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INTRODUCTION

The analyses of human thyroid tumor tissues have proven informative in identifying
key molecular events in epithelial neoplasia. The thyroid gland gives rise to a variety
of epithelial tumors that differ markedly in their biologic patterns. The accessibility
of thyroid tumors provides a tractable opportunity to define mechanisms of epithelial
cell transformation in a spectrum of related cancers.

Two primary issues must be considered when investigating molecular genetic alter-
ations within human thyroid tumor groups. The first is tumor classification. Thyroid
tumors are classified predominantly on the basis of morphologic features interpreted
by pathologists. Morphologic features provide initial biologic and clinical information
but they have been defined somewhat non-specifically in retrospective series. Thus,
thyroid tumor diagnosis can be imprecise [1–4] and can create confusion when cor-
relating molecular genetic alterations with clinical and pathologic features. Mutations
that predominate in one thyroid tumor group may be identified in others and the
distinction as to whether such tumors are misclassified or contain additional alterations
is difficult to ascertain. A second important issue relates to mutation detection. Poly-
merase chain reaction-based amplification and sequencing of nucleic acids from fresh
or fast-frozen tissues are most often employed. Such assays are exquisitely sensitive and
prone to cross-contamination, particularly when poorly preserved or archival tissues
are used. Polymerase chain reaction can even detect genetic alterations within a minute
sub-fraction of tumor cells. The biologic significance of this is often unclear. Tissue
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Figure 1. Histologic-Molecular Model of Thyroid Cancer Formation. Four main types of thyroid
carcinoma with distinct biologic features are recognized. A subset of each type may progress to poorly
differentiated and/or clinically aggressive forms. Genetic alterations that characterize these pathways and
sub-pathways are shown.

composition must also be documented rigorously because thyroid tumor resections
contain admixtures of tumor, normal thyroid, lymphoid, reactive and stromal ele-
ments. All such factors must be considered or erroneous results will be obtained [5–7].

This chapter begins with a histologic-molecular model of thyroid cancer formation
and discusses known mutations and emerging biologic and clinical correlates in follic-
ular thyroid tumors. A summary and comparison of thyroid carcinomas with the acute
myeloid leukemias follows.

A histologic-molecular model of thyroid cancer

A model that encompasses histologic, molecular, and biologic facets of thyroid cancer
formation is shown in Figure 1. At least four sub-types of thyroid cancer with distinct
characteristics are recognized. Tumors within each group may progress to poorly dif-
ferentiated, metastatic, and/or anaplastic forms. The thyroid carcinoma model seems
unique relative to other carcinomas in several respects. First, distinct gene mutations
define separate pathways of oncogenesis within the thyroid. This is different than
a single linear genetic pathway envisioned commonly for other carcinomas such as
those arising in the colon [8] and exocrine pancreas [9, 10]. Second, both thyroid
specific and non-thyroid specific mutations characterize different thyroid carcinoma
subgroups. One particularly interesting class of thyroid-specific mutations is the chro-
mosomal rearrangements that encode gene fusions [11, 12]. Gene fusions been iden-
tified infrequently in carcinomas even though they are common in blood cell and soft
connective tissue cancers [13]. Third, thyroid cancer mutations correlate with spe-
cific biologic properties. For example, RET and rearrangements characterize
papillary [14] and follicular [12] thyroid carcinomas that tend to spread via regional
lymphatics or blood vessels, respectively. Distinct RET germ line point mutations iden-
tify different familial medullary thyroid carcinoma patients with propensities for poor
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outcome and/or concomitant non-thyroid disease [15]. Thus, mutation staus provides
predictive biologic information in thyroid cancer and thus may augment our current
morphology-based classification and treatment schemes. Even so, it must be kept in
mind that a combination of cellular events, not single gene alterations, determines over-
all thyroid cancer biology. Thyroid tumors with apparently identical single gene muta-
tions but distinct patterns of growth and/or prognoses have been reported [16–21].

rearrangements

Somatic rearrangements in the gene encoding the nuclear receptor have been
identified in thyroid cancers with follicular cell differentiation, frequent encapsulation,
vascular invasion and capsular penetration. These are follicular thyroid carcinomas
(Figure 1). The discovery of rearrangements resulted from mapping [12] of
a chromosomal translocation, t(2;3)(q13;p25), which had been identified in follicular
thyroid tumors [12, 22–27]. The t(2;3) rearrangement juxtaposes the promoter region
and coding sequence of the PAX8 gene on chromosome 2 with most of the coding
sequence of the gene on chromosome 3 and results in expression of a chimeric

transcription factor (Figure 2).
is a thyroid-specific mutation and one member of a family of

rearrangements in follicular carcinomas. Another follicular carcinoma translocation,
t(3;7)(p25;q31) [28], fuses the promoter and coding sequence of a novel transcrip-
tion factor gene termed CREB3L2 or BBF2H7 [29] on chromosome 7 with most of
the coding sequence of (Figure 2). and
(Figure 2) contain identical sequences that include wild-type DNA
binding, ligand binding, RXR dimerization, and transactivation domains [30]. Addi-
tional putative rearrangements have been detected in other follicular carcino-
mas [12, 22, 31, 32].

rearrangements have been identified in 25–35% of follicular carcinomas
based on studies using pathologically well-defined tissues [32–38]. rearrange-
ments [32] or RAS gene point mutations but not both [33] are detected early in low
stage follicular carcinomas, suggesting the existence of sub-pathways of oncogenesis
in follicular carcinoma (Figure 1). Such a model is further supported by distinct pat-
terns of galectin-3 and HBME-1 protein expression in rearrangement- versus
RAS mutation-positive follicular carcinomas [33] and by an additional genetic subset
of follicular carcinomas (25%) that possess 3p25 aneusomy in the absence of
rearrangement [32].

The mechanisms through which rearrangements deregulate thyrocyte
growth are being investigated and aberrations in transcription (Figure 3) and other cell
functions may be involved. stimulates proliferation, inhibits apoptosis,
and induces anchorage independent growth of human thyroid cells [39], supporting a
primary role for in follicular cell transformation. also
transforms NIH3T3 mouse fibroblasts in colony assays [39], demonstrating that 

can alter both thyrocyte and non-thyrocyte growth functions.
has little ability to stimulate transcription from response elements in vitro and
also inhibits transcription mediated by wild-type [12, 39], activities that fit
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Figure 2. Gene Rearrangements in Follicular Thyroid Carcinoma. The breakpoints of two
chromosomal rearrangements, t(2;3)(q13;p25) and t(3;7)(p25;q31), have been cloned from human
follicular thyroid carcinomas. Each rearrangement encodes a chimeric fusion protein that contains
identical domains (A-E) of the nuclear receptor.

well with the known tumor suppressor-like effects of wild-type in a variety
of epithelial cells [40–44]. In general, wild-type stimulation inhibits thyroid
cell growth [45, 46] and a reduction in expression has also been noted in a
significant subgroup of thyroid cancers without rearrangement [32, 38]. The
retinoblastoma tumor suppressor protein and cell cycle regulators may be involved
[45, 47, 48].
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Figure 3. Molecular Pathways in Follicular Thyroid Tumors. Schematic representation of major molecular
pathways involved in follicular thyroid tumors. Some, but not all, components and inter-connections of
these pathways are indicated. Mutations are note in red and by red dots. Abbreviations: TSHR, thyroid
stimulating hormone receptor; guanine nucleotide stimulatory factor PLC, phospholipase C; IP3,
inositol triphosphate; DAG, diacylglycerol; PKC, protein kinase C; AC, adenyl cyclase; cAMP, cyclic
adenosine monophosphate; PKA, protein kinase A; RAC1/RHO, rac1/rho GTP binding proteins; GFR,
growth factor receptor; GF, growth factor; RET, ret tyrosine receptor kinase; NTK1, ntrk1 tyrosine
receptor kinase; GTP, guanine diphosphate; GTP, guanine triphosphate; RAS, ras GTP binding protein;
BRAF, braf serine/threonine kinase; MEK, mitogen activated protein kinase kinase; ERK, extracellular
signal regulated kinase (mitogen activated protein kinase); PI3K, phosphoinositol-3-kinase; PTEN, pten
dual specificity phosphatase; AKT, akt serine/threonine kinase; PKB, protein kinase B; BAD and BAX,
proapoptotic bcl-2 family members; p53, p53 tumor suppressor protein; RB, rb retinoblastoma tumor
suppressor protein; CDKs, cyclin-dependent kinases; peroxisome proliferator-activated receptor

RXR, retinoid X receptor; p/CAF, CBP/p300, p160, nuclear receptor co-activators; HAT, histone
acetyl transferase; HDAC, histone deacetylase complex. TATA, tata box.

Although inhibition of wild-type by appears to be func-
tionally important, the fusion protein appears to exhibit little
inhibitory activity [30], suggesting that other mechanisms are also critical. PAX and
CREB3L2 rearrangements have been noted in other cancers, supporting the idea that
contributions of these domains in and are func-
tionally important. For example, the PAX3 and PAX7 genes are rearranged in alveo-
lar rhabdomyosarcoma [49–51 ] and CREB3L2 is rearranged in fibromyxoid sarcoma
[29]. Wild-type PAX8, a transcription factor required for normal thyroid follicular cell
development [52], also possesses transforming activities in vitro [53].
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Follicular adenomas with rearrangement have been identified at
apparent lower frequency than in follicular carcinomas [33, 34, 36] and it seems most
reasonable to consider these early (precursor/in situ) follicular carcinomas [32] unless
genetic and/or clinical distinctions from the follicular carcinomas can be documented.

rearrangements are expected in at least some follicular adenomas because dif-
ferential diagnosis of follicular adenomas from carcinomas is not precise. The possibility
that rearrangements mark a subset of follicular carcinomas, some even before
histologic evidence of invasiveness is apparent, suggests that molecular analyses of fine
needle aspiration biopsies may be useful to detect these follicular cancers [54]. How-
ever, the exact diagnostic utility of rearrangements in diagnosis will not be
clear until the biologic and molecular relatedness of follicular carcinomas and adenomas
with rearrangement is better defined. Papillary (follicular variant) and Hurthle
cell carcinomas with rearrangement have been observed infrequently [32, 34,
55], suggesting that these thyroid cancers arise via alternate transformation pathways
(Figure 1).

Clinical and pathological characteristics of follicular carcinoma patients with
rearrangements have been examined. Follicular carcinomas with rearrange-
ment tend to have well-defined foci of vascular invasion and capsular penetration but
not lymph node metastases [32, 33]. They also tend to present at younger patient age
than follicular carcinomas without rearrangement [32, 33] and progress and
metastasize in some cases [23, 35]. Even so, few rearrangements have been
detected in anaplastic thyroid carcinomas [34, 35], which are highly aggressive cancers
thought to arise from follicular and papillary carcinomas. Further studies are required
to define the biologic characteristics and patterns of progression of follicular thyroid
tumors with rearrangement.

RET rearrangements

Somatic rearrangements in the gene encoding the RET receptor tyrosine kinase have
been identified in a subset of thyroid cancers that exhibit follicular cell differentiation,
characteristic papillary and/or nuclear morphologies, and a propensity for lymph node
metastases. These are papillary thyroid carcinomas (Figure 1). Interestingly, the RET
gene plays a fundamental role in multiple thyroid cancers. Whereas rearrangements
of RET characterize papillary thyroid carcinomas [11, 14], germ-line RET point
mutations characterize medullary thyroid carcinomas arising in the multiple endocrine
neoplasia type 2 [56–59] and family medullary thyroid carcinoma syndromes. Thus,
different RET mutations (rearrangements or point mutations) arising in different
cellular contexts (follicular or C cell lineages) promote formation of different thyroid
cancers (Figure 1). The RET rearrangements are discussed in detail in Chapter 12.

RET rearrangements in papillary carcinoma are thyroid-specific mutations and most
often result from para-centric chromosomal inversions. For example, the RET gene
at chromosome 10q11 is recombined frequently with other 10q loci such as H4 in
PTC1 [60] and ELE1 in PTC3 [61, 62]. Several less frequent reciprocal translocations
involving RET and other chromosomal loci have been described, particularly in pap-
illary carcinoma patients exposed to radiation in the Chernobyl accident [63–65]. All
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known RET rearrangements result in expression of cytoplasmic, chimeric fusion pro-
teins that contain the intracellular tyrosine kinase domain of RET fused to domains of
non-RET (termed RET fusion genes or RFG) genes. The extracellular cadherin-like,
cysteine-rich, and transmembrane domains of RET are not retained in the RFG-RET
fusion proteins.

Experiments expressing RFG-RET fusion proteins in thyroid cell lines support a
central role of the RAS-BRAF-MEK-ERK pathway in neoplastic transformation of
follicular cells into papillary carcinomas (Figure 3). The RFG-RET fusion proteins
stimulate follicular cell proliferation and inhibit differentiation [66–70]. Apoptosis may
also be altered [71]. These biologic effects are mediated by ligand-independent dimer-
ization [72, 73], cytoplasmic relocation [73], and constitutive activation of the RET
tyrosine kinase. Adaptor molecules such as Shc, Frs2, Enigma, and Grb proteins interact
with RET proteins [69, 74–78] and stimulate downstream RAS-BRAF-MAPK-ERK
and other signal transduction pathways.

Transgenic mouse lines engineered to express RFG-RET fusion proteins in the thy-
roid document their ability to promote formation of papillary carcinoma-like tumors
in vivo [79–82]. However, these transgenic lines do not all develop thyroid tumors
with high penetrance or short latency and few, if any, develop tumors that metastasize
without co-expression of additional mutations, arguing that multiple alterations are
required for expression of the full papillary carcinoma phenotype [66, 67, 83].

RET rearrangements have been detected in 15–25% of papillary carcinomas and
have been considered specific based on RTPCR and Southern blot experiments [70,
84–91]. RET rearrangements appear to arise early in papillary carcinoma because they
are most common in low stage and the occult/micropapillary tumors [89, 92–94].
Papillary carcinomas with RET rearrangements may also present at younger patient
age than papillary carcinomas without RET rearrangements [87, 95, 96], in a manner
that resembles rearrangements in follicular carcinoma. Other strong clinico-
pathologic correlates of RET rearrangement include classic papillary (not follicular
variant) morphology [97, 98] and the presence of lymph node spread [86, 87, 96,
98]. The ELE1-RET (PTC3) fusion protein may be more frequent in the aggressive
tall cell [17] and solid [16, 20] papillary carcinoma subtypes. A significant fraction of
papillary carcinomas with RET alterations appear to progress to poorly differentiated
thyroid carcinoma [99] but few RET rearrangements have been detected in anaplastic
thyroid cancers [84, 89].

A few recent reports have noted RET rearrangements, somewhat unexpectedly, in
benign and malignant Hurthle cell tumors [18, 19] and in thyroid hyalinizing trabec-
ular adenomas [100, 101]. These Hurthle cell carcinomas with RET rearrangements
appear to have increased tendency for lymphatic spread [102], supporting a biologic
connection to papillary carcinoma as well. Thus, one intriguing possibility is that the
Hurthle cell tumors with RET rearrangement are actually papillary carcinomas with
additional morphologic and perhaps biologic features. An alternate possibility that
must be excluded is that the RET rearrangements are present in a small fraction of
the tumor cells because a only combined high cycle RTPCR and nucleotide probe
hybridization have so far demonstrated their presence.



92 4. Molecular events in follicular thyroid tumors

NTRK1 rearrangements

Somatic rearrangements in the gene encoding the NTRK1 receptor tyrosine kinase
have been identified in 5–15% of papillary thyroid carcinomas (Figure 1). These are
discussed further in Chapter 12. In essence, NTRK1 rearrangements bear strong resem-
blance to RET rearrangements in several respects. First, both NTRK1 and RET are
receptors for neurotrophic ligands [103] and are not normally expressed in follicu-
lar epithelial cells. Second, both NTRK1 and RET rearrangements were identified
by transfection of papillary carcinoma DNA into NIH3T3 cells [11, 14, 85]. Third,
both NTRK1 and RET rearrangements arise frequently from subtle intra-chromosomal
inversions. Fourth, both NTRK1 and RET rearrangements lead to expression of fusion
proteins with constitutive tyrosine kinase activation. For example, rearrangements at
1q21 often fuse the NTRK1 tyrosine kinase domain to other proteins such as TPM and
TPR [104–106]. Fifth, both NTRK1 and RET rearrangements may be more frequent
in younger patients and in patients with lymph node metastases [95, 96, 107]. Last,
the NTRK1 and RET fusion proteins activate related signal transduction pathways
in thyroid follicular cells [66, 108–111] (Figure 3). Expression of the NTRK1 fusion
proteins in the thyroid of transgenic mice leads to follicular hyperplasia- and papillary
carcinoma-like proliferations [112].

RAS mutations

Somatic point mutations in RAS genes have been detected frequently in both non-
thyroid [113] and thyroid (Figure 1) cancers. This contrasts the thyroid-specific gene
rearrangements involving RET, and NTRK1. RAS mutations are most com-
mon in follicular versus papillary and Hurthle cell tumors [33, 91, 114–120] and have
been detected in 20–50% of follicular adenomas and carcinomas [33, 91, 119–122].
The presence of RAS mutations in both follicular adenomas and carcinomas is con-
sistent with a model in which many RAS-initiated follicular carcinomas develop from
adenoma (morphologic) precursors. Experimental evidence supports this contention
in that mutated RAS is insufficient to induce a fully transformed phenotype in vitro
[66, 123–126] or follicular carcinoma in vivo [127, 128]. N-RAS mutations appear
to predominate over K-RAS and H-RAS mutations in follicular thyroid tumors and
mutations in codon 61 of N-RAS may be the most prevalent [33, 119, 120, 129]. The
possibilities that K-RAS mutations are more frequent in papillary compared to fol-
licular thyroid tumors [114, 115, 130], radiation-associated carcinomas [114], and/or
aggressive thyroid cancers [130] require further investigation, particularly in view of
the primary role of K-RAS mutations in pancreatic ductal carcinomas [10, 131] that
are highly aggressive.

Recent studies have correlated the clinical and pathologic features with RAS muta-
tion status. Thyroid carcinoma patients with RAS mutations may present at older age
and with larger tumors [33] and may more frequently have less differentiated, high
stage cancers [130, 132–134]. Careful pathologic evaluation of classic from follicular
variant papillary carcinomas has noted another potentially interesting pattern. Follic-
ular variants seem to contain more N-RAS (75%) and H-RAS (25%) mutations and
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few if any RET rearrangements, whereas classic papillary carcinomas seem to contain
more RET rearrangements (30–35%) and few if any RAS mutations [98]. Follicular
variants papillary carcinomas also had statistically lower rates of lymph node metastases
and higher rates of tumor encapsulation and vascular invasion (follicular carcinoma-
like features) compared to classic papillary carcinomas [98]. Thus, the existence of a
morphologic and molecular “hybrid” thyroid cancer with some features of papillary
and follicular carcinoma needs to be further explored.

Mouse modeling experiments have documented that RAS mutations are important
role in tumorigenesis and tumor maintenance[128, 131, 135, 136] and RAS proteins
transduce multiple stimuli from the thyroid follicular cell surface (Figure 3) as discussed
further in Chapter 7.

BRAF mutations

Somatic point mutations in the BRAF gene have been identified recently in thyroid
and other cancers [137]. BRAF encodes a serine/threonine kinase downstream of
RAS and it transduces signals from multiple stimuli (Figure 3). A mutation that alters
valine 599 to glutamic acid (V599E) in the BRAF kinase domain has been identified
in 35–45% of papillary thyroid carcinomas [70, 90, 91, 120, 138–140] and in some
undifferentiated/anaplastic thyroid carcinomas [90, 138]. BRAF mutations have been
detected in few other benign or malignant thyroid tumors [70, 90, 91] and seem not
to co-exist with RAS point mutations or RET rearrangements [70, 91, 138], thereby
defining an additional sub-pathway in papillary carcinoma (Figure 1).

Papillary thyroid carcinoma patients with BRAF mutations tend to present at older
age [90], at higher stage [90, 138], and with more frequent distant metastases com-
pared to papillary carcinoma patients without BRAF mutation. Thus, mutated BRAF
may define an aggressive papillary carcinoma form. In agreement with this possibil-
ity, mutated BRAF exhibits enhanced kinase activity and increased transformation
efficiency compared to wild-type BRAF in vitro [137].

Thyroid stimulating hormone receptor and G protein mutations

Iodide uptake and thyroid hormone biosynthesis and metabolism are coordinately
regulated with proliferation in thyroid follicular epithelial cells. These differentiated
thyroid functions are controlled by the thyroid stimulating hormone receptor (TSHR)
and its downstream signaling molecules (Figure 3) such as cyclic AMP and phospholi-
pase C [141–143]. Somatic mutations in molecular components of the TSHR pathway
have been detected in 60% or more of benign TSH-independent (autonomous/hyper-
functioning) thyroid nodules. The remaining 40% of autonomous nodules are postu-
lated to contain undefined alterations in the same TSHR system [144]. Approximately
90% of mutations involve TSHR, often in the third intracellular loop or transmem-
brane regions of this seven-spanning membrane receptor [145, 146]. 5–10% of the
mutations involve the G protein subunit activated by TSHR ligands [147].
Thus, constitutive stimulation of the TSHR pathway underlies most autonomous thy-
roid tumors [148].
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Autonomous thyroid tumors usually exhibit hyperplastic morphology and transgenic
mice and other animal models with an activated axis [149,
150] develop follicular hyperplasia and hyper-functioning thyroid tumors, supporting a
fundamental role of the TSHR system. Furthermore, nodular hyperthyroidism in non-
autoimmune autosomal dominant hyperthyroidism [151] and the McCune-Albright
Syndrome [152] have been associated with germ-line mutations in
axis. Although chronic stimulation of the TSHR pathway promotes formation of
benign thyroid nodules, this seems to provide little increased risk of thyroid can-
cer. Additional cellular alterations [153], potentially including the down-regulation of

are apparently required.

B-catenin and p53 mutations

Stage at presentation is a key prognostic factor in thyroid carcinoma. Mutations in the
genes encoding B-catenin, a component of the Wnt signaling pathway [155], and p53,
an important tumor suppressor and a sensor of genome stability, have been identified
most often in advanced stage thyroid cancer. Mutations in exon 3 of B-catenin have
been detected in 25–60% of poorly differentiated and anaplastic thyroid carcinomas
[156, 157], and the expression of B-catenin protein is often reduced or re-localized
from the plasma membrane to the cytoplasm and nucleus in these [156–158] and
some follicular and papillary [157–160] thyroid carcinomas. p53 mutations have been
identified mostly in poorly differentiated and anaplastic thyroid carcinomas [161–164]
and they appear to interfere with differentiated functions in thyroid cells [165, 166]
and promote thyroid cancer invasion and metastases in transgenic mouse models [83,
167]. The p53 pathways are discussed in detail in Chapter 8.

Aneuploidy and other chromosomal aberrations

A low level of chromosomal instability is observed in benign thyroid tumors and well-
differentiated thyroid cancers such as papillary carcinoma, a moderate level of chromo-
somal instability is observed in follicular carcinoma, and higher levels of chromosomal
instability are observed in Hurthle cell, poorly differentiated/anaplastic, and metastatic
carcinomas. Thus, increased chromosomal instability and aneuploidy correlate gen-
erally with increased thyroid cancer aggressiveness. On the other hand, microsatellite
instability is relatively infrequent in thyroid cancer [168–174]. Exposure to ionizing
radiation increases genetic instability and thyroid carcinoma prevalence as discussed in
Chapter 11.

Analyses of human thyroid tumors with conventional cytogenetics and fluorescence
in situ hybridization have identified additional recurrent chromosomal abnormalities.
Hyperplastic nodules from thyroid goiters often contain one or two clonal numeri-
cal changes, including trisomies of chromosomes 7, 10, 12, 17, and/or 22, whereas
follicular adenomas more frequently contain three or more numerical chromosomal
alterations and/or balanced chromosomal rearrangements [25, 175–178]. However, it
should be kept in mind that karyotypes frequently present an incomplete picture of
chromosomal content because the cultures may frequently appear diploid as the result
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of contaminating normal cells. All suspected genetic alterations must be verified in
primary thyroid tumor tissues.

The chromosomal regions 2p21 and 19q13 are rearranged in approximately 10%
and 20%, respectively, of thyroid follicular adenomas with clonal cytogenetic aberra-
tions. Both the 2p21 [26, 175, 179] and 19q13 [24, 175, 180] loci fuse with mul-
tiple different partner chromosomes in different follicular adenomas. The 2p21 and
19ql3 breakpoints have been mapped using follicular adenoma cell lines that con-
tain t(2;7)(p21;p15), t(2;20;3)(p21;q11;p25), t(5;19)(q13;13), or t(1;19)(p35;q13).The
2p21 breakpoint appears to involve a novel candidate gene termed THADA [181, 182]
and the 19q13 breakpoint a novel transcription factor gene termed ZNF331/RITA
[183–185]. It will be informative to define the cell biologic and biochemical mecha-
nisms of these new thyroid rearrangements.

Additional genetic imbalances have been defined in follicular thyroid tumors using
loss of heterozygosity studies and comparative genomic hybridization techniques.
Genetic gains predominate over losses in follicular adenomas, whereas genetic losses
predominate over gains in follicular, Hurthle, and anaplastic thyroid carcinomas. The
most consistent losses in follicular cancers involve chromosomes 2p [186–189], 2q
[186–188], 3p [169, 174, 187–191], 7q [188, 192, 193], 9 [174, 187, 188, 194, 195],
10q [196–198], 11q [187, 189, 195, 197, 199, 200], 13q [187, 188, 196, 197], 17q
[201], 18q [174, 187, 197], and 22q [187, 188, 195, 202, 203] regions. In addition
to these losses, Hurthle cell carcinomas harbor deletions at 1q, 8q, 9q, 14q, and 17p
[174, 194, 201]. The possibility that at least some of these genomic loci contain genes
important in thyroid tumor pathogenesis is reinforced by the fact that three regions
(2q13, 3p25 and 7q31) have been shown to be involve follicular carcinoma rearrange-
ments [12, 30]. Thus, functionally important loci may be targeted by multiple genetic
mechanisms.

Summary

Knowledge of the molecular events that govern human thyroid tumorigenesis has
grown considerably in the past ten years. Key genetic alterations and new onco-
genic pathways have been identified. Molecular genetic aberrations in thyroid car-
cinomas bear noteworthy resemblance to those in acute myelogenous leukemias.
Thyroid carcinomas and myeloid leukemias both possess transcription factor gene

translocations in thyroid carcinoma and
and CBF-related translocations (amongst others) in myeloid leukemia [204].
and are closely related members of the same nuclear receptor subfamily,

and the and fusion proteins both function as dominant
negative inhibitors of their wild-type parent proteins [12, 205, 206]. Thyroid carci-
nomas and myeloid leukemias [207–210] also both harbor NRAS mutations (15–25%
of both cancers) and receptor tyrosine kinase mutations – RET mutations in thyroid
carcinomas and FLT3 mutations in myeloid leukemias [211, 212]. The NRAS and
tyrosine receptor kinase mutations are not observed in the same thyroid carcinoma
or leukemia patients [209, 213], suggesting that multiple initiating pathways exist in
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both. Lastly, thyroid carcinomas [214] and myeloid leukemias [209, 215] possess p53
mutations at relatively low frequency (10–15%) in patients who tend to be older and
have more aggressive, therapy resistant disease. Such parallels are unlikely to occur by
chance alone and argue that common mechanisms underlie these diverse epithelial and
hematologic cancers.

The comparison of thyroid carcinomas and myeloid leukemias may highlight areas of
thyroid cancer investigation worthy of further focus. For example, few collaborating
mutations have been defined in thyroid carcinomas even though they play a clear
role in myeloid leukemias [212, 216], as exemplified by rearrangements [217,
218] and FLT3 mutations [219] that together dictate the promyleocytic leukemia
phenotype. Functional interactions between collaborating mutations are possible at
multiple levels, and it is tempting to speculate that some thyroid carcinomas might
develop through an unique combination or co-activation of RET and RAS and/or
RET and (and/or other) signaling systems. In fact, the ELE1-RET (PTC3)
fusion protein contains the ELE1 nuclear receptor co-activator domain [220, 221] and
it appears to physically associate with and inhibit wild-type in some papillary
carcinomas [222].

The similarities of the fusion proteins in thyroid carcinoma and myeloid leukemia
suggest that a more directed search for fusion genes in non-thyroid carcinomas is
warranted. In fact, novel fusion genes have been identified recently in aggressive mid-
line [223, 224], secretory breast [225], and renal cell [226–232] carcinomas, although
the epithelial nature of the latter is not well-documented. Interestingly, these cancers
all tend to present more frequently in adolescence and young adulthood in a manner
similar to thyroid and myeloid [233] malignancies that have fusion genes. The analyses
of cancers that present earlier in life may enhance fusion gene recognition in other
carcinoma types.

Definition and biologic characterization of the precursor cells that give rise to
thyroid carcinoma will also be important. Myeloid leukemias are thought to arise from
stem/progenitor cells that acquire disturbed self-renewal and differentiation capacities
but retain characteristics of the myeloid lineages. Although the presence of comparable
stem/progenitor cells in the thyroid are not defined, distinct thyroid cancer lineages
and patterns of differentiation exist and candidate stem/progenitor cells such as the
p63-immunoreactive solid cell nests [234] are apparent.

A last important area is development of molecular-based therapies for thyroid car-
cinoma patients resistant to standard radio-iodine treatment. Treatments for such can-
cers are limited and pathways defined by thyroid cancer mutations are prime targets
for pharmacologic interventions with molecular inhibitors. Tyrosine kinase inhibitors
[235–239] and nuclear receptor ligands [240–242] have proven dramatically effective
in some myeloid leukemia patients. Various molecular inhibitors are being investi-
gated now in thyroid cancer models [45, 243–249]. Such developments predict that
the thyroid cancer model will continue to provide biologic insights into human carci-
noma biology and that improved pathologic diagnosis and treatment for thyroid cancer
patients sit on the not too distant horizon.
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