
Chapter 9

HETEROGENEOUS EXAMPLES

1. Model using SDF kernel
We construct a heterogeneous example for an image converter shown

in Figure 9.1. This system begins by downloading encrypted images
that are decrypted, converted to a specific type, then encrypted again
and uploaded back to the source. This is a multi-MoC model where
the first DE block (Decryption block) is responsible for downloading
encrypted images and decrypting them. These images are passed onto
the SDF block that performs the Sobel edge detection algorithm on the
image. This is our preferred conversion type. Output from Sobel is sent
to the final DE block (Encryption block) that encrypts the converted
image and uploads it to a particular location. All DE blocks consist
of SC CTHREAD() processes and the SDF block uses SC METHOD()
processes.

We create this model using three scenarios: a pure DE implemen-
tation, a DE implementation such that the processes are non-threaded
using the transformation technique in [62] and a heterogeneous imple-
mentation using the DE and SDF kernels. The Discrete-Event model of
the Converter uses control signals to indicate which process executes next
and so on. The non-threaded model converted every SC THREAD() or
SC CTHREAD() process to an SC METHOD() using the transforma-
tion technique in [62]. The DE-SDF model is shown in Figure 9.1.

An interesting aspect about this model is the interaction between the
DE and SDF blocks. By interaction we mean the data transfer. SystemC
channels may be employed as the interaction medium between the DE
and SDF blocks, but we advise using SDFports and SDFchannels to
push the data onto the SDF toplevel. Both the blocks responsible for

140

Image Format
Converter

(.sob)

SDF

Encrypted
Image

Downloads
(.mtx)

Decryption

DE

Encryption
Upload

Encrypted
Images (.mtx)

DE

CleanEdges Channel Sobel

Figure 9.1. Image Converter Diagram

pushing data into the SDF and the SDF itself, must have access to the
SDFchannel and since MoC-specific channels and ports do not generate
SystemC events, this can be done. The block pushing data into the
SDF model can also have an SDFport that binds to an SDFchannel
that the SDF component retrieves its inputs from. A control signal can
be used to trigger the SDF toplevel process once data is ready on the
channel for the SDF to consume. This is a simple example showing how
we implement a heterogeneous model (the image Converter) using our
improved modeling and simulation framework.

Figure 9.2 shows approximately 13% improvement over the original
model. We attribute the limitation in simulation efficiency increase to
Amdahl’s law [41]. The SDF block in this Converter model serves only
a small portion of the entire system allowing for only that much im-
provement in total simulation performance. If the SDF component was
responsible for more percentage of the original model, then the sim-
ulation efficiency of that model would be significantly larger than its
counterpart (created using the DE kernel).

We profiled the Converter model. Taking an approximate percentage
of time spent for the SDF model when using the original reference im-
plementation kernel, we can see from Table 9.1 that the approximated
total running time for the SDF is approximately 14%. This particular

Heterogeneous Examples 141

Figure 9.2. Converter Results

implementation of the Converter model has sc fifo channels that gener-
ate numerous events during passing of data. Now, using Amdahl’s law
from Equation 9.1 and using 14% as the fraction of enhanced model we
can follow Equation 9.1 [41] where s is the speedup of the enhanced por-
tion. This equation implies that, if we were to enhance the simulation
of the SDF components by 2x, then we can only achieve a simulation
performance less than 0.14

2 = 7%. Therefore, if our SDF components
was either larger or if we have more SDF components in a model then
the simulation performance will improve according to the percentage of
SDF component in the model.

Overall Speedup =
1

((1 − .14) + .14/s)
(9.1)

Table 9.1. Profiling Results for Converter Model

Function % of total running time spent

cleanedges::cleanedge(void) 6.78
sobel::operate(void) 5.66
channel::latch(void) 1.18

142

2. Model using CSP and FSM kernels
We reuse the Dining Philosopher example introduced in Chapter 6 to

construct a heterogeneous model using the CSP and FSM kernels. The
model previously created was a pure CSP model, where every philoso-
pher and fork was a CSP process. We mentioned that a superficial im-
plementation of the Dining Philosopher problem can result in deadlock,
to which we presented the idea of a footman. The role of the footman
is to seat the philosophers to their designated seats and to monitor that
only four philosophers are sitting at the dining table at any time. The
implementation of the footman was done via a global function to have
immediate verification of the state of the seats occupied at the dining
table. However, we take this example further by implementing the foot-
man as a Finite State Machine controller embedded in a CSP process.

state0 state1 state2 state3

if seatsTaken < 4 if seatsTaken < 4 if seatsTaken < 4

seatsTaken >= 4 seatsTaken >= 4 seatsTaken >= 4

state4

if seatsTaken < 4

seatsTaken >= 4 seatsTaken >= 4

if seatsTaken < 4

Figure 9.3. FSM implementation of the Footman

The FSM based footman allows the seating of four philosophers, where
by each seat allocation signifies a state. A global seat counter called
seatsTaken is updated every time a philosopher is assigned a seat and
when a philosopher leaves his seat. The FSM in Figure 9.3 is combined
with the Dining Philosopher implementation to yield a heterogeneous
example shown in Figure 9.4.

Figure 9.3 presents a state machine diagram showing the functions
of the footman. The initial state is state0. The functionality of every
state is the same except for the next state transitions. Every state has
a self-loop suggesting that the control in the FSM does not transition to
another state whenever four philosophers are seated. However, if there
are seats available, then a seat is allocated and the transition to the
next state occurs. This is a simple FSM that changes the solution of
the Dining Philosopher such that it ensures that every philosopher gets
a turn to eat as well as serving as a deadlock avoidance mechanism.
The module definition is shown in Listing 9.1 where object s is the

Heterogeneous Examples 143

PHIL0

PHIL1

PHIL2PHIL3

PHIL4

toRight1

toLeft2

to
R

ig
ht

2

to
L

e f
t5

toRight5

toLeft1

Fork0

Fork1

Fork2

Fork3

Fork4

state0 state1 state2 state3

if seatsTaken < 4 if seatsTaken < 4 if seatsTaken < 4

seatsTaken >=
4

seatsTaken >=
4

seatsTaken >=
4

state4

if seatsTaken < 4

seatsTaken >=
4

seatsTaken >=
4

if seatsTaken < 4

FOOTMAN

fo
ot

m
an

footman

footman

footman

footman

Figure 9.4. Dining Philosopher Model with FSM footman

Listing 9.1. Module definition Footman FSM

1SC MODULE(s) {
2

3 int random ;
4 int ∗ g iveSeat ;
5

6 CSPnode ∗ csp ;
7 CSPport<int > ∗ f romPhil0 ;
8 CSPport<int > ∗ f romPhil1 ;
9 CSPport<int > ∗ f romPhil2 ;

10 CSPport<int > ∗ f romPhil3 ;
11 CSPport<int > ∗ f romPhil4 ;
12

13 void s t a t e0 () ;
14 void s t a t e1 () ;
15 void s t a t e2 () ;
16 void s t a t e3 () ;
17 void s t a t e4 () ;
18

19 SC CTOR(s) {
20 g iveSeat = new int () ;
21 ∗ g iveSeat =1;
22 fsm model−>s e tS t a t e (” t op l e v e l . s t a t e . s t a t e 0 ”) ;
23 SC FSM METHOD(state0 , fsm model) ;
24 SC FSM METHOD(state1 , fsm model) ;
25 SC FSM METHOD(state2 , fsm model) ;
26 SC FSM METHOD(state3 , fsm model) ;
27 SC FSM METHOD(state4 , fsm model) ;
28 } ;
29 } ;

state machine. This module itself has pointers to CSPnode and CSPport
types. The variables with prefix fromPhil are the ports through which
the philosophers communicate with the footman requiring the footman

144

to be encapsulated in a CSP process. Therefore, the FSM defining the
behavior of the footman is embedded in a CSP process through which
the CSPnode object and CSPchannels are tunneled. The rendez-vous
communication occurs from the toplevel process encapsulating the FSM
controller. Pointers to objects of type CSPchannel and CSPnode are
necessary for the FSM to have access to the CSPchannels that it must
communicate with and make function calls on the CSPnode object.

The implementation of the state entry functions are shown in Listing
9.2. Every state has identical implementation except for the next state
transition.

Listing 9.2. State entry functions for Footman FSM

1 void s : : s t a t e0 () {
2 i f (seatsTaken < 4) {
3 ++seatsTaken ;
4 s e a tAva i l ab l e [0] = true ;
5 fromPhil0−>push (∗ giveSeat , ∗ csp) ;
6 fsm model−>s e tS t a t e (” t op l e v e l . s t a t e . s t a t e 1 ”) ;
7 }
8 } ;
9

10 void s : : s t a t e1 () {
11 i f (seatsTaken < 4) {
12 ++seatsTaken ;
13 s e a tAva i l ab l e [1] = true ;
14 fromPhil1−>push (∗ giveSeat , ∗ csp) ;
15 fsm model−>s e tS t a t e (” t op l e v e l . s t a t e . s t a t e 2 ”) ;
16 }
17 } ;
18

19 void s : : s t a t e2 () {
20 i f (seatsTaken < 4) {
21 ++seatsTaken ;
22 s e a tAva i l ab l e [2] = true ;
23 fromPhil2−>push (∗ giveSeat , ∗ csp) ;
24 fsm model−>s e tS t a t e (” t op l e v e l . s t a t e . s t a t e 3 ”) ;
25 }
26 } ;
27

28 void s : : s t a t e3 () {
29 i f (seatsTaken < 4) {
30 ++seatsTaken ;
31 s e a tAva i l ab l e [3] = true ;
32 fromPhil3−>push (∗ giveSeat , ∗ csp) ;
33 fsm model−>s e tS t a t e (” t op l e v e l . s t a t e . s t a t e 4 ”) ;
34 }
35 } ;
36

37 void s : : s t a t e4 () {
38 i f (seatsTaken < numPhil − 1) {
39 ++seatsTaken ;
40 s e a tAva i l ab l e [4] = true ;
41 fromPhil4−>push (∗ giveSeat , ∗ csp) ;
42 fsm model−>s e tS t a t e (” t op l e v e l . s t a t e . s t a t e 0 ”) ;
43 }
44 } ;

Heterogeneous Examples 145

The seatAvailable array maintains which seat has been occupied and
a record of every philosopher to his particular seat is kept by the index of
the array. For example, seatAvailable[1] refers to the seat that belongs
to a philosopher with id one.

Listing 9.3. Toplevel CSP process for Footman

1SC MODULE(fsmtop) {
2

3 s ∗ s1 ;
4

5 CSPnode csp ;
6 CSPport<int > f romPhil0 ;
7 CSPport<int > f romPhil1 ;
8 CSPport<int > f romPhil2 ;
9 CSPport<int > f romPhil3 ;

10 CSPport<int > f romPhil4 ;
11

12 void entry () ;
13

14 SC CTOR(fsmtop) {
15 s1 = new s (” s t a t e ”) ;
16 s1−>csp = &csp ;
17 s1−>f romPhil0 = &fromPhil0 ;
18 s1−>f romPhil1 = &fromPhil1 ;
19 s1−>f romPhil2 = &fromPhil2 ;
20 s1−>f romPhil3 = &fromPhil3 ;
21 s1−>f romPhil4 = &fromPhil4 ;
22

23 SC CSP THREAD(entry , DP, csp) ;
24 } ;
25 } ;

The toplevel CSP process contained in fsmtop module is defined in
Listing 9.3. This module definition has instances of CSPnode and CSP-
ports that had pointer declarations in Listing 9.1. The constructor of
module fsmtop initialize an instance of s and appropriately assigns the
addresses of the ports in object s1.

The model with the addition of the footman CSP process is shown in
Figure 9.4. This pictorial representation of the Dining Philosopher also
shows CSPchannels from every philosopher to the footman. This addi-
tion requires alteration to the main entry function for the philosopher.
This change requests a seat from the footman before proceeding with
the getfork() function to request forks. The only addition is calling foot-
man.get(...) such that the philosopher suspends itself until the footman
process is executed and a seat is allocated. The FSM controller manages
the seat allocation and returns a value on the channel designating a seat,
resuming the suspended philosopher process.

146

DE:
Data Generator

FIR

FFT

SOBEL

SDF:

FFT

waitState

FIR

FFT

SOBEL
FSM

Controller

FSM:
Controller

Output

DE:

ready FIR SOBEL

Figure 9.5. Heterogeneous Example using FSM, SDF and DE Models

3. Model using FSM, SDF and DE kernels
Another heterogeneous example is shown in Figure 9.5. This model is

separated into DE, FSM, SDF and DE blocks as shown in the diagram.
The DE models are the data generator and the output, the SDF models
are the FIR, FFT and Sobel, and the FSM model is the controller re-
sponsible for triggering the SDF computations. The first DE block is the
data generator, which at random selects one of the three SDF models
for execution. It also uses the SystemC Verification library (SCV) [49]
for generating randomized input data for the FIR and FFT. Input for
the Sobel is read from a file. The data generator block sends a signal to
the FSM controller to execute the chosen SDF computation.

The FSM model consists of four states. The initial state is the wait-
State and the other three states fire the FIR, FFT, and Sobel SDF
models respectively. The waitState receives a signal from the data gen-
erator block and according to the signal, transition to the respective
state is taken. For example, suppose the data generator block sends a
signal to execute the FIR model, then the FSM takes a transition from
the waitState to the FIR state. The SDF model of the FIR executes
when in this state. Upon complete execution of the SDF FIR model,
control returns back to the FIR state that takes a transition back to the
waitState state. In turn, the FSM controller sends a signal back to the
data generator that the controller is ready to receive another input.

This example illustrates the use of SCV with a heterogeneous MoC
employing MoC-specific kernels. Invocations of an FSM model, DE
model and SDF models are also presented in this example. However,
due to the lack of space the source code is made available at [36].

Heterogeneous Examples 147

4. Model using CSP, FSM, SDF and DE kernels
Building on top of the example with an FSM based footman for the

Dining Philosophers problem, we construct another model that uses the
SDF and DE kernels along with the CSP and FSM. This example shows
the use of all MoCs implemented in SystemC until now. In the model
presented in Figure 9.6, we use the Sobel edge detection model as our
SDF component, the RSA encryption algorithm and the Producer/Con-
sumer FIFO example as the DE components (from SystemC distribution
examples) and the footman as the FSM controller.

PHIL0

PHIL1

PHIL2PHIL3

PHIL4

toRight1

toLeft2
to

R
ig

ht
2

to
Le

ft5

toRight5

toLeft1

Fork0

Fork1

Fork2

Fork3

Fork4

FOOTMAN

fo
o

tm
a

n

footm
an

footman

footman

footman

Producer ConsumerFIFO

DE : Solves Producer/Consumer
FIFO

DE: Solves
RSA Encryption

Algorithm

Input CleanEdges Channel Sobel Output

SDF: Solves Sobel

Figure 9.6. Truly Heterogeneous Dining Philosopher Model

The footman FSM controller is encapsulated in a CSP process but the
DE and SDF models are not. The roles of the philosophers when in the
thinking state have been slightly altered with this implementation and
they are as follows: Phil0 solves an RSA encryption algorithm, Phil1
simulates the Producer/Consumer example using the FIFO implemen-
tation, Phil2 performs the Sobel edge detection, and Phil3 and Phil4 sit
around just pretending that they are thinking. Listing 9.4 shows the
PHIL module entry function with the added invocations to the DE and
SDF kernels.

148

Listing 9.4. Entry function for PHIL module

1 void PHIL : : s o ln () {
2 int durat ion = timeToLive ;
3 int eatCount = 0 ;
4 int totalHungryTime = 0;
5 int becameHungryTime ;
6 int startTime = msecond () ;
7 while (1) {
8 s e a tAva i l ab l e [id] = fa l se ;
9 int got = footman . push (csp) ;

10 i f ((s e a tAva i l ab l e [id] == true) && ((s t a t e [id] != 0) | | (
s t a t e [id] != 6))) {

11 becameHungryTime = msecond () ;
12 p r i n t s t a t e s () ;
13 ge t f o rk () ;
14 p r i n t s t a t e s () ;
15 totalHungryTime += (msecond () − becameHungryTime) ;
16 eatCount++;
17 s t a t e [id] = 3 ;
18 us l e ep (1000L ∗ random int (MeanEatTime)) ;
19 p r i n t s t a t e s () ;
20 dropfork () ;
21 us l e ep (1000L ∗ random int (MeanThinkTime)) ;
22 p r i n t s t a t e s () ;
23 s t a t e [id] = 6 ;
24 i f (id == 1) {
25 r sa (−1) ;
26 s c d e i n i t (” r sa ”) ;
27 s c d e t r i g g e r (−1 , ” r sa ”) ;
28 }
29 i f (id == 2) {
30 top top1 (”Top1”) ;
31 s c d e i n i t (”Top1”) ;
32 s c d e t r i g g e r (−1 , ”Top1”) ;
33 }
34 i f (id == 3) {
35 t o p l e v e l sd f top (” sd f top ”) ;
36 s c d e i n i t (” sd f top ”) ;
37 s c s d f s t a r t (1 , ” sd f top ”) ;
38 } ;
39 us l e ep (1000L ∗ random int (MeanThinkTime)) ;
40 s t a t e [id] = 0 ;
41 p r i n t s t a t e s () ;
42 −−space ;
43 −−seatsTaken ;
44 csp . r e s chedu l e () ;
45

46 } else {
47 csp . r e s chedu l e () ;
48 }
49 }
50 s t a t e [id] = 7 ;
51 } ;

We compare id to allow for a specific philosopher to perform certain
tasks during their thinking phase. We mandate that every model must
be encapsulated with a toplevel process. We use SC METHOD() pro-
cesses since we want single execution of the model. Our SDF kernel is
an untimed MoC implementation, however DE examples can span for
a certain length of time. To support this we added global functions

Heterogeneous Examples 149

sc de trigger(...) and sc sdf trigger(...). Both these functions take in
the duration of the execution and the name of the toplevel process that
is to be executed. For the SDF, the duration has no effect. For the DE,
the simulation runs for the specified duration after which control returns
to the calling thread. The sc de init(...) initializes the model specified
by the argument passed into the function to be executed. This same
initializer function is used to insert the SDF model.

