

2 BT x̂i+1

= −x̂T
i+1BR− 1

2 SR− 1
2 BT x̂i+1 (3.140)
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where S = I − R− 1
2 BT P−1

1 BR− 1
2 . Note that S is positive definite, since the

following equality holds:

S = I − R− 1
2 BT P−1

1 BR− 1
2 = I − R− 1

2 BT [P̂1 + BR−1BT ]−1BR− 1
2

= [I + R− 1
2 BT P̂−1

1 BR− 1
2 ]−1

where the second equality comes from the relation P1 = P̂1 + BR−1BT . Note
that P̂1 > 0 if N ≥ nc +1. Summing both sides of (3.140) from i to i+nc −1,
we have

i+nc−1∑
k=i

[
V (x̂k+1) − V (x̂k)

]
≥

i+nc−1∑
k=i

x̂T
k+1BR− 1

2 SR− 1
2 BT x̂k+1 (3.141)

V (x̂i+nc
) − V (x̂i) ≥ x̂T

i Θx̂i (3.142)

where

Θ =
i+nc−1∑

k=i

[
Ψ (i−k−1)WΨT (i−k−1)

]
Ψ = A − BR−1BT P−1

1 A

W = BR− 1
2 SR− 1

2 BT

Recalling that λmax(A−1P1A
−1)|x̂i| ≥ V (x̂i) and using (3.142), we obtain

V (x̂i+nc
) ≥ x̂T

i Θx̂i + V (x̂i)
≥ λmin(Θ)|x̂i|2 + V (x̂i)
≥ �V (x̂i) + V (x̂i) (3.143)

where

� = λmin(Θ)
1

λmax(A−1P1A−1)
(3.144)

Note that if(A,B) is controllable, then (A − BH,B) and ((A − BH)−1, B)
are controllable. Thus, Θ is positive definite and its minimum eigenvalue is
positive. � is also positive. Therefore, from (3.143), the lower bound of the
state is given as

‖x̂i0+m×nc
‖2 ≥ 1

λmax(A−1P1A−1)
(� + 1)mV (x̂i0) (3.145)

The inequality (3.145) implies that the closed-loop system (3.136) is exponen-
tially increasing, i.e. the closed-loop system (3.4) with (3.128) is exponentially
decreasing. The second part of this theorem can be easily proved from the first
part. This completes the proof.
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It is noted that the receding horizon control (3.59) is a special case of
controls in Theorem 3.10.

Theorem 3.7 requires the observability condition, whereas Theorem 3.10
does not. Theorem 3.10 holds for arbitrary Q ≥ 0, including the zero matrix.
When Q = 0, P1 can be expressed as the following closed form:

P1 =
i+N∑

j=i+1

Aj−i−1BR−1BT A(j−i−1)T + ANPf (AN )T (3.146)

where A is nonsingular. It is noted that, in the above equation, Pf can even
be zero. This is the simplest RHC

ui = −R−1BT

[ i+N∑
j=i+1

Aj−i−1BR−1BT A(j−i−1)T

]−1

Axi (3.147)

that guarantees the closed-loop stability.
It is noted that Pf satifying (3.133) is equivalent to Qf satisfying (3.84)

in the relation of Pf = Q−1
f + BR−1BT . Replacing Pf with Q−1

f + BR−1BT

in (3.133) yields the following inequality:

Q−1
f + BR−1BT ≤ A−1[Q−1

f + BR−1BT + A−T QA−1]−1A−T + BR−1BT

= [AT (Q−1
f + BR−1BT )−1A + Q]−1 + BR−1BT

Finally, we have

Qf ≥ AT (Q−1
f + BR−1BT )−1A + Q (3.148)

Therefore, if Qf satisfies (3.148), Pf also satisfies (3.133).

Theorem 3.11. Assume that the pair (A,B) is controllable and A is nonsin-
gular.

(1) If Ki+1 ≥ Ki > 0 for some i, then the system (3.4) with receding horizon
control (3.56) is asymptotically stable for 1 ≤ N < ∞.

(2) For Qf > 0 satisfying (3.73) for some H, the system (3.4) with receding
horizon control (3.56) is asymptotically stable for 1 ≤ N < ∞.

Proof. The first part is proved as follows. Ki+1 ≥ Ki > 0 implies 0 < K−1
i+1 ≤

K−1
i , from which we have 0 < Pi+1 ≤ Pi satisfying the inequality (3.135).

Thus, the control (3.128) is equivalent to (3.56). The second part is proved
as follows. Inequalities Ki+1 ≥ Ki > 0 are satisfied for Ki generated from
Qf > 0 satisfying (3.73) for some H. Thus, the second result can be seen from
the first one. This completes the proof.

It is noted that (3.148) is equivalent to (3.73), as mentioned before.
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So far, the cost monotonicity condition has been introduced for stability.
Without this cost monotonicity condition, there still exists a finite horizon
such that the resulting receding horizon control stabilizes the closed-loop sys-
tems.

Before proceeding to the main theorem, we introduce a matrix norm
‖A‖ρ,ε, which satisfies the properties of the norm and ρ(A) ≤ ‖A‖ρ,ε ≤
ρ(A) + ε. Here, ε is a design parameter and ρ(A) is the spectral radius of
A, i.e. ρ(A) = max1≤i≤n |λi|.

Theorem 3.12. Suppose that Q ≥ 0 and R > 0. If the pairs (A,B) and
(A,Q

1
2 ) are controllable and observable respectively, then the receding horizon

control (3.56) for the free terminal cost stabilizes the systems for the following
horizon:

N > 1 +
1

ln ‖AT
c ‖ρ,ε + ln ‖Ac‖ρ,ε

ln
[

1
β‖BR−1BT ‖ρ,ε

{
1

‖Ac‖ρ,ε
− 1 − ε

}]
(3.149)

where β = ‖Qf −K∞‖ρ,ε, Ac = A−BR−1BT [I +K∞BR−1BT ]−1K∞A, and
K∞ is the solution to the steady-state Riccati equation.

Proof. Denote �Ki,N by Ki,N − K∞, where Ki,N is the solution at time
i to the Riccati equation starting from time N , and K∞ is the steady-state
solution to the Riccati equation which is given by (2.108). In order to enhance
the clarification, Ki,N is used instead of Ki. KN,N = Qf and K1,N of i = 1
are involved with the control gain of the RHC with a horizon size N . From
properties of the Riccati equation, we have the following inequality:

�Ki,N ≤ AT
c �Ki+1,NAc (3.150)

Taking the norm ‖ · ‖ρ,ε on both sides of (3.150), we obtain

‖�Ki,N‖ρ,ε ≤ ‖AT
c ‖ρ,ε‖�Ki+1,N‖ρ,ε‖Ac‖ρ,ε (3.151)

where a norm ‖ · ‖ρ,ε is defined just before this theorem. From (3.151), it can
be easily seen that ‖�K1,N‖ρ,ε is bounded below as follows:

‖�K1,N‖ρ,ε ≤ ‖AT
c ‖N−1

ρ,ε ‖�KN,N‖ρ,ε‖Ac‖N−1
ρ,ε = ‖AT

c ‖N−1
ρ,ε β‖Ac‖N−1

ρ,ε (3.152)

The closed-loop system matrix Ac,N from the control gain K1,N is given
by

Ac,N = A − BR−1BT [I + K1,NBR−1BT ]−1K1,NA (3.153)

It is known that the steady-state closed-loop system matrices Ac and Ac,N in
(3.153) are related to each other as follows:

Ac,N =
[
I + BR−1

o,NBT�K1,N

]
Ac (3.154)
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where Ro,N = R+BT K1,NB. Taking the norm ‖·‖ρ,ε on both sides of (3.154)
and using the inequality (3.152), we have

‖Ac,N‖ρ,ε ≤
[
1 + ε + ‖BR−1BT ‖ρ,ε‖�K1,N‖ρ,ε

]
‖Ac‖ρ,ε

≤
[
1 + ε + ‖BR−1BT ‖ρ,ε‖AT

c ‖N−1
ρ,ε β‖Ac‖N−1

ρ,ε

]
‖Ac‖ρ,ε (3.155)

where ε should be chosen so that ε < 1
‖Ac‖ρ,ε

− 1. In order to guarantee
‖Ac,N‖ρ,ε < 1, we have only to make the right-hand side in (3.155) less than
1. Therefore, we have

‖AT
c ‖N−1

ρ,ε ‖Ac‖N−1
ρ,ε ≤ 1

β‖BR−1BT ‖ρ,ε

[
1

‖Ac‖ρ,ε
− 1 − ε

]
(3.156)

It is noted that if the right-hand side of (3.156) is greater than or equal to 1,
then the inequality (3.156) always holds due to the Hurwitz matrix Ac. Taking
the logarithm on both sides of (3.156), we have (3.149). This completes the
proof.

Theorem 3.12 holds irrespective of Qf . The determination of a suitable N
is an issue.

The case of zero terminal weighting leads to generally large horizons and
large terminal weighting to small horizons, as can be seen in the next example.

Example 3.1

We consider a scalar, time-invariant system and the quadratic cost

xi+1 = axi + bui (3.157)

J =
N−1∑
j=0

[qx2
k+j + ru2

k+j ] + fx2
k+N (3.158)

where b �= 0, r > 0 and q > 0. It can be easily seen that (a, b) in (3.157)
is stabilizable and (a,

√
q) is observable. In this case, the Riccati equation is

simply represented as

pk = a2pk+1 −
a2b2p2

k+1

b2pk+1 + r
+ q =

a2rpk+1

b2pk+1 + r
+ q (3.159)

with pN = f . The RHC with a horizon size N is obtained as

uk = −Lxk (3.160)

where
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L =
abp1

b2p1 + r
(3.161)

Now, we investigate the horizon of the RHC for stabilizing the closed-loop
system. The steady-state solution to the ARE and the system matrix of the
closed-loop system can be written as

p∞ =
q

2Π

[
±
√

(1 − Π)2 +
4Π

1 − a2
− (1 − Π)

]
(3.162)

acl = a − bL =
a

1 + b2

r p∞
(3.163)

where

Π =
b2q

(1 − a2)r
(3.164)

We will consider two cases. One is for a stable system and the other for an
unstable system.

(1) Stable system ( |a| < 1 )
Since |a| < 1, 1 − a2 > 0 and Π > 0. In this case, we have the positive
solution as

p∞ =
q

2Π

[√
(1 − Π)2 +

4Π
1 − a2

− (1 − Π)
]

(3.165)

From (3.163), we have |acl| < |a| < 1. So, the asymptotical stability is
guaranteed for the closed-loop system.

(2) Unstable system ( |a| > 1 )
Since |a| > 1, 1 − a2 < 0 and Π < 0. In this case, we have the positive
solution given by

p∞ = − q

2Π

[√
(1 − Π)2 +

4Π
1 − a2

+ (1 − Π)
]

(3.166)

The system matrix acl of the closed-loop system can be represented as

acl =
a

1 − 1−a2

2

[√
(1 − Π)2 + 4Π

1−a2 + 1 − Π
] (3.167)

We have |acl| < 1 from the following relation:

|2 +
√

((a2 − 1)(1 − Π) + 2)2 − 4a2 + (a2 − 1)(1 − Π)|
> |2 +

√
(a2 + 1)2 − 4a2 + (a2 − 1)|

= |2a2| > 2|a|.
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From acl, the lower bound of the horizon size guaranteeing the stability is
obtained as

N > 1 +
1

2 ln |acl| ln
[

r

b2|f − p∞|

{
1

|acl| − 1
}]

(3.168)

where ε = 0 and absolute values of scalar values are used for ‖ · ‖ρ,ε norm.

As can be seen in this example, the gain and phase margins of the RHC
are greater than those of the conventional steady-state LQ control. For the
general result on multi-input–multi-output systems, this is left as an exercise.

3.3.5 Additional Properties of Receding Horizon Linear Quadratic
Control

A Prescribed Degree of Stability

We introduce another performance criterion to make closed-loop eigenvalues
smaller than a specific value. Of course, as closed-loop eigenvalues get smaller,
the closed-loop system becomes more stable, probably with an excessive con-
trol energy cost.

Consider the following performance criterion:

J =
N−1∑
j=0

α2j(uT
k+jRuk+j + xT

k+jQxk+j) + α2NxT
k+NQfxk+N (3.169)

where α > 1 and the pair (A,B) is stabilizable.
The first thing we have to do for dealing with (3.169) is to make transfor-

mations that convert the given problem to a standard LQ problem. Therefore,
we introduce new variables such as

x̂k+j
�
= αjxk+j (3.170)

ûk+j
�
= αjuk+j (3.171)

Observing that

x̂k+j+1 = αj+1xk+j+1 = ααj [Axk+j + Buk+j ] = αAx̂k+j + αBûk+j (3.172)

we may associate the system (3.172) with the following performance criterion:

J =
N−1∑
j=0

(ûT
k+jRûk+j + x̂T

k+jQx̂k+j) + x̂T
k+NQf x̂k+N (3.173)

The receding horizon control for (3.172) and (3.173) can be written as

ûk = −R−1αBT [I + K1αBR−1αBT ]−1K1αAx̂k (3.174)
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where K1 is obtained from

Kj = αAT [I + Kj+1αBR−1αBT ]−1Kj+1αA + Q (3.175)

with KN = Qf . The RHC uk can be written as

uk = −R−1BT [I + K1αBR−1αBT ]−1K1αAxk (3.176)

Using the RHC uk in (3.176), we introduce a method to stabilize systems with
a high degree of closed-loop stability. If α is chosen to satisfy the following
cost monotonicity condition:

Qf ≥ Q + HT RH + α(A − BH)T Qf (A − BH)α (3.177)

then the RHC (3.176) stabilizes the closed-loop system. Note that since α is
assumed to be greater than 1, the cost monotonicity condition holds even by
replacing αA with A.

In order to check the stability of the RHC (3.176), the time index k is
replaced with the arbitrary time point i and the closed-loop systems are con-
structed. The RHC (3.176) satisfying (3.177) makes x̂i approach zero accord-
ing to the following state-space model:

x̂i+1 = α(Ax̂i + Bûi) (3.178)
= α(A + BR−1BT [I + K1αBR−1αBT ]−1K1αA)x̂i (3.179)

where

αρ(A + BR−1BT [I + K1αBR−1αBT ]−1K1αA) ≤ 1 (3.180)

From (3.178) and (3.179), the real state xk and control uk can be written as

xi+1 = Axi + Bui (3.181)
= (A + BR−1BT [I + K1αBR−1αBT ]−1K1αA)xi (3.182)

The spectral radius of the closed-loop eigenvalues for (3.181) and (3.182) is
obtained from (3.180) as follows:

ρ(A + BR−1BT [I + K1αBR−1αBT ]−1K1αA) ≤ 1
α

(3.183)

Then, we can see that it is possible to define a modified receding horizon
control problem which achieves a closed-loop system with a prescribed degree
of stability α. That is, for a prescribed α, the state xi approaches zero at
least as fast as | 1

α |i. The smaller that α is, the more stable is the closed-loop
system. The same goes for the terminal equality constraint.

From now on we investigate the optimality of the RHC. The receding
horizon control is optimal in the sense of the receding horizon concept. But
this may not be optimal in other senses, such as the finite or infinite horizon
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��

Fig. 3.8. Effect of parameter α

optimal control concept. Likewise, standard finite or infinite optimal control
may not be optimal in the sense of the receding horizon control, whereas it
is optimal in the sense of the standard optimal control. Therefore, it will be
interesting to compare between them.

For simplicity we assume that there is no reference signal to track.

Theorem 3.13. The standard quadratic performance criterion for the sys-
tems with the receding horizon control (3.59) under a terminal equality con-
straint has the following performance bounds:

xi0Ki0,if
xi0 ≤

if−1∑
i=i0

[xT
i Qxi + uT

i Rui] ≤ xT
i0P

−1
0 xi0 (3.184)

Proof. We have the following inequality:

xT
i P−1

0 xi − xT
i+1P

−1
0 xi+1 = xT

i P−1
−1 xi − xT

i+1P
−1
0 xi+1 + xT

i [P−1
0 − P−1

−1 ]xi

≥ xT
i P−1

−1 xi − xT
i+1P

−1
0 xi+1 (3.185)

which follows from the fact that P−1
0 ≥ P−1

−1 . By using the optimality, we have

xT
i P−1

−1 xi − xT
i+1P

−1
0 xi+1 = J∗(xi, i, i + N + 1) − J∗(xi+1, i + 1, i + N + 1)

≥ J∗(xi, i, i + N + 1) − J(xi+1, i + 1, i + N + 1)
≥ xT

i Qxi + uiRui (3.186)

where J(xi+1, i + 1, i + N + 1) is a cost function generated from the state
driven by the optimal control that is based on the interval [i, i+N +1]. From
(3.186) we have
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if−1∑
i=i0

[xT
i Qxi + uT

i Rui] ≤ xT
i0P

−1
0 xi0 − xT

if
P−1

0 xif
≤ xT

i0P
−1
0 xi0 (3.187)

The lower bound is obvious. This completes the proof.

The next theorem introduced is for the case of the free terminal cost.

Theorem 3.14. The standard quadratic performance criterion for the sys-
tems with the receding horizon control (3.56) under a cost monotonicity con-
dition (3.73) has the following performance bounds:

xi0Ki0,if
xi0 ≤

if−1∑
i=i0

[xT
i Qxi + uT

i Rui] + xT
if

Qfxif

≤ xT
i0 [K0 + Θ(if−i0)T QfΘif−i0 ]xi0

where

Θ
�
= A − BR−1BT K1[I + BR−1BT K1]−1A

K0 is obtained from (3.47) starting from KN = Qf , and Ki0,if
is obtained by

starting from Kif ,if
= Qf .

Proof. The lower bound is obvious, since Ki0,if
is the cost incurred by the

standard optimal control law. The gain of the receding horizon control is given
by

L
�
= R−1BT K1[I + BR−1BT K1]−1A

= [R + BT K1B]−1BT K1A.

As is well known, the quadratic cost for the feedback control ui = −Lxi is
given by

if−1∑
i=i0

[xT
i Qxi + uT

i Rui] + xT
if

Qfxif
= xT

i0Ni0xi0

where Ni is the solution of the following difference equation:

Ni = [A − BL]T Ni+1[A − BL] + LT RL + Q

Nif
= Qf

From (3.47) and (3.48) we have

Ki = AT Ki+1A − AT Ki+1B[R + BT Ki+1B]−1BT Ki+1A + Q

where KN = Qf . If we note that, for i = 0 in (3.188),
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AT K1B[R + BT K1B]−1BT K1A = AT K1BL = LT BT K1A

= LT [R + BT K1B]L

we can easily have

K0 = [A − BL]T K1[A − BL] + LT RL + Q

Let

Ti
�
= Ni − K0

then Ti satisfies

Ti = [A − BL]T [Ti+1 − T̃i][A − BL] ≤ [A − BL]T Ti+1[A − BL]

with the boundary condition Tif
= Qif

−K0, where T̃i = K1 −K0 ≥ 0 under
a cost monotonicity condition. We can obtain Ti0 by evaluating recursively,
and finally we have

Ti0 ≤ Θ(if−i0)T Tif
Θif−i0

where Θ = A − BL. Thus, we have

Ni0 ≤ K0 + Θ(if−i0)T [Qif
− K0]Θif−i0

from which follows the result. This completes the proof.

Since Θ(if−i0)T → 0, the infinite time cost has the following bounds:

xT
i0Ki0,∞xi0 ≤

∞∑
i=0

xT
i Qxi + uT

i Rui (3.188)

≤ xT
i0K0xi0 (3.189)

The receding horizon control is optimal in its own right. However, the receding
horizon control can be used for a suboptimal control for the standard regula-
tion problem. In this case, Theorem 3.14 provides a degree of suboptimality.

Example 3.2

In this example, it is shown via simulation that the RHC has good track-
ing ability for the nonzero reference signal. For simulation, we consider a
two-dimensional free body system. This free body is moved by two kinds of
forces, i.e. a horizontal force and a vertical force. According to Newton’s laws,
the following dynamics are obtained:

Mẍ + Bẋ = ux

Mẍ + Bẏ = uy
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where M , B, x, y, ux, and uy are the mass of the free body, the friction
coefficient, the horizontal position, the vertical position, the horizontal force,
and the vertical force respectively. Through plugging the real values into the
parameters and taking the discretization procedure, we have

xk+1 =

⎡⎢⎢⎣
1 0.0550 0 0
0 0.9950 0 0
0 0 1 0.0550
0 0 0 0.9995

⎤⎥⎥⎦xk +

⎡⎢⎢⎣
0.0015 0
0.0550 0

0 0.0015
0 0.0550

⎤⎥⎥⎦uk

yk =
[

1 0 0 0
0 0 1 0

]
xk

where the first and second components of xi denote the positions of x and y
respectively, and the two components of ui are for the horizontal and vertical
forces.

The sampling time and the horizon size are taken as 0.055 and 3. The
reference signal is given by

xr
i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − i

100 0 ≤ i < 100
0 100 ≤ i < 200

i
100 − 2 200 ≤ i < 300
1 300 ≤ i < 400
1 i ≥ 400

yr
i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 0 ≤ i < 100
2 − i

100 100 ≤ i < 200
0 200 ≤ i < 300

i
100 − 3 300 ≤ i < 400
1 i ≥ 400

Q and R for the LQ and receding horizon controls are chosen to be unit ma-
trices. The final weighting matrix for the RHC is set to 105I. In Figure 3.9,
we can see that the RHC has the better performance for the given reference
trajectory. Actually, the trajectory for the LQTC is way off the reference sig-
nal. However, one for the RHC keeps up with the reference well.

Prediction Horizon

In general, the horizon N in the performance criterion (3.22) is divided into
two parts, [k, k+Nc−1] and [k+Nc, k+N ]. The control on [k, k+Nc−1] is
obtained optimally to minimize the performance criterion on [k, k + Nc − 1],
while the control on [k + Nc, k + N ] is usually a given control, say a linear
control ui = Hxi on this horizon. In this case, the horizon or horizon size
Nc is called the control horizon and N is called the prediction horizon, the
performance horizon, or the cost horizon. Here, N can be denoted as Np to
indicate the prediction horizon. In the previous problem we discussed so far,
the control horizon Nc was the same as the prediction horizon Np. In this
case, we will use the term control horizon instead of prediction horizon. We
consider the following performance criterion:



3.3 Receding Horizon Control Based on Minimum Criteria 121

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

RHC

LQTC

(a) Phase plot

0 50 100 150 200 250 300 350 400 450
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

RHC

LQTC

(b) State trajectory

Fig. 3.9. Comparison RHC and LQTC

J =
Nc−1∑
j=0

(uT
k+jRuk+j + xT

k+jQxk+j) +
Np∑

j=Nc

(uT
k+jRuk+j

+ xT
k+jQxk+j) (3.190)

where the control horizon and the prediction horizon are [k, k + Nc − 1] and
[k, k +Np] respectively. If we apply a linear control ui = Hxi on [k +Nc, k +
Np], we have
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J =
Nc−1∑
j=0

[xT
k+jQxk+j + uT

k+jRuk+j ]

+ xT
k+Nc

⎧⎨⎩
Np∑

j=Nc

((A − HB)T )j−Nc [Q + HT RH](A − BH)j−Nc

⎫⎬⎭xk+Nc

=
Nc−1∑
j=0

[xT
k+jQxk+j + uT

k+jRuk+j ] + xT
k+Nc

Qfxk+Nc
(3.191)

where

Qf =
Np∑

j=Nc

((A − HB)T )j−Nc [Q + HT RH](A − BH)j−Nc (3.192)

This is particularly important when Np = ∞ with linear stable control, since
this approach is sometimes good for constrained and nonlinear systems. But
we may lose good properties inherited from a finite horizon. For linear systems,
the infinite prediction horizon can be reduced to the finite one, which is the
same as the control horizon. The infinite prediction horizon can be changed
as

J =
∞∑

j=0

[xT
k+jQxk+j + uT

k+jRuk+j ]

=
Nc−1∑
j=0

[xT
k+jQxk+j + uT

k+jRuk+j ] + xT
k+Nc

Qfxk+Nc
(3.193)

where Qf satisfies Qf = Q + HT RH + (A − BH)T Qf (A − BH). Therefore,
Qf is related to the terminal weighting matrix.

3.3.6 A Special Case of Input–Output Systems

In addition to the state-space model (3.1) and (3.2), GPC has used the fol-
lowing CARIMA model:

A(q−1)yi = B(q−1)�ui−1 (3.194)

where

A(q−1) = 1 + a1q
−1 + · · · + anq−n, an �= 0 (3.195)

B(q−1) = b1 + b2q
−1 + · · · + bmq−m+1 (3.196)

where q−1 is the unit delay operator, such as q−1yi = yi−1, and �ui =
(1 − q−1)ui = ui − ui−1. It is noted that B(q−1) can be
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b1 + b2q
−1 + · · · + bnq−n+1, m ≤ n (3.197)

where bi = 0 for i > m. It is noted that (3.194) can be represented as

A(q−1)yi = B̃(q−1)�ui (3.198)

where

B̃(q−1) = b1q
−1 + b2q

−2 · · · + bnq−n (3.199)

The above model (3.198) in an input–output form can be transformed to the
state-space model

xi+1 = Āxi + B̄�ui

yi = C̄xi (3.200)

where xi ∈ Rn and

Ā =

⎡⎢⎢⎢⎢⎢⎣
−a1 1 0 · · · 0
−a2 0 1 · · · 0

...
...

...
. . .

...
−an−1 0 0 · · · 1
−an 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎦ B̄ =

⎡⎢⎢⎢⎢⎢⎣
b1

b2

...
bn−1

bn

⎤⎥⎥⎥⎥⎥⎦ (3.201)

C̄ =
[
1 0 0 · · · 0

]
It is clear that yi = xi

(1), where xi
(1) indicates the first element of xi.

The common performance criterion for the CARIMA model (3.194) is
given as

Nc∑
j=1

[
q(yk+j − yr

k+j)
2 + r(�uk+j−1)2

]
(3.202)

Here, Nc is the control horizon.
Since yk is given, the optimal control for (3.202) is also optimal for the

following performance index:

Nc−1∑
j=0

[
q(yk+j − yr

k+j)
2 + r(�uk+j)2

]
+ q(yk+Nc

− yr
k+Nc

)2 (3.203)

The performance index (3.202) can be extended to include a free terminal
cost such as

Nc∑
j=1

[
q(yk+j − yr

k+j)
2 + r(�uk+j−1)2

]
+

Np∑
j=Nc+1

qf (yk+j − yr
k+j)

2 (3.204)
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We can consider a similar performance that generates the same optimal
control for (3.204), such as

Nc−1∑
j=0

[
q(yk+j − yr

k+j)
2 + r(�uk+j)2

]
+

Np∑
j=Nc

q
(j)
f (yk+j − yr

k+j)
2 (3.205)

where

q
(j)
f =

{
q, j = Nc

qf , j > Nc

For a given C̄, there exists always an L such that C̄L = I. Let xi
r = Lyi

r.
The performance criterion (3.202) becomes

Nc−1∑
j=0

[
(xk+j − xr

k+j)
T Q(xk+j − xr

k+j) + �uT
k+jR�uk+j

]
+

Np∑
j=Nc

(xk+j − xr
k+j)

T Q
(j)
f (xk+j − xr

k+j) (3.206)

where Q = qC̄T C̄, Q
(j)
f = q

(j)
f C̄T C̄, and R = r. GPC can be obtained using

the state model (3.200) with the performance criterion (3.206), whose solu-
tions are described in detail in this book. It is noted that the performance
criterion (3.206) has two values in the time-varying state and input weight-
ings. The optimal control is given in a state feedback form. From the special
structure of the CARIMA model

xi = ÃYi−n + B̃�Ui−n (3.207)

where

Yi−n =

⎡⎢⎣ yi−n

...
yi−1

⎤⎥⎦ �Ui−n =

⎡⎢⎣�ui−n

...
�ui−1

⎤⎥⎦ (3.208)

Ã =

⎡⎢⎢⎢⎢⎢⎣
−an −an−1 · · · −a2 −a1

0 −an · · · −a3 −a2

...
...

. . .
...

...
0 0 · · · −an −an−1

0 0 · · · 0 −an

⎤⎥⎥⎥⎥⎥⎦ (3.209)

B̃ =

⎡⎢⎢⎢⎢⎢⎣
bn bn−1 · · · b2 b1

0 bn · · · b3 b2

...
...

. . .
...

...
0 0 · · · bn bn−1

0 0 · · · 0 bn

⎤⎥⎥⎥⎥⎥⎦ (3.210)
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the state can be computed with input control and measured output. The
optimal control can be given as an output feedback control.

If �uk+Nc
= ... = �uk+Np−1 = 0 is assumed, for Np = Nc + n − 1, then

the terminal cost can be represented as

Np∑
j=Nc

q
(j)
f (yk+j − yr

k+j)
2

= (Yk+Nc
− Y r

k+Nc
)T Q̄f (Yk+Nc

− Y r
k+Nc

) (3.211)

where

Q̄f =
[
diag(

Np−Nc+1︷ ︸︸ ︷
q qf · · · qf )

]
, Y r

k+Nc
=

⎡⎢⎣ yr
k+Nc

...
yr

k+Nc+n−1

⎤⎥⎦ (3.212)

In this case the terminal cost becomes

(xk+Nc+n − ÃY r
k+Nc

)T (ÃT )−1Q̄f
˜A−1(xk+Nc+n − ÃY r

k+Nc
)

= (xk+Nc
− xr

k+Nc
)T Qf (xk+Nc

− xr
k+Nc

)

where

Qf = qf (ĀT )n(ÃT )−1Q̄f Ã−1Ān (3.213)

xr
k+Nc

= (Ān)−1ÃY r
k+Nc

(3.214)

It is noted that Ā and Ã are all nonsingular.
The performance criterion (3.204) is for the free terminal cost. We can

now introduce a terminal equality constraint, such as

yk+j = yr
k+j , j = Nc, · · · , Np (3.215)

which is equivalent to xk+Nc
= xr

k+Nc
. GPC can be obtained from the results

in state-space forms that have already been discussed.

3.4 Receding Horizon Control Based on Minimax
Criteria

3.4.1 Receding Horizon H∞ Control

In this section, a receding horizon H∞ control in a tracking form for discrete
time-invariant systems is obtained.

Based on the following system in a predictive form:

xk+j+1 = Axk+j + Bwwk+j + Buk+j (3.216)
zk+j = Czxk+j (3.217)
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with the initial state xk, the optimal control and the worst-case disturbance
can be written in a predictive form as

u∗
k+j = −R−1BT Λ−1

k+j+1,if
[Mk+j+1,if

Axk+j + gk+j+1,if
]

w∗
k+j = γ−2R−1

w BT
wΛ−1

k+j+1,if
[Mk+j+1,if

Axk+j + gk+j+1,if
]

Mk+j,if
and gk+j,if

can be obtained from

Mk+j,if
= AT Λ−1

k+j+1,if
Mk+j+1,if

A + Q, i = i0, · · · , if − 1 (3.218)

Mif ,if
= Qf (3.219)

and

gk+j,if
= −AT Λ−1

k+j+1,if
gk+j+1,if

− Qxr
k+j (3.220)

g if ,if
= −Qfxr

if
(3.221)

where
Λk+j+1,if

= I + Mk+j+1,if
(BR−1BT − γ−2BwR−1

w BT
w)

If we replace if with k +N , the optimal control on the interval [k, k +N ]
is given by

u∗
k+j = −R−1BT Λ−1

k+j+1,k+N [Mk+j+1,k+NAxk+j + gk+j+1,k+N ]

w∗
k+j = γ−2R−1

w BT
wΛ−1

k+j+1,k+N [Mk+j+1,k+NAxk+j + gk+j+1,k+N ]

The receding horizon control is given by the first control, j = 0, at each
interval as

u∗
k = −R−1BT Λ−1

k+1,t+N [Mk+1,k+NAxk + gk+1,k+N ]

w∗
k = γ−2R−1

w BT
wΛ−1

k+1,k+N [Mk+1,k+NAxk + gk+1,k+N ]

Replace k with i as an arbitrary time point for discrete-time systems to obtain

u∗
i = −R−1BT Λ−1

i+1,i+N [Mi+1,i+NAxi + gi+1,i+N ]

w∗
i = γ−2R−1

w BT
wΛ−1

i+1,i+N [Mi+1,i+NAxi + gi+1,i+N ].

In case of time-invariant systems, the simplified forms are obtained as

u∗
i = −R−1BT Λ−1

1 [M1Axi + gi+1,i+N ] (3.222)
w∗

i = γ−2R−1
w BT

wΛ−1
1 [M1Axi + gi+1,i+N ] (3.223)

M1 and gi,i+N can be obtained from

Mj = AT Λ−1
j+1Mj+1A + Q, j = 1, · · · , N − 1 (3.224)

MN = Qf (3.225)
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and

gj,i+N = −AT Λ−1
j+1gj+1,i+N − Qxr

j (3.226)
gi+N,i+N = −Qfxr

i+N (3.227)

where
Λj+1 = I + Mj+1(BR−1BT − γ−2BwR−1

w BT
w)

Recall through this chapter that the following condition is assumed to be
satisfied:

Rw − γ−2BT
wMiBw > 0 , i = 1, · · · , N (3.228)

in order to guarantee the existence of the saddle point. Note that from (3.228),
we have M−1

i > γ−2BwR−1
w BT

w , from which the positive definiteness of Λ−1
i Mi

is guaranteed. The positive definiteness of Mi is also guaranteed with the
observability of (A,Q

1
2 ).

From (2.152) and (2.153) we have another form of the receding horizon
H∞ control:

u∗
i = −R−1BT P−1

1 Axi (3.229)
w∗

i = γ−2R−1
w BT

wP−1
1 Axi (3.230)

where Π = BR−1B − γ−2BwR−1
w BT

w ,

Pi = A−1Pi+1[I + A−1QA−1Pi+1]−1A−1 + Π (3.231)

and the boundary condition PN = M−1
N + Π = Q−1

f + Π.

We can use the following forward computation: by using the new variables−→
M j and

−→
Λ j such that

−→
M j = MN−j and

−→
Λ j = ΛN−j , (3.222) and (3.223) can

be written as

u∗
i = −R−1BT−→Λ−1

N−1[
−→
MN−1Axi + gi+1,i+N ] (3.232)

w∗
i = γ−2R−1

w BT
w

−→
Λ−1

N−1[
−→
MN−1Axi + gi+1,i+N ] (3.233)

where
−→
M j = AT−→Λ−1

j

−→
M j−1A + Q, j = 1, · · · , N − 1

−→
M0 = Qf

−→
Λ j = I +

−→
M j(BR−1BT − γ−2BwR−1

w BT
w)
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3.4.2 Monotonicity of the Saddle-point Optimal Cost

In this section, terminal inequality conditions are proposed for linear discrete
time-invariant systems which guarantee the monotonicity of the saddle-point
value. In the next section, under the proposed terminal inequality conditions,
the closed-loop stability of RHC is shown for linear discrete time-invariant
systems.

Theorem 3.15. Assume that Qf in (3.219) satisfies the following inequality:

Qf ≥ Q + HT RH − ΓT RwΓ + AT
clQfAcl for some H ∈ �m×n (3.234)

where

Acl = A − BH + BwΓ

Γ = γ−2R−1
w BT

wΛ−1QfA (3.235)
Λ = I + Qf (BR−1BT − γ−2BwR−1

w BT
w) (3.236)

The saddle-point optimal cost J∗(xi, i, if ) in (3.16) then satisfies the following
relation:

J∗(xτ , τ, σ + 1) ≤ J∗(xτ , τ, σ), τ ≤ σ (3.237)

and thus Mτ,σ+1 ≤ Mτ,σ.

Proof. Subtracting J∗(xτ , τ, σ) from J∗(xτ , τ, σ + 1), we can write

δJ∗(xτ , σ) =
σ∑

i=τ

[x1T
i Qx1

i + u1T
i Ru1

i − γ2w1T
i Rww1

i ] + x1T
σ+1Qfx1

σ+1 (3.238)

−
σ−1∑
i=τ

[x2T
i Qx2

i + u2T
i Ru2

i − γ2w2T
i Rww2

i ] − x2T
σ Qfx2

σ (3.239)

where the pair u1
i and w1

i is a saddle-point solution for J(xτ , τ, σ +1) and the
pair u2

i and w2
i is one for J(xτ , τ, σ). If we replace u1

i by u2
i and w2

i by w1
i up

to σ − 1, the following inequalities are obtained by J(u∗, w∗) ≤ J(u,w∗):

σ∑
i=τ

[x1T
i Qx1

i + u1T
i Ru1

i − γ2w1T
i Rww1

i ] + x1T
σ+1Qfx1

σ+1

≤
σ−1∑
i=τ

[x̃T
i Qx̃i + u2T

i Ru2
i − γ2w1T

i Rww1
i ] + x̃T

σ Qx̃σ + u1T
σ Ru1

σ − γ2w1T
σ Rww1

σ

+ x1T
σ+1Qfx1

σ+1

where u1
σ = Hx̃σ, and w1

σ = Γ x̃σ. By J(u∗, w∗) ≥ J(u∗, w), we have
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σ−1∑
i=τ

[x2T
i Qx2

i + u2T
i Ru2

i − γ2w2T
i Rww2

i ] + xT
σ Qfxσ

≥
σ−1∑
i=τ

[x̃T
i Qx̃i + u2T

i Ru2
i − γ2w1T

i Rww1
i ] + x̃T

σ Qf x̃σ

Note that x̃i is a trajectory associated with u2
i and w1

i . We have the following
inequality:

δJ∗(xτ , σ) ≤ x̃T
σ {Q + HT RH − ΓT RwΓ + AT

clQfAcl − Qf}x̃σ ≤ 0 (3.240)

where the last inequality comes from (3.234).
Since δJ∗(xτ , σ) = xT

τ [Mτ,σ+1 − Mτ,σ]xτ ≤ 0 for all xτ , we have that
Mτ,σ+1 − Mτ,σ ≤ 0. For time-invariant systems we have

Mτ+1 ≤ Mτ (3.241)

This completes the proof.

Note that Qf satisfying the inequality (3.234) in (3.15) should be checked
for whether Mi,if

generated from the boundary value Qf satisfies Rw −
γ−2BT

wMi,if
Bw. In order to obtain a feasible solution Qf , Rw and γ can

be adjusted.

Case 1: Γ in the inequality (3.234) includes Qf , which makes it difficult
to handle the inequality. We introduce the inequality without the variable Γ
as follows:

Q + HT RH − ΓT RwΓ + AT
clQfAcl

= Q + HT RH + ΣT (BT
wQfBw − Rw)Σ

− (A − BH)T QfBw(BT
wQfBw − Rw)−1BwQf (A − BH),

≤ Q + HT RH − (A − BH)T (BT
wQfBw − Rw)−1(A − BH) ≤ Qf (3.242)

where Σ = Γ + (BT
wQfBw − R)−1BT

wQf (A − BH).

Case 2:

Qf ≥ AT Qf [I + ΠQf ]−1A + Q (3.243)

where Π = BR−1B − γ−2BwR−1
w Bw.

If H is replaced by an optimal gain H = −R−1BT [I +QfΠ]−1 Qf A, then
by using the matrix inversion lemma in Appendix A, we can have (3.243). It
is left as an exercise at the end of this chapter.
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Case 3:

Qf = Q + HT RH − ΓT RwΓ + AT
clQfAcl (3.244)

which is a special case of (3.234). Qf has the following meaning. If the pair
(A,B) is stabilizable and the system is asymptotically stable with ui = −Hxi

and wi = γ−1BT
γ [I + Mi+1,∞Q̂]−1Mi+1,∞Axi for σ ≥ i ≥ τ , then

min
ui,i∈[τ,σ−1]

∞∑
i=τ

[xT
i Qxi + uT

i Rui − γ2wT
i Rwwi]

= min
ui,i∈[τ,σ−1]

σ−1∑
i=τ

[xT
i Qxi + uT

i Rui − γ2wT
i Rwwi] + xT

σ Qfxσ (3.245)

where Qf can be shown to satisfy (3.244).

Case 4:

Qf = Q − Γ T RwΓ + [A + BwΓ ]T Qf [A + BwΓ ] (3.246)

which is also a special case of (3.234). If the system matrix A is stable with
ui = 0 and wi = γ−1R−1

w BT
w [I + Mi+1,∞Q̂]−1Mi+1,∞Axi for σ ≥ i ≥ τ then,

Qf satisfies (3.246).
In the following, the nondecreasing monotonicity of the saddle-point opti-

mal cost is studied.

Theorem 3.16. Assume that Qf in (3.16) satisfies the following inequality:

Qf ≤ AT Qf [I + ΠQf ]−1A + Q (3.247)

The saddle-point optimal cost J∗(xi, i, if ) then satisfies the following relation:

J∗(xτ , τ, σ + 1) ≥ J∗(xτ , τ, σ), τ ≤ σ (3.248)

and thus Mτ,σ+1 ≥ Mτ,σ.

Proof. In a similar way to the proof of Theorem 3.15, if we replace u2
i by u1

i

and w1
i by w2

i up to σ − 1, then the following inequalities are obtained by
J(u∗, w∗) ≥ J(u∗, w):

J∗(xτ , τ, σ + 1) =
σ∑

i=τ

[x1T
i Qx1

i + u1T
i Ru1

i − γ2w1T
i Rww1

i ] + x1T
σ+1Qfx1

σ+1

≥
σ−1∑
i=τ

[x̃T
i Qx̃i + u1T

i Ru1
i − γ2w2T

i Rww2
i ]

+ x̃T
σ Qx̃σ + u1T

σ Ru1
σ − γ2w2T

σ Rww2
σ + x̃T

σ+1Qf x̃σ+1
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where

u1
σ = Hx̃σ

w1
σ = Γ x̃σ

H = −R−1BT [I + QfΠ]−1QfA

Γ = γ−2R−1
w BT

wΛ−1QfA

and x̃i is the trajectory associated with xτ , u1
i and w2

i for i ∈ [τ, σ]. By
J(u∗, w∗) ≤ J(u,w∗), we have

J∗(xτ , τ, σ) =
σ−1∑
i=τ

[x2T
i Qx2

i + u2T
i Ru2

i − γ2w2T
i Rww2

i ] + x2T
σ Qfx2

σ

≤
σ−1∑
i=τ

[x̃T
i Qx̃i + u1T

i Ru1
i − γ2w2T

i Rww2
i ] + x̃T

σ Qf x̃σ

The difference δJ∗(xτ , σ) between J∗(xτ , τ, σ + 1) and J∗(xτ , τ, σ) is repre-
sented as

δJ∗(xτ , σ) ≥ x̃T
σ {Q + HT RH − ΓT RwΓ + AT

clQfAcl − Qf}x̃σ ≥ 0 (3.249)

As in the inequality (3.243), (3.249) can be changed to (3.247). The relation
Mσ+1 ≥ Mσ follows from J∗(xi, i, if ) = xT

i Mi,if
xi . This completes the proof.

Case 1: Qf = 0

The well-known free terminal condition, i.e. Qf = 0 satisfies (3.247). Thus,
Theorem 3.16 includes the monotonicity of the saddle-point value of the free
terminal case.

In the following theorem based on the optimality, it will be shown that
when the monotonicity of the saddle-point value or the Riccati equations holds
once, it holds for all subsequent times.

Theorem 3.17. The following inequalities for the saddle-point optimal cost
and the Riccati equation are satisfied:

(1) If

J∗(xτ ′ , τ
′
, σ + 1) ≤ J∗(xτ ′ , τ

′
, σ) (or ≥ J∗(xτ ′ , τ

′
, σ)) (3.250)

for some τ
′
, then

J∗(xτ ′′ , τ
′′
, σ + 1) ≤ J∗(xτ ′′ , τ

′′
, σ) (or ≥ J∗(xτ ′′ , τ

′′
, σ)) (3.251)

where τ0 ≤ τ
′′ ≤ τ

′
.
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(2) If

Mτ ′ ,σ+1 ≤ Mτ ′ ,σ (or ≥ Mτ ′ ,σ) (3.252)

for some τ
′
, then,

Mτ ′′ ,σ+1 ≤ Mτ ′′ ,σ (or ≥ Mτ ′′ ,σ) (3.253)

where τ0 ≤ τ
′′ ≤ τ

′
.

Proof. (a) Case of J∗(xτ ′ , τ
′
, σ + 1) ≤ J∗(xτ ′ , τ

′
, σ):

The pair u1
i and w1

i is a saddle-point optimal solution for J(xτ ′′ , τ
′′
, σ +1)

and the pair u2
i and w2

i for J(xτ ′′ , τ
′′
, σ). If we replace u1

i by u2
i and w2

i by
w1

i up to τ
′
, then

J∗(xτ ′′ , σ + 1) =
τ
′−1∑

i=τ ′′
[x1T

i Qx1
i + u1T

i Ru1
i − γ2w1T

i Rww1
i ] + J∗(x1

τ ′ , τ
′
, σ + 1)

≤
τ
′−1∑

i=τ ′′
[x̃T

i Qx̃i + u2T
i Ru2

i − γ2w1T
i Rww1

i ]

+ J∗(x̃τ ′ , τ
′
, σ + 1) (3.254)

by J(u∗, w∗) ≤ J(u,w∗) and

J∗(xτ ′′ , σ) =
τ
′−1∑

i=τ ′′
[x2T

i Qx2
i + u2T

i Ru2
i − γ2w2T

i Rww2
i ] + J∗(x2

τ ′ , τ
′
, σ)

≥
τ
′−1∑

i=τ ′′
[x̃T

i Qx̃i + u2T
i Ru2

i − γ2w1T
i Rww1

i ]

+ J∗(x̃τ ′ , τ
′
, σ) (3.255)

by J(u∗, w∗) ≥ J(u∗, w). The difference between the adjacent optimal costs
can be expressed as

δJ∗(xτ ′′ , σ) =
τ
′−1∑

i=τ ′′
[x1T

i Qx1
i + u1T

i Ru1
i ] + J∗(x1

τ ′ , τ
′
, σ + 1)

−
τ
′−1∑

i=τ ′′
[x2T

i Qx2
i + u2T

i Ru2
i ] − J∗(x2

τ ′ , τ
′
, σ) (3.256)

Substituting (3.255) and (3.255) into (3.256), we have
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δJ∗(xτ ′′ , σ) ≤ J∗(x̃τ ′ , τ
′
, σ + 1) − J∗(x̃τ ′ , τ

′
, σ)

= δJ∗(x̃τ ′ , σ) ≤ 0 (3.257)

Therefore,

δJ∗(xτ ′′ , σ) ≤ δJ∗(x̃τ ′ , σ) ≤ 0

where x̃τ ′ is the trajectory which consists of xτ ′′ , u2
i , and w1

i for i ∈ [τ
′′
, τ

′ −
1].

(b) Case of J∗(xτ ′ , τ
′
, σ + 1) ≥ J∗(xτ ′ , τ

′
, σ):

In a similar way to the case of (a), if we replace u2
i by u1

i and w1
i by w2

i up to
τ

′
, then

δJ∗(xτ ′′ , σ) ≥ δJ∗(xτ ′ , σ) ≥ 0 (3.258)

The monotonicity of the Riccati equations follows from J∗(xi, i, if ) = xT
i Mi,if

xi.
This completes the proof.

In the following section, stabilizing receding horizon H∞ controls will be
proposed by using the monotonicity of the saddle-point value or the Riccati
equations for linear discrete time-invariant systems.

3.4.3 Stability of Receding Horizon H∞ Control

In case of the conventional H∞ control, the following two kinds of stability
can be checked. H∞ controls based on the infinite horizon are required to have
the following properties:

1. Systems are stabilized in the case that there is no disturbance.
2. Systems are stabilized in the case that the worst-case disturbance enters

the systems.

For the first case, we introduce the following result.

Theorem 3.18. Assume that the pair (A,B) and (A,Q
1
2 ) are stabilizable and

observable respectively, and that the receding horizon H∞ control (3.222) as-
sociated with the quadratic cost J(xi, i, i+N) exists. If the following inequality
holds:

J∗(xi, i, i + N + 1) ≤ J∗(xi, i, i + N) (3.259)

then the asymptotic stability is guaranteed in the case that there is no distur-
bance.

Proof. We show that the zero state is attractive. Since J∗(xi, i, σ + 1) ≤
J∗(xi, i, σ),
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J∗(xi, i, i + N) (3.260)
= xT

i Qxi + u∗T
i Ru∗

i − γ2w∗T
i Rww∗

i

+ J∗(x1(i + 1; (xi, i, u
∗
i )), i + 1, i + N)

≥ xT
i Qxi + u∗T

i Ru∗
i + J∗(x2(i + 1; (xi, i, u

∗
i )), i + 1, i + N)

≥ xT
i Qxi + u∗T

i Ru∗
i + J∗(x2(i + 1; (xi, i, u

∗
i )), i + 1, i + N + 1)(3.261)

where u∗
i is the optimal control at time i and x2

i+1 is a state at time i+1 when
wi = 0 and the optimal control u∗

i . Therefore, J∗(xi, i, i+N) is nonincreasing
and bounded below, i.e. J∗(xi, i, i + N) ≥ 0. J∗(xi, i, i + N) approaches some
nonnegative constant c as i → ∞. Hence, we have

xT
i Qxi + uT

i Rui −→ 0 (3.262)

From the fact that the finite sum of the converging sequences also approaches
zero, the following relation is obtained:

i+l−1∑
j=i

[
xT

j Qxj + uT
j Ruj

]
→ 0, (3.263)

leading to

xT
i

⎛⎝i+l−1∑
j=i

(A − BH)(j−i)T [Q + HT RH](A − BH)j−i

⎞⎠xi → 0 (3.264)

However, since the pair (A,Q
1
2 ) is observable, xi → 0 as i → ∞ indepen-

dently of i0. Therefore, the closed-loop system is asymptotically stable. This
completes the proof.

We suggest a sufficient condition for Theorem 3.18.

Theorem 3.19. Assume that the pair (A,B) is stabilizable and the pair
(A,Q

1
2 ) is observable. For Qf ≥ 0 satisfying (3.234), the system (3.216) with

the receding horizon H∞ control (3.222) is asymptotically stable for some N ,
1 ≤ N < ∞.

In the above theorem, Q must be nonzero. We can introduce another result
as in a receding horizon LQ control so that Q could even be zero.

Suppose that disturbances show up. From (3.229) we have

u∗
i = −R−1BT P−1

1 Axi (3.265)

where

Pi = A−1Pi+1[I + A−1QA−1Pi+1]−1A−1 + Π (3.266)
PN = M−1

N + Π = Q−1
f + Π (3.267)
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We will consider a slightly different approach. We assume that Pi,if
in

(2.154) is given from the beginning with a terminal constraint Pif ,if
= Pf

rather than Pif ,if
being obtained from (2.156).

In fact, Riccati Equation (2.154) with the boundary condition Pf can be
obtained from the following problem. Consider the following system:

x̂i+1 = A−T x̂i + A−1Q
1
2 ûi (3.268)

where x̂i ∈ �n, ûi ∈ �m, and a performance criterion

Ĵ(x̂i0 , i0, if ) =
if−1∑
i=i0

[x̂T
i Πx̂i + ûT

i ûi] + x̂T
if

Pf x̂if
(3.269)

The optimal cost for the system (3.268) is given by Ĵ∗(x̂i, i, if ) = x̂T
i Pi,if

x̂i.
The optimal control ûi is

ûi,if
= −R−1BT P−1

i+1,if
Ax̂i (3.270)

From Theorem 3.16, it can be easily seen that Pτ,σ+1 ≥ Pτ,σ if

Pf ≤ A−1Pf [I + A−T QA−1Pf ]−1A−T + Π (3.271)

Now, we are in a position to state the following result on the stabiltiy of
the receding horizon H∞ control.

Theorem 3.20. Assume that the pair (A,B) is controllable and A is nonsin-
gular. If the inequality (3.271) is satisfied, then the system (3.216) with the
control (3.265) is asymptotically stable for 1 ≤ N .

Proof. Consider the adjoint system of the system (3.216) with the control
(3.270)

x̂i+1 = [A − BR−1BT P−1
1 A]−T x̂i (3.272)

and the associated scalar-valued function

V (x̂i) = x̂T
i A−1P1A

−1x̂i (3.273)

Note that P1 −BR−1BT is nonsingular, which guarantees the nonsingularity
of A − BR−1BT P−1

1 A with a nonsingular A.
Subtracting V (x̂i+1) from V (x̂i), we have

V (x̂i) − V (x̂i+1) = x̂T
i A−1P1A

−1x̂i − x̂T
i+1A

−1P1A
−1x̂i+1 (3.274)

Recall the following relation:

P0 = (AT P−1
1 A + Q)−1 + Π = A−1(P−1

1 + A−T QA−1)−1A−T + Π

= A−1

[
P1 − P1A

−T Q
1
2 (Q

1
2 A−1P1A

−T Q
1
2 + I)−1Q

1
2 A−1P1

]
A−T + Π

= A−1P1A
−T + Π − Z (3.275)
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where

Z = A−1P1A
−T Q

1
2 (Q

1
2 A−1P1A

−T Q
1
2 + I)−1Q

1
2 A−1P1A

−T

Replacing x̂i with [A−BR−1BT P−1
1 A]T x̂i+1 in (3.274) and plugging (3.275)

into the second term in (3.274) yields

V (x̂i) − V (x̂i+1) = x̂T
i+1[P1 − 2BR−1BT + BR−1BT P−1

1 BR−1BT ]x̂i+1

− x̂T
i+1[P0 − Π + Z]x̂i+1

= −x̂T
i+1[BR−1BT − BR−1BT P−1

1 BR−1BT ]x̂i+1

− x̂T
i+1[P0 − P1 + γ−2BwR−1

w BT
w + Z]x̂i+1

Since Z is positive semidefinite and P0 − P1 ≥ 0, we have

V (x̂i) − V (x̂i+1) ≤ −x̂T
i+1[BR− 1

2 SR− 1
2 BT + γ−2BwR−1

w Bw]x̂i+1 (3.276)

where S = I − R− 1
2 BT P−1

1 BR− 1
2 .

In order to show the positive definiteness of S, we have only to prove
P1 − BR−1BT > 0 since

I − P
− 1

2
1 BR−1BT P

− 1
2

1 > 0 ⇐⇒ P1 − BR−1BT > 0

Note that I−AAT > 0 implies I−AT A > 0 and vice versa for any rectangular
matrix A. From the condition for the existence of the saddle point, the lower
bound of P is obtained as

Rw − γ−2BT
wMiBw = Rw − γ−2BT

w(Pi − Π)−1Bw > 0

⇐⇒ I − γ−2(Pi − Π)−
1
2 BwR−1

w BT
w(Pi − Π)−

1
2 > 0

⇐⇒ Pi − Π − γ−2BwR−1
w BT

w = Pi − BR−1BT > 0
⇐⇒ Pi > BR−1BT (3.277)

From (3.277), it can be seen that S in (3.276) is positive definite. Note that
the left-hand side in (3.276) is always nonnegative. From (3.276) we have

V (x̂(i + 1; x̂i0 , i0)) − V (x̂i0 , i0) ≥ x̂T
i0Θx̂i0

where

Θ
�
=
[ i∑

k=i0

Ψ (i−i0)T WΨ i−i0

]
Ψ

�
= A − BR−1BT P−1

1 A

W
�
= BR− 1

2 SR− 1
2 BT + γ−2BwR−1

w Bw

If (A,B) is controllable, then the matrix Θ is positive definite. Thus, all
eigenvalues of Θ are positive and the following inequality is obtained:



3.4 Receding Horizon Control Based on Minimax Criteria 137

V (x̂(i + 1; x̂i0 , i0)) − V (x̂i0) ≥ λmin(Θ)‖x̂i0‖ (3.278)

This implies that the closed-loop system (3.216) is exponentially increasing,
i.e. the closed-loop system (3.216) with (3.270) is exponentially decreasing.
This completes the proof.

In Theorem 3.20, Q can be zero. If Q becomes zero, then P1 can be ex-
pressed as the following closed form:

P1 =
i+N∑

j=i+1

Aj−i−1ΠA(j−i−1)T + ANPfATN (3.279)

where A is nonsingular.
It is noted that Pf satisfying (3.271) is equivalent to Qf satisfying (3.243)

in the relation of Pf = Q−1
f +Π. Replacing Pf with Q−1

f +Π in (3.271) yields
the following inequality:

Q−1
f + Π ≤ A−1[Q−1

f + BR−1BT + A−T QA−1]−1A−T + Π

= [AT (Q−1
f + BR−1BT )−1A + Q]−1 + Π

Finally, we have

Qf ≥ AT (Q−1
f + Π)−1A + Q (3.280)

Therefore, if Qf satisfies (3.280), Pf also satisfies (3.271).

Theorem 3.21. Assume that the pair (A,B) is controllable and A is nonsin-
gular.

(1) If Mi+1 ≥ Mi > 0 for some i, then the system (3.216) with the receding
horizon H∞ control (3.222) is asymptotically stable for 1 ≤ N < ∞.

(2) For Qf > 0 satisfies (3.243) for some H, then the system (3.216) with the
RH H∞ control (3.222) is asymptotically stable for 1 ≤ N < ∞.

Proof. The first part is proved as follows. Mi+1 ≥ Mi > 0 implies 0 < M−1
i+1 ≤

M−1
i , from which we have 0 < Pi+1 ≤ Pi satisfying the inequality (3.271).

Thus, the control (3.265) is equivalent to the control (3.222). The second part
is proved as follows: inequalities Ki+1 ≥ Ki > 0 are satisfied for Ki generated
from Qf > 0 satisfying (3.234) for some H. Thus, the second result can be
seen from the first one. This completes the proof.

It is noted that (3.280) is equivalent to (3.247), as mentioned before.
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3.4.4 Additional Properties

Now, we will show that the stabilizing receding horizon controllers guarantee
the H∞ norm bound of the closed-loop system.

Theorem 3.22. Under the assumptions given in Theorem 3.18, the H∞ norm
bound of the closed-loop system (3.216) with (3.222) is guaranteed.

Proof. Consider the difference of the optimal cost between the time i and
i + 1:

J∗(i + 1, i + N + 1) − J∗(i, i + N)

=
i+N∑

j=i+1

[
xT

j Qxj + uT
j Ruj − γ2wT

j Rwwj

]
+xT

i+N+1Qfxi+N+1

−
i+N−1∑

j=i

[
xT

j Qxj + uT
j Ruj − γ2wT

j Rwwj

]
−xT

i+NQfxi+N (3.281)

Note that the optimal control and the worst-case disturbance on the horizon
are time-invariant with respect to the moving horizon.

Applying the state feedback control ui+N = Hxi+N at time i + N yields
the following inequality:

J∗(i + 1, i + N + 1) − J∗(i, i + N) ≤ −xT
i Qxi − uT

i Rui + γ−2wT
i Rwwi

+
[

wi+N

xi+N

]T

Π

[
wi+N

xi+N

]
(3.282)

where

Π
�
=
[
−γ2Rw + BT

wQfBw BT
wQf (A + BH)

(A + BH)T QfBw (A + BH)T Qf (A + BH) − Qf + Q + HT RH

]
From the cost monotonicity condition, Π is guaranteed to be positive semidef-
inite. The proof is left as an exercise. Taking the summation on both sides of
(3.282) from i = 0 to ∞ and using the positiveness of Π, we have

J∗(0, N) − J∗(∞,∞ + N) =
∞∑

i=0

[J∗(i, i + N) − J∗(i + 1, i + N + 1)]

≥
∞∑

i=0

[xT
i Qxi + uT

i Rui − γ2wT
i Rwwi]

From the assumption x0 = 0, J∗(0, N) = 0. The saddle-point optimal cost
is guaranteed to be nonnegative, i.e. J∗(∞,∞ + N) ≥ 0. Therefore, it is
guaranteed that
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∞∑
i=0

[xT
i Qxi + uT

i Rui − γ2wT
i Rwwi] ≤ 0

which implies that ∑∞
i=0[x

T
i Qxi + uT

i Rui]∑∞
i=0 wT

i Rwwi
≤ γ2

This completes the proof.

In the same way, under the assumptions given in Theorem 3.20, the H∞
norm bound of the closed-loop system (3.216) with (3.222) is guaranteed with
M1 replaced by [P1 − Π]−1. The inverse matrices exist for N ≥ lc + 1 since
Pif−i − Π = [AT P−1

if−i−1A + Q]−1.

Example 3.3

In this example, the H∞ RHC is compared with the LQ RHC through sim-
ulation. The target model and the reference signal are the same as those of
Example 3.1. except that Bw is given by

Bw =
[

0.016 0.01 0.008 0
0.002 0.009 0 0.0005

]T

(3.283)

For simulation, disturbances coming into the system are generated so that
they become worst on the receding horizon. γ2 is taken as 1.5.

As can be seen in Figure 3.10, the trajectory for the H∞ RHC is less
deviated from the reference signal than that for the LQ RHC.

The MATLAB� functions used for simulation are given in Appendix F.

3.5 Receding Horizon Control via Linear Matrix
Inequality Forms

3.5.1 Computation of Cost Monotonicity Condition

Receding Horizon Linear Quadratic Control

It looks difficult to find H and Qf that satisfy the cost monotonicity con-
dition (3.73). However, this can be easily computed using LMI.

Pre- and post-multiplying on both sides of (3.73) by Q−1
f , we obtain

X ≥ XQX + XHT RHX + (AX − BHX)T X−1(AX − BHX) (3.284)

where X = Q−1
f . Using Schur’s complement, the inequality (3.284) is con-

verted into the following:
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Fig. 3.10. Comparison between LQ RHTC and H∞ RHTC

X − XQX − Y T RY − (AX − BY )T X−1(AX − BY ) ≥ 0[
X − XQX − Y T RY (AX − BY )T

AX − BY X

]
≥ 0 (3.285)

where Y = HX. Partitioning the left side of (3.285) into two parts, we have[
X (AX − BY )T

AX − BY X

]
−
[

XQX − Y T RY 0
0 0

]
≥ 0 (3.286)

In order to use Schur’s complement, the second block matrix is decomposed
as[

X (AX − BY )T

AX − BY X

]
−
[

Q
1
2 X 0

R
1
2 Y 0

]T [
I 0
0 I

]−1 [
Q

1
2 X 0

R
1
2 Y 0

]
≥ 0 (3.287)

Finally, we can obtain the LMI form as⎡⎢⎢⎣
X (AX − BY )T (Q

1
2 X)T (R

1
2 Y )T

AX − BY X 0 0
Q

1
2 X 0 I 0

R
1
2 Y 0 0 I

⎤⎥⎥⎦ ≥ 0 (3.288)

Once X and Y are found, Qf and H = Y X−1 can be known.

Example 3.4

For the following systems and the performance criterion:
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xk+1 =
[

0.6831 0.0353
0.0928 0.6124

]
xk +

[
0.6085 0.0158

]
uk (3.289)

J(xk, k, k + N) =
N−1∑
i=0

[
xT

k+ixk+i + 3u2
k+i

]
+xT

k+NQfxk+N (3.290)

The MATLAB� code for finding Qf satisfying the LMI (3.288) is given in
Appendix F. By using this MATLAB� program, we have one possible final
weighting matrix for the cost monotonicity

Qf =
[

0.4205 −0.0136
−0.0136 0.4289

]
(3.291)

Similar to (3.73), the cost monotonicity condition (3.85) can be represented
as an LMI form. First, in order to obtain an LMI form, the inequality (3.85)
is converted into the following:

Qf − AT Qf [I + BR−1BT Qf ]−1A − Q ≥ 0 (3.292)[
Qf − Q AT

A Q−1
f + BR−1BT

]
≥ 0 (3.293)

Pre- and post-multiplying on both sides of (3.293) by some positive definite
matrices, we obtain[

Q−1
f 0
0 I

]T [
Qf − Q AT

A Q−1
f + BR−1BT

] [
Q−1

f 0
0 I

]
≥ 0 (3.294)[

X − XQX XAT

AX X + BR−1BT

]
≥ 0 (3.295)

where Q−1
f = X

Partition the left side of (3.295) into two parts, we have[
X XAT

AX X + BR−1BT

]
−
[

XQX 0
0 0

]
≥ 0 (3.296)

In order to use Schur’s complement, the second block matrix is decomposed
as [

X (AX + BY )T

AX + BY X

]
−
[

Q
1
2 X 0
0 0

]T [
I 0
0 I

]−1 [
Q

1
2 X 0
0 0

]
≥ 0 (3.297)

Finally, we can obtain the LMI form as⎡⎢⎢⎣
X XAT (Q

1
2 X)T 0

AX X + BR−1BT 0 0
Q

1
2 X 0 I 0
0 0 0 I

⎤⎥⎥⎦ ≥ 0 (3.298)
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Once X is obtained, Qf is given by X−1.
The cost monotonicity condition (3.98) in Theorem 3.4 can be easily ob-

tained by changing the direction of the inequality of (3.298):⎡⎢⎢⎣
X XAT (Q

1
2 X)T 0

AX X + BR−1BT 0 0
Q

1
2 X 0 I 0
0 0 0 I

⎤⎥⎥⎦ ≤ 0 (3.299)

In the following section, stabilizing receding horizon controls will be obtained
by LMIs.

Receding Horizon H∞ Control

The cost monotonicity condition (3.234) can be written[
Γ
I

]T [
Rw − BT

wQfBw BT
wQf (A − BH)

(A − BH)T QfBw Φ

] [
Γ
I

]
≥ 0 (3.300)

where

Φ = Qf − Q − HT RH − (A − BH)T Qf (A − BH) (3.301)

From (3.300), it can be seen that we have only to find Qf such that[
Rw − BT

wQfBw BT
wQf (A − BH)

(A − BH)T QfBw Φ

]
≥ 0 (3.302)

where we have[
Rw 0
0 Qf − Q − HT RH

]
−
[

BT
w

(A − BH)T

]
Qf

[
BT

w

(A − BH)T

]T

≥ 0 (3.303)

By using Schur’s complement, we can obtain the following matrix inequality:⎡⎣Rw 0 BT
w

0 Qf − Q − HT RH (A − BH)T

Bw (A − BH) Q−1
f

⎤⎦ ≥ 0 (3.304)

Multiplying both sides of (3.304) by the matrix diag{I,Q−1
f , I} yields⎡⎣Rw 0 BT

w

0 X − XQX − XHT RHX X(A − BH)T

Bw (A − BH)X X

⎤⎦ ≥ 0 (3.305)

where Q−1
f = X. Since the matrix in (3.305) is decomposed as
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w

0 X (AX − BY )T

Bw AX − BY X

⎤⎦−

⎡⎣ 0 0
XQ

1
2 Y R

1
2

0 0

⎤⎦⎡⎣ 0 0
XQ

1
2 Y R

1
2

0 0

⎤⎦T

we have ⎡⎢⎢⎢⎢⎣
Rw 0 BT

w 0 0
0 X (AX − BY )T XQ

1
2 Y R

1
2

Bw AX − BY X 0 0
0 Q

1
2 X 0 I 0

0 R
1
2 Y T 0 0 I

⎤⎥⎥⎥⎥⎦ ≥ 0 (3.306)

where Y = HX.

3.5.2 Receding Horizon Linear Quadratic Control via Batch and
Linear Matrix Inequality Forms

In the previous section, the receding horizon LQ control was obtained ana-
lytically in a closed form, and thus it can be easily computed. Here, how to
achieve the receding horizon LQ control via an LMI is discussed, which will
be utilized later in constrained systems.

Free Terminal Cost

The state equation in (3.3) can be written as

Xk = Fxk + HUk (3.307)

Uk =

⎡⎢⎢⎢⎣
uk

uk+1

...
uk+N−1

⎤⎥⎥⎥⎦ , Xk =

⎡⎢⎢⎢⎣
xk

xk+1

...
xk+N−1

⎤⎥⎥⎥⎦ , F =

⎡⎢⎢⎢⎣
I
A
...

AN−1

⎤⎥⎥⎥⎦ (3.308)

H =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 · · · 0
B 0 0 · · · 0

AB B 0 · · · 0
...

...
. . .

...
...

AN−2B AN−3B · · · B 0

⎤⎥⎥⎥⎥⎥⎦ (3.309)

The terminal state is given by

xk+N = ANxk + B̄Uk (3.310)

where
B̄ =

[
AN−1B AN−2B · · · B

]
(3.311)
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Let us define

Q̄N = diag{
N︷ ︸︸ ︷

Q, · · · , Q}, R̄N = diag{
N︷ ︸︸ ︷

R, · · · , R} (3.312)

Then, the cost function (3.22) can be rewritten by

J(xk, Uk) = [Xk − Xr
k ]T Q̄N [Xk − Xr

k ] + UT
k R̄NUk

+ (xk+N − xr
k+N )T Qf (xk+N − xr

k+N )

where

Xr
k =

⎡⎢⎢⎢⎣
xr

k

xr
k+1
...

xr
k+N−1

⎤⎥⎥⎥⎦
From (3.307) and (3.310), the above can be represented by

J(xk, Uk) = [Fxk + HUk − Xr
k ]T Q̄N [Fxk + HUk − Xr

k ] + UT
k R̄NUk

+ [ANxk + B̄Uk − xr
k+N ]T Qf [ANxk + B̄Uk − xr

k+N ]

= UT
k [HT Q̄NH + R̄N ]Uk + 2[Fxk − Xr

k ]T Q̄NHUk

+ [Fxk − Xr
k ]T Q̄N [Fxk − Xr

k ]
+ [ANxk + B̄Uk − xr

k+N ]T Qf [ANxk + B̄Uk − xr
k+N ]

= UT
k WUk + wT Uk + [Fxk − Xr

k ]T Q̄N [Fxk − Xr
k ]

+ [ANxk + B̄Uk − xr
k+N ]T Qf [ANxk + B̄Uk − xr

k+N ] (3.313)

where W = HT Q̄NH + R̄N and w = 2HT Q̄T
N [Fxk − Xr

k ]. The optimal input
can be obtained by taking ∂J(xk,Uk)

∂Uk
. Thus we have

Uk = −[W + B̄T Qf B̄]−1[w + B̄T Qf (ANxk − xr
k+N )]

= −[W + B̄T Qf B̄]−1[HT Q̄N (Fxk − Xr
k)

+ B̄T Qf (ANxk − xr
k+N )] (3.314)

The RHC can be obtained as

uk =
[
1, 0, · · · , 0

]
U∗

k (3.315)

In order to obtain an LMI form, we decompose the cost function (3.313) into
two parts

J(xk, Uk) = J1(xk, Uk) + J2(xk, Uk)

where

J1(xk, Uk) = UT
k WUk + wT Uk + [Fxk − Xr

k ]T Q̄N [Fxk − Xr
k ]

J2(xk, Uk) = (ANxk + B̄Uk − xr
k+N )T Qf (ANxk + B̄Uk − xr

k+N )
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Assume that

UT
k WUk + wT Uk + [Fxk − Xr

k ]T Q̄N [Fxk − Xr
k ] ≤ γ1 (3.316)

(ANxk + B̄Uk − xr
k+N )T Qf (ANxk + B̄Uk − xr

k+N ) ≤ γ2 (3.317)

Note that
J(xk, Uk) ≤ γ1 + γ2 (3.318)

From Schur’s complement, (3.316) and (3.317) are equivalent to[
γ1 − wT Uk − [Fxk − Xr

k ]T Q̄N [Fxk − Xr
k ] UT

k

Uk W−1

]
≥ 0 (3.319)

and [
γ2 [ANxk + B̄Uk − xr

k+N ]T[
ANxk + B̄Uk − xr

k+N

]
Q−1

f

]
≥ 0 (3.320)

respectively. Finally, the optimal solution U ∗
k can be obtained by an LMI

problem as follows:

min
Uk

γ1 + γ2 subject to (3.319) and (3.320)

Therefore, the RHC in a batch form is obtained by

uk =
[
1, 0, · · · , 0

]
U∗

k (3.321)

Terminal Equality Constraint

The optimal control (3.314) can be rewritten by

Uk = −
[[

H
B̄

]T [
Q̄N 0
0 Qf

] [
H
B̄

]
+ R̄N

]−1 [
H
B̄

]T [
Q̄N 0
0 Qf

]
×
[[

F
AN

]
xk −

[
Xr

k

xr
k+N

]]
= −R̄−1

N

[[
H
B̄

]T [
Q̄N 0
0 Qf

] [
H
B̄

]
R̄−1

N + I

]−1 [
H
B̄

]T [
Q̄N 0
0 Qf

]
×
[[

F
AN

]
xk −

[
Xr

k

xr
k+N

]]
(3.322)

We define

H̄ =
[

H
B̄

]
F̄ =

[
F

AN

]
X̄r

k =
[

Xr
k

xr
k+N

]
(3.323)

Then, using the formula (I + AB)−1A = A(I + BA)−1, we have
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Uk = −R̄−1
N H̄T [Q̂N H̄R̄−1

N H̄T + I]−1Q̂N [F̄ − I]
[

xk

X̄r
k

]
= −R̄−1

N H̄T [Q̃N2H̄R̄−1
N H̄T + Q̃−1

N1]
−1Q̃N2[F̄ − I]

[
xk

X̄r
k

]
(3.324)

where

Q̂N =
[

Q̄N 0
0 Qf

]
=
[

I 0
0 Qf

] [
Q̄N 0
0 I

]
= Q̃N1Q̃N2 (3.325)

For terminal equality constraint, we take Qf = ∞I (Q−1
f = 0). So Uk is

given as (3.324) with Q̃−1
N1 replaced by

[
I 0
0 0

]
.

We introduce an LMI-based solution. In a fixed terminal case, (3.317) is
not used. Instead, the condition ANxk + B̄Uk = xr

k+N should be met. Thus,
we need an equality condition together with an LMI. In order to remove
the equality representation, we parameterize Uk in terms of known variables
according to Theorem A.3. We can set Uk as

Uk = −B̄−1(ANxk − xr
k+N ) + MÛk (3.326)

where B̄−1 is the right inverse of B̄ and columns of M are orthogonal to each
other, spanning the null space of B̄.

From (3.316) we have

J(xk, Uk) = UT
k WUk + wT Uk + [Fxk − Xr

k ]T Q̄N [Fxk − Xr
k ]

= (−B̄−1(ANxk − xr
k+N ) + MÛk)T W (−B̄−1(ANxk − xr

k+N )

+ MÛk) + wT (−B̄−1(ANxk − xr
k+N ) + MÛk) + [Fxk − Xr

k ]T Q̄N

× [Fxk − Xr
k ]

= ÛT
k V1Ûk + V2Ûk + V3

where

V1 = MT WM

V2 = −2(ANxk − xr
k+N )T B̄−T WM + wT M

V3 = (ANxk − xr
k+N )T B̄−T WB−1(ANxk − xr

k+N )

+ [Fxk − Xr
k ]T Q̄N [Fxk − Xr

k ] − wT B̄−1(ANxk − xr
k+N )

The optimal input can be obtained by taking ∂J(xk,Ûk)

∂Ûk
. Thus we have

Ûk = −V−1
1 VT

2

The RHC in a batch form can be obtained as in (3.315). The optimal con-
trol for the fixed terminal case can be obtained from the following inequality:

J(xk, Ûk) = ÛT
k V1Ûk + V2Ûk + V3 ≤ γ1
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which can be transformed into the following LMI:

min γ1[
γ1 − V2Ûk − V3 −ÛT

k V
1
2
1

−V
1
2
1 Ûk I

]
≥ 0

where Ûk is obtained. Uk is computed from this according to (3.326). What
remains to do is just to pick up the first one among Uk as in (3.321).

GPC for the CARIMA model (3.194) can be obtained in a batch form
similar to that presented above. From the state-space model (3.200), we have

yk+j = C̄Ājxk +
j−1∑
i=0

C̄Āj−i−1B̄�uk+i (3.327)

The performance index (3.204) can be represented by

J = [Y r
k − V xk − W�Uk]T Q̄ [Y r

k − V xk − W�Uk] + �UT
k R̄�Uk

+
[
Y r

k+Nc
− Vfxk − Wf�Uk

]T
Q̄f

[
Y r

k+Nc
− Vfxk − Wf�Uk

]
(3.328)

where

Y r
k =

⎡⎢⎣ yr
k+1
...

yr
k+Nc

⎤⎥⎦ , V =

⎡⎢⎣ C̄Ā
...

C̄ĀNc

⎤⎥⎦ , �Uk =

⎡⎢⎣ �uk

...
�uk+Nc−1

⎤⎥⎦

Y r
k+Nc

=

⎡⎢⎣ yr
k+Nc+1

...
yr

k+Np

⎤⎥⎦ , Vf =

⎡⎢⎣ C̄ĀNc+1

...
C̄ĀNp

⎤⎥⎦ , W =

⎡⎢⎣ C̄B̄ · · · 0
...

. . .
...

C̄ĀNc−1B̄ · · · C̄B̄

⎤⎥⎦

Wf =

⎡⎢⎣ C̄ĀNcB̄ · · · C̄ĀB̄
...

. . .
...

C̄ĀNp−1B̄ · · · C̄ĀNp−NcB̄

⎤⎥⎦ , R̄ =
[
diag(

Nc︷ ︸︸ ︷
r r · · · r)

]

Q̄f =
[
diag(

Np−Nc︷ ︸︸ ︷
qf qf · · · qf )

]
, Q̄ =

[
diag(

Nc︷ ︸︸ ︷
q q · · · q)

]
.

Using

∂J

∂�Uk
= 0

we can obtain

�Uk =
[
WT Q̄W + WT

f Q̄fWf + R̄
]−1
{

WT Q̄ [Y r
k − V xk]

+WT
f Q̄f

[
Y r

k+Nc
− Vfxk

]}
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Therefore, �uk is given by

�uk =
[
I 0 · · · 0

] [
WT Q̄W + WT

f Q̄fWf + R̄
]−1
{

WT Q̄ [Y r
k − V xk]

+WT
f Q̄f

[
Y r

k+Nc
− Vfxk

]}
(3.329)

3.5.3 Receding Horizon H∞ Control via Batch and Linear Matrix
Inequality Forms

In the previous section, the receding horizon H∞ control was obtained ana-
lytically in a closed form and thus it can be easily computed. Here, how to
achieve the receding horizon H∞ control via LMI is discussed.

The state equation (3.9) can be represented by

Xk = Fxk + HUk + HwWk (3.330)

where Hw is given by

Hw =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 · · · 0
G 0 0 · · · 0

AG G 0 · · · 0
...

...
. . .

...
...

AN−2G AN−3G · · · G 0

⎤⎥⎥⎥⎥⎥⎦ (3.331)

and Uk, F , Xk, and H are defined in (3.308) and (3.309).
The H∞ performance criterion can be written in terms of the augmented

matrix as

J(xk, Uk,Wk) = [Fxk + HUk + HwWk − Xr
k ]T Q̄N [Fxk + HUk + HwWk

− Xr
k ] + [ANxk + B̄Uk + ḠWk − xr

k+N ]T Qf [ANxk + B̄Uk

+ ḠWk − xr
k+N ] + UT

k R̄NUk − γ2WT
k Wk

Representing J(xk, Uk,Wk) in quadratic form with respect to Wk yields the
following equation:

J(xk, Uk,Wk) = WT
k V1Wk + 2WT

k V2 + [Fxk + HUk − Xr
k ]T Q̄N [Fxk + HUk

− Xr
k ] + UT

k R̄NUk + [ANxk + B̄Uk − xr
k+N ]T Qf [ANxk + B̄Uk

− xr
k+N ]

= [V1Wk + V2]TV−1
1 [V1Wk + V2] − VT

2 V−1
1 V2 + UT

k R̄NUk

+ [Fxk + HUk − Xr
k ]T Q̄N [Fxk + HUk − Xr

k ]
+ [ANxk + B̄Uk − xr

k+N ]T Qf [ANxk + B̄Uk − xr
k+N ]

= [V1Wk + V2]TV−1
1 [V1Wk + V2] + UT

k P1Uk + 2UT
k P2

+ P3 (3.332)
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where

V1
�
= −γ2I + ḠT Qf Ḡ + HT

w Q̄NHw (3.333)

V2
�
= HT

w Q̄T
N [Fxk + HUk − Xr

k ] + ḠT QT
f [ANxk + B̄Uk − xr

k+N ] (3.334)

P1
�
= −(HT

w Q̄T
NH + ḠT QT

f B̄)TV−1
1 (HT

w Q̄T
NH + ḠT QT

f B̄)

+ HT Q̄NH + R̄N + B̄T Qf B̄ (3.335)

P2
�
= −(HT

w Q̄T
NH + ḠT QT

f B̄)TV−1
1 (HT

w Q̄T
N (Fxk − Xr

k)

+ ḠT QT
f (ANxk − xr

k+N )) + HT Q̄NFxk + B̄T QfANxk (3.336)

and P3 is a constant that is independent of Uk and Wk.
In order that the solution to the saddle point exists, V1 must be negative.

Thus, we have

−γ2I + ḠT Qf Ḡ + HT
w Q̄NHw < 0

In order to maximize (3.332) with respect to Wk, we have only to maximize

[V1Wk + V2]TV−1
1 [V1Wk + V2] (3.337)

to obtain
Wk = −V−1

1 V2 (3.338)

If we put (3.338) into (3.332), (3.332) can be represented by

J(xk, Uk,Wk) = UT
k P1Uk + 2UT

k P2 + P3 (3.339)

Then the optimal input can be obtained by taking ∂J(xk,Uk,Wk)
∂Uk

. Thus we have

Uk = −P−1
1 P2

Now we can introduce an LMI form for the receding horizon H∞ control.
In order to maximize (3.332) with respect to Wk, we have only to minimize

−[V1Wk + V2]TV−1
1 [V1Wk + V2] (3.340)

Then we try to minimize (3.339). It follows finally that we have the following
LMI:

min
Uk,Wk

r1 + r2 (3.341)[
r1 − PT

2 Uk UT
k

Uk P−1
1

]
≥ 0[

r2 (V1Wk + V2)T

(V1Wk + V2) −V1

]
≥ 0

The stabilizing RH H∞ control can be obtained by solving the semidefinite
program (3.306) and (3.341) where Qf = X−1. What remains to do is just to
pick up the first one among Uk as in (3.321).

An LMI representation in this section would be useful for constrained
systems.
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3.6 References

In order to explain the receding horizon concept, the predictor form and the
reference predictive form are introduced first in Section 3.2.1 of this chapter.

The primitive form of the RH control was given in [Kle70] [Kle74], where
only input energy with fixed terminal constraint is concerned without the
explicit receding horizon concept. The general form of the RHC was first
given with receding horizon concepts in [KP77a], where state weighting is
considered. The RHTC presented in Section 3.3.1 is similar to that in [KB89].

With a terminal equality constraint which corresponds to the infinite ter-
minal weighting matrix, the closed-loop stability of the RHC was first proved
in a primitive form [Kle70] and in a general form [KP77a]. There are also
some other results in [Kle74] [KP78] [AM80] [NS97].

The terminal equality constraint in Theorem 3.1 is a well-known result.
Since the terminal equality constraint is somewhat strong, finite terminal

weighting matrices for the free terminal cost have been investigated in [Yaz84]
[BGP85] [KB89] [PBG88] [BGW90] [DC93] [NP97] [LKC98]. The monotone
property of the Ricatti equation is used for the stability [KP77a]. Later, the
monotone property of the optimal cost was introduced not only for linear, but
also for nonlinear systems. At first, the cost monotonicity condition was used
for the terminal equality constraint [KRC92] [SC94][RM93][KBM96] [LKL99].
The cost monotonicity condition for free terminal cost in Theorem 3.2 is first
given in [LKC98]. The general proof of Theorem 3.2 is a discrete version of
[KK00]. The inequality (3.84) is a special case of (3.73) and is partly studied in
[KB89] [BGW90]. The terminal equality constraint comes historically before
the free terminal cost. The inequality between the terminal weighting matrix
and the steady-state Riccati solution in Proposition 3.3 appeared first in this
book.

The opposite direction of the cost monotonicity in Theorem 3.4 is first
introduced for discrete systems in this book. It is shown in [BGW90] that
once the monotonicity of the Riccati equation holds at a certain point it holds
for all subsequent times as in Theorem 3.5.

The stability of RHCs in Theorems 3.6 and 3.7 is first introduced in
[LKC98] and the general proofs of these theorems in this book are discrete
versions of [KK00].

The stability of the RHC in the case of the terminal equality constraint in
Theorem 3.7 is derived by using Theorems 3.1 and 3.6.

A stabilizing control in Theorem 3.9 is first introduced in [LKC98] without
a proof, and thus a proof is included in this book by using Lyapunov theory.

The observability in Theorems 3.6 and 3.9 can be weakened with de-
tectability, similar to that in [KK00].

The results on Theorems 3.10 and 3.11 appear first in this book and are
extensions of [KP77a]. For time-invariant systems, the controllability in The-
orems 3.10 and 3.11 can be weakened with stabilizability, as shown in [RM93]
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and [KP77a]. The closed-loop stability of the RHC via FARE appears in
[PBG88, BGW90]

The lower bound of the horizon size stabilizing the system in Theorem
3.12 appeared in [JHK04].

The RH LQ control with a prescribed degree of stability appeared in
[KP77b] for continuous-time systems. In Section 3.3.5 of this book, slight
modifications are made to obtain it for discrete-time systems.

The upper and lower bounds of the performance criteria in Theorems
3.13 and 3.14 are discrete versions of the result [KBK83] for continuous-time
systems.

It was shown in [KBK83] that the RH LQ control stabilizes the system for
a sufficiently large horizon size irrespective of the final weighting matrix.

The RH H∞ control presented in Section 3.4.1 is a discrete version of the
work by [KYK01]. The cost monotonicity condition of the RH H∞ control in
Theorems 3.15, 3.16, and 3.17 is a discrete version of the work by [KYK01].
The stability of the RH H∞ control in Theorems 3.18 and 3.19 also appeared in
[KYK01]. The free terminal cost in the above theorems was proposed in [LG94]
[LKL99]. The relation between the free terminal cost and the monotonicity of
the saddle point value was fully discussed in [KYK01].

The RH H∞ control without requiring the observability of (A,Q
1
2 ), as in

Theorems 3.20 and 3.21, is first discussed in this book in parallel with the RH
LQ control.

The guaranteed H∞ norm of the H∞ RHC in Theorem 3.22 is first given
in this book for discrete-time systems by a modification of the result on
continuous-time systems in [KYK01].

In [LKC98], how to obtain the receding horizon control and a final weight-
ing matrix satisfying the cost monotonicity condition was discussed by using
LMIs. Sections 3.5.1 and 3.5.2 are mostly based on [LKC98].

The RHLQC with the equality constraint and the cost monotonicity con-
dition for the H∞ RHC in an LMI form appear first in Sections 3.5.2 and
3.5.3 of this book respectively.

3.7 Problems

3.1. Referring to Problem 2.6, make simulations for three kinds of planning
based on Table 1.1. α, γ, β, ū are set to 0.8, 1.3, 10, and 1 respectively. For
long-term planning, use N = 100. For periodic and short-term planning, use
N = 5 and a simulation time of 100.

3.2. Derive a cost monotonicity condition for the following performance cri-
terion for the system (3.1):

J(xi0 , u·) =
if−1∑
i=i0

[
xi

ui

]T [
Q S
ST R

] [
xi

ui

]
+ xT

if
Qfxif
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3.3. (1) If Qf satisfies a cost monotonicity condition, show that the RHC
with this Qf can be an infinite horizon optimal control (2.107) with some
nonnegative symmetric Q and some positive definite R.

(2) Verify that the RHC with the equality constraint has the property that
it is an infinite horizon optimal control (2.107) associated with some non-
negative symmetric Q and some positive definite R.

3.4. Consider the cost monotonicity condition (3.73).

(1) Show that the condition (3.73) can be represented as

Qf ≥ min
H

{
Q + HT RH + (A − BH)T Qf (A − BH)

}
(3.342)

(2) Choose H so that the right side of (3.342) is minimized.

3.5. Consider a discrete-time system as

xi+1 =
[

0 0
1 0

]
xi +

[
1
0

]
ui (3.343)

(1) Find an RHC for the following performance criterion:

xT
k+1|k

[
1 2
2 6

]
xk+1|k + u2

k|k (3.344)

where the horizon size is 1. Check the stability.
(2) Find an RHC for the following performance criterion:

1∑
j=0

{xT
k+j|k

[
1 2
2 6

]
xk+j|k + u2

k+j|k} + xT
k+2|k

[
1 0
0 0

]
xk+2|k (3.345)

where the horizon size is 2. Check the stability.
(3) In the problem (b), introduce the final weighting matrix as

1∑
j=0

{xT
k+j|k

[
1 2
2 6

]
xk+j|k + u2

k+j|k} + xT
k+2|kQfxk+2|k (3.346)

and find Qf such that the system is stabilized.

3.6. Suppose that Qf is positive definite and the system matrix A is nonsin-
gular.

(1) Prove that the solution to Riccati Equation (3.49) is positive definite.
(2) Let V (xi) = xT

i A−1(K−1
1 + BR−1BT )A−T xi, where K1 is obtained from

the Riccati equation starting from KN = Qf , then show that the system
can be stabilized. (Hint: use Lasalle’s theorem and the fact that if A is
Hurwitz, then so is AT .)
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Remark: in the above problem, the observability of (A,Q
1
2 ) is not required.

3.7. Prove the stability of the RHC (3.49) by using Lyapunov theory.

(1) Show that K1 defined in (3.47) satisfies

K1 ≥ (A − BL1)T K1(A − BL1) + LT
1 RL1 + Q (3.347)

starting from KN = Qf satisfying (3.73) and L1 = [R+BT K1B]−1BT K1A.
(2) Show that xT

i K1xi in (3.347) can be a Lyapunov function. Additionally,
show the stability of the RHC under assumptions that (A,B) and (A,Q

1
2 )

are stabilizable and observable respectively.

3.8. Consider the FARE (3.122). Suppose that (A,B) is stabilizable, Q̄ ≥ 0,
and (A, Q̄

1
2 ) is observable. If Ki0+2 − 2Ki0+1 + Ki0 ≤ 0 for some i0, then the

system with the RHC (3.55) is stable for any N ≥ i0.

3.9. ∗ Denote the control horizon and the prediction horizon as Nc and Np

respectively. This book introduces various RHC design methods in the case
of N = Nc = Np. When we use different control and prediction horizons
(Nc �= Np):

(1) discuss the effect on the computational burden.
(2) discuss the effect on the optimal performance.

3.10. In this chapter, ‖A‖ρ,ε is introduced.

(1) Take an example that does not satisfy the following inequality

ρ(AB) ≤ ρ(A)ρ(B)

where ρ(A) is the spectral radius.
(2) Show that there always exists a matrix norm ‖A‖ρ,ε such that

ρ(A) ≤ ‖A‖ρ,ε ≤ ρ(A) + ε (3.348)

for any ε > 0.
(3) Disprove that ρ(A) ≤ 1 implies ‖A‖2 ≤ 1

3.11. Let Ki be the solution to the difference Riccati equation (2.45) and Li

its corresponding state feedback gain (2.57). K and L are the steady-state
values of Ki and Li.
(1) Show that

Li+1 − L = −R−1
o,i+1B

T�Ki+1Ac (3.349)

Ac,i+1 = A − BLi+1 = (I − BR−1
o,i+1B

T�Kk+1)Ac (3.350)

where

Ro,i+1
�
= R + BT KiB, �Ki

�
= Ki − K, Ac

�
= A − BL

(2) Show that

�Ki = AT
c [�Ki+1 −�Ki+1BR−1

o,i+1B
T�Ki+1]Ac (3.351)
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3.12. Suppose that the pair (A,B) and (A,Q
1
2 ) are controllable and observ-

able respectively.

(1) Show that the closed-loop system can be written as

xi+1 = Gixi + BR−1BT K̂e
i+1,NAxi (3.352)

with

Gi = A − BR−1BT K̂i+1,∞A (3.353)

K̂i+1,i+N = [K−1
i+1,i+N + BR−1BT ]−1 (3.354)

K̂e
i+1,N = K̂i+1,∞ − K̂i+1,i+N (3.355)

where Ki+1,i+N is given in (3.47) and Ki+1,∞ is the steady-state solution
of (3.47).

(2) Prove that, for all x,

lim
N→∞

|BR−1BT K̂e
i+1,NAx|

|x| = 0 (3.356)

(3) Show that there exists a finite horizon size N such that the RHC (3.56)
stabilizes the closed-loop system.
Hint. Use the following fact: suppose that xi+1 = f(xi) is asymptotically
stable and g(xi, i) satisfies the equality limi→∞

g(xi,i)
xi

= 0. Then, xi+1 =
f(xi) + g(xi, i) is also stable.

3.13. A state-space model is given as

xi+1 =
[

2 1
3 4

]
xi +

[
2
3

]
ui (3.357)

where

Q =
[

2 0
0 2

]
, R = 2 (3.358)

(1) According to the formula (3.149), find a lower bound of the horizon size
N that guarantees the stability irrespective of the final weighting matrix
Qf .

(2) Calculate a minimum horizon size stabilizing the closed-loop systems by
direct computation of the Riccati equation and closed-loop poles.

3.14. MAC used the following model:

yk =
n−1∑
i=0

hiuk−i
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(1) Obtain a state-space model.
(2) Obtain an RHC with the following performance:

J =
N−1∑
j=0

{q[yk+j|k − yr
k+j|k]2 + ru2

k+j|k}

3.15. DMC used the following model:

yk =
n−1∑
i=0

gi�uk−i

where �uk = uk − uk−1.

(1) Obtain a state-space model.
(2) Obtain an RHC with the following performance:

J =
N−1∑
j=0

{q[yk+j|k − yr
k+j|k]2 + r[�uk+j|k]2}.

3.16. Consider the CARIMA model (3.194). Find an optimal solution for the
performance criterion (3.204).

3.17. (1) Show that

Qf − Q + HT RH − ΓT RwΓ + (A − BH + BwΓ )T Qf (A − BH + BwΓ )
≥ Qf − Q + HT RH + (A − BH)(Q−1

f − BwR−1
w BT

w)−1(A − BH)(3.359)

holds irrespective of Γ .
(2) Find out Γ such that the equality holds in (3.359).
(3) Show that

Qf − Q + HT RH + (A − BH)(Q−1
f − BwR−1

w BT
w)−1(A − BH) ≥ 0

can be represented in the following LMI form:⎡⎢⎢⎣
X (AX − BY )T (Q

1
2 X)T (R

1
2 Y )T

AX − BY X − BwR−1
w BT

w 0 0
Q

1
2 X 0 I 0

R
1
2 Y 0 0 I

⎤⎥⎥⎦ ≥ 0 (3.360)

where X = Q−1
f and Y = HQ−1

f .

3.18. Consider the cost monotonicity condition (3.234) in the RH H∞ control.

(1) Show that (3.234) is equivalent to the following performance criterion:

max
w

[(xT Qx + uT Ru − r2wT w) − xT Qfx] ≤ 0 (3.361)
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(2) Show that if (3.234) holds, then the following inequality is satisfied:[
−γ2I + BT

wQfBw BT
1 Qf (A + B2H)

(A + B2H)T QfB1 (A + BH)T Qf (A + BH) − Qf + Q + HT H

]
≤ 0

3.19. If H is replaced by an optimal gain H = −R−1BT [I + QfΠ]−1 Qf A,
then show that we can have (3.243) by using the matrix inversion lemma.

3.20. As shown in Figure 3.11, suppose that there exists an input uncertainty
� described by

x̃k+1 = Ãx̃k + B̃ũk

ỹk = C̃x̃k

where the feedback interconnection is given by

ũk = uRHC
k

uk = −ỹk

The input ỹk and output ũk of the uncertainty � satisfy

V(x̃k+1) − V(x̃k) ≤ ỹT
k ũk − ρũT

k ũk

where V(xk) is some nonnegative function (this is called the dissipative prop-
erty) and ρ is a constant. If ρ is greater than 1

4 and the H∞ RHC (3.222) is
adopted, show that the H∞ norm bound of the closed-loop system with this
input uncertainty is still guaranteed.

Hint: use the cost monotonicity condition.

--

Fig. 3.11. Feedback Interconnection of Problem 3.20

3.21. The state equation (3.1) can be transformed into

Xk+j = Fjxk+j + HjUk+j

xk+N = AN−jxk+j + B̄jUk+j

X̄k+j = F̄jxk+j + H̄jUk+j
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where 0 ≤ j ≤ N − 1.

Uk+j =

⎡⎢⎢⎢⎣
uk+j

uk+j+1

...
uk+N−1

⎤⎥⎥⎥⎦ , Xk+j =

⎡⎢⎢⎢⎣
xk+j

xk+j+1

...
xk+N−1

⎤⎥⎥⎥⎦

Fj =

⎡⎢⎢⎢⎣
I
A
...

AN−1−j

⎤⎥⎥⎥⎦ =
[

I
Fj+1A

]

Hj =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 · · · 0
B 0 0 · · · 0

AB B 0 · · · 0
...

...
. . .

...
...

AN−2−jB AN−3−jB · · · B 0

⎤⎥⎥⎥⎥⎥⎦ =
[

0 0
Fj+1B Hj+1

]

B̄j =
[
AN−1−jB AN−2−jB · · · AB B

]
X̄k+j =

[
Xk+j

xk+N

]
, F̄j =

[
Fj

AN−j

]
, H̄j =

[
Hj

B̄j

]
(1) We define

Kj = F̄T
j Q̂jF̄j − F̄T

j Q̂jH̄j(H̄T
j Q̂jH̄j + R̄j)−1H̄T

j Q̂jF̄j

where

Q̂j = diag{
N−j+1︷ ︸︸ ︷

Q, · · · , Q Qf}, R̄j = diag{
N−j+1︷ ︸︸ ︷

R, · · · , R}.
Then, show that the optimal control (3.314) can be rewritten by

Uk+j = −[H̄T
j Q̂jH̄j + R̄j ]−1H̄T

j Q̂jF̄jxk+j (3.362)

=
[

−[R + BT Kj+1B]−1BT Kj+1Axk+j

−[R̄j+1 + H̄T
j+1Q̂j+1H̄j+1]−1H̄T

j+1Q̂j+1F̄j+1xk+j+1

]
=
[

uk+j

Uk+j+1

]
(2) Show that the above-defined Kj satisfies (3.47), i.e. the recursive solution

can be obtained from a batch form of solution.

3.22. Consider the GPC (3.329) for the CARIMA model (3.194).

(a) Using (3.329), obtain the GPC �uk when Qf = ∞I.
(b) Show that the above GPC is asymtotically stable.
3.23. In Section 2.5, the optimal control Uk on the finite horizon was obtained
from the LMI approach. Derive an LMI for the control gain H of Uk = Hxk,
not the control Uk itself.




