A DESIGN FOR PARAMETERIZED ROLES

Mei Ge and Sylvia L. Osborn *

Abstract Role-based access control eases the management of access control in cases
where there are large numbers of objects and users. Roles provide certain ac-
cess to specific data objects. In order to handle a very large number of users who
each need the same access to slightly different data, we propose parameterized
roles as an alternative to private roles. We motivate the requirement for param-
eterized roles, show how to define them, and show how with only very slight
modifications, our role graph model can incorporate parameterized roles.

1. INTRODUCTION

Role-based access control has been studied for many years now [9, 4]. The
role graph model is one manifestation of role-based access control [4, 5]. In
some recent work [11], we looked at accessing large collections of XML docu-
ments using role graphs. One outcome of this recent work is to realize the need
in some cases for parameterized roles. Such roles become necessary when a
very large number of users needs access to similar data, but not exactly the
same data. An example (to be expanded in Section 3) is to consider student
data for a university. There may be thousands of students, and therefore thou-
sands of objects holding student information in a database. Suppose we want to
restrict each student to only seeing data concerning themselves. In our model
and other RBAC models, the permissions are in terms of individual objects and
access modes. In such a situation, we would have to construct individual roles
for each student. The proposal in this paper is to instead extend the role graph
model to include what we will call parameterized roles.

Section 2 will give some background on the role graph model. We use this
version of RBAC because it has well developed algorithms which must be con-
sidered with the additions to the model. Section 3 will motivate parameterized
roles with an example. Section 4 provides details of how parameterized priv-
ileges and parameterized roles will be incorporated into the role graph model.

“This research was supported by the Natural Sciences and Engineering Research Council of Canada.

252 DATA AND APPLICATIONS SECURITY XVIII

A comprehensive example is given in Section 5. Conclusions are found in
Section 6.

2. THE ROLE GRAPH MODEL
2.1 Basic Properties of the Role Graph Model

The Role Graph Model [3, 5] is a general access control model which al-
lows for easier management of the assignment of permissions to users when
there are very large numbers of both. It groups permissions (which we call
privileges) into roles, so that by assigning a user to a role, one can assign an
arbitrary number of privileges at once. It also encompasses a Group Graph
Model [6] which allows users to be put into groups, which are simply sets of
users. Thus, assigning a group to a role allows one to assign an arbitrary num-
ber of users to an arbitrarily large set of privileges with one operation. The
Role Graph Model has similar capabilities to the RBAC models of Sandhu and
others [8-1].

The Role Graph Model [3, 5] considers access control on three planes: the
central plane consists of the role graph which represents role-role relationships
as a role graph; the other two planes describe groups and privileges respec-
tively. The nodes in the role graph represent roles; the edges represent the
is-junior relationship between two roles. We use the term effective privileges
to denote all privileges available through a role whether directly assigned to
the role or inherited from junior roles. The direct privileges of role g are those
privileges directly assigned to the role, and not available through any roles
junior to r;. A role, in turn, is a pair consisting of a role name and a set of
(effective) privileges, denoted (rname, rpset). A role g is-junior to role r; if
the effective privilege set of f; is a proper subset of the effective privilege set
of 1;.

Each privilege is represented by an (object, access mode) pair, or simply (z,
m). The exact nature of the object and access mode depends on the environ-
ment; for example in a relational database, the objects would be the relations
and the access modes would be the allowable operations: insert, update, etc.
In complex environments, there can be implications among privileges; for ex-
ample the privilege to read a whole relation implies the privilege to read the
individual tuples. We will have more to say about these implications shortly.

Roles are arranged in a role graph, with two distinguished roles: MaxRole
and MinRole. MaxRole represents all the privileges in the role graph and need
not be assigned to any user or group. MinRole represents the least privileges
assigned to anyone in the system.

Role graphs have the following Role Graph Properties:

m there is a single MaxRole,

Ge & Osborn 253
m there is a single MinRole,
® role graphs are acyclic,
m there is a path from MinRole to every role 7,
m there is a path from every role 7; to MaxRole,

® for any two roles 7; and 7j, if r;.rpset C r;.rpset, then there must be a
path from r; to r;.

By convention we draw the graphs with MaxRole at the top, MinRole at the
bottom, and junior roles lower on the page than their seniors. We also remove
transitive edges to make the graph less cluttered.

The (administrative) operations available in the role graph model are out-
lined in [5]. They include adding/deleting a role, adding/deleting an edge,
and adding/deleting a privilege to/from a role. All of these operations abort
ifa cycle in the graph would be created, and restore the role graph properties
given above. They all run in time polynomial in the size of the graph and the
privilege sets. At the end of each of the algorithms for the role graph admin-
istrative operations, it is necessary to restore the role graph properties. This
in turn involves first propagating any new privileges to senior roles, whether
they have resulted from inserting a role, adding a privilege or adding an edge.
Then we check for cycles by comparing effective privilege sets. We must add
an edge r; — r; whenever r;.rpset C r;.rpset (whenever 1;’s effective privilege
set is a proper subset of r;’s effective privilege set). Then redundant edges are
removed. Note that both testing for cycles, and determining where edges are
implied involve comparison operations on sets of privileges.

An example role graph is shown in Figure 1. This will be the role graph for a
running example dealing with students at a university, which we use throughout
the paper.

The Group Graph model [6] allows one to create sets of users, say to repre-
sent committees or people assigned to a project, who may not have the same
job title. To simplify the model, each individual user is regarded as a group of
cardinality 1. For example, there might be one individual, say Alice, who is the
Departmental Counselor, who is assigned to the role Departmental Counselor.
There might also be an admissions committee consisting of Alice, other fac-
ulty members and one student. These users can be put into a group in the group
graph, and the group can be assigned to the Admissions role. The individuals
in the group would also have individual and possibly other group-related role
assignments.

The edges in the group graph are determined by the subset relationship be-
tween two groups. User-role or group-role assignment takes place when a user
or group is assigned to a role. In [6], we discussed how the modeling of users

254 DATA AND APPLICATIONS SECURITY XVIII

MaxRole

Departmental Instructor Student

@unselor
FinancialAid

MinRole

Figure 1. Example Role Graph

can be done with an object-oriented approach so that users can have attributes
which might be used in user-role assignment.

2.2 Sessions

The notion of sessions was first introduced by Sandhu et al.[9]. In a session,
a user is allowed to activate any subset of the roles to which they are assigned.
We need to add the notion of sessions to the role graph model in order to
capture what is needed to solve the problem addressed in this paper.

23 Privilege Propagation

In some of our previous work [2, 11], we have incorporated the methodol-
ogy first suggested for object-oriented databases [7], of propagating privileges.
Privileges can be represented by a triple, (8, , ™), where s is the subject,
and z is the object, m is the access mode as above. For each of s, z and m,
propagation can exist. As far as 8 is concerned, the propagation becomes the
inheritance of privileges by senior roles from their juniors in the role graph. If
the objects being considered are very complex, like deeply nested objects in an
Object-Oriented Database, or XML documents, the propagation results from
the object structure. For example, a privilege to read a whole object would
propagate to the privilege to read all of its parts as well. Such propagation is
not always appropriate, in which case we “turn it off” by specifying constraints
which stop the propagation. These constraints play the same role as negative

Ge & Osborn 255

permissions in [7], where negative permissions have precedence over positive
ones.

As well as the propagation due to object structure, it is possible to have
propagation due to the m part of (s, £, m). In some systems, for example,
having a write privilege implies the same subject also has a read privilege on
the same object.

In what follows, then, we assume that the role graph model has been en-
hanced with privilege propagation, which can be specified by giving a schema
which guides the object-based propagation, and another graph which captures
the access mode-based propagation. In order for the role graph algorithms to
produce a correct role graph, we need to assume that whenever a new privilege
is added to a role, first all implications ofthis privilege are calculated, and then
this total set of privileges is added to the role. The function of restoring role
graph properties then propagates these privileges to any senior roles, unless
prevented by constraints.

3. MOTIVATION FOR PARAMETERIZED ROLES

To motivate our notion of parameterized roles, consider the following exam-
ple. We have data concerning students, which is in a database. It happens that
we have in mind a (large) collection of XML documents concerning students
at a university, whose structure is shown in Figure 2. The node labelings in
this figure are the XML tags which would be defined in an XML schema or
DTD. Figure 3 shows some possible instances of this data. In Figure 2, the
data in dashed ovals can appear an arbitrary number of times within its parent
element, and the data in solid ovals can appear at most once. Rectangles de-
note XML attributes which also can appear at most once. In Figure 3, XML
attribute values are shown in quotes, and element values are shown unquoted.

Consider again the role graph for typical users within a university commu-
nity as given in Figure 1.

Our intention is that students should be able to access information con-
cerning themselves, that instructors can access course related information for
courses that they teach, and that users assigned to the Financial Aid role can
see all Financiallnfo as well as the students’ names. The Financial Aid role
should be able to see all students’ financial information, whereas a student
should only be able to see their own information. The privileges in an RBAC
system are of the form (x, m) where z refers to a particular object, and m to
one of its valid access modes. For the Financial Aid role, the object reference
could be to whatever container holds the financial information for all students.
For a Student role, however, the object part of the privilege has to isolate the
data for one student.

DATA AND APPLICATIONS SECURITY XVIII

256

uss

Jopug

weboid

%%/

m_p_um (e,

Data Schema for our Example

Figure 2.

257

s

" esun@pessisbay -, <~ asin@pajeidwi”

Em%ﬁ.aﬁmféms)_

(SJuawNI0Q JuUapNyS 40 195 ")

BWajoS VK

e

Ge & Osborn

Data Instances for our Example

Figure 3.

258 DATA AND APPLICATIONS SECURITY XVIII

S1 §2 ... Sn

Student

Figure 4. Individual Private Roles for Students

One suggestion often made in a situation like this is to have private roles,
one for each student, such that each is senior to the original Student role, as
shown in Figure 4. Privileges common to all students would be assigned to
the general Student role, to be inherited by the individual S1, S2, etc. roles,
and privileges accessing private information for individual students would be
assigned to the individual roles. Clearly with a large number of students, this
solution would not be workable — some security administrator would have to
build each of the private roles.

A similar case can be made for departmental counselors. They should be
able to see the academic records of all students in their department (e.g. all
Computer Science students), which may be a large number but still not all the
student records in the database. The number of private roles needed here is on
a smaller scale but nevertheless may be required by university policy.

We intend to express the privileges in our examples using an XPath-like
syntax [10]. It should however be noted that XML and XPath are not essential
to the basic idea of parameterized roles. If the above data were stored in a
relational database, for example, there would be a relation for Financiallnfo, to
which the FinancialAid role would be given complete read access. The student
information would be stored in one or more relations. We would still need a
query to isolate those tuples relating to a specific student and make visible to
each student their own data and no other student’s data.

Note that in the above examples, the differentiation in what each student
gets to see lies in the object part of a privilege, not in the access mode part. If
the role allows the student to read and update their personal information, these
same access modes are intended to be made available to all students through
their private roles. Only the data touched varies.

Ge & Osborn 259

4. PARAMETERIZED PRIVILEGES AND ROLES

4.1 Parameterized Privileges

We begin by discussing parameterized privileges. An ordinary privilege in
the role graph model consists of a pair, (x,m), where x is a specific (single)
object and m is an access mode. Its presence in a role means any users assigned
to this role can perform this operation when the role is active in a session. Such
a privilege might be expressed, using XPath, as (//Student2/Generallnfo, read),
i.e. read the Generallnfo for a particular student, Student2, whose name is Paul
Jones. According to the propagation of privileges [2], if read propagates down
in the object graph (Figure 3 here), then the permission to read the Generallnfo
of Student2 also implies that the read on all child nodes will also be added to
the privilege set of any role to which this is assigned. This propagation can be
turned off by a constraint, for example if the privilege to read email addresses
is forbidden to the role which is under consideration, then the read privilege
for the email node is not added to the role.

A parameterized privilege will have the form: (z | z{a,az,...,an},m),
where the object is either simple, denoted by #, or isolated by one or more
parameters, denoted by z{a;, a2, ...,ay}. Each parameter, in turn, is denoted
by apair, (Gname; Gdomain) Where Gpame is the name and @gomain is the domain
ofthe parameter. Each parameter is a place to hold a variable that has changing
values from a predefined domain.

These parameter values will be supplied when a user activates a role in a
session. It is possible to view users as objects with attributes which they present
when activating a role. Further discussion of these details is beyond the scope
of this paper.

For the remainder of this paper, we will regard a privilege such as (Person-
allnfo{StudID}, update) to correspond to a privilege containing an XPath-like
expression: (//Personallnfo[StudID = value], update), where the value is sup-
plied at run time and the XPath expression is executed to provide the private
data for this activation of the role.

4.2 Parameterized Roles

Given that some or all of the privileges in a role might be parameterized,
roles themselves can be regarded as parameterized. Thus, rather than referring
to arole as (rname, rpset), we now use the notation (rname, rpset, rparamset)
where rparamset is empty for roles which have no parameterized privileges.
In this case, rparamset contains the union of all the parameters used in any
parameterized privileges in rpset. Note that in a role graph, when ajunior role
has one or more parameterized privileges, then its senior roles must also be

260 DATA AND APPLICATIONS SECURITY XVIII

parameterized roles as they inherit the parameterized privileges. Of course, a
role graph can contain a mixture of parameterized roles and ordinary roles.

4.3 Sessions

The importance of sessions should not be overlooked. As pointed out in [9],
the user-role assignment relationship is many to many, and represents “can per-
form”. It is the session which is associated with a single user. Thus to handle
the situations we have in mind here, we need to be able to isolate a single user
and supply their parameter values before activating the parameterized roles.
The idea of a session provides exactly the right properties for our solution.

4.4 Role Graph Operations

As we have noted above, many of the role graph operations contain compar-
isons of sets of privileges. We need to extend the definition of when a privilege
belongs to a privilege set, when parameterized privileges are involved.

Definition Privilege Inclusion: Given privilege p and privilege set S,

» if p is not parameterized and is exactly the same as g in S, then p € S.

» if pis of the form p = (z{a = v},m), and 3 € S such that p’ =
(z{a'}, m) where al,4ne = @ and @l 0:r = Gdomain, then p € S.

Given this definition, testing if one privilege set is a subset of another fol-
lows: i.e. 81 C Sy iff Vp € S1,p € S3. 81 C S and S1 = Sy are defined in
the obvious way.

We do not want two parameters with the same name, with different seman-
tics or different domain names to simultaneously exist in the same privilege or
in the same role. Therefore the following tests must be added to the privilege
insertion algorithm:

1 Ifaparameterized privilege has more than one parameter, the parameters
must have distinct names.

2 If a parameterized privilege has a parameter with the same name as an-
other parameter in the role, the two parameters must have the same do-
main.

These additional checks need to be added to the privilege addition algorithm.
Otherwise, by defining € and C for parameterized privileges and privilege sets,
we can use the same algorithms as before for the role addition/deletion, edge
addition/deletion and privilege addition/deletion algorithms which operate on
role graphs.

Ge & Osborn 261

S. EXAMPLE

To demonstrate the notion of parameterized roles, we now present a more
complete example based on the role graph and XML structures presented in
Figures 1, 2 and 3. In this example, we assume that given a new privilege, the
propagation of this privilege down the schema graph as shown in Figure 2 is
carried out by the privilege insertion algorithm [2, 11]. We have not given the
graph showing the propagation due to access modes, so all necessary privileges
with different access modes are explicitly given here.

A student can read his or her individual general information; update his or
her individual general information except for name; read academic informa-
tion, financial information and personal attributes pertaining to him or her self.
For Role Student, the direct privileges are:

{pl = (//Student[@StudID = param1]/Generallnfo, update),

p2 = (//Student[@StudID = param1]/Generallnfo, read),

p3 = (//Student[@StudID = param1]/Academiclnfo, read),

p4 = (//Student[@StudID = param1]/Financiallnfo, read),

pS = (//Student[@StudID = param1]/@StudID, read),

p6 = (//Student[@StudID = param1]/@Program, read),

p7 = (//Student[@StudID = param1]/@Gender, read)}

As well, a constraint is defined for this role:

{csty = (//Student[@StudID = param1]/Generallnfo/Name, update)}

which means that the update privilege does not propagate to the Name
subelement within the Student’s Generallnfo.

The instructor role is also a parameterized role. Instructors can read certain
student information and read and update the grades of the students that they
teach. For Role Instructor, the direct privileges are:

{p8 = (//Course[/InstrID = param?2], read),

P9 = (//Course[/InstrID = param2]/Grade, read),

pl0 = (//Course[/InstrID = param?2]/Grade, update),

pl1 = (//Student[//InstrID = param2]/Name, read),

pl12 = (//Student[//InstrID = param2]/@StudID, read),

p13 = (//Student[//InstrID = param2]/@Program, read),

pl4 = (//Student[//InstrID = param2]/@Gender, read)}

The Departmental Counselor role can read all general information, aca-
demic information of students in their department’s program, and create, up-
date and read the course information. The parameter value in this case matches
the program the student is in. For the Departmental Counselor role, then, the
direct privileges are:

{p15 = (//Student] @Program=param3]/Academiclnfo/Course, create),
pl6 = (//Student[@ Program=param3]/Academiclnfo/Course, update),

p17 = (//Student[@ Program=param3]/Academiclnfo, read),

262 DATA AND APPLICATIONS SECURITY XVIII

p18 = (//Student][@Program=param3]/Generallnfo, read),

p19 = (//Student][@ Program=param3]/@ StudID, read),

p20 = (//Student][@ Program=param3]/@Program, read),

p21 = (//Student][@ Program=param3]/@Gender, read)}

The FinancialAid role can update and read financial information of all the
students in the university and read the information of all the students in the
university. This is a general role without parameters. Its direct privileges are:

{p22 = (/StudentSet, read),

p23 = (/StudentSet//Financiallnfo, update) }

This role also has a constraint:

{¢fn =(//Student/Financiallnfo/SSN, update)}.

The Admissions role creates new students as they are admitted to the uni-
versity. This is not a parameterized role. Its direct privileges are:

{p24 = (//Student, create), p25 = (/StudentSet, read), p25 = (//Student, cre-
ate), p26 = (//Student, update)}

This role also has the constraint:

{cama =(//Student/Financiallnfo/SSN, update)}.

In most of the above roles, a different method can be used to achieve the
same purpose. For example, in the Department Counselor role, we could keep
pl5 and pl6, give a read privilege to the whole student element, and use a
constraint to deny read to the Financiallnfo element. The current version of our
role graph tool, which incorporates the work in [2, 11], labels each privilege as
either given or implied, and allows the user to open a window in which to see
all the privileges that result from propagation. In this way the security designer
can verify that their intended security design has been entered correctly into the
role graph tool.

6. CONCLUSIONS

Adding parameters to privileges and roles greatly extends the usefulness of
the role-based access control models. In a situation like that found at our uni-
versity, with over 25,000 students, having to implement private roles for each
student with slightly different access requirements is completely impractical.
Extending the role graph model with parameterized roles required including
the notion of sessions, and only slight modifications to the rest of the model.
With the exception of a small modification to the privilege insertion algorithm,
and enhancing the test for membership of a privilege in a privilege set, the
algorithms already developed for the role graph tool can be used without mod-
ification.

A good role graph design can go a long way toward achieving the principle
of least privilege, where users get access to what they need and nothing extra.
Parameterized roles enhance this by providing very specialized privileges to

Ge & Osborn 263

users, where the exact privileges are decided at run time when a session is
started. One could say this adds active security characteristics to RBAC.

The model presented in this paper can also be considered to be a high level
model for all those systems which allow clients to view their private data in
web applications. The user has to log in, and presumably a database query
isolates the data involving the individual client. The design ofthe different user
interfaces is represented by the notion of parameterized roles. The privileges
given to such sessions would currently be buried in application code. Our
model of parameterized roles might give designers of such systems a more
systematic way of viewing their problems.

At a lower level, one might worry that the privilege sets in the roles are
getting too big. As we have noted above, our algorithms must be able to rea-
son about the total effective set of privileges for the roles, after propagations.
Whether or not we actually store them this way is a decision to be made at im-
plementation time. In some sense, this is due to the size of the problem, i.e. the
size of user set and the size and complexity of the database. We have provided
a way to shelter the system from the size of the user set when parameterized
roles are appropriate, but as far as the data is concerned, XML documents can
be very complex, and if we truly want to deal with fine grained and complex
access control situations, we have to be prepared to have very large privilege
sets. In an application with only read operations, there still might be a com-
plex pattern of which elements users are and are not allowed to see. We could
just store the read access on the topmost node, and expand the privilege when
necessary, but we feel that by the security designer being able to see what
privileges have been propagated, they receive some useful feedback.

References

[1] D.F. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn, and R. Chandramouli. Proposed NIST
standard for role-based access control. ACM TISSEC, 4(3):224-275, 2001.

[2] Cecilia M. Ionita and Sylvia L. Osborn. Privilege administration for the role graph model.
In Research Directions in Data and Applications Security, Proc. IFIP WG11.3 Working
Conference on Database Security, pages 15-25. Kluwer Academic Publishers, 2003.

[3] M. Nyanchama. Commercial Integrity, Roles and Object Orientation. PhD thesis, De-
partment of Computer Science, The University of Western Ontario, London, Canada, Sept.
1994.

[4] M. Nyanchama and S. L. Osborn. Access rights administration in role-based security
systems. In J. Biskup, M. Morgenstern, and C. E. Landwehr, editors, Database Security,
VIII, Status and Prospects WGI11.3 Working Conference on Database Security, pages 37—
56. North-Holland, 1994.

[5] M. Nyanchama and S. L. Osborn. The role graph model and conflict of interest. ACM
TISSEC, 2(1):3-33, 1999.

[6] S. Osborn and Y. Guo. Modeling users in role-based access control. In Fifth ACM Work-
shop on Role-Based Access Control, pages 31-38, Berlin, Germany, July 2000.

264 DATA AND APPLICATIONS SECURITY XVIII

[7] F. Rabitti, E. Bertino, W. Kim, and D. Woelk. A model of authorization for next-generation
database systems. ACM Trans Database Syst, 16(1):88-131, 1991.

[8] R. Sandhu, V. Bhamidipati, and Q Munawer. The ARBAC97 model for role-based admin-
istration of roles. ACM Trans. on Information and Systems Security, 2(1):105-135, Feb.
1999.

[9] R. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-based access control mod-
els. IEEE Computer, 29:38-47, Feb. 1996.

[10] w3c. XML path language (XPath) 2.0, W3C working draft 15. Technical report,
http://www.w3.org/TR/xpath20, Nov. 2002.

[11] Jingzhu Wang and Sylvia L. Osborn. A role-based approach to access control for XML
databases. In Proc. ACM SACMAT, 2004.

