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1. INTRODUCTION

Heavy metals are present in our environment as they formed during the earth’s
birth. Their increased dispersal is a function of their usefulness during our growing
dependence on industrial modification and manipulation of our environment (ﬁﬁ)
There is no consensus chemical definition of a heavy metal. Within the periodic table,
they comprise a block of all the metals in Groups 3—16 that are in periods 4 and
greater. These elements acquired the name heavy metals because they all have high
densities, >5 g/cm’ (E ). Their role as putative endocrine-disrupting chemicals is due to
their chemistry and not their density. Their popular use in our industrial world is due to
their physical, chemical, or in the case of uranium, radioactive properties. Because of
the reactivity of heavy metals, small or trace amounts of elements such as iron, copper,
manganese, and zinc are important in biologic processes, but at higher concentrations
they often are toxic.

Previous studies have demonstrated that some organic molecules, predominantly
those containing phenolic or ring structures, may exhibit estrogenic mimicry through
actions on the estrogen receptor. These xenoestrogens typically are non-steroidal
organic chemicals released into the environment through agricultural spraying, indus-
trial activities, urban waste and/or consumer products that include organochlorine
pesticides, polychlorinated biphenyls, bisphenol A, phthalates, alkylphenols, and
parabens (m). This definition of xenoestrogens needs to be extended, as recent investi-
gations have yielded the paradoxical observation that heavy metals mimic the biologic
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112 Part I / The Basic Biology of Endocrine Disruption

activity of steroid hormones, including androgens, estrogens, and glucocorticoids. Early
studies demonstrated that inorganic metals bind the estrogen receptor. Zn(II), Ni(II),
and Co(II) bind the estrogen receptor, most likely in the steroid-binding domain, but
in this study neither Fe(II) nor Cd(IT) bound the receptor @). Certain metals bind the
zinc fingers of the estrogen receptor and could alter the receptor’s interaction with
DNA ). Several metals can displace or compete with estradiol binding to its receptor
in human Michigan Cancer Foundation MCF-7 breast cancer cells ). Recently,
cadmium has been shown to act like estrogen in vivo affecting estrogen-responsive
tissues such as uterus and mammary glands (4). Metals that mimic estrogen are called
metalloestrogens @m)

Five heavy metals have been sufficiently investigated to provide insight into the
means of their impact on mammalian reproductive systems. Arsenic, a metalloid and
borderline heavy metal, is included because it is often found in the earth associated
with other heavy metals, such as uranium. Additional heavy metals to be discussed
are cadmium, lead, mercury, and uranium—the heaviest naturally occurring element.
In this chapter, for each heavy metal, descriptions will be provided for the environ-
mental exposure, history of its use, and thus potential for increased dispersal in our
environment, targeted reproductive organs, and specific effects or means of action, usually
as a function of low versus high concentration. An important tenet is that earlier (devel-
opmental) ages of exposure increase the impact of the endocrine-disrupting chemical or
heavy metal on the normal development of reproductive organs, which may be perma-
nently affected. Thus, where known, I will describe the direct action of a heavy metal
on a growing embryo, perhaps through epigenetic changes, to set the stage for increased
chance of disease later in life when the individual is challenged by another environmental
insult. In the case of uranium, I will describe my laboratory’s research that supports
the conclusion that uranium is a potent estrogen mimic at concentrations at or below
the United States Environmental Protection Agency (USEPA) safe drinking water level.

2. ARSENIC

The abundance of arsenic (As) in the Earth’s crust is 1.5-3.0 mg/kg, making it the
20th most abundant element in the earth’s crust (E). Arsenic has been in use by man
for thousands of years. It is infamous as a favored form of intentional poisoning and
famous for being developed by Paul Erlich as the first drug to cure syphilis (ﬂ).
Today, arsenic is used in semiconductor manufacture and pesticides (Eﬁﬁ) It serves
as a wood preservative in chromated copper arsenate (CCA). CCA-treated lumber
products are being removed voluntarily from consumer use as of 2002 and were
banned as of January 1, 2004. CCA-treated lumber is a potential risk of exposure of
children to arsenic in play-structures (14). Another source of environmental arsenic
is from glass and copper smelters, coal combustion, and uranium mining. The most
extensive environmental exposure is in drinking water. For instance, since the 1980s,
the provision of arsenic-contaminated Artesian well water in Bangladesh has exposed
an estimated 50-75 million people to very high levels of arsenic (LL1). Given the latency
of 30-50 years for arsenic-related carcinogenesis, epidemiological data on arsenic-
induced cancers including skin, lung, urinary bladder, kidney, and liver are only now
becoming available (B).

Inorganic arsenic in the forms +3 (arsenite) or +5 charges are the most often
encountered forms of arsenic and are most readily absorbed from the gastrointestinal
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tract; therefore, these forms cause the greatest number of health problems. A new
USEPA limit of arsenic standard for drinking water has recently gone into effect,
lowering the limit from 50 to 10 p.g/L. Compliance of water systems with this standard
became enforceable as of January 23, 2006 (@). However, achieving this limit will be
problematic for many smaller water municipalities because of the expense of installing
equipment to reduce arsenic to <10 wg/L (LL4).

2.1. Arsenic as an Endocrine-Disrupting Chemical
in Reproductive Systems

Arsenic-mediated endocrine disruption has been reported in research animals and
potentially in humans. For instance, adult rats that consume drinking water with arsenite
at 5mg/kg of body weight per day 6 days a week for 4 weeks have reproductive tract
abnormalities such as suppression of gonadotrophins and testicular androgen, and germ
cell degeneration—all effects similar to those induced by estrogen agonists (@ ). In this
study, it was concluded that arsenite may exhibit estrogenic activity. However, there
was no evidence presented to indicate estrogen receptor specificity by demonstrating
that an antiestrogen such as ICI 182,780 prevented the arsenic-induced changes. Thus,
the degenerative problems could have resulted from arsenic chemical toxicity. Similar
to this study are those conducted by Waalkes’™ research group. In mice that were
injected with sodium arsenate at 0.5 mg/kg i.v. once a week for 20 weeks, males had
testicular interstitial cell hyperplasia and tubular degeneration that probably resulted
from the interstitial cell hyperplasia (@). Arsenate injections in female mice caused
cystic hyperplasia of the uterus, which is often related to abnormally high, prolonged
estrogenic stimulation. Again, as these changes were unexpected, there was no attempt
to determine the dependence on the estrogen receptor by using an antiestrogen to block
the changes in the male and female reproductive tissues (LL4). This same research group
went onto to show that in utero exposure to arsenic leads to changes in the male and
female offspring that indicate they have been exposed to an estrogenic influence (@).
In addition, in utero arsenic-exposed mice are much more prone to urogenital carcino-
genesis, urinary bladder, and liver carcinogenesis when they are exposed postnatally to
the potent synthetic estrogen, diethylstilbestrol (DES) or tamoxifen (Iﬂ ). The altered
estrogen signaling may cause over expression of estrogen receptor-a through promoter
region hypomethylation, suggesting an epigenetic change was caused by in utero As
exposure (E). Together, the in vivo data support the hypothesis that arsenic can
produce estrogenic-like effects by direct or indirect stimulation of estrogen receptor-a.
The levels of As used in the in vivo studies are high, similar to the high levels in
drinking water in Bangladesh, on average in the 0.1-1 mM range, and thus, these
studies are environmentally relevant for people living with one of the worst scenarios
of As environmental contamination. Arsenic levels at 0.4 ppm/day, 40 times more than
current USEPA safe drinking water level, when given daily in drinking water to rats
results in reduced gonadotrophins, plasma estradiol, and decreased activities of these
steroidogenic enzymes, 33 hydroxysteroid dehydrogenase (HSD), and 173 HSD (@).
At the same time there was no change in body weight, but ovarian, uterine, and
vaginal weights were significantly reduced, suggesting that As treatment caused organ
toxicity but not general toxicity. For a full description of inorganic arsenic-mediated
reproductive toxicity in animals and human see Golub and Macintosh (E).
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2.2. Relationship Between Arsenic and Diabetes

In those parts of the world with the most elevated levels of environmental As in
drinking water, there is a proposed relationship to type 2 diabetes, as arsenic may
cause insulin resistance and impaired pancreatic [3-cell functions including insulin
synthesis and secretion (@). Blackfoot disease, which is associated with drinking As-
contaminated drinking water, is endemic in southwestern Taiwan and also associated
with the increased prevalence of type 2 diabetes (ﬂ). Type 2 diabetes compromises
fertility 49, making As a potential endocrine-disrupting chemical on both the diabetes
and reproductive systems. Another mechanism of heavy metals and As is through
formation of reactive oxygen and nitrogen species that cause non-specific damage
such as oxidative damage to DNA and lipid peroxidation that can contribute to repro-
ductive problems (@). For instance, there are low birth weight infants, more sponta-
neous abortions, and congenital malformations in female employees and women living
close to copper smelters as reported in Sweden and Bulgaria (@ﬂ) However, this
mechanism of As action is certainly due to its chemical toxicity rather than its mimicry
of endocrine agents such as estrogen.

2.3. Mechanisms of Arsenic Actions on Endocrine Systems

There are limited in vitro based studies of the putative estrogenic activity of As.
In MCF-7 breast cancer cells, which are often used to assess estrogenic activity of
endocrine-disrupting chemicals (@ ). In these cells, arsenite at low micromolar concen-
trations stimulated increased proliferation, steady state levels of progesterone receptor,
pS2, and decreased estrogen receptor-a mRNA expression (E). The antiestrogen ICI
182,780 or fluvestrant blocked the effects of arsenite indicating the dependence on the
estrogen receptor. In addition, by using binding assays and receptor activation assays,
it was determined that As interacts with the hormone-binding domain of the estrogen
receptor (@). Another group tested the estrogenicity of several heavy metals and
arsenite treatment stimulated MCF-7 cell growth but relative to other metals was not
very potent (@). In contrast, arsenic trioxide, an approved treatment of acute promye-
locytic leukemia, blocks MCF-7 cell proliferation without binding the ligand-binding
domain of the estrogen receptor but does interfere with estrogen receptor-signaling
pathway indicating that the chemical state of As is key in determining its biologic
activity (123).

Arsenite binds to the Zinc (Zn) finger region of the estrogen-binding region of
estrogen receptor-a, and the binding affinity is influenced by the amino acid length
between two cysteines (@m) However, these investigations are strictly cell-free
assays; so, it is difficult to extrapolate to whole cell responses. Finally, arsenite at
100 wM binds the glucocorticoid receptor in the steroid-binding domain but does not
compete for binding to progesterone, androgen, or estrogen receptors in MCF-7 cells at
this high concentration (3d). On the contrary, arsenite from 0.3 to 3.3 wM, a non-toxic
dose, interacts with the glucocorticoid receptor in human breast cancer cells and rat
hepatoma cells to inhibit glucocorticoid receptor-mediated gene transcription M}.
In addition, glucocorticoid receptor binding of its ligand dexamethasone is blocked
by low micromolar concentrations of arsenite but not arsenate. Arsenite interacts with
the vicinal dithiols of the glucocorticoid receptor as is the case with its interaction
with the estrogen receptor ). Arsenite at low micromolar concentrations binds
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to the estrogen receptor and glucocorticoid receptor to alter gene expression in rat and
human cells. At concentrations > 100 M arsenic may act through chemical toxicity to
non-specifically damage DNA or proteins through reactive oxidative species (@). As
a whole, these studies suggest influence of As on the stress neuroendocrine system.

In sum, there is suggestive evidence from in vivo studies that As may have estrogenic
activity. Nevertheless, further proof that antiestrogens may block the responses elicited
by As would allow a stronger connection between As and putative estrogenic activity
to be drawn. Moreover, there could be indirect endocrine effects of As because of its
causing insulin resistance and reducing insulin levels leading to type 2 diabetes that
potentially would compromise reproductive tissue responses. The evidence in MCF-7
cell E-Screen bioassays strongly supports the conclusion that As can bind the estrogen
receptor in the ligand-binding domain to activate the receptor and exert downstream
signaling events that are blocked by the antiestrogen ICI 182,780. In addition, there
is strong evidence to support the conclusion that arsenite binds the glucocorticoid
receptor to either activate and/or inhibit gene transcription. Thus it appears that at low
concentrations (<10 M) there are observations of specific interaction with steroid
receptors whereas at higher concentrations (>100 wM), As reactive chemistry prevails
and non-specific interactions with DNA and protein causes toxicity and leads to cell
death.

3. CADMIUM

Cadmium (Cd) is dispersed through out the environment primarily from mining,
smelting, electroplating, and it is found in consumer products such as nickel/Cd
batteries, pigments (Cd yellow) and plastics (B). Tobacco smoke is one of the most
common sources of Cd exposure because the tobacco plant concentrates Cd (E).
Smoking one pack of cigarettes a day results in a dose of about 1 mg Cd/year (IB).
Cadmium is very slowly excreted from the body so it accumulates with time. Of all the
heavy metals the most data has been collected both regarding Cd’s biologic activity as
well as in support of its being an endocrine-disrupting chemical (@).

3.1. Cadmium Effects on Pregnancy and the Fetus

The greatest environmental Cd exposure is in the Jinzu River basin in Japan because
of an effluent from an upstream mine. Maternal exposure to high levels of Cd has
led to a significant increase in premature delivery (43). This has led to investigation
of the possible mechanisms for Cd-induced premature delivery, possibly by compro-
mising placental function. There are enhanced concentrations of Cd in follicular fluid
and placentae of smokers that are correlated with lower progesterone (@,). Cd at
high concentrations inhibits placental progesterone synthesis and expression of the
low-density lipoprotein receptor that is needed to bring cholesterol substrate into the
cells (@ ). Detailed analysis of the Cd-mediated reduction in progesterone production
by cultured human trophoblast cells indicated that the decrease is not due to cell death
or apoptosis. Rather, there is a specific block of P450 side chain cleavage expression
and activity. This was shown by blocking P450 side chain cleavage activity with
aminoglutethimide and adding pregnenolone, which was converted to progesterone by
the unaffected activity of 33 HSD (@).
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Placental 113 HSD activity is critical to protect the fetus from maternal cortisol,
which suppresses fetal growth, by converting it to inactive cortisone. Mutation or
reduced expression of 118 HSD is associated with fetal growth restriction and is a
significant risk factor for obesity, type 2 diabetes, and cardiovascular disease later
in life (@E) There is an inverse relationship between birth weight and number of
cigarettes smoked per day (Iﬂ). Cd accumulates in the placenta so significant amounts
do not reach the growing fetus (@). Of the thousands of toxic chemicals in cigarette
smoke, Cd is one that has been linked to placental deficiencies (@). A recent report
describes that Cd at <1 wM reduces 113 HSD type 2 activity and expression in cultured
human trophoblast cells (@). Cd’s effect was unique because it was not mimicked by
other metal divalent cations such as Zn, Mg, or Mn (ﬂ). Cadmium may downregulate
113 HSD by mimicking the ability of estrogen to attenuate the expression of this
placental enzyme (@). Thus, Cd environmental exposure in cigarette smoke, either
first or second hand, could contribute to risk of major diseases later in life, particularly
for the low birth weight fetus that was not protected from maternal cortisol.

The detrimental actions of Cd are seen at concentrations >5 M. For instance,
in human granulosa cells collected during in vitro fertilization (IVF) procedures,
Cd> 16 pM inhibited progesterone production (@). However, at concentrations
<5 M, Cd stimulates transcription of P450 side chain cleavage in porcine granulosa
cells that results in greater progesterone production (@ ). Cadmium may act to stimulate
gene transcription by its high-affinity displacement of calcium from its binding to
calmodulin and activation of protein kinase-C and second messenger pathways (158).
P450 side chain cleavage is the rate-limiting step for steroidogenesis. Thus, Cd’s
ability to either stimulate or suppress this enzyme could have a profound impact in all
steroidogenic tissues.

In primary ovarian cell cultures from either cycling or pregnant rats, or human
placental tissue, Cd at concentrations >100 wM suppressed progesterone and testos-
terone production (@@) In addition, in vivo Cd-treated rat ovaries exhibited
suppressed progesterone, testosterone, and estradiol production in culture (@). All
these experiments used Cd concentrations that probably induced toxicity through one
or more of numerous mechanisms such as inhibition of DNA repair, decreased antiox-
idants, activated signal transduction, or cell damage (@) rather than acting through a
specific receptor or mechanism to inhibit steroidogenesis.

3.2. Cadmium and Testicular Toxicity

There are hundreds of articles describing toxic effects of Cd on the testes, as first
reported in 1919 with the finding that testicular necrosis was induced by Cd (B).
As in the female, there is a causal relationship between cigarette Cd exposure and
impaired male fertility (@ ). In research models, such as rat Leydig cells, Cd is toxic
to steroidogenesis but at concentrations >10wM that coincide with cell death (@).
However, in another study, also using rat Leydig cells, 100 uM Cd treatment doubled
testosterone production with no change in cell viability (64). Consistent with the in
vitro observation of increased testosterone in the presence of Cd, chronic Cd oral
exposure increased plasma testosterone in rats (@ ). The increase in plasma testosterone
was not evident until after more than 1-month exposure to Cd in the drinking water.
At the same time, there was an increase in testicular weight (@). In contrast, Cd given
by subcutaneous injection to adult rats caused a decrease in plasma testosterone (@).
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Discrepancies between these studies suggest that the route of exposure to Cd affects
whether it stimulates or inhibits testicular androgen production. Human Cd exposure
through ingestion or occupationally also is associated with increased testosterone and
estradiol ,ﬂ). Even postmenopausal women demonstrate a correlation between
urinary cadmium and significantly elevated serum testosterone (@). The mechanism
for Cd-induced increase in human testosterone is unknown.

3.3. Cadmium as a Metalloestrogen

One of the most important studies indicating that Cd is an estrogen mimic, published
in 2003 (E ), showed that female rats injected with Cd experienced earlier puberty onset,
increased uterine weight, and enhanced mammary development. Cadmium treatment
induced estrogen-regulated genes such as progesterone receptor and complement
component C3. It also promoted mammary gland development with an increase in the
formation of side branches and alveolar buds. In utero exposure of female offspring
resulted in their reaching puberty earlier and an increase in epithelial area and number
of terminal end buds in the mammary glands. Importantly the effect of Cd on uterine
weight, mammary gland density, and progesterone receptor expression in uterus and
mammary gland was blocked by coadministration of the antiestrogen ICI 182,780 (E).
Thus far, this in vivo study showing the reversibility of these Cd-induced effects by an
antiestrogen is the most robust in supporting the conclusion that Cd is an endocrine-
disrupting chemical and a putative metalloestrogen.

Evidence for Cd interaction with the estrogen receptor is the best characterized of
all the heavy metals. Cd-treated MCF-7 human breast cancer cells demonstrate many
responses to Cd that are the same as those elicited by estrogen. Cadmium treatment
stimulates MCF-7 cell growth, downregulates the estrogen receptor, stimulates the
expression of the progesterone receptor, and stimulates estrogen response element in
transient transfection experiments (IZ3). In these studies, Zn treatment did not elicit these
cellular responses demonstrating that Cd’s effect was specific and not due to general
effects of heavy metals. The specific nature of Cd’s interaction with the estrogen
receptor was examined in further detail (@). Low concentrations of Cd activate the
estrogen receptor-a by interacting non-competitively with the hormone-binding domain
to block the binding of estradiol. It is notable that the ability of Cd to block estradiol
binding occurs over 8 logs of concentration from 107" to 107> M but Zn at 10> M did
not compete. Within the binding domain, the specific amino acids engaged by Cd are
cysteines, glutamic acid, and histidine. These residues, particularly the cysteines, react
with As through dithiol coordination suggesting that As and Cd share similar chemistry
in interacting with the estrogen receptor. The same research group demonstrated that
Cd at environmentally relevant concentrations also binds to the androgen receptor
in human prostate cancer cells, LNCaP, to activate the receptor and stimulate cell
growth (@3 As the same heavy metal Cd binds both the estrogen receptor and the
androgen receptor, and in many tissues in the reproductive system expresses both types
of receptors, it presents the scenario where the same metal exposure could lead to
different responses depending on the relative localization and activation of the two
steroid receptors in various tissues.

There are additional reports of Cd stimulating MCF-7 breast cancer cell gene
transcription and increased cell growth. For instance, Cd-stimulated proliferation of
MCF-7 cells is blocked by melatonin, the pineal gland indole hormone (@). Cd
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treatment significantly activated both estrogen receptor-a and estrogen receptor-f3,
with a greater effect on the estrogen receptor-a. Additionally, Cd activated the
transcription factor AP-1 through estrogen receptor-a similar to the response caused by
estrogens @,@ ). To aid identification of estrogen mimetics the cell line, T47D-KBluc,
derived from a human breast cancer cell line, has been genetically modified to be
a specific, sensitive estrogen-responsive gene expression assay (@). Cd treatment of
these cells induced gene expression as indicated by reporter gene luciferase-mediated
light generation. At concentrations as low as 0.01 x 107 M, Cd induced a significant
increase in luciferase gene expression that was completely blocked by the antie-
strogen ICI 182,780 ). Cd induces at least two types of genes: (i) genes for
cytoprotective proteins, i.e. metallothioneins, heat-shock proteins and Zn transporter
proteins and (ii) early proto-oncogenes related to cell proliferation, i.e. c-fos (@).
The first type of genes are induced by Cd at 10-30 .M whereas the stimulation of
cell-proliferation related genes occurs at 0.1 WM leading to mitogen-activated protein
kinase (MAPK) cascade activation (8d). But there is a fly in the Cd ointment. Recently,
it was reported that Cd is neither estrogenic, as it does not induce increased MCF-
7 cell proliferation, nor does it induce phosphorylation of MAPK (@). Cd was
able to interact with the estrogen receptor to prevent estrogen from binding, but
these investigators did not observe Cd-mediated increased transcriptional activation
as was previously reported by Stoica et al. (@). Therefore, further investigation is
needed to clarify the interaction of Cd with the estrogen receptor and downstream
consequences.

4. LEAD

Lead (Pb) is a ubiquitous environmental contaminant. In the 1940s, dietary intake
of Pb was approximately 500 pg/day in the US population, but now, that intake is
<20pwg/day as a result of removing or reducing the primary sources of Pb: leaded-
gasoline, lead-based paints, lead-soldered food cans, and lead plumbing pipes (E).
Thanks, in particular to the ban on leaded gasoline in 1979, the US population Pb
blood level dropped precipitously from 13 pg/dL in the 1980s to <5 pg/dL (@ ). Lead
is similar to calcium in its disposition in the body. Its half-life in the blood is 1-2
months, but depending on exposure, it can accumulate in bone where its half-life is
20-30 years (ILL3). Lead-based paint remains the most common source of Pb exposure
for children <6 years old. However, acute lead poisoning as well as chronic low-level
Pb exposure can come from handling and/or swallowing metallic charms (@). Pb
poisoning is most dangerous to children as it causes mental impairment. There is a 2—4
point 1Q deficit for each wg/dL increase in blood Pb within the range of 5-35 pg/dL.
Thus, the CDC has set blood lead concentrations of 10 wg/dL or greater to indicate
excessive absorption in children and triggers the need for environmental assessment
and remediation (B). Recent data suggest that even Pb < 10 wg/dL is associated with
impaired intellectual performance in children (@).

4.1. Lead as an Endocrine-Disrupting Chemical in Humans and Animals

Of the five heavy metals discussed here, Pb has the strongest evidence to
connect its exposure to endocrine disruption in human populations. Three independent
studies indicate that environmental exposure to Pb leads to delay in growth and
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pubertal development in girls. The first study found that a blood Pb concentration
of 3pg/dL. was associated with delayed puberty after adjustment for body size
and other confounders (E). The second study found a similar relationship between
blood Pb concentration and delayed attainment of menarche even after adjusting for
race/ethnicity, age, family size, residence in metropolitan area, poverty income ratio,
and body mass index (Ié). The most recent study associated blood Pb with later
menarche controlling for other toxicants, age, and socioeconomic status in Akwesasne
Mohawk girls (@). In all these studies, the relationship between blood Pb and puberty
was significant even after adjusting for body size. This indicates that Pb’s effect was
probably direct through its impact on the hypothalamic—pituitary—ovarian axis rather
than secondary to Pb-related decreased body size, which can be associated with the
timing of the onset of puberty (@). In the same population, exposure to polychlorinated
biphenyls resulted in reduced size at birth but advanced sexual maturation, indicating
that different pollutants exert effects through different physiology or endocrinology
pathways (@).

How does Pb exposure in children lead to delayed puberty? Research results from
experiments with rats show that growth and sex hormones are altered from prenatal,
lactational, and prepubertal exposure to Pb. These treatments delayed the age of vaginal
opening, first estrus, and disrupted estrous cycling associated with suppressed serum
levels of insulin-like growth factor-1 (IGF-1), a liver hormone involved in growth
and reproduction ). Moreover, Pb affected hormones and responsiveness of all
levels of the hypothalamic—pituitary—ovarian axis (@,). Dietary Pb may delay the
onset of puberty in female mice, as observed in rats (@), although by contrast, very
low levels of dietary Pb, 0.02 ppm, were associated with a marked and significant
acceleration of puberty in mice @), indicating an effect of dose on the pubertal
outcome. In the last decade, puberty onset has advanced in the USA even in children
migrating from foreign countries in Western European countries. It has been suggested
that environmental endocrine-disrupting chemicals may be contributing to the earlier
onset of puberty (@).

4.2. Lead Effects on the Ovary and on Steroidogenesis

There are few studies of the direct effect of Pb on ovarian steroidogenesis. Lead
exposure in vivo in cynomolgus monkey suppressed circulating luteinizing hormone
(LH), follicle-stimulating hormone (FSH), and estradiol without affecting proges-
terone or causing overt signs of menstrual irregularity (@). Prenatal and neonatal
Pb exposure resulted in suppressed rat ovarian homogenate A4 androgen production
whereas Sa-reduced androgens were increased (@). There are more studies that
examine changes in follicle populations after Pb exposure. For instance, mice exposed
to Pb in utero experienced a significant reduction in the number of ovarian primordial
follicles (@). Adult mice given Pb by gavage for 60 days had significant changes in
ovarian small, medium, and large follicle populations ). But, in another study, Pb
was given by injection, and there was no change in either antral follicles but decreased
primordial follicles and increased growing and atretic follicles (@ ). Accelerated elimi-
nation of ovarian follicles, common to the above-cited reports, will ultimately lead to
premature ovarian failure if the reduced follicle pool is the non-regenerating primordial
follicles or disrupted cycles if the growing follicles are targeted.
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Lead treatment of culture human ovarian granulosa cells retrieved during IVF
reduces mRNA and protein levels of both P450 aromatase and estrogen receptor-
B (E). However, the mechanism responsible for Pb suppression of these two targets
is unknown. Another molecular target of Pb is steroidogenic acute regulatory protein
(StAR) that mediates the transfer of cholesterol into mitochondria ). Female rats
exposed to Pb in utero have decreased basal ovarian StAR mRNA and protein but this
is reversed by stimulating with gonadotrophins before collecting the ovaries. On the
basis of these results, it was concluded that Pb acts at the hypothalamic—pituitary level
of the reproductive axis.

4.3. Effects of Lead on Testicular Function and Steroidogenesis

Substantial research has been conducted regarding the specific effects of Pb on
testicular and male reproductive function M). Pb accumulates in male reproductive
organs. Exposure to Pb causes altered and delayed spermatogenesis accompanied by
decreased fertility. For instance, in one IVF clinic, >40 % of the males who were not
exposed to Pb occupationally and did not smoke cigarettes had blood and seminal
plasma Pb concentrations_greater than the permissible limit in men who are exposed
to Pb in the work place ). In fact, there was an inverse relationship between Pb
concentration in blood and seminal plasma and rate of fertilization that was due to
altered sperm function M). The progesterone-dependent acrosome reaction was the
sperm function most affected by the presence of Pb.

Lead inhibits both Sertoli and Leydig cell steroid production at every step of
synthesis. Expression and/or activity of gonadotrophin receptors, StAR, p450 side
chain cleavage, 33 HSD, and P450c17, the enzyme that converts progesterone into
testosterone, are significantly if not dramatically suppressed by Pb in vivo, ex vivo, or
in vitro M). Given the high concentrations of Pb used in all of these studies
and often more severe inhibition with greater length of exposure, it is likely that the
suppression of steroidogenesis at these step is due to toxicity rather than specific action
or mimicry of an endocrine hormone.

4.4. Lead and Sex Ratios

Lead has been implicated in shifting the sex ratio to fewer boys born and maybe
related to low testosterone at the time of conception ). Professional drivers exposed
to excessive petroleum products father fewer sons ). Consistent with the occupa-
tional exposure to Pb leading to fewer boys born also is observed in filling station
workers (223 ). Both these reports suggest a relationship between occupational exposure
to Pb and reduced male sex ratio, although this area is still controversial (ﬁ , in
part because of separating the consequences of exposure of one or both parents )
The most recent brief report revealed a dose—response with Pb such that workers with
higher blood Pb levels had significantly reduced odds of having male offspring (E).
These data are intriguing, but much more investigation is needed to support or reject
the hypothesis that Pb exposure impacts paternal-related sex ratio.

Lead can activate estrogen receptor-dependent transcriptional expression assay and
stimulate MCF-7 breast cancer cell growth. In both these assays, Pb was not very
effective and far less efficient than Cd (@). Specific interaction of Pb with estrogen
receptor was not determined in these studies, leaving me to conclude that there
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is insufficient evidence to conclude that Pb is an estrogen mimetic. However, the
effects of subtoxic doses of Pb on reproductive functions described above support
Pb as an endocrine-disrupting chemical whose specific mechanisms need to be
determined.

5. MERCURY

Depending on its chemical form mercury (Hg) can be very toxic. Occupational
exposure leads to neurodegeneration, behavioral changes, and death. Over 400 years
ago, mercuric nitrate used in the felt hat industry gave rise to the phrase “mad
as a hatter” depicted by the Mad Hatter in Lewis Carroll’s Alice’s Adventures in
Wonderland (IL3). Tragically, a recent accidental dimethylmercury poisoning reaffirmed
the dangers associated with working with Hg (m ). Large-scale Hg poisonings
have occurred in Minamata, Japan, and Iraq by industrial or inadvertent introduction
of Hg into the food chain ml)) Industrial uses of Hg range from laboratory, dental,
thermometers, paints, electrical equipment, and chloralkali. For the general public,
there are three major sources of environmental Hg: fish consumption, dental amalgams,
and vaccines ).

Fish contaminated with Hg poses a serious health risk to pregnant women and their
babies. Methyl mercury bioaccumulates and biomagnifies in muscles of predatory fish
that are at the top of the food chain, such as albacore M). Most concern is centered
on neurological and behavioral problems that occur following exposure of the fetus or
newborn, as Hg easily crossing the placenta and passes through the undeveloped infant
blood-brain barrier. Thimerosal is an ethyl mercury-based vaccine preservative used
since the 1930s M). It has received much attention of late because of its possible
link to autism, but this is unproven and very controversial.

5.1. Mercury and Reproduction

Women exposed to Hg at work have been reported to experience reproductive
dysfunction. Occupational exposure to mercury either in mercury vapor lamp factor or
in dentistry is associated with menstrual disorders, subfecundity, and adverse pregnancy
outcomes (@Jﬂ) Interestingly, at very low Hg exposure, women working in
dentistry were more fertile, suggesting a U-shaped dose-response curve (@). Much
more research is needed to establish a causal relationship between occupational Hg
exposure and compromised fertility (@).

Animal studies provide some insight into the impact of Hg exposure on female repro-
duction. In hamster, subcutaneous mercuric chloride treatment disrupts estrous cycles,
suppresses follicular maturation, reduces plasma and luteal progesterone levels, and
may disrupt hypothalamus-pituitary gonadotrophin secretion ). Similar changes
were observed in female rats exposed to Hg vapor. The estrous cycle was lengthened,
and morphological changes were evident in the corpora lutea, but ovulation, implan-
tation, or maintenance of first pregnancy was unchanged (@).

In wildlife, it has been proposed that Hg exposure has been responsible for increased
cryptorchidism in the Florida panther as a result of exposure through bioaccumu-
lation (@). The authors report no significant difference between serum estradiol
levels in male and female panthers, suggesting demasculinization and feminization
of males. However, it is important to consider that the reproductive impairment and
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cryptorchidism may be genetically rather than environmentally based because there
is limited genetic variation in the remaining Florida panther population (Iﬂ). Never-
theless, based on analysis of panther hair from museum collections, there is no doubt
that current Florida panther Hg levels have increased since the 1890s ).

Investigation of the impact of either intraperitoneal injection of mercury or oral
dosing of male rats or mice reveals consistent changes in the reproductive system. For
instance, in rats exposed for 90 days to Hg by i.p. injection, testicular steroidogenesis
was suppressed at the 38 HSD synthetic step with a significant decrease in serum
testosterone and LH ). Oral exposure of rats to mercuric chloride for 45
days resulted in suppressed testosterone and increased testicular cholesterol (IE ). The
authors suggest that the increased cholesterol is due to the block of its biosynthetic
conversion to sex steroid hormones such as testosterone. Another possibility is that
Hg mimics the effect of estrogen on the testes which is to both inhibit androgen
production and cause accumulation of cholesterol probably because of upregulation
of the high-density lipoprotein (HDL) receptor, scavenger receptor class B, type I
(SR-BI) (@).

5.2. Estrogenic Mechanisms of Mercury

The estrogenicity of Hg was examined in MCF-7 cells (@). Mercuric chloride
stimulated both estrogen receptor-dependent transcription and increased proliferation
of MCF-7 cells (@). A more detailed study of the methyl mercury impact on MCF-7
cells was performed by Sukocheva et al. (@). In this study, instead of measuring
increased number of MCF-7 cells, the number of postconfluent foci that formed with
estrogen treatment was counted. Multicellular foci form in response to estrogen agonists
and are proportional to hormone dose or concentration mﬁ A very narrow concen-
tration range, 0.5 x 107 to 1 x 107 M, of methyl mercury stimulated MCF-7 cell foci
formation but did not reach the maximum response elicited by estradiol, indicating
that Hg is a weak estrogen mimic. Hg exhibited estrogen receptor agonist—antagonist
properties depending on concentration. Its stimulation of foci formation is blocked by
the antiestrogen ICI 182,780. However, Hg is poor at competing for *H estradiol binding
to recombinant estrogen receptor as displacement was only observed and 10~ M. As
is the case with estradiol, Hg stimulated Erk1/2 activation that was dependent on
mobilization of intracellular Ca*2, suggesting similar signaling mechanisms. Methyl
mercury reacts with sulfhydryls and could interact with protein thiol groups such as
those located in the ligand-binding domain of the estrogen receptor to stimulate MCF-
7 cell proliferation. The Erk1/2 activation pathway is involved in cell proliferation
and gene expression. A number of extra cellular signals have been shown to induce
MAPK Erk1/2 including many other well-known endocrine-disrupting chemicals such
as bisphenol A (@) (see Chapter 2 by Soto, Rubin, and Sonnenschein).

6. URANIUM

Uranium (U) is the heaviest naturally occurring element, certainly qualifying it as a
heavy metal. Similar to Cd, U was used initially for its pigmentation in bright orange-
red Fiestaware. Uranium was the first element to be identified as fissile. Uranium
supports nuclear chain reactions leading to the development of atomic weapons and
later as a fuel for nuclear reactors. Its current use is as depleted uranium (DU) in armed
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conflict first in the Balkans and now Iraq for both munitions and armor. Environmental
sources and thus risk of contact with U are mining, production of nuclear weapons,
nuclear reactor industry and disasters, and US-facilitated armed conflict.

Nuclear accidents at Three Mile Island and Chernobyl quashed hopes of devel-
oping nuclear energy to replace dependence on fossil fuels for decades. With today’s
dwindling petroleum supplies and significant green house gas emissions from coal-
produced energy, interest in nuclear energy is renewed. Australia has the world’s
largest U reserves, but Canada is the largest U exporter. In the USA, the greatest U
reserves are in the southwest, specifically the states of the Four Corners, AZ, CO, NM,
UT, where the Navajo Reservation Nation is located.

6.1. Uranium, the Navajo Reservation, and Human Exposures

The Navajo Reservation is the largest Native American reservation in the USA.
It covers over 27,000 square miles. The Navajo Nation comprises 110 Chapters, the
political/social units. According to the 2000 census there are 250,000 members of the
Navajo tribe, making it the largest Native American tribe in the USA. This group
continues to live its traditional lifestyle and rely on its native language to sustain
and nurture the “Navajo way.” Over 170,000 people live on Reservation and the
majority of the remaining tribal members live in “border towns” such as Farmington,
NM, and Flagstaff, AZ. Fifty four percent of households have no indoor plumbing
or running water necessitating half of the Reservation households to haul water from
the nearest available source. The Navajo Reservation evokes images of a peaceful
and healthy environment, but the reality of environmental contamination presents a
different picture.

From the 1945 through 1988 there was intensive U mining and milling (132). n
1980, the market price for U crashed and effectively ended the mining. However,
the market value of U ore has quintupled in the last four years because of renewed
interest in nuclear energy and the ongoing need for depleted U for armed conflict.
Thus, U mining is on the upsurge, with 700 claims filed 2005 in the northern part
of AZ. At the writing of this chapter, U is poised to climb to a record high of
$50/1b in the next 6 months stimulating revived interest in mining on the Navajo
Reservation.

Well-documented health problems that arise from U mining and milling are lung
cancer and respiratory diseases (@@ ). These health problems result from radiation
exposure after inhalation of radon-rich dust released during U mining. Hundreds of
Navajo and Mormon miners and ore truck drivers have developed these diseases, and
if they can document their work experience with pay stubs or other evidence they may
qualify for compensation from the Federal Radioactive Exposure Compensation Act
(RECA). However, many Navajo miners do not have the documentation to prove their
employment history and die before they can be compensated (E).

It is estimated that there are over 1500 abandoned mines on the Navajo
Reservation that have not been properly closed, allowing U to be dispersed by
the elements over the last 62 years throughout the natural environment. The US
Army Corps of Engineers performed a survey of water sources in 30 Chapters on
the Navajo Nation, and the results are posted by USEPA on this website http://
yosemite.epa.gov/r9/sfund/r9sfdocw.nsf/vwsoalphabetic/Abandoned+Uranium+Mines+
On+The+Navajo+Nation?OpenDocument. In every chapter surveyed, there was at
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least one water source with U water levels that exceeds the USEPA safe drinking
water level of 30 pg/L. Because half of the households on the Reservation haul water,
it is certain that many people are exposed to unsafe levels of U in their drinking and
household water.

Health problems that result from drinking U-contaminated water include kidney
disease, kidney cancer, and possibly stomach cancer (IE). Kidney disease results
from U’s heavy metal poisoning of the proximal tubules and interferes with glucose
uptake (@). Cancer in the kidney, stomach and bone marrow results from U-derived
alpha radiation causing DNA damage leading to cell transformation and cancer. Owing
to its chemical properties, U homes to bone and bioaccumulates, leading to increased
risk of leukemia. Other routes of exposure are inhalation of small particles blown from
tailings or dust and dirt brought into the home on the miner’s clothing often washed with
the clothes of other family members (@). Depending on size, the particles can enter
the bloodstream leading to the above-mentioned diseases. Allowable exposure limits
vary for U. The USEPA safe drinking water limit of 30 wg/L is based on economic
feasibility while the World Health Organization standard of 2 ug/L is based on the
fractional source of U assuming that an adult drinks 2L of water a day. However,
a recent study suggests that even low U concentrations in drinking water can cause
nephrotoxic effects, and after long-term ingestion, elevated concentrations of U in
urine can be detected up to 10 months after the exposure has stopped (@).

6.2. Uranium as an Endocrine-Disrupting Chemical
on Reproductive Systems

Numerous studies have investigated the reproductive toxicology of both U and DU
in experimental mice and rats ). The original study conducted by Maynard
and Dodge M} showed that breeder rats consuming chow containing 2 % uranyl
nitrate hexahydrate (UN) for 7 months gave birth to half as many litters as the control
chow-fed rats. The litter size of the U-consuming rats was significantly less as well.
For the next 5 months all rats ate control chow; however, the female rats that had
been exposed to UN still only produced less than half as many litters as the rats that
were on control chow for the entire 12 months. Rats eating U-containing chow also
had irregular estrous cycles compared with the control chow-fed rats. Even though
the U-fed rats lost weight, which could have contributed to their reduced fertility,
the fact that after the rats were returned to control chow and regained weight, but
they still produced half the number of litters indicates that the impact of U was
permanent.

Several studies have documented U’s toxicity in the male reproductive system.
General features reported are degenerative changes in the testes such as aspermia
in the testes and epididymis, testicular atrophy, interstitial cell alterations, Leydig
cell vacuolization, and reduced successful female mouse impregnation (@,). DU
exposure in human has been a result of warfare. Gulf war 1990-1991 UK veterans may
have impaired fertility, and pregnancies took longer to conceive (@ ). Also, there was
a 40 % increased risk of miscarriage among pregnancies fathered by men who served
in the first Gulf war (@). Another cohort of US Gulf war veterans struck by friendly
fire had DU shrapnel embedded in muscle and soft tissue and were still excreting
greater than background levels of U 9-11 years after sustaining their injuries ).
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A follow-up of 30 friendly fire cohort members found evidence of subtle perturbations
in the reproductive system indicated by significantly elevated prolactin levels (@). In
another DU-exposed friendly fire cohort, there were significantly elevated sperm counts
and a higher percentage of progressive spermatozoa among veterans excreting high
levels of U as compared with veterans excreting low levels of U in their urine ).
In a different population, Czechoslovakian uranium miners fathered significantly more
girls than boys, suggesting a shift in the sex ratio (@). It is important to consider
that these reports are preliminary, and there is no evidence to suggest that altered male
fertility is caused by exposure to U or DU.

U exposure of pregnant rodents produces maternal toxicity, fetal toxicity, and devel-
opmental defects (@). There are more absorptions, dead fetuses, fewer live-born
fetuses, and pup body weight and length were significantly reduced. In addition, there
is a higher incidence of cleft palate and dorsal and facial hematomas (IE). In humans,
there is sufficient epidemiological evidence to suggest an increased risk of birth defects
in offspring of persons exposed to DU (IE). On the Navajo Reservation exposure to
environmental U was statistically associated with uranium operations and unfavorable
birth outcome, including cleft palate and craniofacial developmental defects, if the
mother lived near mine tailings or mine dumps (@). Again, the possible association
of environmental U exposure and adverse human health outcomes is correlative, and
more research is needed to draw any casual connections.

6.3. Uranium as an Environmental Estrogen

Probably because of U’s radioactive nature, it has been studied intensely with
regard to harmful effects from its ionizing radiation and chemical toxicity but had not
previously been tested for its potential estrogenic activity as a heavy metal. Recently,
we have discovered that U is estrogenic in female reproductive tissues (@,). The
source of U in our in vivo and in vitro studies is UN and is DU. It should be noted that
natural U and DU have the same chemistry, and therefore, both will cause the same
changes that are dependent on chemical properties.

Although there are many publications describing the effects of U exposure on repro-
duction in female, none of the reports mentioned the impact of U on ovarian follicle
populations M—@). We wanted to determine whether U exposure would target a
specific ovarian follicle population or more likely cause a non-specific general ovarian
toxicity. In our original studies, high levels of UN at mg/L in the drinking water
were consumed for 30 days by intact immature female mice. UN exposure specifically
targeted primary follicles whose number was reduced. Unexpectedly, in these mice,
there was a trend, although not statistically significant, of increased uterine weight.
In this experiment at these high doses of U, kidney weight was reduced, consistent
with U’s well-known nephrotoxicity (@). Intrigued by the possible uterotrophic
effect of U at mg/L concentrations, we next tested whether wg/L levels would cause
uterine weight to increase in ovariectomized mice (E). Ovariectomized mice that
drank UN-containing water for 10 days at concentrations starting at the USEPA safe
drinking water level of 30 wg/L down to 0.3 pg/L had significantly increased uterine
weights (@ ). If the mice were treated with the antiestrogen ICI 182,780 while drinking
the U-contaminated water, the increase in uterine weight did not occur. We concluded
from this experiment that U at low, environmentally relevant concentrations, acted like
estrogen. Another biological response elicited by estrogen in ovariectomized immature
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mice is accelerated vaginal opening. This response was also observed in mice drinking
U-contaminated water that was again prevented by the coincident treatment with
ICI 182,780 (IE). Finally, we observed the persistent presence of vaginal cornified
epithelial cells from immature ovariectomized mice drinking U-contaminated water,
and as before, the antiestrogen ICI 182,780 ablated this response. Cornified epithelial
cells from vaginal smears are an indication that there is an ongoing estrogenic stimu-
lation of the reproductive tract (@). In all these experiments, we compared the
responses induced by U to those caused by the potent synthetic estrogen DES. The
magnitude of the responses were comparable at equivalent molarity for U and DES,
indicating that U is a potent estrogen mimic in vivo.

Our preliminary results analyzing the putative estrogenic activity of U in vitro
using MCF-7 breast cancer cells indicate that UN at nanomolar to low micromolar
concentrations stimulates cell proliferation (@ ). The estrogen receptor was involved
because the antiestrogen ICI 182,780 blocked both 173-estradiol and UN-stimulated
MCEF-7 cell proliferation. Cell proliferation is a response that takes days to occur
through the classic estrogen receptor-dependent genomic pathway. Recent reports
indicate that estrogen-mediated responses can occur in just a few minutes (IE). To
detect whether rapid responses occurred in DES- or UN-treated MCF-7 cells, we used
scanning electron microscopy to visualize cell surface morphological changes within
minutes of exposure. Both DES and UN treatment caused a significant increase in
number and branching of MCF-7 cell surface microvilli, and the cell surface changes
were blocked by ICI 182,780 (@). The rapid morphological changes suggest that,
%1&1‘ to estrogen, UN causes cell responses independent of genomic responses

).

As with the other heavy metals, low concentrations (<10 wM) mediate specific
responses for instance through the estrogen receptor or other steroid receptors, whereas
higher concentrations (>100 wM) cause non-specific toxic responses. For instance, in
Chinese hamster ovary cells, uranyl nitrate killed the cells and induced chromosome
aberrations and sister-chromatid exchanges (@). Uranyl acetate at 200 wM killed and
mutagenized Chinese hamster ovary cells perhaps by causing DNA strand breaks and
forming uranium-DNA adducts ). Thus, depending on the environmental level
of U and exposure or contact, the biologic responses can range from subtle through
steroid receptor interaction and activation to striking through cytotoxic and genotoxic
mechanisms. The concentrations of U and oral route of exposure at which we see
estrogenic responses in vivo and in vitro are environmentally relevant to exposures
on the Navajo Reservation as well as other communities in the USA where U is in
drinking water at levels at or below the USEPA safe drinking water limit.

7. CONCLUSIONS

Historically, heavy metal toxicity targeting the kidney or nervous system has been
the focus of most research efforts. However, accumulating evidence, particularly when
studies are performed with low micromolar concentrations, indicates that heavy metals
can act as endocrine-disrupting substances through specific, high-affinity pathways.
Thus far, heavy metals primarily have been described to interact with the estrogen
receptor giving rise to the term metalloestrogens. This is just the beginning of our
understanding of the subtle means by which heavy metals disrupt endocrine function—
many more pathways need scrutiny ).
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