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Optimal Controls on Finite and Infinite
Horizons: A Review

2.1 Introduction

In this chapter, important results on optimal controls are reviewed.
Optimal controls depend on the performance criterion that should reflect

the designer’s concept of good performance. Two important performance cri-
teria are considered for optimal controls. One is for minimization and the
other for minimaximization.

Both nonlinear and linear optimal controls are reviewed. First, the general
results for nonlinear systems are introduced, particularly with the dynamic
programming and a minimum principle. Then, the optimal controls for linear
systems are obtained as a special case. Actually, linear quadratic and H∞
optimal controls are introduced for both state feedback and output feedback
controls. Tracking controls are also introduced for future use.

Optimal controls are discussed for free and fixed terminal states. The for-
mer may or may not have a terminal cost. In particular, a nonzero terminal
cost for the free terminal state is called a free terminal cost in the subsequent
chapters. In addition, a fixed terminal state is posed as a terminal equality
constraint in the subsequent chapters. The optimal controls for the fixed ter-
minal and nonzero reference case will be derived in this chapter. They are
important for RHC. However, they are not common in the literature.

Linear optimal controls are transformed to SDP using LMIs for easier
computation of the control laws. This numerical method can be useful for
obtaining optimal controls in constrained systems, which will be discussed
later.

Most results given in this chapter lay the foundation for the subsequent
chapters on receding horizon controls.

Proofs are generally given in order to make our presentation in this book
more self-contained, though they appear in the existing literature. H2 filters
and H2 controls are important, but not used for subsequent chapters; thus,
they are summarized without proof.



18 2 Optimal Controls on Finite and Infinite Horizons: A Review

The organization of this chapter is as follows. In Section 2.2, optimal con-
trols for general systems such as dynamic programming and the minimum
principle are dealt with for both minimum and minimax criteria. In Section
2.3, linear optimal controls, such as the LQ control based on the minimum
criterion and H∞ control based on the minimax criterion, are introduced. In
Section 2.4, the Kalman filter on the minimum criterion and the H∞ filter
on the minimax criterion are discussed. In Section 2.5, LQG control on the
minimum criterion and the output feedback H∞ control on the minimax cri-
terion are introduced for output feedback optimal controls. In Section 2.6, the
infinite horizon LQ and H∞ control are represented in LMI forms. In Section
2.7, H2 controls are introduced as a general approach for LQ control.

2.2 Optimal Control for General Systems

In this section, we consider optimal controls for general systems. Two ap-
proaches will be taken. The first approach is based on the minimization and
the second approach is based on the minimaximization.

2.2.1 Optimal Control Based on Minimum Criterion

Consider the following discrete-time system:

xi+1 = f(xi, ui, i), xi0 = x0 (2.1)

where xi ∈ �n and ui ∈ �m are the state and the input respectively, and may
be required to belong to the given sets, i.e. xi ∈ X ∈ �n and ui ∈ U ∈ �m.

A performance criterion with the free terminal state is given by

J(xi0 , i0, u) =
if−1∑
i=i0

g(xi, ui, i) + h(xif
, if ) (2.2)

i0 and if are the initial and terminal time. g(·, ·, ·) and h(·, ·) are specified
scalar functions. We assume that if is fixed here for simplicity. Note that
xif

is free for the performance criterion (2.2). However, xif
can be fixed. A

performance criterion with the fixed terminal state is given by

J(xi0 , i0, u) =
if−1∑
i=i0

g(xi, ui, i) (2.3)

subject to

xif
= xr

if
(2.4)

where xr
if

is given.
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Here, the optimal control problem is to find an admissible control ui ∈ U
for i ∈ [i0, if − 1] that minimizes the cost function (2.2) or (2.3) with the
constraint (2.4).

The Principle of Optimality and Dynamic Programming

If S-a-D is the optimal path from S to D with the cost J∗
SD, then a-D is

the optimal path from a to D with J∗
aD, as can be seen in Figure 2.1. This

property is called the principle of optimality. Thus, an optimal policy has the
property that, whatever the initial state and initial decision are, the remaining
decisions must constitute an optimal policy with regard to the state resulting
from the first decision.

S
D

Fig. 2.1. Optimal path from S to D

Now, assume that there are allowable paths S-a-D, S-b-D, S-c-D, and
S-d-D and optimal paths from a, b, c, and d to D are J∗

aD, J∗
bD, J∗

cD, and J∗
dD

respectively, as can be seen in Figure 2.2. Then, the optimal trajectory that
starts at S is found by comparing

J∗
SaD = JSa + J∗

aD

J∗
SbD = JSb + J∗

bD

J∗
ScD = JSc + J∗

cD

J∗
SdD = JSd + J∗

dD (2.5)

The minimum of these costs must be the one associated with the optimal de-
cision at point S. Dynamic programming is a computational technique which
extends the above decision-making concept to the sequences of decisions which
together define an optimal policy and trajectory.

Assume that the final time if is specified. If we consider the performance
criterion (2.2) subject to the system (2.1), the performance criterion of dy-
namic programming can be represented by

J(xi, i, u) = g(xi, ui, i) + J∗(xi+1, i + 1), i ∈ [i0, if − 1] (2.6)
J∗(xi, i) = min

uτ ,τ∈[i,if−1]
J(xi, i, u)

= min
ui

{g(xi, ui, i) + J∗(f(xi, ui, i), i + 1)} (2.7)
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S D

Fig. 2.2. Paths from S through a, b, c, and d to D

where

J∗(xif
, if ) = h(xif

, if ) (2.8)

For the fixed terminal state, J∗(xif
, if ) = h(xif

, if ) is fixed since xif
and if

are constants.
It is noted that the dynamic programming method gives a closed-loop con-

trol, while the method based on the minimum principle considered next gives
an open-loop control for most nonlinear systems.

Pontryagin’s Minimum Principle

We assume that the admissible controls are constrained by some boundaries,
since in realistic systems control constraints do commonly occur. Physically
realizable controls generally have magnitude limitations. For example, the
thrust of a rocket engine cannot exceed a certain value and motors provide a
limited torque.

By definition, the optimal control u∗ makes the performance criterion J a
local minimum if

J(u) − J(u∗) = �J ≥ 0

for all admissible controls sufficiently close to u∗. If we let u = u∗ + δu, the
increment in J can be expressed as

�J(u∗, δu) = δJ(u∗, δu) + higher order terms

Hence, the necessary conditions for u∗ to be the optimal control are

δJ(u∗, δu) ≥ 0

if u∗ lies on the boundary during any portion of the time interval [i0, if ] and

δJ(u∗, δu) = 0

if u∗ lies within the boundary during the entire time interval [i0, if ].
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We form the following augmented cost functional:

Ja =
if−1∑
i=i0

{
g(xi, ui, i) + pT

i+1[f(xi, ui, i) − xi+1]
}

+ h(xif
, if )

by introducing the Lagrange multipliers pi0 , pi0+1, · · · , pif
. For simplicity of

the notation, we denote g(x∗
i , u

∗
i , i) by g and f(x∗

i , u
∗
i , i) by f respectively.

Then, the increment of Ja is given by

�Ja =
if−1∑
i=i0

{
g(x∗

i + δxi, u
∗
i + δui, i) + [p∗i+1 + δpi+1]T

× [f(x∗
i + δxi, u

∗
i + δui, i) − (x∗

i+1 + δxi+1)
}

+ h(x∗
if

+ δxif
, if )

−
if−1∑
i=i0

{
g(x∗

i , u
∗
i , i) + p∗T

i+1[f(x∗
i , u

∗
i , i) − x∗

i+1]
}

+ h(x∗
if

, if )

=
if−1∑
i=i0

{[
∂g

∂xi

]T

δxi +
[

∂g

∂ui

]T

δui + p∗T
i+1

[
∂f

∂xi

]T

δxi

+ p∗T
i+1

[
∂f

∂ui

]T

δui + δpT
i+1f(x∗

i , u
∗
i , i)

− δpT
i+1x

∗
i+1 − p∗T

i+1δxi+1

}
+
[

∂h

∂xif

]T

δxif

+ higher order terms (2.9)

To eliminate δxi+1, we use the fact

if−1∑
i=i0

p∗T
i+1δxi+1 = p∗T

if
δxif

+
if−1∑
i=i0

pT
i δxi

Since the initial state xi0 is given, it is apparent that δxi0 = 0 and pi0 can be
chosen arbitrarily. Now, we have

�Ja =
if−1∑
i=i0

{[
∂g

∂xi
− p∗i +

∂f

∂xi
p∗i+1

]T

δxi +
[

∂g

∂ui
+

∂f

∂ui
p∗i+1

]T

δui

+δpT
i+1

[
f(x∗

i , u
∗
i , i) − x∗

i+1

]}
+
[

∂h

∂xif

− p∗if

]T

δxif

+ higher order terms

Note that variable δxi for i = i0 + 1, · · · , if are all arbitrary. Define the
function H, called the Hamiltonian
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H(xi, ui, pi+1, i) � g(xi, ui, i) + pT
i+1f(xi, ui, i)

If the state equations are satisfied, and p∗i is selected so that the coefficient of
δxi is identically zero, that is,

x∗
i+1 = f(x∗

i , u
∗
i , i) (2.10)

p∗i =
∂g

∂xi
+

∂f

∂xi
p∗i+1 (2.11)

x∗
i0 = x0 (2.12)

p∗if
=

∂h

∂xif

(2.13)

then we have

�Ja =
if−1∑
i=i0

{[
∂H
∂u

(x∗
i , u

∗
i , p

∗
i , i)
]T

δui

}
+ higher order terms

The first-order approximation to the change in H caused by a change in u
alone is given by[

∂H
∂u

(x∗
i , u

∗
i , p

∗
i , i)
]T

δui ≈ H(x∗
i , u

∗
i + δui, p

∗
i+1, i) −H(x∗

i , u
∗
i , p

∗
i+1, i)

Therefore,

�J(u∗, δu) =
if−1∑
i=i0

[
H(x∗

i , u
∗
i + δui, p

∗
i+1, i) −H(x∗

i , u
∗
i , p

∗
i+1, i)

]
+higher order terms (2.14)

If u∗ + δu is in a sufficiently small neighborhood of u∗, then the higher order
terms are small, and the summation (2.14) dominates the expression for �Ja.
Thus, for u∗ to be an optimal control, it is necessary that

if−1∑
i=i0

[
H(x∗

i , u
∗
i + δui, p

∗
i+1, i) −H(x∗

i , u
∗
i , p

∗
i+1, i)

]
≥ 0 (2.15)

for all admissible δu. We assert that in order for (2.15) to be satisfied for all
admissible δu in the specified neighborhood, it is necessary that

H(x∗
i , u

∗
i + δui, p

∗
i+1, i) −H(x∗

i , u
∗
i , p

∗
i+1, i) ≥ 0 (2.16)

for all admissible δui and for all i = i0, · · · , if . In order to prove the inequality
(2.15), consider the control

ui = u∗
i , i /∈ [i1, i2]

ui = u∗
i + δui, i ∈ [i1, i2]

(2.17)
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where [i1, i2] is a nonzero time interval, i.e. i1 < i2 and δui is an admissible
control variation that satisfies u∗ + δu ∈ U .

Suppose that inequality (2.16) is not satisfied in the interval [i1, i2] for the
control described in (2.17). So, we have

H(x∗
i , ui, p

∗
i+1, i) < H(x∗

i , u
∗
i , p

∗
i+1, i)

in the interval [i1, i2] and the following inequality is obtained:

if−1∑
i=i0

[
H(x∗

i , ui, p
∗
i+1, i) −H(x∗

i , u
∗
i , p

∗
i+1, i)

]

=
i2∑

i=i1

[
H(x∗

i , ui, p
∗
i+1, i) −H(x∗

i , u
∗
i , p

∗
i+1, i)

]
< 0

Since the interval [i1, i2] can be anywhere in the interval [i0, if ], it is clear
that if

H(x∗
i , ui, p

∗
i+1, i) < H(x∗

i , u
∗
i , p

∗
i+1, i)

for any i ∈ [i0, if ], then it is always possible to construct an admissible control,
as in (2.17), which makes �Ja < 0, thus contradicting the optimality of the
control u∗

i . Therefore, a necessary condition for u∗
i to minimize the functional

Ja is
H(x∗

i , u
∗
i , p

∗
i+1, i) ≤ H(x∗

i , ui, p
∗
i+1, i) (2.18)

for all i ∈ [i0, if ] and for all admissible controls. The inequality (2.18) indicates
that an optimal control must minimize the Hamiltonian. Note that we have
established a necessary, but not, in general, sufficient, condition for optimality.
An optimal control must satisfy the inequality (2.18). However, there may be
controls that satisfy the minimum principle that are not optimal.

We now summarize the principle results. In terms of the Hamiltonian, the
necessary conditions for u∗

i to be an optimal control are

x∗
i+1 =

∂H
∂pi+1

(x∗
i , u

∗
i , p

∗
i+1, i) (2.19)

p∗i =
∂H
∂x

(x∗
i , u

∗
i , p

∗
i+1, i) (2.20)

H(x∗
i , u

∗
i , p

∗
i+1, i) ≤ H(x∗

i , ui, p
∗
i+1, i) (2.21)

for all admissible ui and i ∈ [i0, if − 1], and two boundary conditions

xi0 = x0, p∗if
=

∂h

∂xif

(x∗
if

, if )

The above result is called Pontryagin’s minimum principle. The minimum
principle, although derived for controls in the given set U , can also be applied
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to problems in which the admissible controls are not bounded. In this case,
for u∗

i to minimize the Hamiltonian it is necessary (but not sufficient) that

∂H
∂ui

(x∗
i , u

∗
i , p

∗
i+1, i) = 0, i ∈ [i0, if − 1] (2.22)

If (2.22) is satisfied and the matrix

∂2H
∂u2

i

(x∗
i , u

∗
i , p

∗
i+1, i)

is positive definite, then this is sufficient to guarantee that u∗
i makes Ja a local

minimum. If the Hamiltonian can be expressed in the form

H(xi, ui, pi+1, i) = c0(xi, pi+1, i) +
[
c1(xi, pi+1, i)

]T
ui +

1
2
uT

i Rui

where c0(·, ·, ·) and c1(·, ·, ·) are a scalar and an m× 1 vector function respec-
tively, that do not have any term containing ui, then (2.22) and ∂2H/∂u2

i > 0
are necessary and sufficient for H(x∗

i , u
∗
i , p

∗
i+1, i) to be a global minimum.

For a fixed terminal state, δxif
in the last term of (2.9) is equal to zero.

Thus, (2.13) is not necessary, which is replaced with xif
= xr

if
.

2.2.2 Optimal Control Based on Minimax Criterion

Consider the following discrete-time system:

xi+1 = f(xi, ui, wi, i), xi0 = x0 (2.23)

with a performance criterion

J(xi0 , i0, u, w) =
if−1∑
i=i0

[g(xi, ui, wi, i)] + h(xif
, if ) (2.24)

where xi ∈ �n is the state, ui ∈ �m is the input and wi ∈ �l is the dis-
turbance. The input and the disturbance are required to belong to the given
sets, i.e. ui ∈ U and wi ∈ W. Here, the fixed terminal state is not dealt with
because the minimax problem in this case does not make sense.

The minimax criterion we are dealing with is related to a difference game.
We want to minimize the performance criterion, while disturbances try to
maximize one. A pair policies (u,w) ∈ U ×W is said to constitute a saddle-
point solution if, for all (u,w) ∈ U ×W,

J(xi0 , i0, u
∗, w) ≤ J(xi0 , i0, u

∗, w∗) ≤ J(xi0 , i0, u, w∗) (2.25)

We may think that u∗ is the best control, while w∗ is the worst disturbance.
The existence of these u∗ and w∗ is guaranteed by specific conditions.
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The control u∗ makes the performance criterion (2.24) a local minimum if

J(xi0 , i0, u, w) − J(xi0 , i0, u
∗, w) = �J ≥ 0

for all admissible controls. If we let u = u∗ + δu, the increment in J can be
expressed as

�J(u∗, δu, w) = δJ(u∗, δu, w) + higher order terms

Hence, the necessary conditions for u∗ to be the optimal control are

δJ(u∗, δu, w) ≥ 0

if u∗ lies on the boundary during any portion of the time interval [i0, if ] and

δJ(u∗, δu, w) = 0

if u∗ lies within the boundary during the entire time interval [i0, if ].
Meanwhile, the disturbance w∗ makes the performance criterion (2.24) a

local maximum if
J(u,w) − J(u,w∗) = �J ≤ 0

for all admissible disturbances. Taking steps similar to the case of u∗, we
obtain the necessary condition

δJ(u,w∗, δw) ≤ 0

if w∗ lies on the boundary during any portion of the time interval [i0, if ] and

δJ(u,w∗, δw) = 0

if w∗ lies within the boundary during the entire time interval [i0, if ].
We now summarize the principle results. In terms of the Hamiltonian, the

necessary conditions for u∗
i to be an optimal control are

x∗
i+1 =

∂H
∂pi+1

(x∗
i , u

∗
i , w

∗
i , p∗i+1, i)

p∗i =
∂H
∂xi

(x∗
i , u

∗
i , w

∗
i , p∗i+1, i)

H(x∗
i , u

∗
i , wi, p

∗
i+1, i) ≤ H(x∗

i , u
∗
i , w

∗
i , p∗i+1, i) ≤ H(x∗

i , ui, w
∗
i , p∗i+1, i)

for all admissible ui and wi on the i ∈ [i0, if −1], and two boundary conditions

xi0 = x0, p∗if
=

∂h

∂xif

(x∗
if

, if )

Now, a dynamic programming for minimaxization criterion is explained.
Let there exist a function J∗(xi, i), i ∈ [i0, if − 1] such that
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J∗(xi, i) = min
u∈U

max
w∈W

[
g(xi, ui, wi, i) + J∗(f(xi, ui, wi, i), i + 1)

]
= max

w∈W
min
u∈U

[
g(xi, ui, wi, i) + J∗(f(xi, ui, wi, i), i + 1)

]
J∗(xif

, if ) = h(xif
, if ) (2.26)

Then a pair of u and w that is generated by (2.26) provides a saddle point
with the corresponding value given by J∗(xi0 , i0).

2.3 Linear Optimal Control with State Feedback

2.3.1 Linear Quadratic Controls Based on Minimum Criterion

In this section, an LQ control in a tracking form for discrete time-invariant
systems is introduced in a state-feedback form. We consider the following
discrete time-invariant system:

xi+1 = Axi + Bui

zi = Czxi (2.27)

There are two methods which are used to obtain the control of minimizing
the chosen cost function. One is dynamic programming and the other is the
minimum principle of Pontryagin. The minimum principle of Pontryagin and
dynamic programming were briefly introduced in the previous section. In the
method of dynamic programming, an optimal control is obtained by employing
the intuitively appealing concept called the principle of optimality. Here, we
use the minimum principle of Pontryagin in order to obtain an optimal finite
horizon LQ tracking control (LQTC).

We can divide the terminal states into two cases. The first case is a free
terminal state and the second case is a fixed terminal state. In the following,
we will derive two kinds of LQ controls in a tracking form.

1 ) Free Terminal State

The following quadratic performance criterion is considered:

J(zr, u·) =
if−1∑
i=i0

[(zi − zr
i )T Q̄(zi − zr

i ) + uT
i Rui]

+ [zif
− zr

if
]T Q̄f [zif

− zr
if

] (2.28)

Here, xi ∈ �n, ui ∈ �m, zi ∈ �p, zr
i , Q̄ > 0, R > 0, Q̄f > 0 are the state,

the input, the controlled output, the command signal or the reference signal,
the state weighting matrix, the input weighting matrix, and the terminal
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weighting matrix respectively. Here, zr
i0

, zr
i0+1, · · · , zr

if
are command signals

which are assumed to be available over the future horizon [i0, if ].
For tracking problems, with Q̄ > 0 and Q̄f > 0 in (2.28), there is a

tendency that zi → zr
i . In order to derive the optimal tracking control which

minimizes the performance criterion (2.28), it is convenient to express the
performance criterion (2.28) with the state xi instead of zi. It is well known
that for a given p × n (p ≤ n) full rank matrix Cz there always exist some
n × p matrices L such that CzL = Ip×p. Let

xr
i = Lzr

i (2.29)

The performance criterion (2.28) is then rewritten as

J(xr, u) =
if−1∑
i=i0

[(xi − xr
i )

T CT
z Q̄Cz(xi − xr

i ) + uT
i Rui]

+ [xif
− xr

if
]T CT

z Q̄fCz[xif
− xr

if
] (2.30)

The performance criterion (2.30) can be written as

J(xr, u) =
if−1∑
i=i0

[
(xi − xr

i )
T Q(xi − xr

i ) + uT
i Rui

]
+ (xif

− xr
if

)T Qf (xif
− xr

if
) (2.31)

where

Q = CT
z Q̄Cz and Qf = CT

z Q̄fCz (2.32)

Q and Qf in (2.31) can be independent design parameters ignoring the relation
(2.32). That is, the matrices Q and Qf can be positive definite, if necessary,
though Q and Qf in (2.32) are semidefinite when Cz is not of full rank. In
this book, Q and Qf in (2.31) are independent design parameters. However,
whenever necessary, we will make some connections to (2.32).

We first form a Hamiltonian:

Hi = [(xi − xr
i )

T Q(xi − xr
i ) + uT

i Rui] + pT
i+1[Axi + Bui] (2.33)

where i ∈ [i0, if − 1]. According to (2.20) and (2.2.1), we have

pi =
∂Hi

∂xi
= 2Q(xi − xr

i ) + AT pi+1 (2.34)

pif
=

∂h(xif
, if )

∂xif

= 2Qf (xif
− xr

if
) (2.35)

where h(xif
, if ) = (xif

− xr
if

)T Qf (xif
− xr

if
).
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A necessary condition for ui to minimize Hi is ∂Hi

∂ui
= 0. Thus, we have

∂Hi

∂ui
= 2Rui + BT pi+1 = 0 (2.36)

Since the matrix ∂2Hi

∂u2
i

= 2R is positive definite and Hi is a quadratic form
in u, the solution of (2.36) is an optimal control to minimize Hi. The optimal
solution u∗

i is

u∗
i = −1

2
R−1BT pi+1 (2.37)

If we assume that

pi = 2Ki,if
xi + 2gi,if

(2.38)

the solution to the optimal control problem can be reduced to finding the
matrices Ki,if

and gi,if
. From (2.35), the boundary conditions are given by

Kif ,if
= Qf (2.39)

gif ,if
= −Qfxr

if
(2.40)

Substituting (2.27) into (2.38) and replacing ui with (2.37), we have

pi+1 = 2Ki+1,if
xi+1 + 2gi+1,if

= 2Ki+1,if
(Axi + Bui) + 2gi+1,if

= 2Ki+1,if
(Axi −

1
2
BR−1BT pi+1) + 2gi+1,if

(2.41)

Solving for pi+1 in (2.41) yields the following equation:

pi+1 = [I + Ki+1,if
BR−1BT ]−1[2Ki+1,if

Axi + 2gi+1,if
] (2.42)

Substituting for pi+1 from (2.37), we can write

u∗
i = −R−1BT [I + Ki+1,if

BR−1BT ]−1[Ki+1,if
Axi + gi+1,if

] (2.43)

What remains to do is to find Ki,if
and gi,if

. If we put the equation (2.42)
into the equation (2.34), we have

pi = 2Q(xi − xr
i ) + AT [I + Ki+1,if

BR−1BT ]−1[2Ki+1,if
Axi + 2gi+1,if

],

= 2[Q + AT (I + Ki+1,if
BR−1BT )−1Ki+1,if

A]xi

+2[−Qxr
i + AT (I + Ki+1,if

BR−1BT )−1gi+1,if
] (2.44)

The assumption (2.38) holds by choosing Ki,if
and gi,if

as
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Ki,if
= AT [I + Ki+1,if

BR−1BT ]−1Ki+1,if
A + Q

= AT Ki+1,if
A − AT Ki+1,if

B(R + BT Ki+1,if
B)−1BT Ki+1,if

A

+ Q (2.45)
gi,if

= AT [I + Ki+1,if
BR−1BT ]−1gi+1,if

− Qxr
i (2.46)

where the second equality comes from

[I + Ki+1,if
BR−1BT ]−1 = I − Ki+1,if

B(R + BT Ki+1,if
B)−1BT (2.47)

using the matrix inversion lemma (A.2) in Appendix A. The optimal control
derived until now is summarized in the following theorem.

Theorem 2.1. In the system (2.27), the LQTC for the free terminal state is
given as (2.43) for the performance criterion (2.31). Ki,if

and gi,if
in (2.43)

are obtained from Riccati Equation (2.45) and (2.46) with boundary condition
(2.39) and (2.40).

Depending on Qf , Ki,if
may be nonsingular (positive definite) or singular

(positive semidefinite). This property will be important for stability and the
inversion of the matrix Ki,if

in coming sections.
For a zero reference signal, gi,if

becomes zero so that we have

u∗
i = −R−1BT [I + Ki+1,if

BR−1BT ]−1Ki+1,if
Axi (2.48)

The performance criterion (2.31) associated with the optimal control (2.43) is
given in the following theorem.

Theorem 2.2. The optimal cost J∗(xi) with the reference value can be given

J∗(xi) = xT
i Ki,if

xi + 2xT
i gi,if

+ wi,if
(2.49)

where

wi,if
= wi+1,if

+ xrT
i Qxr

i − gT
i+1,if

B(BT Ki+1,if
B + R)−1BT gi+1,if

(2.50)

with boundary condition wif ,if
= xrT

if
Qfxr

if
.

Proof. A long and tedious calculation is required to obtain the optimal cost us-
ing the result of Theorem 2.1. Thus, we derive the optimal cost using dynamic
programming, where the optimal control and the optimal cost are obtained
simultaneously.

Let J∗(xi+1) denote the optimal cost associated with the initial state xi+1

and the interval [i + 1, if ]. Suppose that the optimal cost J∗(xi+1) is given as

J∗(xi+1) = xT
i+1Ki+1,if

xi+1 + 2xT
i+1gi+1,if

+ wi+1,if
(2.51)

where wi+1,if
will be determined later. We wish to calculate the optimal cost

J∗(xi) from (2.51).



30 2 Optimal Controls on Finite and Infinite Horizons: A Review

By applying the principle of optimality, J∗(xi) can be represented as fol-
lows:

J∗(xi) = min
ui

[
(xi − xr

i )
T Q(xi − xr

i ) + uT
i Rui + J∗(xi+1)

]
(2.52)

(2.52) can be evaluated backward by starting with the condition J∗(xif
) =

(xif
− xr

if
)T Qf (xif

− xr
if

).
Substituting (2.27) and (2.51) into (2.52), we have

J∗(xi) = min
ui

[
(xi − xr

i )
T Q(xi − xr

i ) + uT
i Rui + xT

i+1Ki+1,if
xi+1

+ 2xT
i+1gi+1,if

+ wi+1,if

]
(2.53)

= min
ui

[
(xi − xr

i )
T Q(xi − xr

i ) + uT
i Rui

+ (Axi + Bui)T Ki+1,if
(Axi + Bui) + 2(Axi + Bui)T gi+1,if

+ wi+1,if

]
(2.54)

Note that J∗(xi) has a quadratic equation with respect to ui and xi. For a
given xi, the control ui is chosen to be optimal according to (2.54). Taking
derivatives of (2.54) with respect to ui to obtain

∂J∗(xi)
∂ui

= 2Rui + 2BT Ki+1,if
Bui + 2BT Ki+1,if

Axi + 2BT gi+1,if
= 0

we have the following optimal control ui:

ui = −(R + BT Ki+1,if
B)−1[BT Ki+1,if

Axi + BT gi+1,if
] (2.55)

= −L1,ixi + L2,igi+1,if
(2.56)

where

L1,i
�
= [R + BT Ki+1,if

B]−1BT Ki+1,if
A (2.57)

L2,i
�
= −[R + BT Ki+1,if

B]−1BT (2.58)

It is noted that the optimal control ui in (2.56) is the same as (2.43) derived
from the minimum principle. How to obtain the recursive equations of Ki+1,if

and gi+1,if
is discussed later.

From definitions (2.57) and (2.58), we have the following relations:

AT Ki+1,if
B[R + BT Ki+1,if

B]−1BT Ki+1,if
A = AT Ki+1,if

BL1,i

= LT
1,iB

T Ki+1,if
A

= LT
1,i[R + BT Ki+1,if

B]L1,i

(2.59)
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where the most left side is equivalent to the second term of Riccati Equation
(2.45) and these relations are useful for representing the Riccati equation in
terms of closed-loop system A − BL1,i.

Substituting (2.56) into (2.54) yields

J∗(xi) = xT
i

[
Q + LT

1,iRL1,i + (A − BL1,i)T Ki+1,if
(A − BL1,i)

]
xi

+ 2xT
i

[
−LT

1,iRL2,igi+1,if
+ (A − BL1,i)T Ki+1,if

BL2,igi+1,if

+ (A − BL1,i)T gi+1,if
− Qxr

i

]
+gT

i+1,if
LT

2,iRL2,igi+1,if

+ gT
i+1,if

LT
2,iB

T Ki+1,if
BL2,igi+1,if

+ 2gT
i+1,if

LT
2,iB

T gi+1,if
+ wi+1,if

+ xrT
i Qxr

i (2.60)

where the terms are arranged according to the order of xi. The quadratic
terms with respect to xi in (2.60) can be reduced to xT

i Ki,if
xi from Riccati

Equation given by

Ki,if
= [A − BL1,i]T Ki+1,if

[A − BL1,i] + LT
1,iRL1,i + Q (2.61)

which is the same as (2.45) according to the relation (2.59).
The first-order coefficients with respect to xi in (2.60) can be written as

− LT
1,iRL2,igi+1,if

+ (A − BL1,i)T Ki+1,if
BL2,igi+1,if

+ (A − BL1,i)T gi+1,if
− Qxr

i

= −LT
1,iRL2,igi+1,if

+ AT Ki+1,if
BL2,igi+1,if

− LT
1,iB

T Ki+1,if
BL2,igi+1,if

+ AT gi+1,if
− LT

1,iB
T gi+1,if

− Qxr
i

= −AT [KT
i+1,if

B(R + BT Ki+1,if
B)−1BT − I]gi+1,if

− Qxr
i

= AT [I + KT
i+1,if

BR−1B]−1gi+1,if
− Qxr

i

which can be reduced to gi,if
if it is generated from (2.46).

The terms without xi in (2.60) can be written as

gT
i+1,if

LT
2,iRL2,igi+1,if

+ gT
i+1,if

LT
2,iB

T Ki+1,if
BL2,igi+1,if

+ 2gT
i+1,if

LT
2,iB

T gi+1,if
+ wi+1,if

+ xrT
i Qxr

i

= gT
i+1,if

B[R + BT Ki+1,if
B]−1BT gi+1,if

− 2gT
i+1,if

B[R + BT Ki+1,if
B]−1BT gi+1,if

+ wi+1,if
+ xrT

i Qxr
i

= −gT
i+1,if

B[R + BT Ki+1,if
B]−1BT gi+1,if

+ wi+1,if
+ xrT

i Qxr
i

which can be reduced to wi,if
if it is defined as (2.50). If gi,if

and wi,if
are

chosen as (2.46) and (2.50), then J∗(xi) is in a form such as (2.51), i.e.
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J∗(xi) = xT
i Ki,if

xi + 2xT
i gi,if

+ wi,if
(2.62)

Now, we have only to find the boundary value of gi,if
and wi,if

. J∗(xif
) should

be equal to the performance criterion for the final state. Thus, wif ,if
and gif ,if

should be chosen as wif ,if
= xrT

if
Qfxr

if
and gif ,if

= −Qfxr
if

so that we have

J∗(xif
) = xT

if
Kif ,if

xif
+ 2xT

if
gif ,if

+ wif ,if

= xT
if

Qfxif
− 2xT

if
Qfxr

if
+ xrT

if
Qfxr

if

= (xif
− xr

if
)T Qf (xif

− xr
if

)

This completes the proof.

The result of Theorem 2.2 will be utilized only for zero reference signals
in subsequent sections.

For positive definite Qf and nonsingular matrix A, we can have another
form of the above control (2.43). Let P̂i,if

= K−1
i,if

if the inverse of Ki,if
exists.

Then (2.45) can be represented by

P̂−1
i,if

= AT [I + P̂−1
i+1,if

BR−1BT ]−1P̂−1
i+1,if

A + Q (2.63)

P̂i,if
=
{

AT [P̂i+1,if
+ BR−1BT ]−1A + Q

}−1

(2.64)

Let Pi,if
= P̂i,if

+ BR−1BT . Then

Pi,if
= (AT P−1

i+1,if
A + Q)−1 + BR−1BT

= A−1(P−1
i+1,if

+ A−T QA−1)−1A−T + BR−1BT

= A−1[I + Pi+1,if
A−T QA−1]−1Pi+1,if

A + BR−1BT (2.65)

gi,if
= AT [I + P̂−1

i+1,if
BR−1BT ]−1gi+1,if

− Qxr
i

= AT [P̂i+1,if
+ BR−1BT ]−1P̂i+1,if

gi+1,if
− Qxr

i

= AT P−1
i+1,if

(Pi+1,if
− BR−1BT )gi+1,if

− Qxr
i (2.66)

with the boundary condition

Pif ,if
= Q−1

f + BR−1BT (2.67)

Using the following relation:

−[I + R−1BT P̂−1
i+1,if

B]−1R−1BT P̂−1
i+1,if

Axi

= −R−1BT P̂−1
i+1,if

[I + BR−1BT P̂−1
i+1,if

]−1Axi

= −R−1BT [P̂i+1,if
+ BR−1BT ]−1Axi

= −R−1BT P−1
i+1,if

Axi
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and

−[I + R−1BT P̂−1
i+1,if

B]−1R−1Bgi+1,if

= R−1B[I + P̂−1
i+1,if

BR−1BT ]−1gi+1,if

= R−1BP−1
i+1,if

(Pi+1,if
− BR−1BT )gi+1,if

we can represent the control in another form:

u∗
i = −R−1BT P−1

i+1,if
[Axi + (Pi+1,if

− BR−1BT )gi+1,if
] (2.68)

where Pi+1,if
and gi+1,if

are obtained from (2.65) and (2.66) with boundary
conditions (2.67) and (2.40) respectively.

2 ) Fixed Terminal State

Here, the following performance criterion is considered:

J(xr, u) =
if−1∑
i=i0

[
(xi − xr

i )
T Q(xi − xr

i ) + uT
i Rui

]
(2.69)

xif
= xr

if
(2.70)

For easy understanding, we start off from a simple case.

Case 1: zero state weighting

Now, our terminal objective will be to make xif
match exactly the desired

final reference state xr
if

. Since we are demanding that xif
be equal to a known

desired xr
if

, the final state has no effect on the performance criterion (2.31). It
is therefore redundant to include a final state weighting term in a performance
criterion. Accordingly, we may as well set Qf = 0.

Before we go to the general problem, we first consider a simple case for
the following performance criterion:

Ji0 =
1
2

if−1∑
i=i0

uT
i Rui (2.71)

where Q = 0. Observe that the weighting matrix for the state becomes zero.
As mentioned before, we require the control to drive xi0 exactly to

xif
= xr

if
(2.72)

using minimum control energy. The terminal condition can be expressed by

xif
= Aif−i0xi0 +

if−1∑
i=i0

Aif−i−1Bui = xr
if

(2.73)
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We try to find the optimal control among ones satisfying (2.73). It can be seen
that both the performance criterion and the constraint are expressed in terms
of the control, not including the state, which makes the problem tractable.
Introducing a Lagrange multiplier λ, we have

Ji0 =
1
2

if−1∑
i=i0

uT
i Rui + λT (Aif−i0xi0 +

if−1∑
i=i0

Aif−i−1Bui − xr
if

) (2.74)

Take the derivative on both sides of Equation (2.74) with respect to ui to
obtain

Rui + BT (AT )if−i−1λ = 0 (2.75)

Thus,

ui = −R−1BT (AT )if−i−1λ (2.76)

Substituting (2.76) into (2.73) and solving for λ yields

λ = −G−1
i0,if

(xr
if

− Aif−i0xi0) (2.77)

where

Gi0,if
=

if−1∑
i=i0

Aif−i−1BR−1BT (AT )if−i−1. (2.78)

Actually, Gi0,if
is a controllability Gramian of the systems (2.27). In the case

of controllable systems, Gi0,if
is guaranteed to be nonsingular if if − i0 is

more than or equal to the controllability index nc.
The optimal open-loop control is given by

u∗
i = R−1BT (AT )if−i−1G−1

i0,if
(xr

if
− Aif−i0xi0) (2.79)

It is noted that the open-loop control is defined for all i ∈ [i0, if − 1].
Since i0 is arbitrary, we can obtain the closed-loop control by replacing with
i such as,

u∗
i = R−1BT (AT )if−i−1G−1

i,if
(xr

if
− Aif−ixi) (2.80)

It is noted that the closed-loop control can be defined only on i that is less
than or equal if −nc. After the time if −nc, the open-loop control can be used,
if necessary. In Figure 2.3, the regions of the closed- and open-loop control
are shown respectively.

The above solutions can also be obtained with the formal procedure using
the minimum principle, but it is given in a closed form from this procedure.
Thus, the control after if − nc cannot be obtained.
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Fig. 2.3. Region of the closed-loop solution

Case 2: nonzero state weighting

We derive the optimal solution for the fixed terminal state from that for the
free terminal state by setting Qf = ∞I. We assume that A is nonsingular.

Since Kif ,if
= Qf = ∞I, the boundary condition of Pi,if

becomes

Pif ,if
= BR−1BT (2.81)

from (2.67). From (2.65), we know that Equation (2.81) is satisfied with an-
other terminal condition:

Pif+1,if +1 = 0 (2.82)

It is noted that Pi+1,if
can be singular on [if − nc + 2, if ]. Therefore, gi,if

cannot be generated from (2.66) and the control (2.68) does not make sense.
However, the control for the zero reference signal can be represented as

u∗
i = −R−1BT P−1

i+1,if
Axi (2.83)

where gi,if
is not necessary.

For nonzero reference signals we will take an approach called the sweep
method. The state and costate equations are the same as those of the free
terminal case:

ui = −R−1BT pi+1 (2.84)
xi+1 = Axi − BR−1BT pi+1 (2.85)

pi = Q(xi − xr
i ) + AT pi+1 (2.86)
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We try to find an optimal control to ensure xif
= xr

if
. Assume the following

relation:

pi = Kixi + Mipif
+ gi (2.87)

where we need to find Si, Mi, and gi satisfying the boundary conditions

Kif
= 0

Mif
= I

gif
= 0

respectively. Combining (2.85) with (2.87) yields the following optimal trajec-
tory:

xi+1 = (I + BR−1BT Ki+1)−1(Axi − BR−1BT Mi+1pif

− BR−1BT gi+1) (2.88)

Substituting (2.87) into (2.86) provides

Kixi + Mipif
+ gi = Q(xi − xr

i ) + AT [Ki+1xi+1 + Mi+1pif
+ gi+1] (2.89)

Substituting xi+1 in (2.88) into (2.89) yields

[−Ki + AT Ki+1(I + BR−1BT Ki+1)−1A + Q]xi +
[−Mi − AT Ki+1(I + BR−1BT Ki+1)−1BR−1BT Mi+1 + AT Mi+1]pif

+

[−gi + AT gi+1 − AT Ki+1(I + BR−1BT Ki+1)−1BR−1BT gi+1 − Qxr
i ] = 0

Since this equality holds for all trajectories xi arising from any initial condition
xi0 , each term in brackets must vanish. The matrix inversion lemma, therefore,
yields the Riccati equation

Ki = AT Ki+1(I + BR−1BT Ki+1)−1A + Q (2.90)

and the auxiliary homogeneous difference equation

Mi = AT Mi+1 − AT Ki+1(I + BR−1BT Ki+1)−1BR−1BT Mi+1

gi = AT gi+1 − AT Ki+1(I + BR−1BT Ki+1)−1BR−1BT gi+1 − Qxr
i

We assume that xr
if

is a linear combination of xi, pif
, and some specific matrix

Ni for all i, i.e.

xr
if

= Uixi + Sipif
+ hi (2.91)

Evaluating for i = if yields

Uif
= I (2.92)

Sif
= 0 (2.93)

hif
= 0 (2.94)
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Clearly, then

Ui = MT
i (2.95)

The left-hand side of (2.91) is a constant, so take the difference to obtain

0 = Ui+1xi+1 + Si+1pif
+ hi+1 − Uixi − Sipif

− hi (2.96)

Substituting xi+1 in (2.88) into (2.96) and rearranging terms, we have

[Ui+1{A − B(BT Ki+1B + R)−1BT Ki+1A} − Ui]xi

+ [Si+1 − Si − Ui+1B(BT Ki+1B + R)−1BT Mi+1]pif

+ hi+1 − hi − Ui+1(I + BR−1BT Ki+1)−1BR−1BT gi+1 = 0 (2.97)

The first term says that

Ui = Ui+1{A − B(BT Ki+1B + R)−1BT Ki+1A} (2.98)

The second and third terms now yield the following recursive equations:

Si = Si+1 − MT
i+1B(BT Ki+1B + R)−1BT Mi+1 (2.99)

hi = hi+1 − MT
i+1(I + BR−1BT Ki+1)−1BR−1BT gi+1 (2.100)

We are now in a position to determine pif
. From (2.91), we have

pif
= S−1

i0
(xr

if
− MT

i0xi0 − hi0) (2.101)

We can now finally compute the optimal control

ui = −R−1BT [Ki+1xi+1 + Mi+1pif
+ gi+1] (2.102)

by substituting (2.87) into (2.84).
ui can be represented in terms of the current state xi:

ui = −R−1BT (I + Ki+1BR−1BT )−1[Ki+1Axi + Mi+1pif
+ gi+1],

= −R−1BT (I + Ki+1BR−1BT )−1[Ki+1Axi + Mi+1S
−1
i0

(xr
if

− MT
i0xi0 − hi0) + gi+1] (2.103)

What we have done so far is summarized in the following theorem.

Theorem 2.3. The LQTC for the fixed terminal state is given in (2.103). Si,
Mi, Pi, gi, hi are as follows:

Ki = AT Ki+1(I + BR−1BT Ki+1)−1A + Q

Mi = AT Mi+1 − AT Ki+1(I + BR−1BT Ki+1)−1BR−1BT Mi+1

Si = Si+1 − MT
i+1B(BT Ki+1B + R)−1BT Mi+1

gi = AT gi+1 − AT Ki+1(I + BR−1BT Ki+1)−1BR−1BT gi+1 − Qxr
i

hi = hi+1 − MT
i+1(I + BR−1BT Ki+1)−1BR−1BT gi+1
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where

Kif
= 0, Mif

= I, Sif
= 0, gif

= 0, hif
= 0

It is noted that the control (2.103) is a state feedback control with respect
to the current state and an open-loop control with respect to the initial state,
which looks somewhat awkward at first glance. However, if the receding hori-
zon scheme is adopted, then we can obtain the state feedback control that
requires only the current state, not other past states. That will be covered in
the next chapter.

Replacing i0 with i in (2.103) yields the following closed-loop control:

ui = −R−1BT (I + Ki+1BR−1BT )−1[Ki+1Axi + Mi+1S
−1
i

× (xr
if

− MT
i xi − hi) + gi+1] (2.104)

where Si is guaranteed to be nonsingular on i ≤ if − nc.
If Q in (2.103) becomes zero, then (2.103) is reduced to (2.79), which is

left as a problem at the end of this chapter.
For the zero reference signal, gi and hi in Theorem 2.3 become zero due

to xr
i = 0. Thus, we have

ui = −R−1BT (I + Ki+1BR−1BT )−1[Ki+1A − Mi+1S
−1
i MT

i ]xi (2.105)

in the form of the closed-loop control. As seen above, it is a little complex
to obtain the closed-form solution for the fixed terminal state problem with
nonzero reference signals.

Example 2.1

The LQTC (2.103) with the fixed terminal state is a new type of a track-
ing control. It is demonstrated through a numerical example.

Consider the following state space model:

xk+1 =

⎡⎣0.013 0.811 0.123
0.004 0.770 0.096
0.987 0.903 0.551

⎤⎦xk +

⎡⎣0.456
0.018
0.821

⎤⎦uk (2.106)

Q and R in the performance criterion (2.69) are set to 100I and I respectively.
The reference signal and state trajectories can be seen in Figure 2.4 where the
fixed terminal condition is met. A batch form solution for the fixed terminal
state is given in Section 3.5, and its computation turns out to be the same as
that of (2.103).
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Fig. 2.4. State trajectory of Example 2.1
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Infinite Horizon Case

If if goes to ∞ in (2.43), (2.45), and (2.46), an infinite horizon LQTC is
given by

u∗
i = −[I + R−1BT K∞B]−1R−1BT [K∞Axi + gi+1,∞]

= −[R + BT K∞B]−1BT [K∞Axi + g∞] (2.107)

where K∞ is a solution of the following algebraic Riccati Equation (ARE):

K∞ = AT [I + K∞BR−1BT ]−1K∞A + Q (2.108)
= AT K∞A − AT K∞B[R + BK∞BT ]−1BT K∞A + Q (2.109)

and g∞ is given by

g∞ = AT [I + K∞BR−1BT ]−1g∞ − Qx̄r (2.110)

with a fixed reference signal x̄r. The stability and an existence of the solution
to the Riccati equation are summarized as follows:

Theorem 2.4. If (A,B) is controllable and (A,Q
1
2 ) is observable, the solution

to Riccati Equation (2.108) is unique and positive definite, and the stability
of ui (2.107) is guaranteed.

We can see a proof of Theorem 2.4 in much of the literature, e.g. in
[Lew86a]. The conditions on controllability and observability in Theorem 2.4
can be weakened to the reachability and detectability.

Here, we shall present the return difference equality for the infinite horizon
LQ control and introduce some robustness in terms of gain and phase margins.
From the following simple relation:

K∞ − AT K∞A = (z−1I − A)T K∞(zI − A) + (z−1I − A)T K∞A

+ AT K∞(zI − A) (2.111)

K∞−AT K∞A in (2.111) is replaced with −AT K∞B(BT K∞B+R)−1BT K∞A−
Q according to (2.109) to give

(z−1I − A)T K∞(zI − A) + (z−1I − A)T K∞A + AT K∞(zI − A)
+AT K∞B(BT K∞B + R)−1BT K∞A = Q (2.112)

Pre- and post-multiply (2.112) by BT (z−1I − A)−T and (zI − A)−1B
respectively to get

BT K∞B + BT K∞A(zI − A)−1B + BT (z−1I − A)−T AT K∞B

+ BT (z−1I − A)−T AT K∞B(BT K∞B + R)−1BT K∞A(zI − A)−1B

= BT (z−1I − A)−T Q(zI − A)−1B (2.113)
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Adding R to both sides of (2.113) and factorizing it yields the following equa-
tion:

BT (z−1I − A)−T Q(zI − A)−1B + R

= [I + K∞(z−1I − A)−1B]T (BT K∞B + R)[I + K∞(zI − A)−1B] (2.114)

where K∞ = [R + BT K∞B]−1BT K∞A.
From Equation (2.114), we are in a position to check gain and phase mar-

gins for the infinite horizon LQ control. First, let F (z) be I +K∞(zI−A)−1B,
which is called a return difference matrix. It follows from (2.114) that

BT K∞B + R = F−T (z−1)[R + BT (z−1I − A)−T Q(zI − A)−1B]F−1(z)

which implies that

σ̄(BT K∞B + R) ≥ σ̄2(F−1(z))
× σ[R + BT (z−1I − A)−T Q(zI − A)−1B] (2.115)

Note that σ̄(MT SM) ≥ σ(S)σ̄2(M) for S ≥ 0. Recalling the two facts
σ̄[F−1(z)] = σ−1[F (z)] and σ̄(I − z−1A) ≤ 1 + σ̄(A) for |z| = 1, we have

σ[R + BT (z−1I − A)−T Q(zI − A)−1B]

≥ σ(R)σ[I + R− 1
2 BT (z−1I − A)−T Q(zI − A)−1BR− 1

2 ]
≥ σ(R)[1 + σ−1(R)σ2(B)σ(Q)σ̄−2(I − z−1A)α]

≥ σ(R)
σ̄(R)

[σ̄(R) + σ2(B)σ(Q){1 + σ̄(A)}−2α] (2.116)

where α is 1 when p ≤ q and 0 otherwise. Recall that the dimensions of inputs
ui and outputs yi are p and q respectively. Substituting (2.116) into (2.115)
and arranging terms yields

σ2[F (z)] ≥ σ(R)/σ̄(R)
σ̄(R) + σ̄2(B)σ̄(K∞)

[σ̄(R) + σ2(B)σ(Q){1 + σ̄(A)}−2α]

�
= R2

f (2.117)

Let a circle of radius Rf centered at (−1, 0) be C(−1, Rf ). The Nyquist
plot of the open-loop system of the optimal regulator lies outside C(−1, Rf )
for an SISO system, as can be seen in Figure 2.5; the guaranteed gain margins
GM of a control are given by

(1 + Rf )−1 ≤ GM ≤ (1 − Rf )−1 (2.118)

and the phase margins PM of the control are given by

−2 sin−1(
Rf

2
) ≤ PM ≤ 2 sin−1(

Rf

2
) (2.119)

It is noted that margins for discrete systems are smaller than those for
continuous systems, i.e. 0.5 ≤ GM < ∞, and −π/3 ≤ PM ≤ π/3.
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Fig. 2.5. Nyquist plot

2.3.2 H∞ Control Based on Minimax Criterion

In this subsection we derive an H∞ tracking control (HTC) for discrete time-
invariant systems in a state-feedback form. Consider the following discrete
time-invariant system:

xi+1 = Axi + Bwwi + Bui

ẑi =
[

Q
1
2 xi

R
1
2 ui

]
(2.120)

where xi ∈ �n denotes the state, wi ∈ �l the disturbance, ui ∈ �m the control
input, and ẑi ∈ �q+n the controlled variable which needs to be regulated. The
H∞ norm of Tẑw(ejw) can be represented as

‖Tẑw(ejw)‖∞ = sup
wi

σ̄(Tẑw(ejw)) = sup
wi

∑∞
i=i0

[xT
i Qxi + uT

i Rui]∑∞
i=i0

wT
i wi

= sup
‖wi‖2=1

∞∑
i=i0

[xT
i Qxi + uT

i Rui] = γ∗2 (2.121)

where Tẑw(ejw) is a transfer function from wi to ẑi and σ̄(·) is the maximum
singular value. ẑi in (2.120) is chosen to make a quadratic cost function as
(2.121).

The H∞ norm of the systems is equal to the induced L2 norm. The H∞
control is obtained so that the H∞ norm is minimized with respect to ui.

However, it is hard to achieve an optimal H∞ control. Instead of the
above performance criterion, we can introduce a suboptimal control such that
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‖Tẑw(ejw)‖∞ < γ2 for some positive gamma γ2 (> γ∗2). For ‖Tẑw(ejw)‖∞ <
γ2 we will obtain a control so that the following inequality is satisfied:∑∞

i=i0
[xT

i Qxi + uT
i Rui]∑∞

i=i0
wT

i wi
< γ2 (2.122)

for all wi. Observe that the gain from ‖wi‖2
2 to ‖ẑi‖2

2 in (2.122) is always less
than γ, so that the maximum gain, i.e. H∞ norm, is also less than γ2.

From simple algebraic calculations, we have

∞∑
i=i0

[xT
i Qxi + uT

i Rui − γ2wT
i wi] < 0 (2.123)

from (2.122). Since the inequality (2.123) should be satisfied for all wi, the
value of the left side of (2.123) should be always negative, i.e.

sup
wi

{ ∞∑
i=i0

[xT
i Qxi + uT

i Rui − γ2wT
i wi]

}
< 0 (2.124)

In order to check whether the feasible solution to (2.124) exists, we try to find
out a control minimizing the left side of the inequality (2.124) and the corre-
sponding optimal cost. If this optimal cost is positive, then we cannot obtain
the control satisfying the H∞ norm. Unlike an LQ control, the fixed terminal
state is impossible in H∞ controls. We focus only on the free terminal state.

1 ) Free Terminal State

When dealing with the finite horizon case, we usually include a weighting
matrix for the terminal state, such as

max
wi

{if−1∑
i=i0

[
xT

i Qxi + uT
i Rui − γ2wT

i wi

]
+xT

if
Qfxif

}
< 0 (2.125)

A feasible solution ui in (2.125) can be obtained from the following difference
game problem:

min
u

max
w

J(u,w) (2.126)

where

J(u,w) =
if−1∑
i=i0

[
xT

i Qxi + uT
i Rui − γ2wT

i wi

]
+xT

if
Qfxif

(2.127)

Note that the initial state is assumed to be zero in H∞ norm in (2.121).
However, in the difference game problem (2.126)–(2.127), the nonzero initial
state can be handled.
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Until now, the regulation problem has been considered. If a part of the
state should be steered according to the given reference signal, we can consider

J(u,w) =
if−1∑
i=i0

[ (zi − zr
i )T Q̄(zi − zr

i ) + uiRui − γ2wiRwwi]

+ (zif
− zr

if
)T Q̄f (zif

− zr
if

)

instead of (2.127). Here, zi = Czxi is expected to approach zr
i .

It is well known that for a given p × n(p ≤ n) full rank matrix Cz there
always exist some n × p matrices L such that CzL = Ip×p. For example, we
can take L = CT

z (CzC
T
z )−1. Let xr

i = Lyr
i . J(u,w) is rewritten as

J(u,w) =
if−1∑
i=i0

[
(xi − xr

i )
T Q(xi − xr

i ) + uT
i Rui − γ2wT

i Rwwi

]
+(xif

− xr
if

)T Qf (xif
− xr

if
) (2.128)

where Q = CT
z Q̄Cz and Qf = CT

z Q̄fCz or Qf and Q are independent design
parameters.

For the optimal solution, we first form the following Hamiltonian:

Hi = [(xi − xr
i )

T Q(xi − xr
i ) + uT

i Rui − γ2wT
i Rwwi]

+ pT
i+1(Axi + Bwwi + Bui), i = i0, · · · , if − 1

The necessary conditions for ui and wi to be the saddle points are

xi+1 =
∂H

∂pi+1
= Axi + Bwwi + Bui (2.129)

pi =
∂H
∂xi

= 2Q(xi − xr
i ) + AT pi+1 (2.130)

0 =
∂H
∂ui

= 2Rui + BT pi+1 (2.131)

0 =
∂H
∂wi

= −2γ2Rwwi + BT
wpi+1 (2.132)

pif
=

∂h(xif
)

∂xif

= 2Qf (xif
− xr

if
) (2.133)

where

h(xif
) = (xif

− xr
if

)T Qf (xif
− xr

if
) (2.134)

Assume
pi = 2Mi,if

xi + 2gi,if
(2.135)

From (2.129), (2.131), and (2.135), we have
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∂Hi

∂ui
= 2Rui + BT pi+1

= 2Rui + 2BT Mi+1,if
xi+1 + 2BT gi+1,if

= 2Rui + 2BT Mi+1,if
[Axi + Bwwi + Bui] + 2BT gi+1,if

Therefore,
∂2Hi

∂u2
i

= 2R + 2BT Mi+1,if
B

It is apparent that ∂2Hi

∂u2
i

> 0 for i = i0, · · · , if − 1. Similarly, we have

∂Hi

∂wi
= −2γ2Rwwi + 2BT

wMi+1,if
[Axi + Bwwi + Bui] + 2BT

wgi+1,if

Therefore,
∂2Hi

∂w2
i

= −2γ2Rw + 2BT
wMi+1,if

Bw

From these, the difference game problem (2.126) for the performance criterion
(2.128) has a unique solution if and only if

Rw − γ−2BT
wMi+1,if

Bw > 0, i = i0, · · · , if − 1 (2.136)

We proceed to obtain the optimal solution w∗
i and u∗

i . Eliminating ui and
wi in (2.129) using (2.131) and (2.132) yields

xi+1 = Axi +
1
2
(−BR−1BT + γ−2BwR−1

w BT
w)pi+1 (2.137)

From (2.135) and (2.137) we obtain

pi+1 = 2Mi+1,if
xi+1 + 2gi+1,if

= 2Mi+1,if
Axi + Mi+1,if

(−BR−1BT + γ−2BwR−1
w BT

w)pi+1 + 2gi+1,if

Therefore,

pi+1 = 2[I + Mi+1,if
(BR−1BT − γ−2BwR−1

w BT
w)]−1(Mi+1,if

Axi + gi+1,if
)

Let
Λi+1,if

= I + Mi+1,if
(BR−1BT − γ−2BwR−1

w BT
w) (2.138)

Then pi+1 is rewritten as

pi+1 = 2Λ−1
i+1,if

[Mi+1,if
Axi + gi+1,if

] (2.139)

If we substitute (2.139) into (2.130), then we obtain

pi = 2Q(xi − xr
i ) + 2AT Λ−1

i+1,if
[Mi+1,if

Axi + gi+1,if
]

= 2[AT Λ−1
i+1,if

Mi+1,if
A + Q]xi + 2AT Λ−1

i+1,if
gi+1,if

− 2Qxr
i
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Therefore, from (2.133) and the assumption (2.135), we have

Mi,if
= AT Λ−1

i+1,if
Mi+1,if

A + Q (2.140)

Mif ,if
= Qf (2.141)

and

gi,if
= AT Λ−1

i+1,if
gi+1,if

− Qxr
i (2.142)

g if ,if
= −Qfxr

if
(2.143)

for i = i0, · · · , if − 1. From (2.136), we have

I − γ−2R
− 1

2
w BT

wMi+1,if
BwR

− 1
2

w > 0 (2.144)

I − γ−2M
1
2
i+1,if

BwR−1
w BT

wM
1
2
i+1,if

> 0 (2.145)

where the second inequality comes from the fact that I − SST > 0 implies
I − ST S > 0. Λ−1

i+1,if
Mi+1,if

in the right side of (2.140) can be written as

Λ−1
i+1,if

Mi+1,if

=
[
I + Mi+1,if

(BR−1BT − γ−2BwR−1
w BT

w)
]−1

Mi+1,if

= M
1
2
i+1,if

[
I + M

1
2
i+1,if

(BR−1BT − γ−2BwR−1
w BT

w)M
1
2
i+1,if

]−1

M
1
2
i+1,if

≥ 0

where the last inequality holds because of (2.145). Therefore, Mi,if
generated

by (2.140) is always nonnegative definite.
From (2.131) and (2.132), the H∞ controls are given by

u∗
i = −R−1BT Λ−1

i+1,if
[Mi+1,if

Axi + gi+1,if
] (2.146)

w∗
i = γ−2R−1

w BT
wΛ−1

i+1,if
[Mi+1,if

Axi + gi+1,if
] (2.147)

It is noted that u∗
i is represented by

u∗
i = Hixi + vi

where

Hi = −R−1BT Λ−1
i+1,if

Mi+1,if
A

vi = −R−1BT Λ−1
i+1,if

gi+1,if

Here, Hi is the feedback gain matrix and vi can be viewed as a command
signal.

The optimal cost can be represented as
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J∗ = xT
i Mi,if

xi + 2xT
i gi,if

+ hi,if
(2.148)

where Mi,if
and gi,if

are defined as (2.140) and (2.142) respectively. The
derivation for hi,if

is left as an exercise.
The saddle-point value of the difference game with (2.128) for a zero ref-

erence signal is given as

J∗(xi, i, if ) = xT
i Mi,if

xi (2.149)

Since Mi,if
is nonnegative definite, the saddle-point value (2.149) is nonneg-

ative.
To conclude, the solution of the HTC problem can be reduced to finding

Mi,if
and gi,if

for i = i0, · · · , if − 1. The Riccati solution Mi,if
is a symmet-

ric matrix, which can be found by solving (2.140) backward in time using the
boundary condition (2.141). In a similar manner, gi,if

can be found by solving
(2.142) backward in time using the boundary condition (2.143).

For a regulation problem, i.e. xr
i = 0, the control (2.146) and the distur-

bance (2.147) can also be represented as[
u∗

i

w∗
i

]
= −R−1

c,i

[
BT

BT
w

]
Mi+1,if

Axi (2.150)

Mi,if
= AT Mi+1,if

A − AT Mi+1,if

[
B Bw

]
R−1

c,i

[
BT

BT
w

]
Mi+1,if

A

where

Rc,i =
[

BT

BT
w

]
Mi+1,if

[
B Bw

]
+
[

R 0
0 − γ2Rw

]
It is observed that optimal solutions u∗ and w∗ in (2.150) look like an LQ
solution.

For a positive definite Qf and a nonsingular matrix A, we can have another
form of the control (2.146) and the disturbance (2.147). Let

Π = BR−1B − γ−2BwR−1
w BT

w (2.151)

It is noted that Mi,if
is obtained from Ki,if

of the LQ control by replacing
BR−1BT by Π. If Mi,if

is nonsingular at i ≤ if , then there exists the following
quantity:

Pi,if
= M−1

i,if
+ Π

In terms of Pi,if
, (2.146) and (2.147) are represented as

u∗
i = −R−1BT P−1

i+1,if
[Axi + (Pi+1,if

− Π)gi+1,if
] (2.152)

w∗
i = γ−2R−1

w BT
wP−1

i+1,if
[Axi + (Pi+1,if

− Π)gi+1,if
] (2.153)
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where

Pi,if
= A−1Pi+1,if

[I + A−1QA−1Pi+1,if
]−1A−1 + Π (2.154)

and

gi,if
= −AT P−1

i+1,if
(Pi+1,if

− Π)gi+1,if
− Qxr

i (2.155)

with

Pif ,if
= M−1

if ,if
+ Π = Q−1

f + Π > 0, g if ,if
= −Qfxr

if
(2.156)

Here, Qf must be nonsingular.
Note that P−1

i,if
is well defined only if Mi,if

satisfies the condition

Rw − γ−2BT
wMi+1,if

Bw > 0 (2.157)

which is required for the existence of the saddle-point.

The terminal weighting matrix Qf cannot be arbitrarily large, since Mi,if

generated from the large Mif ,if
= Qf is also large and thus the inequality

condition (2.136) may not be satisfied. That is why the terminal equality con-
straint for case of the RH H∞ control does not make sense.

Infinite Horizon Case

From the finite horizon H∞ control of a form (2.150), we now turn to the
infinite horizon H∞ control, which is summarized in the following theorem.

Theorem 2.5. Suppose that (A,B) is stabilizable and (A,Q
1
2 ) is observable.

For the infinite horizon performance criterion

inf
ui

sup
wi

∞∑
i=i0

[
xT

i Qxi + uT
i Rui − γ2wT

i Rwwi

]
(2.158)

the H∞ control and the worst-case disturbance are given by[
u∗

i

w∗
i

]
= −R−1

c,∞

[
BT

BT
w

]
M∞Axi

M∞ = AT M∞A − AT M∞
[
B Bw

]
R−1

c,∞

[
BT

BT
w

]
M∞A (2.159)

where

Rc,∞ =
[

BT

BT
w

]
M∞

[
B Bw

]
+
[

R 0
0 − γ2Rw

]
if and only if the following conditions are satisfied:
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(1) there exists a solution M∞ satisfying (2.159);
(2) the matrix

A −
[
B Bw

]
R−1

c,∞

[
BT

BT
w

]
M∞A (2.160)

is stable;

(3) the numbers of the positive and negative eigenvalues of
[

R 0
0 − γ2Rw

]
are the same as those of Rc,∞;

(4)M∞ ≥ 0.

We can see a proof of Theorem 2.5 in much of the literature including
textbooks listed at the end of this chapter. In particular, its proof is made on
the Krein space in [HSK99].

2.4 Optimal Filters

2.4.1 Kalman Filter on Minimum Criterion

Here, we consider the following stochastic model:

xi+1 = Axi + Bui + Gwi (2.161)
yi = Cxi + vi (2.162)

At the initial time i0, the state xi0 is a Gaussian random variable with a mean
x̄i0 and a covariance Pi0 . The system noise wi ∈ �p and the measurement
noise vi ∈ �q are zero-mean white Gaussian and mutually uncorrelated. The
covariances of wi and vi are denoted by Qw and Rv respectively, which are
assumed to be positive definite matrices. We assume that these noises are
uncorrelated with the initial state xi0 .

In practice, the state may not be available, so it should be estimated from
measured outputs and known inputs. Thus, a state estimator, called a filter,
is needed. This filter can be used for an output feedback control. Now, we will
seek a derivation of a filter which estimates the state xi from measured data
and known inputs so that the error between the real state and the estimated
state is minimized. When the filter is designed, the input signal is assumed to
be known, and thus it is straightforward to handle the input signal.

A filter, called the Kalman filter, is derived for the following performance
criterion:

E[(xi − x̂i|i)T (xi − x̂i|i)|Yi] (2.163)

where x̂i|j is denoted by the estimated value at time i based on the measure-
ment up to j and Yi = [yi0 , · · · , yi]T . Note that x̂i|i is a function of Yi. x̂i+1|i
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and x̂i|i are often called a predictive estimated value and a filtered estimated
value respectively.

From Appendix C.1 we have the optimal filter

x̂i|i = E[xi|Yi] (2.164)

We first obtain a probability density function of xi given Yi and then find out
the mean of it.

By the definition of the conditional probability, we have

p(xi|Yi) =
p(xi, Yi)

p(Yi)
=

p(xi, yi, Yi−1)
p(yi, Yi−1)

(2.165)

The numerator in (2.165) can be represented in terms of the conditional ex-
pectation as follows:

p(xi, yi, Yi−1) = p(yi|xi, Yi−1)p(xi, Yi−1)
= p(yi|xi, Yi−1)p(xi|Yi−1)p(Yi−1)
= p(yi|xi)p(xi|Yi−1)p(Yi−1) (2.166)

where the last equality comes from the fact that Yi−1 is redundant information
if xi is given. Substituting (2.166) into (2.165) yields

p(xi|Yi) =
p(yi|xi)p(xi|Yi−1)p(Yi−1)

p(yi, Yi−1)
=

p(yi|xi)p(xi|Yi−1)p(Yi−1)
p(yi|Yi−1)p(Yi−1)

=
p(yi|xi)p(xi|Yi−1)

p(yi|Yi−1)
(2.167)

For the given Yi, the denominator p(yi|Yi−1) is fixed. Two conditional prob-
ability densities in the numerator of Equation (2.167) can be evaluated from
the statistical information. For the given xi, yi follows the normal distribution,
i.e. yi ∼ N (Cxi, Rv). The conditional probability p(xi|Yi−1) is also normal.
Since E[xi|Yi−1] = x̂i|i−1 and E[(xi − x̂i|i−1)(xi − x̂i|i−1)T |Yi−1] = Pi|i−1,
p(xi|Yi−1) is a normal probability function, i.e. N (x̂i|i−1, Pi|i−1). Therefore,
we have

p(yi|xi) =
1√

(2π)m|Rv|
exp
{
−1

2
[yi − Cxi]T R−1

v [yi − Cxi]
}

p(xi|Yi−1) =
1√

(2π)n|Pi|i−1|
exp
{
−1

2
[xi − x̂i|i−1]T P−1

i|i−1[xi − x̂i|i−1]
}

from which, using (2.167), we find that

p(xi|Yi) = C exp{−1
2
[yi − Cxi]R−1

v [yi − Cxi]} ×

exp{−1
2
[xi − x̂i|i−1]P−1

i|i−1[xi − x̂i|i−1]} (2.168)



2.4 Optimal Filters 51

where C is the constant involved in the denominator of (2.167).
We are now in a position to find out the mean of p(xi|Yi). Since the

Gaussian probability density function has a peak value at the average, we will
find xi that sets the derivative of (2.168) to zero. Thus, we can obtain the
following equation:

−2CT R−1
v (yi − Cxi) + 2P−1

i|i−1(xi − x̂i|i−1) = 0 (2.169)

Denoting the solution xi to (2.169) by x̂i|i and arranging terms give

x̂i|i = (I + Pi|i−1C
T R−1

v C)−1x̂i|i−1

+ (I + Pi|i−1C
T R−1

v C)−1Pi|i−1C
T R−1

v yi (2.170)

= [I − Pi|i−1C
T (CPi|i−1C

T + Rv)−1C]x̂i|i−1

+ Pi|i−1C
T (Rv + CPi|i−1C

T )−1yi (2.171)
= x̂i|i−1 + Ki(yi − Cx̂i|i−1) (2.172)

where

Ki
�
= Pi|i−1C

T (Rv + CPi|i−1C
T )−1 (2.173)

x̂i+1|i can be easily found from the fact that

x̂i+1|i = E[xi+1|Yi] = AE[xi|Yi] + GE[wi|Yi] + Bui

= Ax̂i|i + Bui (2.174)
= Ax̂i|i−1 + AKi(yi − Cx̂i|i−1) + Bui (2.175)

Pi+1|i can be obtained recursively from the error dynamic equations.
Subtracting xi from both sides of (2.172) yields the following error equa-

tion:

x̃i|i = [I − KiC]x̃i|i−1 − Kivi (2.176)

where x̃i|i
�
= x̂i|i − xi and x̃i|i−1 = x̂i|i−1 − xi. From (2.175) and (2.161), an

additional error equation is obtained as

x̃i+1|i = Ax̃i|i − Gwi (2.177)

From (2.176) and (2.177), Pi|i and Pi+1|i are represented as

Pi|i = (I − KiC)Pi|i−1(I − KiC)T + KiRvKi = (I − KiC)Pi|i−1

Pi+1|i = APi|iAT + GQwGT

= APi|i−1A
T + GQwGT

− APi|i−1C
T (Rv + CPi|i−1C

T )−1CPi|i−1A
T (2.178)
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The initial values x̂i0|i0−1 and Pi0|i0−1 are given by E[xi0 ] and E[(x̂i0 −
xi0)(x̂i0 − xi0)

T ], which are a priori knowledge.
The Kalman filter can be represented as follows:

x̂i+1|i = Ax̂i|i−1 + APiC
T (CPiC

T + Rv)−1(yi − Cx̂i|i−1) (2.179)

where

Pi+1 = APiA
T − APiC

T (Rv + CPiC
T )−1CPiA

T + GQwGT

= A[I + PiC
T R−1

v C]−1PiA
T + GQwGT (2.180)

with the given initial condition Pi0 . Note that Pi in (2.179) is used instead of
Pi|i−1.

Throughout this book, we use the predicted form x̂i|i−1 instead of filtered
form x̂i|i. For simple notation, x̂i|i−1 will be denoted by x̂i if necessary.

If the index i in (2.180) goes to ∞, then the infinite horizon or steady-state
Kalman filter is given by

x̂i+1|i = Ax̂i|i−1 + AP∞CT (CP∞CT + Rv)−1(yi − Cx̂i|i−1) (2.181)

where

P∞ = AP∞AT − AP∞CT (Rv + CP∞CT )−1CP∞AT + GQwGT

= A[I + P∞CT R−1
v C]−1P∞AT + GQwGT (2.182)

As in LQ control, the following theorem gives the result on the condition
for the existence of P∞ and the stability for the infinite horizon Kalman filter.

Theorem 2.6. If (A,G) is controllable and (A,C) is observable, then there is
a unique positive definite solution P∞ to the ARE (2.182). Additionally, the
steady-state Kalman filter is asymptotically stable.

We can see a proof of Theorem 2.6 in much of the literature including
textbooks listed at the end of this chapter. In Theorem 2.6, the conditions
on controllability and observability can be weakened to the reachability and
detectability.

2.4.2 H∞ Filter on Minimax Criterion

Here, an H∞ filter is introduced. Consider the following systems:

xi+1 = Axi + Bwwi + Bui

yi = Cxi + Dwwi

zi = Czx
(2.183)

where xi ∈ �n denotes states, wi ∈ �l disturbance, ui ∈ �m inputs, yi ∈ �p

measured outputs, and zi ∈ �q estimated values. BwDT
w = 0 and DwDT

w =
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I are assumed for simple calculation. In the estimation problem, the input
control has no effect on the design of the estimator, so that B in (2.183) is set
to zero and added later .

Our objective is to find a linear estimator x̂i = T (yi0 , yi0+1, · · · , yi−1) so
that ei = zi − ẑi satisfies the following performance criterion:

sup
wi �=0

∑if

i=i0
eT

i ei∑if

i=i0
wT

i wi

< γ2 (2.184)

From the system (2.183), we obtain the following state-space realization
that has inputs [wT

i ẑT
i ]T and outputs [eT

i yT
i ] as⎡⎣xi+1

ei

yi

⎤⎦ =

⎡⎣ A Bw 0
Cz 0 −I
C Dw 0

⎤⎦⎡⎣ xi

wi

ẑi

⎤⎦ (2.185)

under which we try to find the filter represented by

ẑi = T (yi0 , yi0+1, · · · , yi−1) (2.186)

The adjoint system of (2.185) can be represented as⎡⎣ x̃i

w̃i

˜̂zi

⎤⎦ =

⎡⎣ A Bw 0
Cz 0 −I
C Dw 0

⎤⎦T ⎡⎣ x̃i+1

ẽi

ỹi

⎤⎦ =

⎡⎣AT CT
z CT

BT
w 0 DT

w

0 −I 0

⎤⎦⎡⎣ x̃i+1

ẽi

ỹi

⎤⎦ (2.187)

where x̃if+1 = 0 and i = if , if − 1, · · · , i0. Observe that the input and the
output are switched. Additionally, time indices are arranged in a backward
way. The estimator that we try to find out is changed as follows:

ỹi = T̃ (˜̂zif
, ˜̂zif−1, · · · , ˜̂zi+1) (2.188)

where T̃ (·) is the adjoint system of T (·). Now we are in a position to apply
the H∞ control theory to the above H∞ filter problem.

The state feedback H∞ control is obtained from the following adjoint
system:

x̃i = AT x̃i+1 + CT ỹi + ẽi (2.189)
w̃i = BT

w x̃i+1 + DT
w ỹi (2.190)

˜̂zi = −ẽi (2.191)
ỹi = T̃ (˜̂zif

, ˜̂zif−1, · · · , ˜̂zi+1) (2.192)

From the above system, the ỹi and w̃i are considered as an input and controlled
output respectively. It is noted that time indices are reversed, i.e. we goes from
the future to the past.

The controller T̃ (·) can be selected to bound the cost:
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max
‖ẽi‖2,[0,if ] �=0

∑if

i=i0
w̃T

i w̃i∑if

i=i0
ẽT

i ẽi

< γ2 (2.193)

According to (2.146) and the correspondence

Q ←− BwBT
w , R ←− I, Rw ←− I, AT ←− A, B ←− CT , Bw ←− Cz

the resulting controller and the worst case ẽi are given:

ỹi = −LT
i,i0 x̃i+1, ẽi = −NT

i,i0 x̃i+1 (2.194)

where

LT
i,i0 = CΓ−1

i,i0
Si,i0A

T , NT
i,i0 = −CzΓ

−1
i,i0

Si,i0A
T (2.195)

Si+1,i0 = ASi,i0Γ
−1
i,i0

AT + BwBT
w (2.196)

Γi,i0 = I + (CT C − γ−2CT
z Cz)Si,i0 (2.197)

with Si0,i0 = 0. In Figure 2.6, controls using Riccati solutions are represented
in forward and backward ways. The state-space model for the controller is
given as

x̃i = AT x̃i+1 − CT LT
i,i0 x̃i+1 + CT

z ẽi (2.198)

ỹi = −LT
i,if

x̃i+1, (2.199)

which can be represented as[
x̃i

ỹi

]
=
[

AT − CT LT
i,i0

CT
z

−LT
i,i0

0

] [
x̃i+1

ẽi

]
=
[

AT − CT LT
i,i0

−CT
z

−LT
i,i0

0

] [
x̃i+1

˜̂zi

]
(2.200)

Forward way

Backward way

Fig. 2.6. Computation directions for H∞ filter
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which is a state-space realization for the control (2.188). The adjoint system
of (2.200) is as follows:[

η̂i+1

ẑi

]
=
[

AT − CT LT
i,i0

− CT
z

−LT
i,i0

0

]T [
η̂i

yi

]
=
[

A − Li,i0C − Li,i0

−Cz 0

] [
η̂i

yi

]
which is a state-space realization for the filter (2.186). Rearranging terms,
replacing −η̂i with x̂i, and adding the input into the estimator equation yields
the H∞ filter

ẑi = Czx̂i, x̂i+1 = Ax̂i + Bui + Li,i0(yi − Cx̂i) (2.201)

The H∞ filter can also be represented as follows:

ẑi = Czx̂i, x̂i+1 = Ax̂i + ASi,i0

[
CT CT

z

]
R−1

f,i

[
y − Cx̂i

0

]
(2.202)

Si+1,i0 = ASi,i0A
T − ASi,i0

[
CT CT

z

]
R−1

f,i

[
C
Cz

]
Si,i0A

T + BwBT
w (2.203)

where

Rf,i =
[

Ip 0
0 − γ2Iq

]
+
[

C
Cz

]
Si,i0

[
CT CT

z

]
It is observed that the H∞ filter of the form (2.202) and (2.203) looks like the
Kalman filter.

From the finite horizon H∞ filter of the form (2.202) and (2.203), we now
turn to the infinite horizon H∞ filter. If the index i goes to ∞, the infinite
horizon H∞ filter is given by

ẑi = Czx̂i, x̂i+1 = Ax̂i + AS∞
[
CT CT

z

]
R−1

f,∞

[
y − Cx̂i

0

]
(2.204)

S∞ = AS∞AT − AS∞
[
CT CT

z

]
R−1

f,∞

[
C
Cz

]
S∞AT + BwBT

w (2.205)

where

Rf,∞ =
[

Ip 0
0 − γ2Iq

]
+
[

C
Cz

]
S∞
[
CT CT

z

]
(2.206)

As in the infinite horizon H∞ control, the following theorem gives the result
on the condition for the existence of S∞ and stability for the infinite horizon
H∞ filter.

Theorem 2.7. Suppose that (A,B) is stabilizable and (A,Q
1
2 ) is observable.

For the following infinite horizon performance criterion:

max
wi �=0

∑∞
i=i0

eT
i ei∑∞

i=i0
wT

i wi
< γ2 (2.207)

the H∞filter (2.204) exists if and only if the following things are satisfied:
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(1) there exists a solution S∞ satisfying (2.205);
(2) the matrix

A − AS∞
[
CT CT

z

]
R−1

f,∞

[
C
Cz

]
(2.208)

is stable;
(3) the numbers of the positive and negative eigenvalues of Rf,∞ in (2.206)

are the same as those of the matrix
[

Ip 0
0 −γ2Iq

]
;

(4)S∞ ≥ 0.

We can see a proof of Theorem 2.7 in a number of references. The H∞
filter in Theorem 2.7 is obtained mostly by using the duality from the H∞
control, e.g. in [Bur98]. The Krein space instead of the Hilbert space is used
to derive H∞ filters in [HSK99].

2.4.3 Kalman Filters on Minimax Criterion

We assume that Qw and Rv are unknown, but are bounded above as follows:

Qw ≤ Qo, Rv ≤ Ro (2.209)

The Kalman filter can be derived for the minimax performance criterion given
by

min
Li

max
Qw≤Qo,Rv≤Ro

E[(xi − x̂i|i−1)(xi − x̂i|i−1)T ]

From the error dynamics

x̃i+1|i = [A − LiC]x̃i|i−1 +
[
G −Li

] [wi

vi

]
where x̃i|i−1 = xi − x̂i|i−1, the following equality between the covariance
matrices at time i + 1 and i is satisfied:

Pi+1 = [A − LiC]Pi[A − LiC]T +
[
G Li

] [Qw 0
0 Rv

] [
GT

LT
i

]
(2.210)

As can be seen in (2.210), Pi is monotonic with respect to Qw and Rv, so that
taking Qw and Rv as Qo and Ro we have

Pi+1 = [A − LiC]Pi[A − LiC]T +
[
G Li

] [Qo 0
0 Ro

] [
GT

LT
i

]
(2.211)

It is well known that the right-hand side of (2.211) is minimized for the solu-
tion to the following Riccati equation:

Pi+1 = −APiC
T (Ro + CPiC

T )−1CPiA
T + APiA

T + GQoG
T

where Li is chosen as

Li = APiC
T (Ro + CPiC

T )−1 (2.212)

It is noted that (2.212) is the same as the Kalman gain with Qo and Ro.
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2.5 Output Feedback Optimal Control

Before moving to an output feedback control, we show that a quadratic per-
formance criterion for deterministic systems with no disturbances can be rep-
resented in a square form.

Lemma 2.8. A quadratic performance criterion can be represented in a per-
fect square expression for any control,

if−1∑
i=i0

[
xT

i Qxi + uT
i Rui

]
+ xT

if
Qfxif

=
if−1∑
i=i0

{−Kixi + ui}T [R + BT KiB]{−Kixi + ui} + xT
i0Ki0xi0 (2.213)

where Ki is defined in

Ki
�
= (BT Ki+1B + Rv)−1BT Ki+1A (2.214)

and Ki is the solution to Riccati Equation (2.45).

Proof. Now note the simple identity as

if−1∑
i=i0

[xiKix
T
i − xi+1Ki+1x

T
i+1] = xT

i0Ki0xi0 − xT
if

Kif
xif

Then, the second term of the right-hand side can be represented as

xT
if

Kif
xif

= xT
i0Ki0xi0 −

if−1∑
i=i0

[xiKix
T
i − xi+1Ki+1x

T
i+1]

Observe that the quadratic form for xif
is written in terms of the xi on

[i0 if − 1]. Substituting the above equation into the terminal performance
criterion yields

if−1∑
i=i0

[
xT

i Qxi + uT
i Rui

]
+ xT

if
Qfxif

=
if−1∑
i=i0

[
xT

i Qxi + uT
i Rui

]
+ xT

i0Ki0xi0 −
if−1∑
i=i0

[xiKix
T
i − xi+1Ki+1x

T
i+1](2.215)

If xi+1 is replaced with Axi + Bui, then we have

if−1∑
i=i0

[
xT

i (Q − Ki + AT KiA)xi + uT
i BT KiAxj

+ xT
i AT Ki+1Bui + uT

i (R + BT KiB)ui

]
+xT

i0Ki0xi0 (2.216)
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If Ki satisfies (2.45), then the square completion is achieved as (2.213), This
completes the proof.

2.5.1 Linear Quadratic Gaussian Control on Minimum Criterion

Now, we introduce an output feedback LQG control. A quadratic performance
criterion is given by

J =
if−1∑
i=i0

E

[
xT

i Qxi + uT
i Rui

∣∣∣∣yi−1, yi−2, · · · , yi0

]

+ E

[
xT

if
Qfxif

∣∣∣∣yif−1, yif−2, · · · , yi0

]
(2.217)

subject to ui = f(yi−1, · · · , yi0). Here, the objective is to find a controller ui

that minimizes (2.217). From now on we will not include the condition part
inside the expectation for simplicity. Before obtaining the LQG control, as
in the deterministic case (2.213), it is shown that the performance criterion
(2.217) can be represented in a square form.
Lemma 2.9. A quadratic performance criterion can be represented in a per-
fect square expression for any control,

E

[if−1∑
i=i0

[
xT

i Qxi + uT
i Rui

]
+ xT

if
Qfxif

]

= E

[if−1∑
i=i0

{−Kixi + ui}T [R + BT KiB]{−Kixi + ui}
]

+ tr
[ if−1∑

i=i0

KiGQwGT
]
+ E

[
xT

i0Ki0xi0

]
(2.218)

where Ki is defined in

Ki
�
= (BT Ki+1B + R)−1BT Ki+1A (2.219)

and Ki is the solution to Riccati Equation (2.45).

Proof. The relation (2.215) holds even for stochastic systems (2.161)-(2.162).
Taking an expectation on (2.215), we have

E

[if−1∑
i=i0

[
xT

i Qxi + uT
i Rui

]
+ xT

if
Qfxif

]

= E

[if−1∑
i=i0

[
xT

i Qxi + uT
i Rui

]
+ xT

i0Ki0xi0

−
if−1∑
i=i0

[xiKix
T
i − xi+1Ki+1x

T
i+1]
]

(2.220)
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Replacing xi+1 with Axi + Bui + Gwi yields

E

[if−1∑
i=i0

[
xT

i (Q − Ki + AT KiA)xi + uT
i BT KiAxj

+ xT
i AT Ki+1Bui + uT

i (R + BT KiB)ui

]]
+E

[
xT

i0Ki0xi0

]

+ tr
[if−1∑

i=i0

KiGQwGT

]
(2.221)

If Ki satisfies (2.140), then the square completion is achieved as (2.218). This
completes the proof.

Using Lemma 2.9, we are now in a position to represent the performance
criterion (2.217) in terms of the estimated state. Only the first term in (2.221)
is dependent on ui. So, we consider only this term. Let x̂i|i−1 be denoted by
x̂i|i−1 = E[xi|yi−1, yi−2, · · · , yi0 ]. According to (C.2) in Appendix C, we can
change the first term in (5.69) to

E

if−1∑
i=i0

(Kixi + ui)T R̂i(Kixi + ui) =
if−1∑
i=i0

(Kix̂i + ui)T R̂i(Kix̂i + ui)

+ tr
if∑

i=i0+1

R̂
1
2
i KiP̃iKT

i R̂
1
2
i (2.222)

where

R̂i
�
= R + BT KiB (2.223)

and P̃i is the variance between x̂i|i−1 and xi. Note that Kix̂i|i−1 + ui =

E[Kixi + ui | yi−1, yi−2, · · · , yi0 ] and tr(R̂iKiP̃iKT
i ) = tr(R̂

1
2
i KiP̃iKT

i R̂
1
2
i ).

We try to find the optimal filter gain Li making the following filter mini-
mizing Pi:

x̂i+1|i = Ax̂i|i−1 + Li(yi − Cx̂i|i−1) + Bui (2.224)

Subtracting (2.161) from (2.224), we have

x̃i+1|i = x̂i+1|i − xi+1 = (A − LiC)x̃i|i−1 + Livi − Gwi (2.225)

which leads to the following equation:

P̃i+1 = (A − LiC)P̃i(A − LiC)T + LiRvL
T
i + GQwGT (2.226)

where P̃i is the covariance of x̃i|i−1. As can be seen in (2.226), P̃i is indepen-
dent of ui, so that P̃i and ui can be determined independently. P̃i+1 in (2.226)
can be written as
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P̃i+1 =
[
Li(CP̃iC

T + Rv) − AP̃i

]
(CP̃iC

T + R)−1

[
Li(CP̃iC

T + Rv) − AP̃i

]T

+ GQwGT + AP̃i(CP̃iC
T + Rv)−1P̃iA

T

≥ GQwGT + AP̃i(CP̃iC
T + Rv)−1P̃iA

T (2.227)

where the equality holds if Li = APiC
T (Rv + CPiC

T )−1.
It can be seen in (2.227) that the covariance Pi generated by the Kalman

filter is optimal in view that the covariance P̃i of any linear estimator is
larger than Pi of the Kalman filter, i.e. Pi ≤ P̃i. This implies that tr(Pi) ≤
tr(P̃i), leading to tr(R̂

1
2
i KiPiK

T
i R̂

1
2
i ) ≤ tr(R̂

1
2
i KiP̃iK

T
i R̂

1
2
i ). Thus, the x̂i|i−1

minimizing (2.222) is given by the Kalman filter as follows:

x̂i+1|i = Ax̂i|i−1 + [APiC
T (Rv + CPiC

T )−1](yi − Cx̂i|i−1) + Bui (2.228)

Pi+1 = GQwGT + APi(CPiC
T + Rv)−1PiA

T (2.229)

with the initial state mean x̂i0 and the initial covariance Pi0 . Thus, the fol-
lowing LQG control minimizes the performance criterion:

u∗
i = −(BT Ki+1B + R)−1BT Ki+1Ax̂i|i−1 (2.230)

Infinite Horizon Linear Quadratic Gaussian Control

We now turn to the infinite horizon LQG control. It is noted that, as the
horizon N gets larger, (2.217) also becomes larger and finally blows up. So,
the performance criterion (2.217) cannot be applied as it is to the infinite
horizon case. In a steady state for the infinite horizon case, we may write

min
ui

J = min
ui

E[xT
i Qxi + uT

i Rui] (2.231)

= min
ui

1
2π

∫ 2π

0

tr(T (ejω)T ∗(ejω)) dω (2.232)

where T (ejω) is the transfer function from wi and vi to ui and xi. The infinite
horizon LQG control is summarized in the following theorem.

Theorem 2.10. Suppose that (A,B) and (A,G) are controllable and (A,Q
1
2 )

and (A,C) are observable. For the infinite horizon performance criterion
(2.232), the infinite horizon LQG control is given by

u∗
i = −(BT K∞B + R)−1BT K∞Ax̂i|i−1 (2.233)

where

K∞ = AT K∞A − AT K∞B[R + BK∞BT ]−1BT K∞A + Q

x̂i+1|i = Ax̂i|i−1 + [AP∞CT (Rv + CP∞CT )−1](yi − Cx̂i|i−1) + Bui

P∞ = GQwGT + AP∞(CP∞CT + Rv)−1P∞AT
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We can see a proof of Theorem 2.10 in many references, e.g. in [Bur98,
Lew86b]. The conditions on controllability and observability in Theorem 2.10
can be weakened to the reachability and detectability.

2.5.2 Output Feedback H∞ Control on Minimax Criterion

Now, we derive the output feedback H∞ control. The result of the previous
H∞ filter will be used to obtain the output feedback H∞ control. First, the
performance criterion is transformed in perfect square forms with respect to
the optimal control and disturbance.

Lemma 2.11. H∞ performance criterion can be represented in a perfect
square expression for arbitrary control.

if−1∑
i=i0

[
xT

i Qxi + uT
i Rui − γ2wT

i Rwwi

]
+xT

if
Qfxif

=
if−1∑
i=i0

[
(ui − u∗

i )
TVi(ui − u∗

i ) − γ2(wi − w∗
i )TWi(wi − w∗

i )
]

+ xT
i0Mi0xi0 (2.234)

where w∗
i and u∗

i are given as

w∗
i = (γ2Rw − BT

wMi+1Bw)−1BT
wMi+1(Axi + Bui) (2.235)

u∗
i = −R−1BT Mi+1[I + (BR−1BT − γ−2BwR−1

w BT
w)Mi+1]−1Axi (2.236)

Vi = R + BT Mi+1(I − γ−2BwR−1
w BT

wMi+1)−1B

Wi = γ2Rw − BT
wMi+1Bw

and Mi shortened for Mi,if
is given in (2.140).

Proof. Recalling the simple identity as

if−1∑
i=i0

[xiMix
T
i − xi+1Mi+1x

T
i+1] = xT

i0Mi0xi0 − xT
if

Mif
xif

we have

xT
if

Mif
xif

= xT
if

Qfxif
= xT

i0Mi0xi0 −
if−1∑
i=i0

[xT
i Mixi − xT

i+1Mi+1xi+1] (2.237)

By substituting (2.237) into the final cost xT
if

Qfxif
, the H∞ performance

criterion of the left-hand side in (2.234) can be changed as
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if−1∑
i=i0

[
xT

i Qxi + uT
i Rui − γ2wT

i Rwwi

]
+ xT

if
Qfxif

=
if−1∑
i=i0

[
xT

i Qxi + uT
i Rui − γ2wT

i Rwwi

]
+ xT

i0Mi0xi0

−
if−1∑
i=i0

[xT
i Mixi − xT

i+1Mi+1xi+1]

=
if−1∑
i=i0

[
xT

i Qxi + uT
i Rui − γ2wT

i Rwwi − xT
i Mixi

+ xT
i+1Mi+1xi+1

]
+xT

i0Mi0xi0 (2.238)

Now, we try to make terms inside the summation represented in a perfect
square form. First, time variables are all changed to i. Next, we complete the
square with respect to wi and ui respectively.

Terms in the summation (2.238) can be arranged as follows:

xT
i+1Mi+1xi+1 − xT

i Mixi + xT
i Qxi + uT

i Rui − γ2wT
i Rwwi

+ xT
i Qxi + uT

i Rui − γ2wT
i Rwwi

= AT
o,iMi+1Ao,i + wT

i BT
wMi+1Ao,i + AT

o,iMi+1Bwwi

− wT
i (γ2Rw − BT

wMi+1Bw)wi + xT
i (−Mi + Q)xi + uT

i Rui (2.239)

where Ao,i = Axi + Bui. Terms including wi in (2.239) can be arranged as

wT
i BT

wMi+1Ao,i + AT
o,iMi+1Bwwi − wT

i (γ2Rw − BT
wMi+1Bw)wi

= −WT
i (γ2Rw − BT

wMi+1Bw)−1Wi

+ AT
o,iMi+1Bw(γ2Rw − BT

wMi+1Bw)−1BT
wMi+1Ao,i (2.240)

where Wi = (γ2Rw − BT
wMi+1Bw)wi − BT

wMi+1Ao,i. After completing the
square with respect to disturbance wi, we try to do that for the control ui.
Substituting (2.240) into (2.239) yields

−WT
i (γ2Rw − BT

wMi+1Bw)−1Wi

+ AT
o,iMi+1Bw(γ2Rw − BT

wMi+1Bw)−1BT
wMi+1Ao,i

+ AT
o,iMi+1Ao,i + xT

i (−Mi + Q)xi + uT
i Rui

= −WT
i (γ2Rw − BT

wMi+1Bw)−1Wi + AT
o,iMi+1(I − γ−2BwR−1

w BT
wMi+1)−1

× Ao,i + xT
i (−Mi + Q)xi + uT

i Rui (2.241)

where the last equality comes from

P (I − RQ−1RT P )−1 = P + PR(Q − RT PR)−1RT P
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for some matrix P , R, and Q.
The second, the third, and the fourth terms in the right-hand side of

(2.241) can be factorized as

(Axi + Bui)T Mi+1Z−1
i (Axi + Bui) + xT

i (−Mi + Q)xi + uT
i Rui

= uT
i [R + BT Mi+1Z−1

i B]ui + uT
i BT Mi+1Z−1

i Axi + xT
i AT Mi+1Z−1

i Bui

+ xT
i [AT Mi+1Z−1

i A − Mi + Q]xi = UT
i

[
R + BT Mi+1Z−1

i B
]−1

Ui (2.242)

where

Ui =
[
R + BT Mi+1Z−1

i B
]
ui + BT Mi+1Z−1

i Axi

Zi = I − γ−2BwR−1
w BT

wMi+1

and the second equality comes from the Riccati equation represented by

Mi = AT Mi+1(I + (BR−1BT − γ−2BwR−1
w BT

w)Mi+1)−1A + Q

= AT Mi+1(Zi + BR−1BT Mi+1)−1A + Q

= AT Mi+1

[
Z−1

i −Z−1
i BR−1BT (Mi+1Z−1

i BR−1BT + I)−1Mi+1Z−1
i

]
A

+ Q

or

AT Mi+1Z−1
i A − Mi + Q

= AT Mi+1Z−1
i BR−1BT (Mi+1Z−1

i BR−1BT + I)−1Mi+1Z−1
i A

= AT Mi+1Z−1
i B(BT Mi+1Z−1

i B + R)−1BT Mi+1Z−1
i A

This completes the proof.

Note that by substituting (5.154) into (5.153), w∗
i can be represented as

w∗
i = γ−2R−1

w BT
wMi+1[I + (BR−1BT − γ−2BwR−1

w BT
w)Mi+1]−1Axi

which is of very similar form to u∗
i .

For the zero initial state, the inequality

if−1∑
i=i0

[
xT

i Qxi + uT
i Rui − γ2wT

i Rwwi

]
+xT

if
Qfxif

< 0 (2.243)

guarantees the bound on the following ∞ norm:

sup
‖wi‖2,[0,if ] �=0

∑if−1
i=i0

(ui − u∗
i )

TVi(ui − u∗
i )∑if−1

i=i0
(wi − w∗

i )TWi(wi − w∗
i )

< γ2 (2.244)

where u∗
i and w∗

i are defined in (5.154) and (5.153) respectively. Here, Rw = I,
DwBT

w = 0, and DwDT
w = I are assumed for simple calculation.
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According to (2.244), we should design ui so that the H∞ norm between
the weighted disturbance deviation

�wi
�
= W

1
2
i wi −W

1
2
i (γ2I − BT

wMi+1Bw)−1BT
wMi+1(Axi + Bui)

and the weighted control deviation

�ui
�
= V

1
2
i ui + V

1
2
i R−1BT Mi+1[I + (BR−1BT − γ−2BwBT

w)Mi+1]−1Axi

is minimized. By using �wi, we obtain the following state-space model:

xi+1 = Aa,ixi + Ba,iui + BwW
− 1

2
i �wi

yi = Cxi + DwW
− 1

2
i �wi (2.245)

where Aa,i = A + Bw(γ2I − BT
wMi+1Bw)−1BT

wMi+1A, and Ba,i = B +
Bw(γ2I − BT

wMi+1Bw)−1BT
wMi+1B. Note that DwBT

w = 0 is assumed as
mentioned before.

The performance criterion (2.244) for the state-space model (2.245) is just
one for the H∞ filter that estimates u∗

i with respect to �wi by using mea-
surements yi. This is a similar structure to (2.183). Note that the variable zi

in (2.183) to be estimated corresponds to u∗
i . Using the result of H∞ filters,

we can think of this as finding out the output feedback H∞ control ui by
obtaining the estimator of u∗

i .
All derivations require long and tedious algebraic calculations. In this

book, we just summarize the final result. The output feedback H∞ control
is given by

ui = −Kof,ix̂i

Kof,i = R−1BT Mi+1[I + (BR−1BT − γ−2BwBT
w)Mi+1]−1A

x̂i+1 = Aa,ix̂i + Lof,i

[
0

yi − Cx̂i

]
+ Bui

where Mi, i.e. Mi,if
, is given in (2.140) and Lof,i is defined as

Lof,i =
(

Aa,iSof,i

[
−KT

of,i CT
]
− γ2Bw

[
S̄i 0

])
R−1

of,i

Sof,i+1 = Aa,iSof,iA
T
a,i − γ2BwW−1

i BT
w − Lof,iRof,iL

T
of,i

Rof,i =
[
−γ2Z−1

i 0
0 I

]
+
[
−Kof,i

C

]
Sof,i

[
−KT

of,i CT
]

[
W−1

i S̄i

S̄T
i Z−1

i

]
=
([

−γ2I 0
0 R

]
+
[

BT
w

BT

]
Mi+1

[
Bw B

])−1

with the initial conditions Mif ,if
= Qf and Si0 = 0.
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Infinite Horizon Output Feedback H∞ Control

Now we introduce the infinite horizon H∞ output feedback control in the
following theorem:

Theorem 2.12. Infinite horizon H∞ output feedback control is composed of

ui = −Kof,∞x̂i

Kof,∞ = R−1BT M∞[I + (BR−1BT − γ−2BwBT
w)M∞]−1A

x̂i+1 = Aa,∞x̂i + Lof,∞

[
yi − Cx̂i

0

]
+ Bui

where

Aa,∞ = A + Bw(γ2I − BT
wM∞Bw)−1BT

wM∞A

Lof,∞ =
(

Aa,∞Sof,∞
[
−KT

of,∞ CT
]
− γ2Bw

[
S̄∞ 0

])
R−1

of,∞

Sof,∞ = Aa,∞Sof,∞AT
a,∞ − γ2BwW−1

∞ BT
w − Lof,∞Rof,∞LT

of,∞

Rof,∞ =
[
−γ2(Z∞)−1 0

0 Ip

]
+
[
−Kof,∞

C

]
Pi

[
−KT

of,∞ CT
]

[
W−1

∞ S̄∞
S̄T
∞ Z−1

∞

]
=
([

−γ2Il 0
0 R

]
+
[

BT
w

BT

]
M∞

[
Bw B

])−1

and achieves the following specification∑∞
i=i0

xT
i Rxi + uT

i Qui∑∞
i=i0

wT
i wi

< γ2

if and only if there exists solutions M∞ ≥ 0 satisfying (2.159) and Sof,∞ ≥ 0
such that

(1)A−
[
B Bw

]([R 0
0 −γ2I

]
+
[

BT

BT
w

]
M∞

[
B Bw

])−1[
BT

BT
w

]
M∞A is stable.

(2)The numbers of the positive and negative eigenvalues of the two following
matrices are the same:[

R 0
0 −γ2Il

]
,

[
R 0
0 −γ2Il

]
+
[

BT

BT
w

]
M∞

[
B Bw

]
(2.246)

(3)Aa,∞ − Lof,∞

[
C

(I + BT M∞B)
1
2 Kof,∞

]
is stable.

(4)The numbers of the positive and negative eigenvalues of
[

Ip 0
0 −γ2Im

]
are

the same as those of the following matrix:[
Ip 0
0 −γ2Im + T

]
+
[

C

X
1
2 Kof,∞

]
Sof,∞

[
CT KT

of,∞X
1
2

]
(2.247)
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where T = X− 1
2 BT M∞Z−1M∞BX− 1

2 , Z = I−BT M∞(I+BBT M∞)−1B,
and X = I + BT M∞B.

We can see a proof of Theorem 2.12 in [HSK99]. It is shown in [Bur98] that
output feedback H∞ control can be obtained from a solution to an estimation
problem.

2.6 Linear Optimal Controls via Linear Matrix
Inequality

In this section, optimal control problems for discrete linear time-invariant
systems are reformulated in terms of linear matrix inequalities (LMIs). Since
LMI problems are convex, it can be solved very efficiently and the global
minimum is always found. We first consider the LQ control and then move to
H∞ control.

2.6.1 Infinite Horizon Linear Quadratic Control via Linear Matrix
Inequality

Let us consider the infinite horizon LQ cost function as follows:

J∞ =
∞∑

i=0

{
xT

i Qxi + uT
i Rui

}
,

where Q > 0, R > 0. It is noted that, unlike the standard LQ control, Q is
positive-definite. The nonsingularity of Q is required to solve an LMI problem.
We aim to find the control ui which minimizes the above cost function. The
main attention is focused on designing a linear optimal state-feedback control,
ui = Hxi. Assume that V (xi) has the form

V (xi) = xT
i Kxi, K > 0

and satisfies the following inequality:

V (xi+1) − V (xi) ≤ −[xT
i Qxi + uT

i Rui] (2.248)

Then, the system controlled by ui is asymptotically stable and J∞ ≤ V (x0).
With ui = Hxi, the inequality (2.248) is equivalently rewritten as

xT
i (A + BH)T K(A + BH)xi − xT

i Kxi ≤ −xT
i [Q + HT RH]xi (2.249)

From (2.249), it is clear that (2.248) is satisfied if there exists H and K such
that

(A + BH)T K(A + BH) − K + Q + HT RH ≤ 0 (2.250)
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Instead of directly minimizing xT
0 Kx0, we take an approach where its upper

bound is minimized. For this purpose, assume that there exists γ2 > 0 such
that

xT
0 Kx0 ≤ γ2 (2.251)

Now the optimal control problem for given x0 can be formulated as follows:

min
γ2,K,H

γ2 subject to (2.250) and (2.251)

However, the above optimization problem does not seem easily solvable be-
cause the matrix inequalities (2.250) and (2.251) are not of LMI forms. In the
following, matrix inequalities (2.250) and (2.251) are converted to LMI con-
ditions. First, let us turn to the condition in (2.250), which can be rewritten
as follows:

−K +
[
(A + BH)T HT I

] ⎡⎣K−1 0 0
0 R−1 0
0 0 Q−1

⎤⎦−1 ⎡⎣ (A + BH)
H
I

⎤⎦ ≤ 0

From the Schur complement, the above inequality is equivalent to⎡⎢⎢⎣
−K (A + BH)T HT I

(A + BH) −K−1 0 0
H 0 −R−1 0
I 0 0 −Q−1

⎤⎥⎥⎦ ≤ 0 (2.252)

Also from the Schur complement, (2.251) is converted to[
γ2 xT

0

x0 K−1

]
≥ 0 (2.253)

Pre- and post-multiply (2.252) by diag{K−1, I, I, I}. It should be noted
that this operation does not change the inequality sign. Introducing new vari-
ables Y � HK−1 and S � K−1, (2.252) is equivalently changed into⎡⎢⎢⎣

−S (AS + BY )T Y T S
(AS + BY ) −S 0 0

Y 0 −R−1 0
S 0 0 −Q−1

⎤⎥⎥⎦ ≤ 0 (2.254)

Furthermore, (2.253) is converted to[
γ2 xT

0

x0 S

]
≥ 0 (2.255)

Now that (2.254) and (2.255) are LMI conditions, the resulting optimization
problem is an infinite horizon control, which is represented as follows:

min
γ2,Y,S

γ2

subject to (2.254) and (2.255)

Provided that the above optimization problem is feasible, then H = Y S−1

and K = S−1.
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2.6.2 Infinite Horizon H∞ Control via Linear Matrix Inequality

Consider the system

xi+1 = Axi + Bui (2.256)
zi = Czxi + Dzuui (2.257)

where A is a stable matrix. For the above system, the well-known bounded
real lemma (BRL) is stated as follows:

Lemma 2.13 (Bounded Real Lemma). Let γ > 0. If there exists X > 0
such that ⎡⎢⎢⎣

−X−1 A B 0
AT −X 0 CT

z

BT 0 −γWu DT

0 C Dzu −γW−1
z

⎤⎥⎥⎦ < 0 (2.258)

then ∑∞
i=i0

zT
i Wzzi∑∞

i=i0
uT

i Wuui
< γ2 (2.259)

where ui and zi are governed by the system (2.256) and (2.257).

Proof. The inequality (2.259) is equivalent to

Jzu =
∞∑

i=0

{
zT

i Wzzi − γ2uT
i Wuui

}
< 0 (2.260)

Let us take V (x) as follows:

V (x) = xT Kx, K > 0

Respectively adding and subtracting
∑∞

i=0 {V (xi+i) − V (xi)} to and from
Jzu in (2.260), does not make any difference to Jzu. Hence, it follows that

Jzu =
∞∑

i=0

{
zT

i Wzzi − γ2uT
i Wuui + V (xi+1) − V (xi)

}
+ V (x0) − V (x∞)

Since x0 is assumed to be zero and V (x∞) ≥ 0, we have

Jzu ≤
∞∑

i=0

{zT
i Wzzi − γ2uT

i Wuui + V (xi+1) − V (xi)}

Furthermore,
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∞∑
i=0

{zT
i Wzzi − γ2uT

i Wuui + V (xi+1) − V (xi)}

=
∞∑

i=0

{
[Czxi + Dzuui]T Wz[Czxi + Dzuui] − γ2uT

i Wuui

+[Axi + Bui]T K[Axi + Bui] − xT
i Kxi

}
=

∞∑
i=0

{[
xi

ui

]T

Λ

[
xi

ui

]}

where

Λ �
[
−K + AT KA + CT

z WzCz AT KB + CT
z WzDzu

BT KA + DT
zuWzCz BT KB + DT

zuWzDzu − γ2Wu

]
(2.261)

Hence, if the 2-by-2 block matrix Λ in (2.261) is negative definite, then Jzu < 0
and equivalently the inequality (2.259) holds.

The 2-by-2 block matrix Λ can be rewritten as follows:

Λ =
[
−K 0
0 −γ2Wu

]
+
[

AT CT
z

BT DT
zu

] [
K 0
0 Wz

] [
A B
Cz Dzu

]
From the Schur complement, the negative definiteness of Λ is guaranteed if
the following matrix equality holds:⎡⎢⎢⎣

−K 0 AT CT
z

0 −γ2Wu BT DT
zu

A B −K−1 0
Cz Dzu 0 −W−1

z

⎤⎥⎥⎦ < 0 (2.262)

Define Π as follows:

Π �

⎡⎢⎢⎣
0 I 0 0
0 0 I 0
I 0 0 0
0 0 0 I

⎤⎥⎥⎦
Pre- and post-multiplying (2.262) by ΠT and Π respectively does not change
the inequality sign. Hence, the condition in (2.262) is equivalently represented
by ⎡⎢⎢⎣

−K−1 A B 0
AT −K 0 CT

z

BT 0 −γ2Wu DT
zu

0 Cz Dzu −W−1
z

⎤⎥⎥⎦ < 0 (2.263)

Pre- and post-multiplying (2.263) by diag{√γI,
√

γ−1I,
√

γ−1I,
√

γI} and in-
troducing a change of variables such that X � 1√

γ K, the condition in (2.263)
is equivalently changed to (2.258). This completes the proof.
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Using the BRL, the LMI-based H∞ control problem can be formulated.
Let us consider the system

xi+1 = Axi + Bwwi + Bui, x0 = 0
zi = Czxi + Dzuui

As in the LMI-based LQ problem, the control is constrained to have a state-
feedback, ui = Hxi. With ui = Hxi, the above system is rewritten as follows:

xi+1 = [A + BH]xi + Bwwi, x0 = 0
zi = [Cz + DzuH]xi

According to the BRL, H which guarantees ‖Gcl(z)‖∞ < γ∞ should satisfy,
for some X > 0,⎡⎢⎢⎣

−X−1 (A + BH) Bw 0
(A + BH)T −X 0 (Cz + DzuH)T

BT
w 0 −γ∞I 0
0 (Cz + DzuH) 0 −γ∞I

⎤⎥⎥⎦ < 0 (2.264)

where Gcl(z) = [Cz + DzuH](zI −A−BH)−1Bw. Pre- and post-multiplying
(2.264) by diag{I,X−1, I, I} and introducing a change of variables such that
S∞ � X−1 and Y � HX−1 lead to⎡⎢⎢⎣

−S∞ (AS∞ + BY ) Bw 0
(AS∞ + BY )T −S∞ 0 (CzS∞ + DzmY )T

BT
w 0 −γ∞I 0
0 (CzS∞ + DzuY ) 0 −γ∞I

⎤⎥⎥⎦ < 0 (2.265)

Provided that the above LMI is feasible for some given γ∞, H∞ state-feedback
control guaranteeing ‖Gcl(z)‖∞ < γ∞ is given by

H = Y S−1
∞

In this case, we can obtain the infinite horizon H∞ control via LMI, which
minimizes γ∞ by solving the following optimization problem:

min
γ∞,Y,S∞

γ∞ subject to (2.265)

2.7 ∗ H2 Controls

Since LQ regulator and LQG control problems are studied extensively in this
book, H2 controls and H2 filters are introduced in limited problems and are
only briefly summarized without proofs in this section.

To manipulate more general problems, it is very useful to have a general
system with the input, the disturbance, the controlled output, and the measure
output given by
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xi+1 = Axi + Bwwi + Bui

yi = Cxi + Dwwi

zi = Czxi + Dzwwi + Dzuui (2.266)

The standard H2 problem is to find a proper, real rational controller u(z) =
K(z)y(z) which stabilizes the closed-loop system internally and minimizes the
H2 norm of the transfer matrix Tzw from wi to zi.

The H2 norm can be represented as

‖Tzw(ejw)‖2
2 =

1
2π

∫ π

−π

tr{T ∗
zw(ejw)Tzw(ejw)}dw =

∞∑
k=i0

tr{H∗
k−i0Hk−i0}

=
m∑

l=1

∞∑
i=−∞

zlT
i zl

i (2.267)

where

Tzw(ejw) =
∞∑

k=0

Hke−jwk

and A∗ is a complex conjugate transpose of A and zl is an output resulting
from applying unit impulses to lth input. From (2.267), we can see that the H2

norm can be obtained from applying unit impulses to each input. We should
require the output to settle to zero before applying an impulse to the next
input. In the case of single input systems, the H2 norm is obtained by the
driving unit impulse once, i.e. ‖Tzw(ejw)‖2 = ‖z‖2.

The H2 norm can be given another interpretation for stochastic systems.
The expected power in the error signal zi is then given by

E{zT
i zi} = tr[E{ziz

T
i }] =

1
2π

∫ π

−π

tr{Tzw(ejw)T ∗
zw(ejw)} dw

=
1
2π

∫ π

−π

tr{T ∗
zw(ejw)Tzw(ejw)} dw

where the second equality comes from Theorem C.4 in Appendix C.
Thus, by minimizing the H2 norm, the output (or error) power of the

generalized system, due to a unit intensity white noise input, is minimized.
It is noted that for the given system transfer function

G(z) �
[

A B
C D

]
= C(zI − A)−1B + D

‖G(z)‖2 is obtained by

‖G(z)‖2
2 = tr(DT D + BT LoB) = tr(DDT + CLcC

T ) (2.268)
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where Lc and Lo are the controllability and observability Gramians

ALcA
T − Lc + BBT = 0 (2.269)

AT LoA − Lo + CT C = 0 (2.270)

The H2 norm has a number of good mathematical and numerical properties,
and its minimization has important engineering implications. However, the H2

norm is not an induced norm and does not satisfy the multiplicative property.
It is assumed that the following things are satisfied for the system (2.266):

(i) (A,B) is stabilizable and (C,A) is detectable,
(ii) Dzu is of full column rank with

[
Dzu D⊥

]
unitary and Dw is full row with[

Dw

D̃⊥

]
unitary,

(iii)
[

A − ejθI B
Cz Dzu

]
has full column rank for all θ ∈ [0 2π],

(iv)
[

A − ejθI Bw

C Dw

]
has full rank for all θ ∈ [0 2π].

Let X2 ≥ 0 and Y2 ≥ 0 be the solutions to the following Riccati equations:

A∗
x(I + X2BBT )−1X2Ax − X2 + CT

z D⊥DT
⊥Cz = 0 (2.271)

Ay(I + Y2C
T C)−1Y2A

T
y − Y2 + BwDT

⊥D⊥BT
w = 0 (2.272)

where

Ax = A − BDT
zuCz, Ay = A − BwCT

wC (2.273)

Note that the stabilizing solutions exist by the assumptions (iii) and (iv). The
solution to the standard H2 problem is given by

x̂i+1 = (Â2 − BL0C)x̂i − (L2 − BL0)yi (2.274)
ui = (F2 − L0C)x̂i + L0yi (2.275)

where

F2 = −(I + BT X2B)−1(BT X2A + DT
zuCz)

L2 = −(AY2C
T + BwCT

w )(I + CY2C
T )−1

L0 = (F2Y2C
T + F2C

T
w )(I + CY2C

T )−1

Â2 = A + BF2 + L2C

The well-known LQR control problems can be seen as a special H2 problem.
The standard LQR control problem is to find an optimal control law u ∈
l2[0 ∞] such that the performance criterion

∑∞
i=0 zT

i zi is minimized in the
following system with the impulse input wi = δi:
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xi+1 = Axi + x0wi + Bui

zi = Czxi + Dzuui

yi = xi (2.276)

where wi is a scalar value, CT
z Dzu = O, CT

z Cz = Q, and DT
zuDzu = R. Note

that Bw in (2.266) corresponds to x0 in (2.276). Here, the H2 performance
criterion becomes an LQ criterion.

The LQG control problem is an important special case of the H2 optimal
control for the following system:

xi+1 = Axi +
[
GQ

1
2
w O

] [
wi

vi

]
+ Bui

yi = Cxi +
[
O R

1
2
v

] [wi

vi

]
zi = Czxi + Dzuui

(2.277)

where CT
z Dzu = O, CT

z Cz = Q, and DT
zuDzu = R. The LQG control is

obtained so that the H2 norm of the transfer function from w and vi to
z is minimized. It is noted that, according to (C.14) in Appendix C, the
performance criterion (2.267) for the system (2.277) can be considered by
observing the steady-state mean square value of the controlled output

E

[
lim

N→∞
1
N

N−1∑
i=0

zT
i zi

]
= E

[
lim

N→∞
1
N

N−1∑
i=0

(
xT

i Qxi + uT
i Rui

)]
when the white Gaussian noises with unit power are applied. It is noted that
wi and vi can be combined into one disturbance source wi as in (2.266).

The H2 filter problem can be solved as a special case of the H2 control
problem. Suppose a state-space model is described by the following:

xi+1 = Axi + Bwwi

yi = Cxi + Dwwi (2.278)

The H2 filter problem is to find an estimate x̂i of xi using the measurement
of yi so that the H2 norm from wi to xi − x̂i is minimized. The filter has to
be causal so that it can be realized.

The H2 filter problem can be regarded as the following control problem:

xi+1 = Axi + Bwwi + 0 × x̂i

zi = xi − x̂i

yi = Cxi + Dwwi

(2.279)

where the following correspondences to (2.266) hold

ui ←− x̂i

B ←− 0
Cz ←− I

Dzu ←− − I
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H2/H∞ Controls Based on Mixed Criteria

Each performance criterion has its own advantages and disadvantages, so that
there are trade-offs between them. In some cases we want to adopt two or more
performance criteria simultaneously in order to satisfy specifications. In this
section, we introduce two kinds of controls based on mixed criteria. It is noted
that an LQ control is a special case of H2 controls. Here, the LQ control is
used for simplicity.

1. Minimize the H2 norm for a fixed guaranteed H∞ norm such that

min
γ2,Y,S

γ2 (2.280)

subject to

[
γ2 xT

0

x0 S

]
≥ 0 (2.281)⎡⎢⎢⎣

−S (AS + BY )T Y T S
(AS + BY ) −S 0 0

Y 0 −R−1 0
S 0 0 −Q−1

⎤⎥⎥⎦ ≤ 0 (2.282)

⎡⎢⎢⎣
−S (AS + BY ) Bw 0

(AS + BY )T −S 0 (CzS + DzuY )T

BT
w 0 −γ∞I 0
0 (CzS + DzuY ) 0 −γ∞I

⎤⎥⎥⎦ < 0 (2.283)

From Y and S, the state feedback gain is obtained, i.e. H = Y S−1.
2. Minimize the H∞ norm for a fixed guaranteed H2 norm such that

min
γ∞,Y,S

γ∞ (2.284)

subject to
(2.281), (2.282), (2.283).

The state feedback gain is obtained from Y and S, i.e. H = Y S−1.

2.8 References

The material presented in this chapter has been established for a long time
and is covered in several excellent books. The subject is so large that it would
be a considerable task to provide comprehensive references.

Therefore, in this chapter, some references will be provided so that it is
enough to understand the contents.
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Dynamic programming and the minimum principle of Section 2.2 are dis-
cussed in many places. For general systems, dynamic programming and the
minimum principle of Pontryagin appeare in [BD62, BK65, Bel57] and in
[PBGM62] respectively. For a short review, [Kir70] is a useful reference for
the minimum criterion in both dynamic programming and the minimum prin-
ciple. For a treatment of the minimax criterion, see [Bur98] for the minimax
principle and [BB91] [BLW91] [KIF93] for dynamic programming. Readers
interested in rigorous mathematics are referred to [Str68].

The literature on LQ controls is vast and old. LQR for tracking problems
as in Theorems 2.1, 2.2, and 2.4 is via dynamic programming [AM89] and via
the minimum principle [BH75] [KS72]. In the case of a fixed terminal with a
reference signal, the closed-loop solution is first introduced in this book as in
Theorem 2.3.

The H∞ control in Section 2.3.2 is closely related to an LQ difference
game. The books by [BH75] and [BO82] are good sources for results on game
theories. [BB91] is a book on game theories that deals explicitly with the
connections between game theories and H∞ control. The treatment of the
finite horizon state feedback H∞ control in this book is based on [LAKG92].

The Kalman filters as in Theorem 2.6 can be derived in many ways for
stochastic systems. The seminal papers on the optimal estimation are [KB60]
and [KB61].

The perfect square expression of the quadratic cost function in Lemmas
2.8 and 2.9 appeared in [Lew86b, Lew86a]. A bibliography of LQG controls is
compiled by [MG71]. A special issue of the IEEE Transactions on Automatic
Control was devoted to LQG controls in 1971 [Ath71]. Most of the contents
about LQG in this book originate from the text of [Lew86b]. The LQG sep-
aration theorem appeared in [Won68]. The perfect square expression of the
H∞ cost function in Theorem 2.11 appeared in [GL95].

Even though finite horizon and infinite horizon LQ controls are obtained
analytically from a Riccati approach, we also obtain them numerically from
an LMI in this book, which can be useful for constrained systems. Detailed
treatments of LMI can be found in [BGFB94, GNLC95]. The LMIs for LQ and
H∞ controls in Sections 2.6.1 and 2.6.2 appear in [GNLC95]. The bounded
real lemma in Section 2.6.2 is investigated in [Yak62], [Kal63], and [Pop64],
and also in a book by [Bur98].

The general H2 problem and its solution are considered well in the fre-
quency domain in [ZDG96]. This work is based on the infinite horizon. In
[BGFB94], H2 and H∞ controls are given in LMI form, which can be used
for the H2/H∞ mixed control. The work by [BH89] deals with the problem
requiring the minimization of an upper bound on the H2 norm under an H∞
norm constraint.
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2.9 Problems

2.1. Consider the system

xi+1 = αxi + ui −
u2

i

M − xi
(2.285)

where 0 < α < 1 and xi0 < M . In particular, we want to maximize

J = βif−i0cxif
+

if−1∑
i=i0

[pxi − ui]βi−i0 (2.286)

where p > 0, 0 < β < 1, and c > 0. Find an optimal control ui so that (2.286)
is maximized.

2.2. Consider a nonlinear system xk+1 = f(xk, uk) with constraints given by
φ(xk) ≥ 0 and the performance criterion (2.2).

(1) Show that above φ(xk) ≥ 0 can be represented by an extra state variable
xn+1,k+1 such as

xn+1,k+1 = xn+1,k + {[φ1(xk)]2ũ(−φ1(xk)) + · · · + [φl(xk)]2ũ(−φl(xk))}

where ũ(·) is a unit function given by ũ(x) = 1 only for x > 0 and 0
otherwise with

xn+1,i0 = 0, xn+1,if
= 0

(2) Using the minimum principle, find the optimal control so that the system

x1,k+1 = 0.4x2,k (2.287)
x2,k+1 = −0.2x2,k + uk (2.288)

is to be controlled to minimize the performance criterion

J =
3∑

k=0

0.5[x2
1,k + x2

2,k + u2
k] (2.289)

The control and states are constrained by

−1 ≤ uk ≤ 1 (2.290)
−2 ≤ x2,k ≤ 2 (2.291)

2.3. Suppose that a man has his initial savings S and lives only on interest
that comes from his savings at a fixed rate. His current savings xk are therefore
governed by the equation

xk+1 = αxk − uk (2.292)
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where α > 1 and uk denotes his expenditure. His immediate enjoyment due
to expenditure is uk

1
2 . As time goes on, the enjoyment is diminished as fast

as βk, where |β| < 1. Thus, he wants to maximize

J =
N∑

k=0

βku
1
2
k (2.293)

where S, α, and β are set to 10, 1.8, and 0.6, respectively. Make simulations
for three kinds of planning based on Table 1.1. For the long-term planning,
use N = 100. For the periodic and short-term plannings, use N = 5 and the
simulation time is 100. Using the minimum principle, find optimal solutions
ui analytically, not numerically.

2.4. Consider the following general nonlinear system:

xi+1 = f(xi) + g(xi)wi, zi = h(xi) + J(xi)wi (2.294)

(1) If there exists a nonnegative function V : �n → � with V (0) = 0 such
that for all w ∈ �p and k = 0, 1, 2 · · ·

V (xk+1) − V (xk) ≤ γ2‖wk‖2 − ‖zk‖2 (2.295)

show that the following inequality is satisfied:

N∑
k=0

||zk||2 ≤ γ2
N∑

k=0

||wk||2

Conversely, show that a nonnegative function V : �n → � with V (0) = 0
exists if the H∞ norm of the system is less than γ2.
(2) Suppose that there exists a positive definite function V (x) satisfying

gT (0)
∂2V

∂2x
(0)g(0) + JT (0)J(0) − γ2 < 0 (2.296)

0 = V (f(x) + g(x)α(x)) − V (x)

+
1
2
(||h(x) + J(x)α(x)|| − γ2||α(x)||) (2.297)

where α(x) is a unique solution of

∂V

∂α(x)
(x)g(x) + α(x)T (JT (x)J(x) − γ2) = −hT (x)J(x) (2.298)

and the systems is observable, i.e.

zk|wk=0 = h(xk) = 0 → lim
k→∞

xk = 0 (2.299)

Show that the system xi+1 = f(xi) is stable.
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2.5. We consider a minimum time performance criterion in which the objective
is to steer a current state into a specific target set in minimum time.

For the system

xi+1 =
[

1 1
0 1

]
xi +

[
0.5
1

]
ui (2.300)

the performance criterion is given as

J =
if−1∑
i=i0

1 = if − i0 (2.301)

where |ui| ≤ 1. Find the control ui to bring the state from the initial point
xi0 = [1 4]T to the origin in the minimum time.

2.6. An optimal investment plan is considered here. Without any external
investment, the manufacturing facilities at the next time k + 1 decrease in
proportion to the manufacturing facilities at the current time k. In order to
increase the manufacturing facilities, we should invest money. Letting xk and
uk be the manufacturing facilities at time k and the investment at the time k
respectively, we can construct the following model:

xk+1 = αxk + γuk (2.302)

where |α| < 1, γ > 0, and x0 are given. Assume that manufacturing facilities
are worth the value proportional to the investment and the product at the
time k is proportional to the manufacturing facilities at time k. Then, the
profit can be represented as

J = βxN +
N−1∑
i=0

(βxi − ui) (2.303)

The investment is assumed to be nonnegative and bounded above, i.e. 0 ≤
ui ≤ ū. Obtain the optimal investment with respect to α, β, γ, and N .

2.7. Let a free body obey the following dynamics:

yi+1 = yi + vi (2.304)
vi+1 = vi + ui (2.305)

with yi the position and vi the velocity. The state is xi = [yi vi]T . Let the
acceleration input ui be constrained in magnitude by

|ui| ≤ 1 (2.306)

Suppose the objective is to determine a control input to bring any given initial
state (yi0 , vi0) to the origin so that
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yif

vif

]
= 0 (2.307)

The control should use minimum fuel, so let

J(i0) =
if∑

i=i0

|ui| (2.308)

(1) Find the minimum-fuel control law to drive any xi0 to the origin in a given
time N = if − i0 if |ui| ≤ 1.
(2) Draw the phase-plane trajectory. N , yi0 , and vi0 are set to 35, 10, and 10
respectively.

2.8. Consider a performance criterion with Q = R = 0 and a positive definite
Qf . The control can be given (2.43)–(2.45) with the inverse replaced by a
pseudo inverse.

(1) Show that the solution to Riccati Equation (3.47) can be represented as

Kif−k = (Q
1
2
f Ak)T

[
I − Q

1
2
f Wk(Q

1
2
f Wk)T [Q

1
2
f Wk(Q

1
2
f Wk)T ]†

]
(Q

1
2
f Ak). (2.309)

where Wk = [B AB A2B · · · Ak−1B] for k = 1, 2, ..., N−1 with W0 = 0
and A† is a pseudo inverse of A.

(2) In the deadbeat control problem, we desire that xif
= 0; this can happen

only if a performance criterion is equal to zero, i.e. if Ki0 = 0. Show that
Ki0 can be zero if the following condition holds for some k:

Im(Ak) ⊂ Im(Wk) (2.310)

where Im(M) is the image of the matrix M .
(3) Show that (2.310) is satisfied if the system is controllable.

2.9. Consider the following performance criterion for the system (2.27):

J(xr, u) =
if−1∑
i=i0

[
xi

ui

]T [
Q M

MT R

] [
xi

ui

]
+ xT

if
Qfxif

where

Q = QT ≥ 0,
[

Q M
MT R

]
≥ 0, R = RT > 0

Show that the optimal control is given as

ui = −Kixi

Ki = (BT Si+1B + R)−1(BT Si+1A + MT )
Si = AT Si+1A − (BT Si+1A + MT )T (BT Si+1B + R)−T (BT Si+1A + MT )

+ Q

where Sif
= Qf .
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2.10. Show that the general tracking control (2.103) is reduced to the simpler
tracking control (2.79) if Q in (2.103) becomes zero.

2.11. Consider the minimum energy performance criterion given by

J =
if−1∑
i=i0

uT
i Rui (2.311)

for the system (2.27). Find the control ui that minimizes (2.311) and satisfies
the constraints |ui| ≤ ū and xif

= 0.

2.12. Consider an optimal control problem on [i0 if ] for the system (2.27)
with the LQ performance criterion

J(x, u) =
if−1∑
i=i0

(xT
i Qxi + uT

i Rui) (2.312)

(1) Find the optimal control uk subject to Cxif
+ b = 0.

(2) Find the optimal control uk subject to xT
if

Pxif
≤ 1, where P is a sym-

metric positive definite matrix.

2.13. Consider the following performance criterion for the system (2.120):

J(xr, u) =
if−1∑
i=i0

{[
xi

ui

]T [
Q M

MT R

] [
xi

ui

]
− γ2wT

i wi

}
+xT

if
Qfxif

,

where

Q = QT ≥ 0,
[

Q M
MT R

]
≥ 0, R = RT > 0. (2.313)

Derive the H∞ control.

2.14. Derive the last term hi,if
in the optimal cost (2.148) associated with

the H∞ control.

2.15. Consider the stochastic model (2.161) and (2.162) where wi and vi are
zero-mean, white noise sequences with variance given by

E
{[

wi

vi

] [
wT

j vT
j

]}
=
[

Ξ11 Ξ12

Ξ12 Ξ22

]
δi−j

(1) Show that (2.161) and (2.162) are equivalent to the following model:

xi+1 = Āxi + Bui + GΞ12Ξ
−1
22 yi + Gξi

yi = Cxi + vi

where

Ā = A − GΞ12Ξ
−1
22 C, ξi = wi − Ξ12Ξ

−1
22 vi
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(2) Find E{ξiv
T
i }.

(3) Show that the controllability and observability of the pairs {Ā, B} and
{Ā, C} are guaranteed by the controllability and observability of the pairs
{A,B} and {A,C}, respectively.

(4) Find the Kalman filter x̂k+1|k.

2.16. Consider the following system:

xk+1 =

⎡⎣0 1 0
0 0 1
0 0 0

⎤⎦xk +

⎡⎣0
0
1

⎤⎦ ξk

yk =
[
1 0 0

]
xk + θk

where ξk and θk are zero-mean Gaussian white noises with covariance 1 and
µ.

(1) Express the covariance of the state estimation error Pk as a function of µ.
(2) Calculate the gain matrix of the Kalman filter.
(3) Calculate and plot the poles and zeros of the closed-loop system.

2.17. Consider the LQG problem[
x1,i+1

x2,i+1

]
=
[

1 1
0 1

] [
x1,i

x2,i

]
+

√
ρ

[
1 0
1 0

]
w +

[
0
1

]
u (2.314)

y =
[
1 0
] [x1

x2

]
(2.315)

for the following performance criterion:

J =
if−1∑
i=i0

ρ(x1 + x2)2 + u2
i (2.316)

Discuss the stability margin, such as gain and phase margins, for steady-state
control.

2.18. Consider a controllable pair {A,B} and assume A does not have unit-
circle eigenvalues. Consider also arbitrary matrices {Q,S,R} of appropriate
dimensions and define a Popov function

Sy(z) =
[
BT (zI − AT )−1 I

] [ Q S
ST R

] [
(z−1I − A)−1B

I

]
(2.317)

where the central matrix is Hermitian but may be indefinite. The KYP
lemma[KSH00] can be stated as follows.
The following three statements are all equivalent:

(a) Sy(ejw) ≥ 0 for all w ∈ [−π , π].
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(b) There exists a Hermitian matrix P such that[
Q − P + AT PA S + AT PB

ST + BT PA R + BT PB

]
≥ 0 (2.318)

(c) There exist an n × n Hermitian matrix P , a p × p matrix Re ≥ 0, and an
n × p matrix Kp, such that[

Q − P + AT PA S + AT PB
ST + BT PA R + BT PB

]
=
[

Kp

I

]
Re

[
KT

p I
]

(2.319)

Derive the bounded real lemma from the above KYP lemma and compare it
with the LMI result in this section.




