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Introduction

The use of radiopharmaceuticals and the imaging of
their biodistribution and kinetics with modern instru-
mentation are key components to successful develop-
ments in PET. Clever design and synthesis of sensitive
and specific radiopharmaceuticals is the necessary first
step. Each tracer must be targeted to measure a physio-
logical parameter of interest such as blood flow, metabo-
lism, receptor content, etc., in one or more organs or
regions. State-of-the-art PET instrumentation produces
high-quality 3-dimensional images after injection of
tracer into a patient, normal volunteer, or research
animal. With an appropriate reconstruction algorithm
and with proper corrections for the physical effects such
as attenuation and scatter, quantitatively accurate mea-
surements of regional radioactivity concentration can be
obtained. These images of tracer distribution can be use-
fully applied to answer clinical and scientific questions.

With the additional use of tracer kinetic modeling
techniques, however, there is the potential for a sub-
stantial improvement in the kind and quality of infor-
mation that can be extracted from these biological
data. The purpose of a mathematical model is to define
the relationship between the measurable data and the
physiological parameters that affect the uptake and
metabolism of the tracer.

In this chapter, the concepts of mathematical model-
ing as applied to PET are presented. Many of these con-
cepts can be applied to radioactivity measurements from
small animals made by tissue sampling or quantitative
autoradiography. The primary focus in this chapter will
be on methods applicable to data that can be acquired

with PET imaging technology. The advantages and dis-
advantages of various modeling approaches are pre-
sented. Then, classes of models are introduced, followed
by a detailed description of compartment modeling and
of the process of model development and application.
Finally, the factors to be considered in choosing and
using various model-based methods are presented.

Overview of Modeling

PET imaging produces quantitative radioactivity mea-
surements throughout a target structure or organ. A
single static image may be collected at a single specific
time post-injection or the full time-course of radioactiv-
ity can be measured. Data from multiple studies under
different biological conditions may also be obtained. If
the appropriate tracer is selected and suitable imaging
conditions are used, the activity values measured in a
region of interest (ROI) in the image should be most
heavily influenced by the physiological characteristic of
interest, be it blood flow, receptor concentration, etc. A
model attempts to describe in an exact fashion this rela-
tionship between the measurements and the parameters
of interest. In other words, an appropriate tracer kinetic
model can account for all the biological factors that con-
tribute to the tissue radioactivity signal.

The concentration of radioactivity in a given tissue
region at a particular time post-injection primarily
depends upon two factors. First, and of most interest, is
the local tissue physiology, for example, the blood flow
or metabolism in that region. Second is the input func-
tion, i.e., the time-course of tracer radioactivity concen-
tration in the blood or plasma, which defines the
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availability of tracer to the target organ. A model is a
mathematical description (i.e., one or more equations) of
the relationship between tissue concentration and these
controlling factors. A full model can predict the time-
course of radioactivity concentration in a tissue region
from knowledge of the local physiological variables and
the input function. A simpler model might predict only
certain aspects of the tissue concentration curve, such as
the initial slope, the area under the curve, or the relative
activity concentration between the target organ and a
reference region.

The development of a model is not a simple task. The
studies that are necessary to develop and validate a
model can be quite complex. There are no absolute rules
defining the essential components of a model. A success-
ful model-based method must account for the limita-
tions imposed by instrumentation, statistics, and patient
logistics. To determine the ultimate form of a useful
model, many factors must be considered and compro-
mises must be made. The complexity of a “100%-accu-
rate” model will usually make it impractical to use or
may produce statistically unreliable results. A simpler,
“less accurate” model tends to be more useful.

A model can predict the tissue radioactivity measure-
ments given knowledge of the underlying physiology. At
first, this does not appear to be useful, since it requires
knowledge of exactly the information that we seek to de-
termine. However, the model can be made useful by in-
verting its equations. In this way, measurements of tissue
and blood concentration can be used to estimate
regional physiological parameters on a regional or even
pixel-by-pixel basis. There are many ways to invert the
model equations and solve for these parameters. Such
techniques are called model-based methods. They may
be very complex, requiring multiple scans and blood
samples and using iterative parameter-estimation tech-
niques. Alternatively, a model-based method may be a
simple clinically oriented procedure.With the knowledge
of the behavior of the tracer provided by the model,
straight-forward study conditions (tracer administration
scheme, scanning and blood data collection, and data
processing) can be defined to measure one or more
physiological parameters.

This chapter provides an overview of the wide as-
sortment of ways to develop a useful model and to use
the models to obtain absolute or relative values of
physiological parameters.

The Modeling Process

Once a radioactive tracer has been selected for evalua-
tion, there are a number of steps involved in developing a

useful model and a model-based method. Figure 6.1
gives an overview of this process. Based on prior infor-
mation of the expected in vivo behavior of the tracer, a
“complete” model can be specified. Such a model is
usually overly complex and will have many more para-
meters than can be determined from PET data due to the
presence of statistical noise. Based on initial modeling
studies, a simpler model whose parameters can be deter-
mined (identified) can be developed. Then, validation
studies can be performed to refine the model and verify
that its assumptions are correct and that the estimates of
physiological parameters are accurate. Finally, based on
the understanding of the tracer provided by these mod-
eling studies, a simpler protocol can be defined and
applied for routine patient use. This method may involve
limited or no blood measurements and simpler data
analysis procedures. Under many conditions, such a pro-
tocol may produce physiological estimates of compara-
ble precision and accuracy as those determined from the
more complex modeling studies.
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Figure 66.1. Steps in developing a model. A priori information concerning
the expected biochemical behavior of the tracer is used to specify a com-
plete model. Initial modeling studies will define an identifiable model, i.e., a
model with parameters that can be determined from the measurable data.
Validation studies are used to refine the model, verify its assumptions, and
test the accuracy of its estimates. After optimization procedures and error
analysis and accounting for patient logistical considerations, a model-based
method can be developed that is both practical and produces reliable, accu-
rate physiological measurements.
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Many factors will affect the ultimate form of a useful
model. In addition to the biological characteristics of
the tracer, the characteristics of the instrumentation
are important. It is essential to understand the accu-
racy of the reconstruction algorithm and its correc-
tions, as well as the noise level in the measurements,
which depends on the injected dose, camera sensitivity,
reconstruction parameters, scan time, and ROI size. It
may be of little use to develop a sophisticated model if
there are significant inaccuracies in the radioactivity
measurements due to improper corrections for attenu-
ation or scatter. The noise level in the data also affects
the number of parameters that may be estimated.
It also is the primary determinant of the precision
(variability) in the estimated parameters.

Tracers and Models

In this chapter, the labeled compounds will be referred to
as tracer, radiotracer, or radiopharmaceutical. The term
tracer implies that the injected compound, including
both labeled and unlabelled molecules, is present in the
tissue at negligible mass concentrations, so that little or
no change in the saturation of relevant enzymes or re-
ceptors occurs. For this discussion, we assume that tracer
levels are appropriate, except where explicitly noted.

Figure 6.2 provides an overview of the various paths
that a tracer X may follow after delivery by intravenous
injection. Arterial inflow delivers X to the region of in-
terest and venous outflow carries it away. The tracer
may cross the capillary membrane and enter the tissue.
From the tissue, it may be bound irreversibly or re-
versibly to intra- or extracellular sites, or may be me-
tabolized into one or more chemical forms. The
original labeled tracer or the metabolites may exit the
tissue to the blood.

Characteristics of Radiotracers

Before discussing models, it is important to consider the
basic characteristics of radioactive tracers.A tracer is de-
signed to provide information about a particular physio-
logical function of interest, such as blood flow, blood
volume, a metabolic process, a transport step, a binding
process, etc. However, since any given tracer will likely
have many biochemical fates following injection, great
care and judgment are required to choose an appropriate
compound. Ideally, the only factor controlling the uptake
and distribution of the tracer will be the physiological

process under study. Realistically, other factors will
always affect a tracer’s distribution and kinetics. For
example, for a receptor-binding radiotracer, regional ra-
dioactivity concentration data are affected by regional
blood flow, plasma protein binding, capillary permeabil-
ity, nonspecific tissue binding, receptor association and
dissociation rates, free receptor concentration, tracer
clearance from blood (controlled by whole-body
uptake), tracer metabolism (throughout the body), and
regional uptake of any radioactive metabolites. For a
well-designed tracer, the net effect of these extraneous
factors is minor.

A tracer may either be a direct radiolabeled version of
a naturally occurring compound, an analog of a natural
compound, or a unique compound, perhaps a radiola-
beled drug. An analog is a compound whose chemical
properties are slightly different from the natural com-
pound to which it is related. For example, [11C]glucose is
identical to glucose except for the replacement of a 12C
atom with 11C. Analogs of glucose are deoxyglucose [1]
and fluorodeoxyglucose (FDG) [2-4], which are chemi-
cally different from glucose. Often, because the naturally
occurring compound has a very complex biochemical
fate, a model describing the tissue radioactivity data of a
directly labeled compound may need to be quite
complex. A carefully designed analog can dramatically
simplify the modeling and improve the sensitivity of the
model to the parameter of interest. Deoxyglucose and
FDG are good examples. Deoxyglucose and glucose enter
cells by the same transport enzyme and are both phos-
phorylated by the enzyme hexokinase. However, de-
oxyglucose is not a substrate for the next enzyme in the

Tracer Kinetic Modeling in PET 129

Figure 66.2. Overview of processes associated with delivery, uptake,
binding, and clearance of a radioactive tracer X. Arterial inflow delivers X to
the region of interest and venous outflow carries it away. The tracer may
cross the capillary membrane and enter the tissue. From the tissue, it may be
bound irreversibly or reversibly to intra- or extracellular sites, or may be me-
tabolized (XP) into one or more chemical forms. The original labeled tracer
or the metabolites may exit the tissue to the blood.
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glycolytic pathway, so deoxyglucose-6-phosphate accu-
mulates in tissue. In this way, the tissue signal directly
reflects the rate of metabolism, since there is little clear-
ance of metabolized tracer. One important disadvantage
of using an analog is that the measured kinetic parame-
ters are those of the analog itself, not of the natural com-
pound of interest. To correct for this, the relationship
between the native compound and the radioactive
analog must be determined. For deoxyglucose and FDG,
this relationship is summarized by the lumped constant
[1, 5]. To make the analog approach widely applicable, it
is necessary to test if this constant changes over a wide
range of pathological conditions [5-9].

Ideally, the parameter of interest is the primary de-
terminant of the uptake and retention of a tracer, i.e.,
the tissue uptake after an appropriate period is di-
rectly (i.e., linearly) proportional to this parameter.
This is the case for radioactive microspheres [10].
Many other compounds are substantially trapped in
tissue shortly after uptake and are called chemical mi-
crospheres [11, 12]. For this class of compounds, a
single scan at an appropriate time post-injection can
give sufficient information about the parameter of in-
terest. For other tracers, which both enter and exit
tissue, scanning at multiple time points post-injection
may be necessary to extract useful physiological in-
formation.

It is obvious that another important attribute of a
tracer is that there be sufficient uptake in the organ of
interest, i.e., the radioactivity concentration must
provide sufficient counting statistics in a scan of rea-
sonable length after injection of an allowable dose.
Thus, the size of the structure of interest and the char-
acteristics of the imaging equipment can also affect the
choice of an appropriate tracer.

Types of Models

There are a wide variety of approaches to extract mean-
ingful physiological data from PET tissue radioactivity
measurements. All modeling approaches share some
basic assumptions, in particular the principle of conser-
vation of mass. A number of sources provide a compre-
hensive presentation of modeling alternatives [13–18].
Some approaches are termed stochastic or non-compart-
mental, and require minimal assumptions concerning
the underlying physiology of the tracer’s uptake and me-
tabolism [19]. These methods permit the measurement
of certain physiological parameters, such as mean transit
time and volume of distribution, without an explicit de-
scription of all of the specific pools or compartments
that a tracer molecule may enter.

Alternatively, there are distributed models that try to
achieve a precise description of the fate of the radio-
tracer. These models not only specify the possible
physical locations and biochemical forms of the tracer,
but also include the concentration gradients that exist
within different physiological domains. In particular,
distributed models for capillary–tissue exchange of
tracer have been extensively developed [20–26]. Since
this is the first step in the uptake of any tracer into
tissue, a precise model for delivery of tracer at the cap-
illary is important. Distributed models are also used to
account for processes, such as diffusion, where concen-
tration gradients are present [27].

A class of models whose complexity lies between
stochastic and distributed is the compartmental
models. These models define some of the details of the
underlying physiology, but do not include concentra-
tion gradients present in distributed models. The de-
velopment and application of these models is the
principal focus of this chapter. The most common ap-
plication of compartmental modeling is the mathemat-
ical description of the distribution of a tracer
throughout the body [28, 29]. Here, different body
organs or groups of organs are assigned to individual
compartments, and the model defines the kinetics into
and out of each compartment. This type of model is
useful when the primary measurable data is the time-
concentration curve of the tracer in blood and urine. If
there are many measurements with good accuracy,
fairly complex models with many compartments and
parameters can be used.

In PET, compartmental modeling is applied in a dif-
ferent manner. Here, scanners provide one or more
measurements of radioactivity levels in a specific
organ, region, or even pixel. If the tracer enters and
leaves the organ via the blood, the tracer kinetics in
other body regions need not be considered to evaluate
the physiological traits of the organ of interest. In this
way, each region or pixel can be analyzed indepen-
dently. Generally, there must be some knowledge of the
time-course of blood radio activity. Since each region
can be evaluated separately, the models can be rela-
tively simple, and can therefore be usefully applied to
determine regional physiological parameters from PET
data.

Compartmental Modeling

Compartmental modeling is the most commonly used
method for describing the uptake and clearance of ra-
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dioactive tracers in tissue [28, 30, 31]. These models
specify that all molecules of tracer delivered to the
system (i.e., injected) will at any given time exist in one
of many compartments. Each compartment defines
one possible state of the tracer, specifically its physical
location (for example, intravascular space, extracellu-
lar space, intracellular space, synapse) and its chemical
state (i.e., its current metabolic form or its binding
state to different tissue elements, such as plasma pro-
teins, receptors, etc.). Often, a single compartment rep-
resents a number of these states lumped together.
Compartments are typically numbered for mathemati-
cal notation.

The compartmental model also describes the possi-
ble transformations that can occur to the tracer, allow-
ing it to “move” between compartments. For example, a
molecule of tracer in the vascular space may enter the
extracellular space, or a molecule of receptor-binding
tracer that is free in the synapse may become bound to
its receptor. The model defines the fraction or propor-
tion of tracer molecules that will “move” to a different
compartment within a specified time. This fractional
rate of change of the tracer concentration in one com-
partment is called a rate constant, usually expressed as
“k”, and has units of inverse time, e.g., min–1. The
inverse minute unit reflects the fraction per minute,
i.e., the proportion of tracer molecules in a given com-
partment that will “move” to another compartment in
one minute. To distinguish the various rate constants
in a given model, subscripts are used to define the
source and destination compartment numbers. In
much of the compartmental modeling literature, k12,
for example, reflects the rate of tracer movement to
compartment 1 from 2. This nomenclature is especially
convenient for large models and is motivated by the
nature of matrix algebra notation. In PET applications,
the number of compartments is small (1–3), as is the
number of rate constants (1–6), so it is typical to use a
notation with one subscript (e.g., k3) where the source
and destination compartments associated with each
constant are explicitly defined.

The physiological interpretation of the source and
destination compartments defines the meaning of the
rate constants for movement of tracer between them.
For example, the rate constant describing tracer move-
ment from a receptor-bound compartment to the
unbound compartment will reflect the receptor disso-
ciation rate. For a freely diffusible inert tracer, the rate
constant of transfer from arterial blood to the tissue
compartment will define local blood flow. By determin-
ing these rate constants (or some algebraic combina-
tion of them), quantitative estimates or indices of local
physiological parameters can be obtained. The under-

lying goal of all modeling methods is the estimation of
one or more of these rate constants from tissue ra-
dioactivity measurements.

Examples of Compartmental Models

Figure 6.3 shows examples of compartmental model
configurations. In many depictions of models, a rectan-
gular box is drawn for each compartment, with arrows
labeled with the rate constants placed between the
boxes. In most whole-body compartmental models,
the blood is usually counted as a compartment.
Measurements from blood are often the primary set of
data used to estimate the model rate constants. In the
PET applications described here, we are most inter-
ested in the model constants associated with the tissue
regions that are being imaged. Typically, measurements
will be made from the blood to define the “input func-
tion” to the first tissue compartment (see Input
Functions and Convolution, below). In this presenta-
tion, we will treat these blood input measurements as
known values, not as concentration values to be pre-
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Figure 66.3. Examples of compartmental models. Ca is the concentration of
tracer in arterial blood, C1, C2, and C3 are the tracer concentrations in com-
partments 1–3, and K1, k2, etc., are the rate constants that define the rate of
tracer movement between compartments. A the simplest compartmental
model having one tissue compartment with irreversible uptake of tracer,
e.g., microspheres. B a model with one tissue compartment appropriate for a
tracer that exhibits reversible tissue uptake, e.g., a diffusible blood flow
tracer. C a model with two tissue compartments, e.g., FDG. D a three tissue-
compartment model for a receptor-binding ligand where the three compart-
ments represent 1) free tracer, 2) tracer specifically bound to receptor, and
3) tracer nonspecifically bound to other tissue elements
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dicted by the model. Thus, blood will not be counted
as a compartment.

Figure 6.3A shows the simplest model having one
tissue compartment with irreversible uptake of tracer.
This irreversible uptake is shown by the presence of a rate
constant K1 for tracer moving from the blood to com-
partment 1, but with no rate constant for exit of tracer
back to blood. Such a model is appropriate for radioac-
tive microspheres [10] or for a tracer that is irreversibly
trapped in tissue. This model is often used as an approxi-
mation when tissue trapping is nearly irreversible [11].
Figure 6.3B shows a one-tissue-compartment model, ap-
propriate for a tracer that exhibits reversible tissue
uptake. This is a common model for inert tracers used to
measure local blood flow [13]. Here, the rate at which the
tracer exits the tissue compartment and returns to the
blood is denoted k2. Figure 6.3C shows a model with two
tissue compartments. This model may be appropriate for
a tracer that enters tissue from blood, and then is either
metabolized to a form that is trapped in the tissue (at a
rate defined by k3) or returns to blood (at a rate defined
by k2), such as deoxyglucose [1]. Compartment 1 repre-
sents the unmetabolized tracer and compartment 2 the
metabolized tracer. Figure 6.3D shows a three-tissue-
compartment model for a receptor-binding ligand where
the three compartments represent free tracer, tracer
specifically bound to receptor, and tracer nonspecifically
bound to other tissue elements [32].

Compartmental Modeling Assumptions

The successful application of simple compartmental
models to a complex biological system requires that
many assumptions be true. These assumptions are typ-
ically not completely valid, so that successful use of
these models depends upon whether errors in these as-
sumptions produce acceptable errors in model mea-
surements (see Error Analysis, below). Compartmental
models, by their nature, assume that each compart-
ment is well mixed, i.e., there are no concentration gra-
dients within a single compartment. Therefore, all
tracer molecules in a given compartment have equal
probability of exchange into other compartments. This
well-mixed assumption has the great advantage of pro-
ducing relatively simple mathematical relationships.
However, it limits the ability of compartmental models
to provide an accurate description of some biological
structures. For example, a compartmental model
cannot include the change of activity concentration in
a capillary from arterial to venous ends, or the hetero-
geneous distribution of receptors in a patch of tissue.
Often, in PET applications, the “well-mixed” assump-

tion is also violated by the nature of the imaging
process. Due to low resolution, even single-pixel data
from reconstructed images represent a mixture of un-
derlying tissues. When larger ROIs are used to improve
the statistical precision of the measurements, hetero-
geneity in the measurements increases.

A primary assumption of most compartmental
models is that the underlying physiological processes
are in steady state. Mathematically, this means that the
rate constants of the system do not change with time
during a study, and causes the mathematics of the
model to be linear differential equations (see Model
Implementation). If these rate constants reflect local
blood flow or the rate of a metabolic or binding
process, then the rate at which these processes occur
should remain constant during a study. Since the rates
of many biological processes are regulated by substrate
and product concentrations, maintaining processes in
steady state usually requires constant concentrations of
these regulating molecules. In practice, this require-
ment is never precisely met. However, these assump-
tions are adequately met so long as any changes in the
underlying rates of flow, metabolism, receptor binding,
etc., are slow with respect to the time scale of the data
being analyzed. Note that the concentrations of the in-
jected radiopharmaceuticals may change dramatically
during a study; however, this does not violate the
steady-state assumption so long as the radioactive
species exists at a negligible (tracer) concentration
with respect to the non-radioactive natural biological
substrates (see Biochemical Reactions and Receptor–
Ligand Binding). For studies using injections of radio-
pharmaceuticals with low specific activity, saturation
of receptors or enzymes can be significant, and non-
linear modeling techniques are required.

To generate the equations of a model, the magnitude
of tracer movement from compartment A to compart-
ment B per unit of time must be defined. This is called
the flux (JAB). If tracer concentration is expressed in
units of kBq per mL, then flux has units of kBq per mL
per min (or another appropriate time unit). The as-
sumptions of well-mixed compartments and physio-
logical processes in steady state lead to the
mathematical relationship that the flux JAB is a linear
multiple of the amount, or concentration, of tracer in
the source compartment A (CA), i.e.,

where k is a rate constant with units of inverse minute
and which is independent of the concentration in any
compartment. This simple equation is the basis of the
differential equations that describe compartmental
models (see Model Implementation).

  J k CAB A= ( )1
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Interpretation of Model Rate Constants

The physiological interpretations of the rate constants
(such as k in Eq. 1) depend upon the definition of the
source and destination compartments. A single com-
partment of a model may often lump a number of
physiological entities together, for example, tracer in
extracellular and intracellular spaces or tracer that is
free in tissue and nonspecifically bound. This section
discusses the physiological meaning of model rate 
constants.

Blood Flow and Extraction

The first step in most in vivo models is the delivery of
tracer to the target region from the blood. The flux of
tracer into the first tissue compartment from the blood
is governed by the local blood flow and the rate of ex-
traction of the tracer from the capillary into the tissue.
Conventional fluid flow describes the volume of liquid
passing a given point per unit of time and has units of
mL per min. A more useful physiological measure is
perfusion flow, the volume of blood passing in and out
of a given volume (or weight) of tissue per unit of time,
which has units of mL per min per mL of tissue or mL
per min per gram of tissue. In the physiological litera-
ture, the term blood flow usually means perfusion flow.

Determining blood flow and extraction information
from model parameters begins with the Fick Principle
(see, for example, Lassen and Perl [15]). The net flux (J)
of tracer into or out of a tissue element equals the dif-
ference between the influx (Jin) and outflux (Jout), i.e.,

where the influx is the product of the blood flow (F)
and the arterial concentration (Ca), and the outflux is
the product of the blood flow and the venous concen-
tration (Cv). The unidirectional (or first-pass) extrac-
tion fraction E is the fraction of tracer that exits the
blood and enters the tissue on one capillary pass, or

A tracer with low extraction has a small
arterial–venous difference on first pass. Equation 2 can
then be rewritten as

Equation 4 describes the unidirectional delivery of
tracer from blood to tissue. The rate constant k
defining this uptake process is the product of blood
flow and unidirectional extraction fraction. The inter-

pretation of the extraction fraction was further devel-
oped by Kety [13], Renkin [33], and Crone [34] by con-
sidering the capillary as a cylinder to produce the
following relationship:

where P is the permeability of the tracer across the
capillary surface (cm per min), S is the capillary
surface area per gram of tissue (cm2 per gram), and F
is the blood flow (mL per min per gram). For highly
permeable tracers, the product PS is much greater
than the flow F, so the exponential term in Eq. 5 is
small, and the extraction fraction is nearly 1.0. In this
case, the rate constant for delivery is approximately
equal to flow. Such tracers are therefore useful to
measure regional blood flow and not useful to
measure permeability, i.e., they are flow-limited. For
tracers with permeability much lower than flow, the
relationship in Eq. 5 can be approximated as

and the rate constant k (F·E) becomes PS. Such tracers
are useful to measure permeability and not useful to
measure flow. Most tracers lie between these two ex-
tremes, so that the rate constant for delivery from arte-
rial blood to tissue is affected by both blood flow and
permeability. These relationships are directly applica-
ble to tracers that enter and leave tissue by passive dif-
fusion. For tracers transported into and out of tissue
by facilitated or active transport, the PS product is
mathematically equivalent to the transport rate, which
depends upon the concentration and reaction rate of
the transport enzymes (See Biochemical Reactions).

The interpretation of a delivery rate constant k as the
product of flow and extraction fraction may depend
upon whether the blood activity concentration Ca is
measured in whole blood or in plasma. If there is very
rapid equilibration between plasma and red blood
cells, then the whole blood and plasma concentrations
will be identical. However, if equilibrium is slow with
respect to tracer uptake rates into tissue, or if there is
trapping or metabolism of the tracer in red blood cells,
than the plasma concentration should be used. In the
extreme of no uptake of tracer into red cells, then the
delivery rate constant k is the product of extraction
fraction and plasma flow, where plasma flow is related
to whole blood flow based on the hematocrit. If
binding of tracer to plasma proteins is significant,
similar changes in interpretation of the rate constants
may also be required.

   
E

PS
F

  � ( )6

  E
PS
F= −

−
1 5e ( )

J F E C k Ca a= ⋅( ) = ( )4

  
E

C C
C

a v

a

= −
( )3

  J J J F C F Cin out a v= − = − ( )2

Tracer Kinetic Modeling in PET 133



Diffusible Tracers and Volume of Distribution

One of the simplest classes of tracers is those that enter
tissue from blood and then later return to blood. The
net flux of tracer into a tissue compartment can be ex-
pressed as follows:

K1 is the rate of entry of tracer from blood to tissue
and is equal to the product of extraction fraction and
blood flow, and Ca is the concentration of tracer in arte-
rial blood. The rate constant k2 describes the rate of
return of tracer from tissue to blood, where C is the
concentration of tracer in tissue. The physiological in-
terpretation of k2 can best be defined by introducing
the concept of the volume of distribution. Suppose the
concentration of tracer in the blood remained con-
stant. Ultimately, the concentration of the diffusible
tracer in the tissue compartment would also become
constant and equilibrium would be achieved. The ratio
of the tissue concentration to the blood concentration
at equilibrium is called the volume of distribution (or
alternatively the partition coefficient). It is termed a
volume because it can be thought of as the volume of
blood that contains the same quantity of radioactivity
as 1 mL (or 1 gram) of tissue. Once the blood and
tissue tracer concentrations have reached constant
levels, i.e., equilibrium, the net flux J into the tissue
compartment is 0, so the volume of distribution VD can
be expressed as

where the last equality is derived by setting the flux J in
Eq. 7 to 0. Therefore, the physiological definition for
the rate constant k2 is the ratio of K1 to VD. Thus, k2 has
information concerning flow, tracer extraction, and
partition coefficient.

Biochemical Reactions

Often, two compartments of a model represent the sub-
strate and product of a chemical reaction. In that case,
the rate constant describing the “exchange” between
these compartments is indicative of the reaction rate. For
enzyme-catalyzed reactions [35], the flux from substrate
to product compartments is the reaction velocity v:

Vm is the maximal rate of the reaction, C is the concen-
tration of substrate, and Km is the concentration of sub-
strate that produces half-maximum velocity. This is the

classic Michaelis–Menten relationship. It shows that
the velocity is not a linear function of the substrate
concentration, as in Eq. 1. However, when using tracer
concentrations of a radioactive species and if the con-
centrations of the native substrates are in steady state
(see Compartmental Modeling Assumptions), the
linear form of Eq. 1 still holds. In the presence of a
native substrate with concentration C, and the radioac-
tive analog with concentration C*, the reaction rate for
the generation of radioactive product v* is as follows:

Vm
* and Km

* are the maximal velocity and half-maximal
substrate concentration for the radioactive analog. If
the radioactive species has high specific activity (the
concentration ratio of labeled to unlabelled compound
in the injectate) so that its total concentration (labeled
and unlabelled) is small compared to the native sub-
strate, i.e., C*/Km

* « C/Km, then Eq. (6.10) reduces to

The term in large brackets in Eq. 11 is composed of
terms that are assumed to be constant throughout a
tracer experiment. Therefore, when using radiophar-
maceuticals at tracer concentrations, enzyme-catalyzed
reactions can be described with a linear relationship as
the product of a rate constant k and the radioactive
substrate concentration C*. The rate constant k includes
information about the transport enzyme and the con-
centration of unlabelled substrate.

Receptor–ligand Binding

For radiotracers that bind to receptors in the tissue
(see, for example, Eckelman [36]), the rate of binding,
i.e., the rate of passage of tracer from the free com-
partment to the bound compartment, can also be de-
scribed by the linear form of Eq. 1 under tracer
concentration assumptions. For many receptor
systems, the binding rate is proportional to the
product of the concentrations of free ligand and free
receptor. This classical bi-molecular association can
be described mathematically as
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where kon is the bi-molecular association rate
(nM–1min–1), Bmax is the total concentration of recep-
tors (nM), B is the concentration of receptors currently
bound (either by the injected ligand or by endogenous
molecules), and F is the concentration of free ligand.
When a radioactive species is added and competes
with endogenous compound for receptor binding, the
radiopharmaceutical binding velocity is

where kon
* is the association rate of the radiopharmaceu-

tical and B* is the mass concentration of the bound ra-
diopharmaceutical. If the radioactive compound has
high specific activity, then B* « B, and Eq. 13 becomes

where B′max is the free receptor concentration (Bmax – B).
Thus, using a high specific activity receptor-binding
ligand, measurement of the reaction rate constant k
provides information about the product of kon

* and B′max,
but cannot separate these parameters. Since B′max is sen-
sitive to change in total receptor and occupancy by en-
dogenous or exogenous drugs, receptor-binding ligands
can be extremely useful to measure receptor occupancy
or dynamic changes in neurotransmitter levels [37].
Note that the description of receptor-binding radioli-
gands is mathematically identical to that for enzyme-
catalyzed reactions, although the conventional
nomenclature is different.

Model Implementation

This section presents an overview of the mathematics
associated with compartmental modeling. This in-
cludes the mathematical formulation of these models
into differential equations, the solution equations to a
few simple models, and a summary of parameter esti-
mation techniques used to determine model rate con-
stants from measured data. Here, we concentrate on
applications where we have made measurements in an
organ or region of interest which we wish to use to as-
certain estimates of the underlying physiological rates
of this region.

Mathematics of Compartmental Models

This section describes the process of converting a com-
partmental model into its mathematical form and de-

termining its solution. For a more complete discussion
of these topics, consult basic texts on differential equa-
tions [38] as well as a number of specialized texts on
mathematical modeling of biological systems [16, 28].

First, we start with a particular model configuration
like those in Fig. 6.3. The compartments are numbered
1, 2,…, and the radioactivity concentration in each
compartment is designated C1, C2, …. Radioactivity
measurements in tissue are typically of a form such as
counts per mL or kBq per gram. The volume or weight
unit in the denominator reflects the full tissue volume.
However, the tracer may exist only in portions of the
tissue; for example, just the extracellular space. In this
case, the concentration of the tracer within its distribu-
tion space will be higher than its apparent concentra-
tion per gram of tissue. When these concentration
values are used to define reaction rates, instead of the
true local concentration, the interpretation of the rele-
vant rate constant should include a correction for the
fraction of total tissue volume in which the tracer
distributes.

Differential Equations

The net flux into each compartment can be defined as
the sum of all the inflows minus the sum of all the
outflows. Each of these components is symbolized by
an arrow into or out of the compartment, and the mag-
nitude of each flux is the product of the rate constant
and the concentration in the source compartment. The
net flux into a compartment has units of concentration
(C) per unit time and is equal to the rate of change
(d/dt) of the compartment concentration, or dC/dt.
Consider the simple one-tissue-compartment model in
Fig. 6.3B. The differential equation describing the rate
of change of the tissue concentration C1 is

Here, Ca(t) is the time course of tracer in the arterial
blood, also called the input function. K1 is the rate con-
stant for entry of tracer from blood to tissue, and k2 is
the rate constant for return of tracer to blood. The cap-
italization of the rate constant K1 is not a typographical
error. K1 is capitalized because it has different units
than other rate constants. The blood radiotracer mea-
surements are typically made per mL of blood or
plasma. In non-imaging studies in animals, tissue con-
centration measurements are made per gram of tissue.
Thus, C1 had units of kBq per gram, and Ca had units of
kBq per mL. Therefore, K1 must have units of mL blood
per min per gram tissue (usually written as mL/min/g).
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The other rate constants have units of inverse minute.
PET scanners actually acquire tissue radioactivity
measurements per mL of tissue. Thus, to present
results in comparable units to earlier work, corrections
for the density of tissue must be applied to convert kBq
per mL tissue to kBq per gram tissue.

Before solving Eq. 15 for a general input function
Ca(t), first consider the case of an ideal bolus input, i.e.,
the tracer passes through the tissue capillaries in one
brief instant at time t = 0, and there is no recirculation.
If Ca is the magnitude of this bolus, the model solution
for the time-concentration curve for compartment 1 is
as follows:

Thus, at time zero, the tissue activity jumps from 0 to
a level K1Ca and then drops towards zero exponen-
tially with a rate k2 per min or a half-life of 0.693/k2

min.
Now consider the two tissue-compartment model in

Fig. 6.3C. For this model there will be two differential
equations, one per compartment:

Note that there is a term on the right side of Eqs. 17, and
18 for each of the connections between compartments in
Fig. 6.3C. An outflux term in Eq. 17 [e.g., -k3C1(t)] has a
corresponding influx term in Eq. 18 [+k3C1(t)]. The solu-
tion to these coupled differential equations, again for the
case of an ideal bolus input, is as follows:

A11, A12, A22, α1, and α 2 are algebraic functions of the
model rate constants K1, k2, k3 and k4 [4]. Here, the time
course of each compartment is the sum of two expo-
nentials. One special case of interest is when the tracer
is irreversibly bound in tissue so that the rate of return
of tracer from compartment 2 to compartment 1, k4, is
zero. In this case, the solution becomes

Note that in most cases, the measured tissue activity
will be the total in both compartments, so that the
model prediction will be the sum C1(t) + C2(t).

These solutions for tissue concentration are linearly
proportional to the magnitude of the input, Ca.
Doubling the magnitude of the input (injecting more)
will double the resultant tissue concentration. The
equations are non-linear with respect to many of the
model rate constants (those that appear in the expo-
nents) but is linear in K1.

Input Functions and Convolution

In the previous section, mathematical solutions were
presented for simple models under the condition of an
ideal bolus, i.e., the tracer appears for one capillary
transit with no recirculation. In reality, the input to the
tissue is the continuous blood time–activity curve. The
equations above are linear with respect to the input
function Ca. This permits a direct extension of these
bolus equations to be applied to solve the case of a con-
tinuous input function. Fig. 6.4 illustrates this concept.
Figure 6.4a and 6.4c show ideal bolus input functions
of different magnitudes at different times. Figure 6.4b
and 6.4d show the corresponding tissue responses for
the model with one tissue compartment (Fig. 6.3b).
Suppose, as in Fig. 6.4e, the combination of the two
inputs is given, i.e., there is a bolus input of magnitude
A at time t = T1, and a second bolus of magnitude B at t
= T2. The resulting tissue activity curve is:

(24)

In other words, the tissue response is a sum of the indi-
vidual responses to each bolus input. The responses are
scaled in magnitude and shifted in time to match each
bolus input.

Suppose now there is a series of bolus administra-
tions at times Ti, i = 1,…, each of magnitude Ca(Ti) as
depicted by the square waves in Fig. 6.4g. The total
tissue response (Fig. 6.4h) can be written as the
summation:

where the exponentials are defined to have zero value
for negative arguments (i.e., t<Ti). If we now consider
the continuous input function Ca(t) (bold line in Fig.
6.4g) as an infinite summation of individual boluses,

C t C T K k t Ta i
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the summation in Eq. 25 becomes an integral, and the
tissue response (bold line in Fig. 6.4h) is:

Here, s is the integration variable. This is called a con-
volution integral, and is often written as

with the symbol ⊗ denoting convolution. This presen-
tation corresponds to the one-compartment model of
Fig. 6.3B and extends the bolus solution (Eq. 16) to the
case of a general input function (Eq. 27). However, con-
volution applies to any compartmental model whose
solution has a linear relationship to its input function.
Let hi(t) be the impulse response function for compart-
ment i, i.e., the time course of tissue response from a
bolus input of magnitude 1 [K1exp(–k2t) for the one-
compartment model]. Then the tissue activity result-
ing from the general input function Ca(t) is written as

Thus, for linear compartmental models, the tissue
time–activity curve is the convolution of the input
function with the impulse response function. For com-
partmental models, the latter is a sum of exponentials,
typically one exponential per compartment. A number
of approaches have been used to implement and solve
Eq. 28 on a computer if the arterial input function is
determined from serial samples. One approach is to fit
the measured input function data to a suitable model
[39] and then solve the convolution integral by stan-
dard mathematical methods. Alternatively, a continu-
ous input function can be approximated by linear
interpolation between the sample data values, and then

Eq. 28 can be solved by analytical integration over each
time period between blood samples.

Figure 6.5 shows the effects that variations in the
input function can produce on the resulting tissue re-
sponse. Figure 6.5a shows three input functions. The
solid line is a measured arterial input function. The
other two input curves were calculated based on the
measured data so that the area under all curves is a
constant. The tissue concentration curves produced in
response to each input function are shown as the cor-
responding curves in Fig. 6.5b. In all cases, the tissue
response is calculated from the one-compartment
model, Eq. 27, using the same parameters (K1 = 0.1
mL/min/mL and k2 = 0.1 min–1). The difference in
shape between the input functions produces compara-
ble differences in the tissue concentration curves.
These differences in shape do not reflect differences in
the local physiological parameters of the tissue, since
the rate constants were the same in all cases. Thus, the
main point of Fig. 6.5 is that a time–activity curve in a
tissue region cannot be interpreted without knowledge
of the input function.

The linear compartmental models discussed to this
point have the tremendous advantage of providing
exact mathematical solutions, predicting the tissue re-
sponse in the form of Eq. 28. In some cases, the flux
between compartments cannot be described mathe-
matically as the product of a rate constant times the
concentration of tracer in the source compartment 
(J = kC). For example, in modeling receptor-binding
ligands, the linear flux assumption holds if the radio-
pharmaceutical is administered at tracer levels and
does not produce detectable saturation of the receptor
sites (Eq. 14). If such a ligand is administered in low
specific activity so that it produces a change in recep-
tor occupancy during the data collection period, the
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differential equations governing the model are no
longer linear. This can be seen in Eq. 13 where the flux
from the free to the bound compartments v* cannot be
described as a constant multiplied by F*, since the
bound concentration B* also appears in the relation-
ship. To solve the model in this and most other non-
linear cases requires techniques of numerical
integration of differential equations [40, 41]. The basic
idea to numerically estimate the activity in each com-
partment is to take small steps in time and use the dif-
ferential equations to determine how much each
compartment’s concentration should change over each
time step. The most commonly used method for nu-
merical integration is called Runge–Kutta, which pro-
vides increased accuracy with longer time steps by
averaging multiple estimates of the derivative dC/dt.

In implementing models, it is important that the
model formulation matches the nature of PET scan data.
The models presented above predict the tissue concen-
tration at an instant in time. Image values represent the
average tissue activity collected over each scan interval.
The instantaneous model value can be used to determine
the integrated scan value. For example, for the one-com-
partment model (Eq. 15 and Eq. 27), the integrated scan
value from time T1 to T2 is as follows:

Another practical issue is radioactive decay. This can
be handled either by explicit decay correction of both
the tissue and blood data or by incorporating decay
into the model formulation. The latter approach can be
accomplished by adding an additional rate constant
corresponding to the decay rate (0.693/half life) to each
compartment. This method is slightly more accurate
than explicit decay correction for short-lived tracers,
since decay correction does not account for biological
change in tracer concentration within one scan 
interval.

Parameter Estimation

The previous sections presented the mathematical
techniques necessary to solve the model equations.
Thus, with knowledge of the input function Ca(t), the
model configuration, and its rate constants, the tissue
concentration curve can be predicted mathematically.
This section provides an overview of the inverse
problem, i.e., given measurements of the tissue activity
and the input function and a proposed model configu-

ration, one can produce estimates of the underlying
rate constants. Many references are available on the
topic of parameter estimation [42–44].

There are many ways to accomplish the estimation
of model parameters. The choices available and the
success of any given method depend upon the form of
the model and the sampling and statistical quality of
the measured data. If only a single measurement of
tissue radioactivity is made, obviously only a single pa-
rameter can be determined. Collection of multiple time
points permits the estimation of some or all of the pa-
rameters of a model. Since measured data always have
some associated noise, the estimates of model parame-
ters from such data will also be noisy. It is often the
goal of a statistical estimation method to minimize the
variability of the resulting parameter estimates. Note
also that the values of the parameters will affect the
statistical quality of the results. For example, blood
flow estimates produced by a particular method may
be reliable for high-flow regions but unreliable for low-
flow regions.

When many tissue measurements are collected after
radionuclide administration, the most commonly used
method of parameter estimation is called least-squares
estimation. Qualitatively, the goal of this technique is to
find values for the model rate constants that, when in-
serted into the model equations, produce the “best” fit to
the tissue measurements. Quantitatively, the goal is to
minimize an optimization function, specifically the sum
of the squared differences between the measured tissue
concentration data and the model prediction, i.e.,

where there are N tissue measurements, Ci, i=1,…,N, at
times Ti, and C(Ti) is the model prediction of tissue ac-
tivity at each of these times. This particular form is
used because of the nature of the noise in the mea-
sured data. Parameter estimates produced by minimiz-
ing the sum of squared differences have minimum
variability if the noise in each scan measurement is sta-
tistically independent, additive, Gaussian, and of equal
magnitude. Additive and independent statistical noise
is usually a good assumption for PET image data,
however, often the variance of the measurements will
not be constant across different scans in one multiple-
scan acquisition, particularly for short-lived isotopes
such as 15O or 11C. In this case, the least-squares func-
tion can be modified to accommodate variable noise
levels as follows:

  
w C C Ti i i

i

N
− ( )( )∑

=

2

1
31( )

  
C C Ti i

i

N
− ( )( )∑

=

2

1
30( )

C t dt
K C t dt C T C T

kT

T a
T

T

1

1 1 2 1 1

21

2
1

2

29( )∫ =
( )∫ − ( ) − ( )( )

( )

Tracer Kinetic Modeling in PET 139



where wi is a weight assigned to data point i. This
method is called weighted least-squares estimation, and
the optimal weight for each sample is the inverse of the
variance of the data [43]. For simple count data, the
variance of the data can be estimated from the count
data itself based on its Poisson distribution [45]. For
reconstructed data, many algorithms have been pro-
posed to calculate or approximate the noise in pixel or
region-of-interest data [46–52].

It is important to recognize that there are many non-
random or deterministic error sources in the modeling
process that cause inconsistencies between the model
and the measured data (see section on random and de-
terministic errors). When fitting data to a model, the
parameter estimation procedure is naïve in that it be-
lieves that the specified model is absolutely correct.
The algorithm will do its best to minimize the opti-
mization function. Therefore, if there are deterministic
errors in the model or the input function, the estima-
tion algorithm can produce unsuitable results. It may
be appropriate in some situations to adjust the weights
of some data points (e.g., early time points where
errors in the model due to intravascular activity are
most significant) to reduce the sensitivity of the model
to the presence of deterministic errors.

Once an optimization function (Eq. 30 and Eq. 31)
has been defined, there are many algorithms available
to determine the values of the model parameters that
minimize it [41, 43]. Unfortunately, in most cases with
compartmental models, there are no direct solutions
for the parameters. This is true because, although the
models themselves are linear (i.e., all fluxes between
compartments are linear multiples of the concentra-
tion in the source compartment), the solutions to
these models are functions that are non-linear in at
least one of the model parameters. For example,
Eq. 27, the solution to the one-compartment model

(Fig. 6.3B) is linear with respect to the parameter K1

but is non-linear with respect to the parameter k2. To
solve for the parameters, iterative algorithms are re-
quired. First, an initial guess is made for the parameter
values. Then the algorithm repeatedly modifies the pa-
rameters, at each step reducing the value of the opti-
mization function. Convergence is reached when
changes to the parameters from one iteration to the
next become exceedingly small. Great care is required
in the use of iterative algorithms, because incorrect so-
lutions can be obtained, particularly if the initial guess
is not appropriate.

Figure 6.6 provides an example of the process of pa-
rameter estimation applied to time-activity data col-
lected after a bolus injection of fluorodeoxyglucose
(FDG) [53]. Figure 6.6a shows a plot of region-of-inter-
est values (occipital cortex) taken from reconstructed
PET images. The solid line through the data points is
the best fit obtained by minimizing the weighted sum
of squared differences between the data and the two-
compartment model (Figure 6.3c). Figure 6.6b shows a
plot of the weighted residuals versus time. The residual
is the difference between each data point and the
model prediction. When weighted least squares is used,
the residuals are scaled by the square root of each
weight, wi, so that the sum-of-squares optimization
function equals the sum of squared residuals. Ideally
the residuals would be random, have zero mean, and
uniform variance. If a good estimate of the noise level
in the data is known, the weighted residuals should
have a standard deviation of approximately 1. Thus,
when plotting the residuals versus time or versus con-
centration, the residuals would appear as a uniform
band centered on zero. The residuals in Fig. 6.6b rea-
sonably satisfy these expectations.

Many parameter estimation algorithms provide esti-
mates of the uncertainties of the parameter estimates
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called standard errors. These values can be used as es-
timates of the minimum random uncertainty in the es-
timate. The algorithm determines these standard
errors based on the structure of the model, the para-
meter estimates, and the magnitude of the residual
sum of squares. However, this measure is an underesti-
mate of the true uncertainty of the parameters, since
there are usually many sources of “real-world” errors
that are not explicitly included.

It is often useful to calculate functions of the rate
constants which provide different physiological infor-
mation. For example, in the one-compartment model
(Fig. 6.3B), a parameter estimation problem may be
posed to estimate the rate constants K1 and k2. From
these parameters, the distribution volume (V = K1/k2)
can be calculated. To determine the uncertainty in the
distribution volume estimate, information about the
individual standard errors in K1 and k2 is required
along with the correlation between them. The parame-
ter estimates will be correlated since both values are
determined simultaneously from the same noisy data.
The coefficient of variation (CV, the ratio of the stan-
dard error to the parameter value) of the distribution
volume can be calculated by propagation of errors
calculations:

where ρ12 is the estimated correlation coefficient
between the parameter estimates K1 and k2.

Least squares is the best optimization criterion for
estimating parameters when a large number of as-
sumptions are met. If any of these assumptions are not
true, better estimates may be obtained by other
methods (see section on error analysis). A better esti-
mate is one that may be more accurate (less biased) or
more precise (less variable). In addition, iterative least-
squares algorithms may be very computationally inten-
sive, particularly if it must be carried out individually
for every pixel in an imaging volume. Often, iterative
least-squares procedures are used only for a small
number of regions of interest. However, it is often more
useful if the data analysis procedure produces func-
tional images where each pixel represents a physiologi-
cal parameter of interest. To do this, rapid computation
schemes are required. Rapid implementations of itera-
tive least-squares procedures have been developed for
the simplest non-linear models with just one non-
linear parameter, e.g., the one-compartment model
with solution in Eq. 27. These techniques have been
applied to the measurement of cerebral blood flow [54,
55] and total volume of distribution of receptors
[56–58]. In addition, a number of methods have been
derived that allow direct non-iterative calculation of

the parameter estimates by reformulating the problem
in terms of integrals of the tissue and blood data
[59–66]. These methods do not minimize the sum-of-
squares optimization function, but in many cases have
been shown to have comparable statistical quality to
the least-squares techniques and often have less sensi-
tivity to deterministic errors in the model. Another in-
teresting approach for parameter estimation from non-
linear models is called spectral analysis and uses the
methods of linear programming with the knowledge
that all the exponential clearance terms (αi in Eq. 19
and Eq. 20, for example) are positive [67].

As shown above, the measured tissue activity is the
convolution of the input function with the under-
lying impulse-response function (Eq. 28). This
impulse-response function has a much simpler math-
ematical form (usually a sum of exponentials) and is
therefore more easily analyzed. Some investigators
have used the approach of deconvolution, whereby an
estimate of the impulse-response function is deter-
mined from measurements of the tissue response and
the input function [68]. However, because the process
of deconvolution greatly amplifies noise in the tissue
measurements and is often mathematically unstable,
great care is required in the application of these
techniques.

Development of Mathematical
Models

The primary factor affecting the form of a model is the
nature of the tracer itself. Usually, a priori information
can be used to predict all of the relevant metabolic
paths of the tracer in tissue, i.e., a complete model.
However, technical and statistical limitations of the
available data will prevent the use of such a compre-
hensive model, which includes all steps in the physio-
logical uptake, metabolism, and clearance of a tracer.

Figure 6.1 shows the process of development and ap-
plication of a model in PET [69, 70]. This section pre-
sents the steps starting with a complete model, then
generating an identifiable model, and ultimately a prac-
tical model. An identifiable model is one which can be
applied to regional kinetic data and used to extract esti-
mates of model parameters. Such a model is a simplified
version of a comprehensive description of the interac-
tions of a radiotracer in tissue. However, this model may
not be workable if its parameter estimates are too vari-
able or inaccurate. A useful model may be derived by
further simplification of the identifiable model. The

CV V CV k CV k CV K CV k2 2
1

2
2 12 1 22 32( ) ( ) ( ) ( ) ( ) ( )= + − ρ
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useful model provides reproducible and accurate esti-
mates of model parameters. Validation studies are nec-
essary to demonstrate these characteristics.

Model Identifiability

The first step in defining a model is to determine
identifiability, meaning that the parameters of a model
can be uniquely determined from measurable data.
There is an extensive literature on this topic [16, 19,
71–77], including studies with particular attention to
PET applications [78–80]. In some cases, the structure of
the model itself does not permit the unique definition of
parameter values, even with noise-free data. One
example of this is the case of high specific-activity
studies with receptor-binding ligands. Here, the associa-
tion rate kon

* and the free receptor concentration B′max

appear as a product in the model differential equations
(Eq. 14) and therefore can not be separated [32, 81].

A more significant problem in many applications is
that of numerical identifiability. Here, parameter esti-
mation can be successfully performed with low-noise
data, but, with realistic noise levels the uncertainties in
the resulting parameter estimates are large. This issue
can be complicated by the fact that the values of the
model parameters themselves may affect the ability to
distinguish kinetic compartments. This is a common
problem in brain neuroreceptor studies where the
same model cannot be applied to brain regions with
varying concentrations of receptor [82]. In addition,
small deterministic errors in the model or in tissue ra-
dioactivity quantification can produce large changes in
the parameter estimates. Thus, while an identifiable
model is essential, it is not necessarily a useful model.

A common approach resulting from this form of
model instability is to determine those parameters
which are common to a set of models and are esti-
mated with good precision, no matter what the model
form. For example, in a complete receptor model, the
free receptor concentration B′max appears in the rate
constant describing the movement of tracer from a free
to a bound compartment. Ideally, therefore, receptor
information can be obtained from this rate constant,
but, in fact, functions that include this rate constant are
also sensitive to Bmax. One example of a useful lumped
parameter is the total volume of distribution V de-
scribed above for diffusible tracers (Eq. 8). For recep-
tor-binding radiotracers, V represents the ratio at
equilibrium between total tracer in tissue to that in
plasma. Instead of trying to use individual parameter
estimates, the total volume of distribution, which can
be derived from the model rate constants, has been

found to be a particularly useful and reliable measure
for receptor quantification [56, 83, 84]. V is an algebraic
function of the rate constants and has smaller uncer-
tainty due to the positive correlation between esti-
mated model parameters (Eq. 32). For a model with
one tissue compartment, V can be calculated by setting
the derivative in the differential equation (Eq. 15) to 0,
resulting in V = K1/k2 (Eq. 8). For a model with two
tissue compartments, setting the derivatives in Eq. 17
and Eq. 18 to zero yields, V = K1/k2(1 + k3/k4). In addi-
tion, if V becomes the primary parameter of interest,
simpler methods to directly estimate this parameter
can be developed (see Model-based Methods).

The process of model selection proceeds as follows:
Tissue measurements after injection of the radiophar-
maceutical are collected. Then, a number of possible
model configurations are proposed. Usually, the
number of compartments covers a range from very
complex to very simple, and there is a range of differ-
ent numbers of parameters to be estimated in these
models. Parameter estimation procedures are per-
formed with the measured data using each model. The
goodness-of-fit of each model to the data is assessed
from the residual sum of squares (Eq. 31) using statisti-
cal tests such as the F-test, the Akaike information cri-
terion [85], or the Schwarz criterion [86] to determine
which model is most appropriate. In general, the use of
a more complex model with additional parameters will
produce a better fit to the data and a smaller residual
sum of squares. However, this will be the case even if
the additional parameters added by the more complex
model are only providing a better fit to the noise in the
data and have no relationship to the underlying true
tissue model. The statistical tests used for model com-
parison determine whether the residual sum of squares
has been reduced using the more complex model by an
amount that is significantly greater than what is ex-
pected by random chance.

Another very useful approach for model comparison
is the examination of the pattern of residuals as in 
Fig. 6.6b [43]. If the residuals from a fit of one model
configuration do not appear as randomly distributed
around zero, then a more complex model may be ap-
propriate. However, given all the error sources (see
section on random and deterministic errors), no model
will ever be perfect. It will therefore often be the case
that an overly complex model will still provide a statis-
tically significant improvement in the fit compared to a
simpler model. The modeler must have a good under-
standing of the degree of accuracy in the data in order
to avoid an unduly complicated model.

To simplify models, pairs of compartments can be
combined together. Two compartments can be collapsed
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into one by assuming that the rate constants “connect-
ing” them are large enough so that the two compart-
ments remain in continuous equilibrium. When this
occurs, the physiological interpretation of the remaining
rate constants in the reduced model must be changed. In
this way, a set of “nested” models can be defined. Figure
6.3 shows some examples of nested models. Here, a
simple model with a few rate constants can be consid-
ered to be a special case of a more complex model with
more parameters. For example, the model in Fig. 6.3B is a
simplified version of Fig. 6.3C which is itself a simplified
version of Fig. 6.3D.

It is good practice to test a set of nested models to
determine which one best characterizes a set of mea-
sured data [56]. An example of this process is shown
for the opiate receptor antagonist [18F]cyclofoxy [84,
87–89]. Figure 6.7a shows a typical time–activity
curve measured in the thalamus with PET after bolus
injection. The symbols are measured data points. The
solid line is the best-weighted least squares fit using a
model with two tissue compartments (Fig. 6.3c). The
dashed line is the best fit using a model with one

tissue compartment (Fig. 6.3B). Both models also in-
cluded an additional parameter to account for ra-
dioactivity present in the tissue vascular space, so
five and three parameters were estimated, respec-
tively. The plots of weighted residuals versus time
from these fits are shown in Fig. 6.7b (one compart-
ment) and Fig. 6.7c (two compartment). The one-
compartment results show a deterministic pattern of
residuals. The residual points are not randomly dis-
tributed about zero, but instead show runs of sequen-
tial values that are all positive or all negative. The
residual pattern is more random when using the two-
compartment model. In this case, the more complex
model was found to have produced a statistically
significant reduction in the residual sum of squares.
However, this improvement was not large and was
not found uniformly for all patients or for all brain
regions.

The absolute magnitude of the residual noise can
also be useful in determining if a particular model
configuration is appropriate. If the model is exactly
correct and the magnitude of data noise is known,
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Figure 66.7. Comparison of model fits. a PET tissue concentration data
from the thalamus acquired after bolus injection of the opiate antagonist
[18F]cyclofoxy. Symbols are measured data points. Solid line is weighted
least-squares fit using a model with two compartments and five parame-
ters (K1, k2, k3, k4, and blood volume fraction). Dashed line is best fit using 
a model with one compartment and three parameters (K1, k2, and blood
volume fraction). b plot of weighted residuals versus time for the three-pa-
rameter model. c plot of weighted residuals versus time for the five-para-
meter model. The residuals for the three-parameter model show a
non-random pattern that is reduced with the five-parameter model.



the weighted sum of squares (Eq. 31) will be approxi-
mately equal to N – np, where N is the number of data
points and np is the number of model parameters
being estimated. If the actual sum of squares from
data fits are close to this value, the modeler gains ad-
ditional confidence that the chosen model configura-
tion is appropriate.

Model Constraints

A typical situation in PET modeling problems is that
a simple model with few parameters is often not ade-
quate to describe the tissue concentration curve.
However, a more complex model that does adequately
describe the data frequently produces parameter esti-
mates that have large uncertainties (standard errors).
Specifically, a simple one-compartment, two-parame-
ter model is often insufficient, whereas a two-com-
partment, four-parameter model is “better” by
various statistically significant measures. A number
of authors have dealt with this conflict by applying
constraints. These entail specifying exact values for
certain parameters or defining relationships between
the parameters that must be met. In either case, the
effect is to reduce the number of parameters that
must be determined from the model. If the con-
straints are accurate (or reasonably so), then the sen-
sitivity of the model data to the remaining
parameters is increased and the uncertainty in their
estimation is reduced. Often the constraint equations
use a priori values for physiological constants based
on the presumed interpretation of the model para-
meters in terms of Michaelis–Menten parameters
[90–92]. Alternatively, some parameters may be con-
strained based on measurements made in other
regions [93]. For example, a common approach for
receptor-binding tracers is first to analyze a reference
region known to have little or no specific binding to
determine parameters associated with the magnitude
of nonspecific binding. Then, regions with specific
binding are analyzed with nonspecific-binding rate
constants constrained to equal those estimated in the
reference region [81, 94]. Alternatively, additional
studies can be performed to aid the estimation
process by constraining parameters to be common to
the analysis of both studies. For receptor-binding
tracers, a study with an inactive enantiomer can be
used to determine parameters of nonspecific binding
[95, 96]. In addition, paired studies with high and low
specific activity injections and/or displacement can
be performed and analyzed simultaneously with

some parameters shared in the models for the two
studies [97, 98].

Validation of Physiological Measures

In the process of developing and selecting a suitable
model formulation and methodology, it is important
to perform validation studies which prove that the
parameter estimates produced by a model are
correct. These studies determine the precision and
accuracy of model estimates, verify the legitimacy of
the model assumptions, and help choose between
various approaches. Such an evaluation invariably
must be done in animals because of constraints on
experimental design, scan duration, and radiation
dosimetry in humans. Practical limits on animal
studies include limitations on total blood sampling
for input function measurements and the effects of
anesthesia.

Although much of the work of model development
and validation is performed using small or large
animals, it is important to realize that there are
considerable differences between PET image data and
autoradiographic or tissue-sampling measurements,
as well as the species differences among rodents,
large animals, and humans, which may limit the ap-
plicability of the information obtained in the animal
experiments. For example, measurement of tissue
concentration data at multiple time points in rodents
requires multiple animals. PET studies allow acquisi-
tion of multiple time points in a single study, avoid-
ing inter-individual variability. However, the spatial
resolution and statistical reliability of scan data are
substantially worse than measurements from tissue
samples in rats. Therefore, kinetic parameters that
can be reliably determined from rat data may not be
numerically identifiable from human scan data.
Therefore, many validation studies should be re-
peated wherever practical with human subjects.

The simplest test of a model is reproducibility, i.e.,
the variability of the model parameters under identi-
cal conditions, either on the same day or different
days [99]. Repeating studies on the same day will
generally produce smaller differences in scan data
results, since there will be less variation in subject
positioning and scanner calibration. Measurements
of population variability of model estimates provide
information concerning the most useful model
configurations. Clearly, model parameters with large
coefficients of variation will not generally be useful.
Also, models should provide physiologically reason-
able values. Although in vivo measurements can cer-
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tainly produce different results than in vitro tests, it
is up to the investigator to demonstrate the accuracy
of a model that produces parameter estimates incon-
sistent with previous results in the literature.
Additionally, one can compare parameters from one
tracer to another when there is reason to believe they
should be similar, e.g., comparing the K1 values of
two tracers with high extraction, in which case both
K1 values should approximate flow [58].

The next steps in validation of a model are interven-
tion studies. Here, one or more of the physiological
parameters that affect tracer uptake are altered, and
the model is tested to verify that the parameters
change in the proper direction and by an appropriate
magnitude in response to a variety of biological
stimuli. For example, brain blood flow can be altered
by changing arterial pCO2, or free receptor concentra-
tion can be reduced by administration of a cold
ligand. It is also useful to test whether the parameters
of interest do not change in response to a perturbation
in a different factor, e.g., does an estimate of receptor
number remain unchanged when blood flow is in-
creased [100]? Alternatively, changing the form of the
input function should ideally have no effect on the
model parameters [84, 101–103]. Model assumptions,
e.g., parameters whose values have been constrained,
should be tested. At a minimum, computer simulations
of the effects of errors in various assumptions upon
model results can be performed (see section on error
analysis). The limitation of these simulations is that
they are only as good as the models on which they are
based. Therefore, experimental validation of model as-
sumptions should be performed where possible.

Finally, the absolute accuracy of model parameters
can be tested by direct comparison with a “gold stan-
dard.” To test the accuracy of regional measurements,
such a validation study can only be carried out with
animals. While this validation step is very appealing, it
is often very difficult to achieve. There is often no gold
standard available for the measurement of interest.
Even if such a standard is available, the comparison
will require careful matching of scan data with tissue
sample data. If the regions being compared are small,
the effects of inaccurate registration and scanner reso-
lution can make evaluation of the model’s accuracy
difficult at best. Even without a gold standard, other
validations of the model can be performed. For
example, model predictions of concentrations in sepa-
rate compartments can be compared to biochemical
measurements of tissue samples [104]. Also, microdial-
ysis provides a method to assess extracellular tracer
concentration directly for comparison with model
predictions [105].

Model-based Methods

To this point, the design, development, and validation
of a tracer kinetic model have been presented. Ideally,
the modeling effort generates a complete, validated
model that describes the relationship between tissue
measurements and the underlying physiological para-
meters. With this knowledge, we can design a method
of data acquisition and processing suitable for human
studies. This section concerns this final step in the
modeling process shown in Fig. 6.1: the adaptation of
such a useful model to produce a practical patient pro-
tocol [69, 106]. It is often the case that the original
modeling studies are complex and may not be suitable
for human subjects, particularly certain patient popu-
lations. For example, arterial blood sampling may not
be feasible, or a long data acquisition period may not
be practical, or the statistical quality of data in humans
may limit the number of parameters that can be reli-
ably estimated. From the understanding of the charac-
teristics of the tracer and with knowledge of the
limitations imposed by instrumentation and logistical
considerations, a model-based method can be devel-
oped that can achieve a useful level of physiological
accuracy and reliability.

Many questions must be considered in converting a
model into a model-based method. To what extent are
the extra complexities of a full modeling study neces-
sary or useful? What are the best trade-offs to maintain
an adequate signal-to-noise ratio in the data? Can an
appropriate input function be measured less invasively
than from arterial samples, e.g., from direct scan mea-
surements, from venous samples, or from a reference
region? What is a practical data collection period that
is compatible with the time availability on the scanner,
the statistical requirements of the collected images,
and the characteristics of the patients? Which parame-
ters are of prime importance? Can parameter estimates
be calculated on a pixel-by-pixel basis to generate func-
tional images or must time-consuming iterative non-
linear methods be applied to region-of-interest data?
What reasonable assumptions can be incorporated into
the model to reduce the number of parameters to a
workable set that can be determined with reasonable
precision? Is the method overly sensitive to measure-
ment errors or to inaccuracies in model assumptions,
particularly in patient groups? If the method is
simplified too much, could differences between pa-
tients and controls be exaggerated or hidden because
physiological factors properly included in the original
model are now ignored?
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This section presents some approaches that have
been used to produce model-based methods. These
methods are generally simpler than the full parameter
estimation studies, use additional assumptions, and
typically allow production of functional images of the
physiological estimates. In addition, sources of error in
model approaches are discussed along with error
analysis methodology. Finally, the trade-offs between
using model-based techniques and simple empirical
methods are examined.

Graphical Analysis

One increasingly common method applied to tracer
kinetic data is that of graphical analysis [90, 107–112].
The basic concept of this method is that after appro-
priate mathematical transformation, the measured data
can be converted into a straight-line plot whose slope
and/or intercept has physiological meaning. This ap-
proach has advantages, since it is simple to verify visu-
ally the linearity of the data and it is simple to
determine the slope and intercept by non-iterative
linear regression methods. It is also generally easy to
determine these values on a pixel-by-pixel basis, thus
producing a functional image of the parameter [113].
For many models, the simplified equations of graphical
analysis will not apply for all times post-injection, e.g.,
at early times when the blood activity is changing
rapidly and some tissue compartments have not yet
reached equilibrium with the blood. Therefore, care
must be taken in selecting the time period for determi-
nation of the slope and intercept. However, it is also
true that avoiding the time periods where the kinetics
are rapid also makes the method less sensitive to errors
introduced by oversimplifications in the model, partic-
ularly those dealing with tracer exchange between cap-
illary, extracellular space, and intracellular space.

The most widely used graphical analysis technique is
the Patlak plot [107–109]. This approach is appropriate
when there is an irreversible or nearly irreversible trap-
ping step in the model. Conceptually, the transforma-
tions of the Patlak plot convert a bolus injection
experiment to a constant infusion. A simple example of
this model is the two-compartment model (Fig. 6.3C), in
which the rate constant for return of tracer from com-
partment 2 to compartment 1, k4, is zero or is small, i.e.,
irreversible trapping. In this case, the model solution
(from Eqs. 21, 22 and 28) for the total tissue tracer con-
centration C(t) for an arbitrary input function Ca(t) is

If the arterial input function were held constant (Ca),
the solution to Eq. 33 would be

After an appropriate time, t*, after which the exponen-
tial term in Eq. 34 becomes sufficiently small, the ratio
of tissue to blood activity becomes

which is a linear equation. The slope of this equation,
K, is

The term K is the net uptake rate of tracer into the irre-
versibly bound compartment 2. It is the product of two
terms: K1, the rate of entry into the tissue from the
blood, and k3/(k2 + k3), the fraction of the tracer in the
tissue that reaches the irreversible compartment 
(Fig. 6.3C).

For the case when the input function is not a con-
stant, the Patlak transformation is as follows:

The term in brackets in Eq. 37 is often called
stretched time or normalized time, since it has units
of time and it distorts time based on the shape of
the input function. If the ratio of tissue to blood ac-
tivity, which is called the apparent volume of distri-
bution, is plotted versus stretched time, under the
appropriate conditions a linear plot is obtained with
slope K and intercept V0 (the initial volume of dis-
tribution). Note that in the case of a constant arter-
ial input, stretched time becomes exactly equal to
true time.

In applying this graphical method, it is important to
verify that the Patlak plot is in fact linear over the
range of time used, an assumption that can often be
evaluated in animal studies, where longer experiments
can be performed [114]. For purposes of fitting data to
estimate K, instead of fitting Eq. 37, it is equivalent to
use multiple linear regression to fit the measured tissue
data directly:
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This approach is better if the later values of the input
function are noisy (e.g., due to metabolite correction),
and more easily allows regression weights based di-
rectly on image noise estimates to be added to the esti-
mation process.

Figure 6.8 provides an example of the use of a Patlak
plot as applied to brain PET data after the injection of
FDG [53]. In this study, subjects were studied on two
occasions, approximately one week apart. For one scan,
the subjects underwent a hyperinsulinemic euglycemic
clamp, whereby high levels of insulin were infused, and
simultaneously blood glucose levels were maintained
at a constant level, thus maintaining the steady-state
assumption of the tracer kinetic model. On the second
occasion, a sham clamp was performed, i.e., a control
study. The high insulin levels in the clamp study caused
a dramatic change in the plasma input function, i.e.,
the rate of FDG clearance from plasma was much
higher. Figure 6.8a shows the tissue curves for an
average of gray matter regions in one individual. There
is clearly a dramatic difference in the two curves. The
Patlak transformation of Eq. 37 was applied to these
data and is shown in Fig. 6.8b with a plot of the appar-
ent volume of distribution versus stretched time. The
two plots nearly overlay each other, demonstrating that
most of the difference between the two tissue time–
activity curves of Fig. 6.8a can be accounted for by the
differences in the input function, not by differences in
the tissue kinetic parameters. Note that the hyperinsu-
linemic study covers a longer period in stretched time
than the control study.

A second graphical approach is that developed for
measurement of parameters for reversible neurorecep-
tor ligands, i.e., those that approach equilibrium during
the time period of the experiment. As described above,
the total volume of distribution V is the most com-
monly estimated parameter for these types of tracers.
The Logan graphical relationship [111] allows the esti-
mation of V from the slope of a plot produced by a
transformation of the data, like the Patlak plot de-
scribed above. The Logan relationship can be derived
exactly from the one tissue compartment model, Eq.
15, and integrating:

Dividing Eq. 39 by k2 and C(t), and rearranging
yields:

where the slope of this relationship V is the volume of
distribution for the one tissue compartment model
(K1/k2). In cases where the data are not consistent with
a one-compartment model, the graph becomes linear
after an appropriate time, and the linear regression is
performed for those later data. In that case, the slope is
the estimate of the total volume of distribution. Figure
6.9 shows an example of Logan graphical analysis [111]
as applied to PET time–activity data for the 5-HT1A an-
tagonist [18F]FCWAY [115] as measured in the rhesus
monkey. The three curves show regions with different
receptor levels, with the highest slope (frontal cortex)
corresponding to a region with high specific binding
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Figure 66.8. Example of graphical analysis (Patlak plot) from FDG PET data. The study involved a control scan on one day and a hyperinsulinemic euglycemic
clamp on another day. a Average tissue time concentration curves in cortical gray matter. Filled and open symbols are scan data values from the control and
clamp studies, respectively. b Patlak plots from the control (filled symbols and solid line) and clamp (open symbols and dashed line) studies computed from the
data in A and B using Eq. 37. Despite the large differences in tissue data between the two studies, the tissue kinetics in both cases, as shown by graphical analy-
sis, are very similar, i.e., there is at most a small effect of insulin on gray matter metabolism of FDG.



and a high value of V. Note that the time to achieve lin-
earity of these plots differs between regions due to dif-
ferent receptor levels/kinetic parameters.

Reference Region Methods

The emphasis in this chapter has been the determina-
tion of kinetic rate constants using the relationship
between tissue data measured with the PET scanner
and the input function, usually derived from arterial
blood samples. For studies in the chest with tracers
that do not metabolize, the input function can be mea-
sured from the imaging data in the left ventricle,
atrium, or the aorta [116–119]. Other approaches have
been used where smaller blood vessels can be imaged
but corrections for partial volume effect are required
[120, 121]. However, in a number of other cases, ap-
proaches have been developed to avoid the measure-
ment of the arterial input function and still deduce
kinetic parameter information by comparison of the
time–activity curve in the region of interest to that in a
reference region. The most significant application of
this approach has been in receptor modeling where the
comparison of regions with and without receptors pro-
vides a natural application [122–124], which can often
be extended to pixel-by-pixel analysis [125]. The
general idea of these approaches is to use the mathe-
matics of the model to infer the shape of the arterial
input function based on the time-course measured in
the reference region. This permits a mathematical rela-
tionship to be developed for the region-of-interest con-
centration in terms of the reference region data and the
kinetic parameters of both regions. Usually, the

number of available parameters is reduced, e.g., in this
situation the uptake constant K1 for either the region
of interest or the reference region cannot be deter-
mined, but the ratio between them can be estimated.

In addition, there are reference region methods
adapted for graphical analysis, either for irreversible
[109] or reversible [126, 127] tracer uptake. As with all
the graphical methods, only a subset of the kinetic para-
meters can be determined, and with the use of reference
regions, the estimated parameters are typically ratios of
the original parameters between their values in the
region of interest and that in the reference region.
However, it is often the case that the most sensitive bio-
logical parameter is a normalized model value.
Normalization tends to eliminate certain methodologi-
cal errors which add common variance to both the
region-of-interest and the reference region results [106].
Therefore, these reference-region graphical methods
tend to directly estimate the parameter ratios of interest.

Single-scan Techniques

A common approach to produce simplified model-
based methods is the use of single-scan techniques.
Here, based on a good understanding of the relation-
ship between tissue radioactivity and the underlying
physiological parameters, tissue radioactivity informa-
tion is acquired during one scan interval. This single
measurement permits the estimation of a single
unknown physiological parameter. Since most models
have multiple rate constants, some corrections must be
applied to account for these other unknowns. Careful
design of a single-scan technique ensures that varia-
tion in these nuisance parameters produces only minor
errors in the parameter of interest.

For the measurement of cerebral blood flow with
[15O]water or comparable diffusible tracers, two ap-
proaches have been taken to produce single-scan
methods. Some of the earliest studies used continuous
inhalation of [15O]CO2 [128], which is rapidly converted
to [15O]water in the lungs. By achieving constant radioac-
tivity levels, the derivative in the differential equation of
uptake of the tracer (Eq. 15 with additional terms for ra-
dioactive decay) can be set to zero, and K1 can be deter-
mined from an algebraic formula in terms of tissue and
blood radioactivity.A different approach uses a bolus in-
jection followed by a single short scan [129, 130]. This
autoradiographic method uses the explicit solution of
the model (Eq. 27) to determine K1 from the integrated
tissue radioactivity and a measured input function. Both
of these methods treat the estimated K1 values as equal to
blood flow, assuming a large permeability-surface (PS)
area product for the tracer (Eq. 5). Both methods also
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Figure 66.9. Logan graphical analysis of regional PET data acquired from the
5-HT1A antagonist [18F]FCWAY in rhesus monkey in frontal cortex (•), thala-
mus (♦), and cerebellum (�). Data are transformed as specified in Eq. 40.
Following a certain time, the graphs become straight lines with slopes equal
to the volumes of distribution for each region. Regions with greater specific
binding have higher slopes.
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require the use of an assumed value for the tracer distri-
bution volume V in order to specify k2 as K1/V. As only
one tissue measurement is made, only one unknown pa-
rameter can be determined. The short scan of the autora-
diographic method was designed in part to minimize the
sensitivity of this method to errors in the assumed value
of the distribution volume.

Another example of single-scan, model-based tech-
niques is the autoradiographic method for measure-
ment of glucose metabolism, which was developed in
rats with [14C]deoxyglucose [1] and extended to PET
using [18F]2-fluoro-2-deoxy-D-glucose [2–4]. These
methods take advantage of the fact that most of the ra-
dioactivity in the tissue by 45 min post-injection has
been phosphorylated, so that the total tissue radioac-
tivity can be used to estimate the net flux into tissue of
deoxyglucose, K. This is the same rate constant as de-
termined from the slope of the Patlak plot. Effectively,
these methods estimate the slope of a Patlak plot by
using the measured tissue value at one data point and
by using population values of the model rate constants
to estimate the y-intercept of the straight line. A
number of other formulations of this approach have
been developed [131–133], each with different sensitiv-
ities to errors in the assumed rate constants. Finally,
since FDG is an analog of glucose, the metabolic rate of
glucose is estimated from the measured net flux of
FDG using the measured plasma glucose level and an
assumed scaling factor, the lumped constant [1, 5–9].

Equilibrium Methods

Another single-scan technique has been developed for
quantification of receptors by using infusion to
produce true equilibrium [84, 134, 135]. By administer-
ing tracer as a combination of bolus plus continuous
infusion (B/I), constant radioactivity levels can be
reached in blood and in all regions of interest. The
total tissue volume of distribution can be determined
from the ratio of tissue activity to metabolite-corrected
plasma activity. This value will include free, non-
specifically bound, and specifically bound tracer.
Estimates of the nonspecific component, e.g., from a
region with low receptor binding, from measurements
with an inactive enantiomer, or from data acquired
after displacement with excess cold ligand, can be
subtracted to estimate the binding potential, Bmax/KD

[136] (KD is the dissociation equilibrium constant).
Multiple infusions at different specific activities can be
used to determine Bmax [137, 138].

This infusion approach can be extended to provide
receptor-binding data in two states: at baseline and

post-stimulus (e.g., drug-induced neurotransmitter
changes), with a single administration of tracer.
Without infusion, such data are conventionally
acquired with paired studies, each with a bolus injec-
tion. In the first study, control levels of binding are
measured, for example, by determining V by compart-
ment modeling [56] or graphical analysis [111]. Then,
following the pharmacological intervention, a second
measurement of binding is made with a second injec-
tion of tracer. This approach has been used successfully
with the D2 ligand [11C]raclopride [95, 139] as well as
with a number of other tracers. For example, Dewey et
al. have demonstrated the effects of changes in synap-
tic dopamine by direct effects on the dopamine system
itself [140] and by indirect pharmacological interven-
tions [141, 142]. In humans, this paired-study approach
has been used to measure drug occupancy [143–146].

The alternative study design is to administer the
tracer as a combined bolus plus continuous infusion
(B/I) to measure short-term changes in free receptor
concentration [101, 147, 148]. First, the B/I administra-
tion of tracer is performed to achieve constant radioac-
tivity levels in blood and all brain regions. Once
equilibrium is achieved, control binding levels can be
determined. For example, the volume of distribution V
can be measured directly from the tissue-to-plasma
concentration ratio. Then, a stimulus is administered
while the infusion of radiotracer continues, and the
change in specific binding of the tracer can be moni-
tored. An example of B/I data is shown in Fig. 6.10 as-
sessing the effects of amphetamine-induced dopamine
release with [11C]raclopride. By comparing the pre-
and post-amphetamine levels of specific binding deter-
mined directly from the tissue concentration values
(Basal Ganglia/Cerebellum –1), the change in specific
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Figure 66.10. ROI data from basal ganglia (•) and cerebellum (■) following
combined bolus plus infusion administration of the D2 dopamine ligand
[11C]raclopride. At 40 min (arrow), 0.4 mg/kg of amphetamine was adminis-
tered intravenously, producing displacement of raclopride due to competi-
tion with increased synaptic dopamine.
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binding from amphetamine can be measured. This B/I
study design permits the measurement of pre- and
post-intervention binding levels from a single adminis-
tration of tracer. It is particularly well adapted to
tracers with longer half-lives.

Random and Deterministic Errors

In making the choices necessary to implement a tracer
method, it is important to be aware of the many
sources of error that affect the precision and accuracy
of these physiological measurements [106]. A good un-
derstanding of what effects are more or less significant
to a given tracer and to the biological question of inter-
est is essential in designing a sensitive, reliable tech-
nique that is not overly complex.

One aspect to consider is random errors, i.e., the
effects of random statistical noise in the data on model
parameters. The duration of data acquisition, the
amount of smoothing of the images, the use of pixel or
region-of-interest data, the number of parameters in
the model, the mathematical structure of the model,
and the actual parameter values affect the statistical
accuracy of the parameter estimates. Many investiga-
tors have assessed the sensitivity of PET data to model
parameters and methods to optimize the statistical
quality of the model estimates [149–152]. In addition,
noise in measured data can directly introduce bias in
parameter estimates when non-linear methods are
used [66, 153].

A primary source of deterministic error is the mea-
surement of regional radioactivity from the PET
scanner. Although the quantitative accuracy of PET
continues to improve, there are still many sources of
inaccuracies. For example, the accuracy of the scatter
correction is limited, particularly for whole-body
imaging and for 3D acquisition. A key effect corrupting
PET imaging data is finite resolution, i.e., the partial
volume effect [154]. The magnitude of bias in concen-
tration measurements depends on the size of the un-
derlying structure, the distribution of radiotracer
within and around the structure, the resolution of the
scanner, the reconstruction algorithm, and the strategy
for extracting regional concentration values. Definition
of the regions of interest using registered anatomical
images (MR or CT) is important, as long as registration
errors are minimized.

The partial volume effect produces heterogeneity,
i.e., the tissue response measured from even a single
pixel will represent a weighted average of the tissue in
the surrounding region, and is thus a combination of
different kinetic responses. This can have minimal to

large effects on model results depending on the magni-
tude of heterogeneity and how the parameter of inter-
est affects the tissue concentration measurements. This
effect has been studied in great detail for a number of
methods [155–161]. Since finite resolution is unavoid-
able in real imaging data, ideally application of model-
ing techniques will not introduce artifactual changes in
the data. In other words, suppose a heterogeneous
region was composed of two tissue types. Ideally, the
final kinetic estimates from that area would be the
weighted averages of the appropriate values for each
tissue type, weighted by the fraction of the region oc-
cupied by each tissue type. If the parameter is esti-
mated in a linear fashion from the data, this will be the
case. For non-linear methods, heterogeneity will intro-
duce a bias. An important approach to deal with the
partial volume effect is to correct the PET data for this
effect [162–166]. Recently, investigators have begun to
assess the effects of these corrections on kinetic mod-
eling [167] with tendencies toward major increases in
the parameter values and the noise level of the 
estimates.

Another source of error in model applications is the
presence of intravascular radioactivity in the tissue
measurements [168–173]. Some fraction of the mea-
sured counts originates from radioactivity in the blood
within the tissue. Since the radioactivity time-course in
blood differs from that in tissue, errors in model mea-
surements will occur unless this effect is properly
handled. In some cases, the fraction of tissue volume
occupied by blood can be measured in a separate
tracer experiment. Alternatively, this vascular fraction
is added as a parameter to account for this effect.
Obviously, these errors are most important in regions
with large blood volumes or in regions near the heart
chambers or large blood vessels. Typically, errors due
to vascular radioactivity are more significant when
data collected immediately after injection are included
in the analysis. However, these early data are often
most sensitive to the parameter of interest, such as in
the case of blood flow tracers where the rate constant
for movement of tracer from blood into tissue (K1) is of
prime importance. Various strategies involving selec-
tion of time intervals for analysis or optimal region-of-
interest placement have been proposed to handle these
effects [171, 174].

A key to successful quantitative methods is the accu-
rate measurement of the input function. Typically, the
blood time–activity curve is measured in a peripheral
blood vessel (usually radial artery) unless the heart
chambers can be imaged directly [116–118]. When in-
dividual blood samples are drawn by hand, they must
be taken at a sufficiently rapid rate to characterize the
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curve accurately. Careful attention is required for accu-
rate sample timing, centrifugation, pipetting or weigh-
ing, radioactivity counting, counting corrections
(background, decay, dead time, etc.), and data han-
dling. Some investigators have developed devices for
automatic withdrawal and measurement of whole-
blood radioactivity [175]. These devices provide con-
sistent data, but they may have increased statistical
noise depending upon their counting geometry. Timing
and dispersion differences between the brain and the
peripheral artery require correction, particularly for
studies of short duration with sharp bolus inputs
[176–179]. A number of studies have been undertaken
to assess the effects of statistical noise in the input
function on estimated parameters and to develop ap-
propriate estimation methodology [180–183]. If there
are radioactive metabolites of the tracer in blood, it is
important to determine the fraction of blood radioac-
tivity that corresponds to the original tracer as well as
the extent to which these metabolites pass into tissue.
Since metabolite determinations are often complex,
particularly for short-lived tracers, metabolite mea-
surements are made at only a small number of
samples. Appropriate interpolation or modeling
schemes are necessary to generate a continuous esti-
mate of the metabolite fraction throughout the study
[101, 184]. Alternatively, other modeling approaches
can be used to infer the metabolite correction [185].

Error Analysis

Error analysis is a useful tool in the development of an
appropriate model-based method. Performance of a
thorough error analysis is a critical step in the assess-
ment of the utility of a given method. Papers dedicated
solely to error analysis are common in the literature
[155, 156, 171, 186–196]. These analyses usually
proceed as follows. Choose a particular source of error.
Select values for the model parameters and use the
model equations to simulate tissue data including this
error effect, usually covering a range of effect magni-
tudes. Then, analyze these simulated measurements
with one or more methods, compare the derived para-
meter estimates to their original values, and determine
the magnitude of error that is produced.

Figure 6.11 provides an example of the results of an
error analysis. Cerebral blood flow (CBF) measure-
ments with the tracer [15O]water are altered in the
presence of errors in correction for the time delay
between the measured arterial input function and the
actual input to the brain. Using an actual measured
input function, tissue time-activity data were simulated

over a 4-min period using the model of Eq. 27, with a
flow value of 0.5 mL/min/g and a distribution volume
of 0.8 mL/g. CBF (K1) was then calculated by direct es-
timation of the two model parameters for total time in-
tervals of 90, 120, and 240 sec. In each case, the tissue
data were shifted with respect to the arterial input
function by –3 to +3 sec (a positive shift means that the
tissue data have been shifted later in time with respect
to the blood data). The figure shows the percent error
as a function of time delay. Positive time shifts produce
underestimation of blood flow. This error is larger for
shorter total acquisition times. This analysis suggests
that the effect of time shift errors can be reduced by
using longer data-acquisition periods. Even then,
errors as large as 10% occur with time shifts of 3 sec,
so care should be taken to measure or estimate time
delays between tissue and blood data [178, 197].

A careful analysis of all the relevant error sources can
be used to optimize methodology or to choose one ap-
proach over another. For example, various studies have
been performed to choose optimal total scanning times
and scan schedules [170, 198–201]. Unfortunately, it is
difficult to determine the total error of a method based
on the independent error analyses of a number of mea-
surements or assumptions. First, error analyses are only
as good as their ability to simulate biological reality, i.e.,
recognizing and analyzing all potential error sources and
making appropriate choices for the magnitude of each
error term. Even then, many error sources are not inde-
pendent, i.e., errors in one term affect other terms. Thus,
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Figure 66.11. Example of error analysis – the effect of errors in time delay
corrections between the brain and peripheral artery on measurement of
cerebral blood flow with [15O]water. A positive time delay means that the
tissue data has been shifted forward in time with respect to the arterial
input function. The three curves show the percent error in estimated flow,
based on data collection periods of 90 sec, 120 sec, and 240 sec. See text for
additional details.
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actual errors may be larger or smaller than those pre-
dicted from independent error analyses. Therefore, it is
best if the ultimate choice of a method can be made by
analyzing many studies with a variety of techniques and
choosing the approach that has the best reproducibility,
the minimum population variability, or the maximum
statistical power to extract a particular physiological
signal.

Selection of Model-based Methods

This chapter has presented an overview of modeling
methods, from the most complex dynamic data acquisi-
tion with iterative parameter estimation to simplified
methods including Patlak and Logan plots or single-scan
techniques. Choosing the best approach is not simple,
and other options are available when selecting a tracer
method. In some studies, investigators normalize the
physiological measurements. Instead of using the ab-
solute values provided by a method, the results are scaled
in some manner by a reference value, such as the average
value in the entire organ or in a particular reference
structure. This procedure may significantly reduce inter-
subject variation introduced by instrumentation, recon-
struction, errors in the measurement of the input
function, as well as variability due to global flow, metabo-
lism, etc. In some cases where the model equations are
linear (or nearly so) with respect to the parameter of in-
terest, investigators can avoid the measurement of the
input function and use normalized tissue concentration
measurements as equivalent to a normalized model-
based method [129, 202, 203]. Interpretation of results
from normalized methods must be performed with care,
however, since changes in ratios may be caused by
changes in the numerator, denominator, or both.

Another example of choosing a normalized measure
is the use of binding potential [136], Bmax/KD, for recep-
tor-binding agents. This measure is usually derived
from the total volumes of distribution V in regions
with and without specific receptor binding. In some
cases, the difference of the V values is used and in
other cases a ratio is used. These different formulations
have different characteristics in terms of biological in-
terpretation as well as within-subject and between-
subject variability. For example, the ratio formulation
is more common because it can be estimated without
measurement of the plasma input function. However,
in that case, the results depend upon the assumption
that the level of nonspecific tracer binding is un-
changed between regions and between subject groups.

An alternative to using a model-based method is to
use a simple empirical approach. Such approaches

make no explicit attempt to estimate the physiological
parameter(s) of interest. Instead, an index based on
tissue measurements is used and presumed to reflect
the underlying physiology. Empirical indices include
absolute radioactivity values, radioactivity values cor-
rected for dose and/or subject weight, and ratios of ra-
dioactivity values between target and reference regions
(normalized values).

How can an investigator determine the best ap-
proach when using a tracer? Many trade-offs must be
considered in designing a study, and there are no
simple answers [106]. As an example, consider the use
of a receptor-binding radiotracer for measurements in
the brain with PET. Suppose the tracer binds reversibly,
i.e., its dissociation rate from the receptor is sufficiently
fast to approach equilibrium during the study period.
Possible model-based quantification approaches
include the following: 1) complete modeling study with
iterative parameter estimation; 2) use of a simplified
model with estimation of the volume of distribution
[56]; and 3) use of a linearization formula to derive the
volume of distribution from the later portion of the
data [111]. Empirical alternatives to model-based
methods include the following: 1) ratio of tissue region
of interest to (metabolite-corrected) blood (apparent
volume of distribution); or 2) ratio of tissue region of
interest to reference region with few receptors during
the apparent equilibrium phase.

Although the empirical approaches are the sim-
plest, they can provide misleading results. For tracers
that can reversibly bind with receptors, indices
derived from ratios of tissue concentration to refer-
ence regions or to plasma levels can be significantly
distorted due to lack of true equilibrium [84]. This
effect is demonstrated in Fig. 6.12 with a “bolus plus
infusion” protocol using the opiate antagonist
[18F]cyclofoxy (see section on single-scan techniques).
Radioactivity in the tissue regions (Fig. 6.12a)
reached steady levels by ~20 min. At 70 min post-in-
jection (arrow), the infusion was discontinued, and
plasma and tissue concentrations dropped. Figure
6.12b shows the apparent volume of distribution
plotted against time. Discontinuing the infusion
caused a dramatic increase in the values for the re-
ceptor-rich thalamus with smaller increases in
frontal cortex and cerebellum. The magnitude of this
effect depends upon the relative magnitudes of the
rate of tracer clearance from plasma and the receptor
dissociation rate. The change in the apparent distrib-
ution volume value (Fig. 6.12b) is due solely to the
change in clearance of radiotracer from plasma and
demonstrates that this ratio measure can be
significantly affected by the plasma clearance rate.
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Another choice to be made with this type of study is
whether tracer administered by continuous infusion is
a good idea [84, 134]. With infusions, data analysis is
greatly simplified, since the volume of distribution can
be obtained directly from the ratio of tissue radioac-
tivity to metabolite-corrected blood. Scans need only
be collected during the equilibrium period providing
more patient comfort. Fewer measurements in blood
are required. Also, the technique is model-independent
and only relies on equilibrium conditions. However, if
true equilibrium is not obtained, errors that could have
been eliminated by a more complex modeling proce-
dure will occur. Due to normal variation in plasma
clearance rates of the tracer, deviations from equilib-
rium will add variability to the results, although biases
here will be smaller than those following bolus injec-
tions [204]. The time interval corresponding to true
equilibrium must be carefully assessed and ideally
verified in each subject. There are also increased logis-
tical requirements due to a long infusion of radioactiv-
ity compared to a simple bolus injection. It is also not
at all clear whether bolus or infusion approaches
provide better statistical quality in the final physiologi-
cal measurements.

Does the use of model-based methods improve the
signal-to-noise characteristics of data? In other words,
can small biological signals be detected more easily by
using modeling methodology? Use of appropriate
quantification methodology can reduce intersubject
variability by accounting for factors affecting the raw
concentration measurements that are unrelated to the
physiological measure of interest. If inter-subject vari-
ability is decreased, the power of the study to detect
group differences is typically increased. However, if

this extraneous variability is small, then use of a
model-based method may produce little improvement
in the signal-to-noise ratio. In fact, since there are a
large number of potential sources of error in applying
modeling techniques, errors in these corrections or in
the implementation of these procedures can actually
increase variability over simpler, empirical methods.
The net effect of applying a model on measurement
variability thus depends upon the magnitude of physi-
ological variation in the patient groups that can be
removed by the model versus the accuracy of the
model and the reliability of the additional measure-
ments that it requires.

Model-based methods have one important advantage
over empirical approaches. With model-based results, it
is easier to justify the conclusion that any significant
findings are in fact due to real differences in the biologi-
cal function of interest and not due to extraneous physi-
ological factors. When empirical methods detect
significant differences, these other physiological factors
may contribute substantially to the measured differ-
ences. Thus, interpretation of the results is less straight-
forward. This is particularly true when there are known
differences in physiology between subject groups in a
study. For example, if plasma tracer clearance differs
between patients and control subjects, substantial errors
may be made if tissue radioactivity values are directly
interpreted as reflecting the relevant physiological
process. On these grounds, model-based methods, which
usually require a more complicated study procedure, are
superior to empirical approaches. It is important,
however, to remember that model-based methods rely
on many assumptions, which can produce misleading
results when applied inappropriately.

Tracer Kinetic Modeling in PET 153

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120

T
is

s
u

e
C

o
n

c
e

n
tr

a
ti

o
n

(n
C

i/m
L

)

Time (min)a

0

10

20

30

40

50

0 20 40 60 80 100 120A
p

p
a

re
n

t
v

o
lu

m
e

o
f

d
is

tr
ib

u
ti

o
n

(m
L

/m
L

)

Time (min) b

Figure 66.12. Effect of plasma clearance on tissue concentration and apparent volume of distribution (ratio of tissue to metabolite-corrected plasma). a: Tissue
time–activity data for thalamus (•), frontal cortex (■), and cerebellum (♦). [18F]cyclofoxy was administered according to a bolus/infusion protocol, but the in-
fusion was discontinued at 70 min (arrow). b: apparent volume of distribution for regions in “a”. There is a dramatic increase in apparent distribution volume
due to increased plasma clearance beginning at 70 min. See text for additional details.



Summary

This chapter discussed the use of mathematical
models to extract physiological information from
PET studies with radioactive tracers. Modeling
methods offer a number of advantages. Application of
a model can explain to what extent the tissue ra-
dioactivity measurements reflect the physiological
function of interest. It can produce quantitative esti-
mates of one or more physiological parameters. Use
of a model can explain the cause of different levels of
uptake between subjects. It may improve the signal-
to-noise characteristics of the data by removing addi-
tional variation caused by extraneous physiological
factors. The application of modeling methodology
also has disadvantages. Usually, modeling procedures
are more complex, often requiring longer scanning
sessions, blood sampling, metabolite analyses, and
complex data processing. Violations in the assump-
tions made by models can produce misleading
results.

Validation studies can demonstrate that a model-
based method accurately measures the parameter(s) of
interest and is not influenced by other factors. The un-
derstanding provided by a model allows the develop-
ment of study procedures that maximize sensitivity to
key parameters and minimize the effects of violations
in model assumptions. Ideally, the understanding pro-
vided by the model will allow the design of a simple
straightforward study procedure. In that way, the ra-
diopharmaceutical can be applied to the appropriate
patient groups without a complex procedure while still
generating an accurate regional physiological assay.
The final configuration of a model-based method may
be as simple as an empirical technique but as accurate
as a more complex study procedure.

It is essential to have a good understanding of the re-
lationship between the tissue measurements and the
underlying physiology, i.e., a model. A useful model will
provide a mathematical description that is sufficient to
predict the tracer’s physiology and biochemistry within
the limitations of available instrumentation and the lo-
gistics of a practical patient procedure. In addition, the
assumptions and limitations of the technique must be
clearly delineated. Without a model, it is difficult to
assess how physiological differences between study
populations affect an empirical method. Ideally, use of a
model will significantly improve the physiological
significance of the resulting data and may also improve
the sensitivity of the tracer to the underlying physio-
logical processes under study.
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