
Chapter 8

SYSTEMC KERNEL APPLICATION
PROTOCOL INTERFACE (API)

Designed to contain only one simulation kernel, SystemC does not
provide an API to tidily add an extension to the simulation kernel. Nor
are we aware of any efforts of providing an API for kernel development in
SystemC. The existing simulation kernel is specified in the sc simcontext
class along with several global function definitions such as sc start(...).
We provide an API that better incorporates multiple kernels and pro-
vides a medium through which kernels can gain access to its counterpart
kernels. Once again, our approach is in limiting the changes in the cur-
rent source by overlaying the current implementation with our API with
the introduction of a class called sc domains. The problems that we
address by adding this encapsulating API class are as follows:

1 For each implemented kernel, one should be able to execute each of
them independent of others.

2 Every implemented kernel must be able to access every other kernel
for multi-domain heterogeneous simulation.

1. System Level Design Languages and
Frameworks

Our API class that we call sc domains is shown in Listing 8.1 and a
class diagram is shown in Figure 8.

The sc domains class contains pointers to each implemented kernel.
We present two methods by which a kernel can be represented. The first
is by dynamically allocating the kernel such as in [Listing 8.1, Line 45]
for the de kernel or by having a list of multiple kernels as in [Listing
8.1, Line 22] for sdf domain. The sdf domain could have been easily

134

sc_domains

CSPkernelFSMkernel DEkernel

1

1

1

1

1

1

Figure 8.1. Class Diagram for sc domains

implemented as a pointer to a vector list, but we choose to do this to
show that this approach can also be used. Furthermore, not all kernels
require more than one instance valid in the system. For example, the DE
kernel requires only one instance of itself. However, there can be multiple
SDF or FSM models in a heterogeneous model requiring multiple SDF
graphs (SDFG) to be present in the system same applied with multiple
FSM models.

Initialization functions and its helper functions must all be member
functions of the class sc domains. An example of a helper function
is split processes() that is an SDF initialization helper function. Its
purpose is to separate SDF method processes from regular DE method
processes. Similarly, find sdf graph() is a helper function that finds a
specific SDFG in the entire model.

For a kernel designer it is important to adhere to some general guide-
lines in adding a kernel to SystemC using the API we provide. Most of
these guidelines are intuitive. They are as follows:

1 Ensure that every added kernel is encapsulated in a class such as
sdf graph. This class must give enough access to the sc domains class
to enable execution of the functions from the sc domains class.

2 Include a pointer (recommended) to an instance of a kernel type
as a data member of sc domains. If for some reason there can be
multiple instances of the kernel, such as in the case of SDF then a
list of pointers to the kernels can be used. Whether to use pointers
to kernels or object instances of kernels in implementation is up to
the kernel designer.

3 Initialization functions for the kernel must be called from function
init domains that is responsible for initializing all kernels. A kernel
designer can implement additional functions specific for their kernel

SystemC Kernel Application Protocol Interface (API) 135

Listing 8.1. API Class sc domains

1

2 class sc domains {
3

4 // pub l i c funct ions
5 public :
6 sc domains () ;
7 ˜ sc domains () ;
8

9 void i n i t d e () ;
10 void i n i t s d f () ;
11 void i n i t doma ins (const s c t ime & duration , s t r i n g in) ;
12

13 void s p l i t p r o c e s s e s () ;
14

15 sd f g raph ∗ f i n d sd f g r aph (s t r i n g s d f p r e f i x) ;
16

17 // take the input from user
18 bool use r i nput (s t r i n g in) ;
19

20 // make these pr i va te a f t e r the hack works
21 s c s imcontext ∗ s d f d e k e r n e l ; // DE kerne l
22 vector<sd f g raph ∗> sdf domain ; // SDF kerne l
23 void s d f t r i g g e r (s t r i n g topname) ;
24

25 s t r i n g u s e r o rd e r ;
26

27 // DE funct ions
28 void i n i t i a l i z eDE () ;
29 bool i sDE i n i t i a l i z e d () ;
30

31 // CSP funct ions
32 void i n i t i a l i z eCSP () ;
33 bool i sCSP i n i t i a l i z e d () ;
34

35 // FSM funct ions
36 void i n i t i a l i z eFSM () ;
37 bool i sFSMin i t i a l i z e d () ;
38

39 void c l e a n s d f (const s t r i n g & s t r) ;
40 void c l e a r d e () ;
41 DEkernel ∗ g e t d e k e r n e l () ;
42 CSPkernel ∗ g e t c s p k e r n e l () ;
43

44 private :
45 DEkernel ∗ de ke rne l ;
46 CSPkernel ∗ c sp k e rn e l ;
47 FSMkernel ∗ f sm kerne l ;
48 } ;

in sc domains, for example in sdf domain, split processes() is used to
split the runnable process list by removing the SDF method processes
except for the top-level SDF method process.

Table 8.1 displays some of the member functions in sc domains and
their purposes. A file static instance of sc domains is instantiated. The
object is called the Manager. The API class acts as a manager having
access to all models and MoCs that are currently in the system. All ker-
nel instances have access to this Manager instance through which they

136

Listing 8.2. init domains from sc domains class

1 // i n i t i a l the domains
2 void sc domains : : i n i t doma ins (const s c t ime & duration , s t r i n g

in) {
3

4 i f (in . s i z e () > 0)
5 use r i nput (in) ;
6

7 i n i t d e () ;
8 s p l i t p r o c e s s e s () ;
9 i n i t s d f () ;

10 model . s d fd e ke rne l−>d e i n i t i a l i z e 2 () ;
11 }

get access to any other kernel implemented and instantiated allowing for
interaction between them. This way the Manager object can find a par-
ticular model in a specific MoC and execute it accordingly. This setup
for sc domains exists to allow for behavioral hierarchy for the future.

Table 8.1. Few Member Functions of class sc domains

Functions Description

sdf trigger(...) Global SDF specific function to execute the
SDF graph.

init domains(...) Function that invokes all initialization mem-
ber functions for every kernel in sc domains.

split processes() SDF specific function to split SDF func-
tion block processes from regular SystemC
method processes.

init de() Create an instance of the DE kernel.

init sdf() Initialization function for SDF kernel. Tra-
verses all SDFGs and constructs an exe-
cutable schedule if one exists.

find sdf graph(...) Helper function to find a particular SDF
graph for execution.

initializeCSP() Prepare csp kernel such that instances of
CSP models can be inserted

initializeFSM() Prepare fsm kernel such that instances of
FSM models can be inserted

get de kernel() Return the pointer de kernel.

get csp kernel() Return the pointer csp kernel.

get fsm kernel() Return the pointer fsm kernel.

We provide these guidelines to simply help kernel designers in using
the introduced API and we impose no restrictions as to a particular
method of addition. This sc domains class shown in Listing 8.1 simply
encapsulates all the kernel classes requiring a certain alteration to the

SystemC Kernel Application Protocol Interface (API) 137

Listing 8.3. init sdf from sc domains class

1 void sc domains : : i n i t s d f () {
2

3 i f (sdf domain . s i z e () == 0) {
4 schedu le : : err msg (” No SDF system ” , ”WW”) ;
5 return ;
6 }
7

8 for (int sd f g raphs = 0 ; sd f g raphs < (signed) sdf domain .
s i z e () ; sd f g raphs++) {

9

10 // Extract the address of f i r s t SDF
11 sd f g raph ∗ p ro c e s s s d f g r aph = sdf domain [sd f g raphs] ;
12 // Calcu late schedule for t h i s SDFG i f one not a lready

ca l cu l a t ed
13 i f (p roc e s s sd f g raph−>r e s u l t == NULL)
14 proce s s sd f g raph−>s d f c r e a t e s c h e du l e () ;
15 }
16 }

Listing 8.4. sdf trigger() from sc domains class

1 void sc domains : : s d f t r i g g e r (s t r i n g topname) {
2 s t r i n g sdfname = topname+” . ” ;
3 sd f g raph ∗ r un th i s ;
4

5 for (int sd f g raphs = 0 ; sd f g raphs < (signed) model .
sdf domain . s i z e () ; sd f g raphs++) {

6 // pointer to a par t i cu l a r SDF graph
7

8 sd f g raph ∗ p ro c e s s s d f g r aph = model . sdf domain [sd f g raphs
] ;

9

10 i f (strcmp (proc e s s sd f g raph−>p r e f i x . c s t r () , sdfname . c s t r
())==0) {

11

12 r un th i s = p ro c e s s s d f g r aph ;
13

14 i f ((run sd f == true)){
15 // execute the SDF METHODs
16 run th i s−>s d f s imu l a t e (sdfname) ;
17 run sd f = fa l se ;
18 }/∗ END IF ∗/
19 }/∗ END IF ∗/
20 }/∗ END FOR ∗/
21 }/∗ END sd f t r i g g e r ∗/

global function calls such as sc start(...) and the introduction of MoC
specific simulation functions such as sc csp start(...). The addition of
global and member functions in existing classes are described in the
MoC’s respective chapter and the API mainly supports the exchange of
information about these multi-MoC models.

This API is not the most evolved nor is it the most robust, but it pro-
vides a mechanism and an approach to organizing and allowing kernel
designers to think and consider additional improvements in managing

138

their kernel implementation in SystemC. The API is also not fully com-
plete, for example, we do not support multiple models for the CSP MoC
as yet. Ideally, we envision the Manager object to manipulate the client
QuickThread coroutine instances as well, but these considerations are
still under investigation.

Finally, Listings 8.2, 8.3 and 8.4 show some of the API functions.

