
Chapter 7

FINITE STATE MACHINE KERNEL
IN SYSTEMC

Constructing a Finite State Machine (FSM) model in SystemC is pos-
sible with current modeling constructs of SystemC. This means that the
existing SystemC can effectively provide means of constructing an FSM
model. Some may argue that given a Discrete-Event simulation ker-
nel, there is no need to add a Finite State Machine (FSM) kernel for
SystemC. However, with the vision of a truly heterogeneous modeling
environment in SystemC, the need for such an inclusion is arguable.
Furthermore, with hierarchy in mind, the separation of an FSM kernel
may result in increased simulation efficiency.

The kernel is an encapsulation of the SC METHOD() processes along
with several member functions to describe an FSM model. In a way
it is not necessarily an alternate kernel. However, this encapsulation
serves as a step towards isolating the FSM kernel completely from the
execution of the DE kernel. At this moment every FSM block executes
in one simulation cycle as per our definition of a period for an FSM
node. This results in an untimed model of the FSM that will be ex-
tended to support timed models in further development. We envision
support for timed and untimed models for relevant Models of Computa-
tion. Unfortunately, the implementation of signals using sc event types
makes it difficult to diverge from the Evaluate-Update semantics. We
are currently investigating reconstructing sc signals such that they can
be interpreted by the MoC within which they are employed. This ex-
tends the possibility of all MoCs being either timed or untimed. The
revamp of the event management is still under investigation.

The Finite State Machine Model of Computation has the following
properties:

126

A set of states

A start state.

An input alphabet and

A transition function that maps the current state to its next state.

A

B

Figure 7.1. FSM Traffic Light Example [4]

FSMs are generally represented in the form of graphs with nodes and
transitions connecting the nodes with some conditions on the transitions.
Figure 7.1 shows a diagram of a two traffic light system and Figure 7.2
illustrates a Finite State Machine controller for this system.

A=green
B=red

A=yellow
B=red

A=red
B=green

A=red
B=yellow

S0

S1

S2

S3

A := yellow

A := red
B := green

A := green
B := red

B := yellow

No change No change

T0

T
1

T2 T3

T4

T5

Figure 7.2. FSM Traffic Light Controller Example [4]

The two traffic lights are represented by A and B and the set of states
contains S0, S1, S2 and S3. The transitions are represented by the

Finite State Machine Kernel in SystemC 127

Table 7.1. Example of map<...> data structure

Key Value

toplevel.state.state0 0xf000001

toplevel.state.state1 0xf000011

toplevel.state.state2 0xf000101

toplevel.state.state3 0xf001001

toplevel.state.state4 0xf100001

arrows and the action associated with the transition is marked in the
dotted ellipses. Suppose S0 is the initial state. Then a transition to S1
causes traffic light A to change from green to yellow and B to remain
at red. This is a simple controller example, but FSMs can be extensive
and large in size. We do not discuss the specifics of Moore and Mealey
machines since FSMs serve as pedestals to most engineering. However,
we refer the reader to [10] for additional reference and continue our
discussion to the implementation details of the FSM kernel in SystemC.

1. Implementation Details
1.1 Data Structure

The FSM kernel’s data structure implements a map<...> object from
the C++ STL. A map object is simply a list of pairs consisting of a key
and a value. FSM uses a string and a pointer to the SC METHOD()
process via the sc method process class as shown in Listing 7.1 as a
pair entry in the map<...> object. For illustration purposes Table 7.1
displays the pairs inserted in the data structure. The addresses for the
values are made up. The keys are of type string and the value is an
address to an object of type sc method handle. The key field is used
when searching this map<...> object for a particular string and if a pair
entry is found with the corresponding search string, then the value is
returned.

The FSMReceiver class once again derives from the baseReceiver class.
The baseReceiver holds the type of the receiver that is derived from it.
Besides the fsmlist private data member, there is an id and a string
type variable called currentState. This currentState variable preserves
the current state that the simulation has reached for the FSM. This may
not seem necessary in a pure FSM model. However, in heterogeneous
models, a particular state in the FSM may resume another MoC and re-
turn back to the FSM requiring the preservation of the last state that it
had executed. The member functions of class FSMReceiver are standard
functions used to insert elements into the fsmlist and retrieve a particu-

128

Listing 7.1. class FSMReceiver

1 class FSMReceiver : public baseRece iver {
2 private :
3 map<s t r i ng , sc method handle > ∗ f sm l i s t ;
4 s t r i n g id ;
5 s t r i n g cur r en tSta t e ;
6

7 public :
8 FSMReceiver (const s t r i n g & s) ;
9 ˜FSMReceiver () ;

10

11 void i n s e r t (const s t r i n g &s , sc method handle h) ;
12 sc method handle f i nd (const s t r i n g &s) ;
13 bool myid (const s t r i n g &s) ;
14

15 void s e tS t a t e (const s t r i n g & s) ;
16 s t r i n g & getSta te () ;
17

18 void f sm execute () ;
19 sc method handle r eg i s t e r f sm method (const char ∗ name ,
20 SC ENTRY FUNC entry fn ,
21 sc module ∗ module) ;
22 } ;

Table 7.2. Some Member functions of class FSMReceiver

Member Function Purpose

insert(...) Inserts a pair into fsmlist

find(...) Returns a pointer to the FSM process if the string
associated with the name of the process is found

setState(...) Set the currentState with the string argument that is
passed

getState() Returns the currentState

fsm execute() Execute the FSM model

register fsm method(...) Called from a C macro that registers a
sc method process object as an FSM process

lar sc method handle by supplying a string. The register fsm method(...)
function is invoked by the C macro defined by SC FSM METHOD(...).
Listing 7.2 shows the module construction for SC FSM METHOD(...).
Table 7.2 lists some of the important member functions of class FSM-
Receiver and their use.

The fsm execute() member function is responsible for initiating the
execution of the FSM model. The simulation begins at the initial state,
which is set by the modeler. The modeler can do this by using the set-
State(...) member function to designate one of the states as an initial
state. To schedule an FSM process to execute, the setState(...) member
function is employed. A schedule for an FSM process means chang-
ing the currentState variable to reflect the name of the next process to

Finite State Machine Kernel in SystemC 129

Listing 7.2. Macros used to register FSM processes

1 //SC FSM METHOD. . .
2#define SC FSM METHOD(func , mod)
3 f sm dec la r e method proce s s (func ## handle ,
4 #func ,
5 SC CURRENT USER MODULE,
6 func , mod)
7 // fsm declare method process
8#define f sm dec la r e method proce s s (handle , name , module tag ,

func , mod)
9 sc method handle handle ;

10 {
11 SC DECL HELPER STRUCT(module tag , func) ;
12 handle = mod−>r eg i s t e r f sm method (name ,
13 SC MAKE FUNC PTR(module tag , func) , this) ;
14 sc module : : s e n s i t i v e << handle ;
15 sc module : : s e n s i t i v e p o s << handle ;
16 sc module : : s e n s i t i v e n e g << handle ;
17 }

execute. This function sets the currentState to the argument that is
passed into that function and with the next execution of the FSM; the
process with that string name is executed. Every time fsm execute()
runs, the currentState of the FSM model is retrieved and a search is
done on the data structure. The sc method process pointer is returned
if an entry is found and then executed. The key entries in Table 7.1
are sc method process object names. The naming convention preserves
SystemC naming conventions by adding a dot between module names.
This naming convention is discussed in Chapter 5 with an example. For
the FSM kernel the FSMReceiver is the most integral class. The remain-
der of the classes implemented to support the FSM kernel are shown in
Listing 7.3. The FSMkernel class is responsible for allowing multiple
FSM models to simulate together.

Channels and ports specific for the FSM MoC are included with the
declarations shown in Listing 7.4. Since there is no specific communi-
cation functionality for the FSM MoC, the FSMport and FSMchannel
classes inherit from sc moc port and sc moc channel respectively. They
exhibit the same behavior as their base classes. The source listing for
the base classes is shown in Chapter 4.

2. Example of Traffic Light Controller Model
using FSM Kernel in SystemC

To further illustrate our FSM kernel we present an FSM traffic light
controller example. Figure 7.2 describes the state diagram of this simple
example. Listing 7.5 shows the SC MODULE(state) definition along
with its respective entry functions. The entry functions are state0,

130

Listing 7.3. FSMkernel and FSMnode class definition

1 class FSMkernel {
2

3 private :
4 vector<FSMReceiver∗> ∗ fsms ;
5

6 public :
7 FSMkernel () ;
8 ˜FSMkernel () ;
9 void i n s e r t (FSMReceiver ∗ f) ;

10 FSMReceiver ∗ f i nd f sm (const s t r i n g & id) ;
11 void fsm crunch () ;
12 } ;
13

14 class FSMnode {
15

16 private :
17 sc method handle handle ;
18 s t r i n g name ;
19

20 public :
21 FSMnode () ;
22 ˜FSMnode () ;
23 void s e t (const s t r i n g &s , sc method handle h) ;
24

25 } ;

Listing 7.4. Ports and Channels for FSM MoC

1 template <class T>
2 class FSMport : public sc moc port<T> {} ;
3 template <class T>
4 class FSMchannel : public sc moc channel<T> {} ;

state1, state2 and state3 representing the states S0, S1, S2, and S3 re-
spectively. Each of these entry functions are bound to an SC METHOD()
process via the SC FSM METHOD() macro. Registration of the entry
functions as FSM processes is performed via this macro. The constructor
of SC MODULE(...) remains the same as existing SystemC syntax with
the use of SC CTOR(...). Notice the initial state of the FSM is set within
the constructor with fsm model→setState(“toplevel.state.state0”). We
preserve the naming conventions of SystemC to target the FSM process
for execution. However, this requires knowledge of the encapsulating
process as well since the naming convention of SystemC concatenates
the names by taking the module name, adding a dot character at the
end, followed by appending the entry function name. The hierarchy
of the module is preserved by preceding with the name of the toplevel
module name as shown by toplevel.state.state0.

Two instances of light are present where A represents traffic light A
and B represents traffic light B. The colors are enumerated by enum

Finite State Machine Kernel in SystemC 131

Listing 7.5. Module Definition of ’state’ in Traffic Light Controller Model

1SC MODULE(s t a t e) {
2

3 l i g h t A;
4 l i g h t B;
5 int random ;
6

7 void s t a t e0 () {
8 random = rand () ;
9 cout << ”−−−”

<< endl ;
10 cout << ”S0 −− Random value = ” << random << endl ;
11 A = GREEN;
12 B = RED;
13 pr in tL ight (A, B) ;
14 i f (random % 2 == 0)
15 fsm model−>s e tS t a t e (” t op l e v e l . s t a t e . s t a t e 1 ”) ;
16 } ;
17

18 void s t a t e1 () {
19 random = rand () ;
20 cout << ”−−−”

<< endl ;
21 cout << ”S1 −− Random value = ” << random << endl ;
22 A = YELLOW;
23 B = RED;
24 pr in tL ight (A, B) ;
25 i f (random % 2 == 0)
26 fsm model−>s e tS t a t e (” t op l e v e l . s t a t e . s t a t e 2 ”) ;
27 } ;
28

29 void s t a t e2 () {
30 random = rand () ;
31 cout << ”−−−”

<< endl ;
32 cout << ”S2 −− Random value = ” << random << endl ;
33 A = RED;
34 B = GREEN;
35 pr in tL ight (A, B) ;
36 i f (random % 2 == 0)
37 fsm model−>s e tS t a t e (” t op l e v e l . s t a t e . s t a t e 3 ”) ;
38 } ;
39

40 void s t a t e3 () {
41 random = rand () ;
42 cout << ”−−−”

<< endl ;
43 cout << ”S3 −− Random value = ” << random << endl ;
44 A = RED;
45 B = YELLOW;
46 pr in tL ight (A, B) ;
47 i f (random % 2 == 0)
48 fsm model−>s e tS t a t e (” t op l e v e l . s t a t e . s t a t e 0 ”) ;
49 } ;
50

51 SC CTOR(s t a t e) {
52 fsm model−>s e tS t a t e (” t op l e v e l . s t a t e . s t a t e 0 ”) ;
53 SC FSM METHOD(state0 , fsm model) ;
54 SC FSM METHOD(state1 , fsm model) ;
55 SC FSM METHOD(state2 , fsm model) ;
56 SC FSM METHOD(state3 , fsm model) ;
57 } ;
58 } ;

132

Listing 7.6. Module Definition of top in Traffic Light Controller Model

1SC MODULE(top) {
2

3 s t a t e ∗ s1 ;
4 void entry () {
5

6 while (true) {
7 f sm t r i g g e r () ;
8 wait () ;
9 }

10 } ;
11

12 SC CTOR(top) {
13 s1 = new s t a t e (” s t a t e ”) ;
14 SC THREAD(entry) {
15 } ;
16 } ;
17 } ;
18

19

20 int main () {
21 fsm model = new FSMReceiver (” fsm1”) ;
22 f sm kerne l . i n s e r t (fsm model) ;
23

24 top tp (” t op l e v e l ”) ;
25 s c s t a r t (−1) ;
26

27 return 0 ;
28 }

light RED=1, YELLOW= 2, GREEN=3;. The values for the traffic
lights are set followed by a execution of a global function printLight(...)
that displays status of the lights. Full source is not presented, but is
available at our website [36]. The next state is set by using the set-
State(...) function call, which describes the transition presented in Fig-
ure 7.2. However, since C++ is a sequential programming language,
implementing non-determinism for transitions T0 and T5 requires the
use of randomization. A simple policy where if the randomly generated
number is not zero then the transitions T0 or T5 are traversed depending
on the current state of the FSM is implemented.

The top module is a regular SC THREAD() process with an infinite
loop and a single suspension statement. This is to allow the FSM to run
infinitely, as expected behavior of a traffic light controller. The model
progresses after every cycle due to the wait(...) statement. Similar to
the SDF MoC implementation, a call to fsm trigger(...) is mandatory to
indicate the execution of the FSM kernel. Listing 7.6 shows the module
definition for top along with definition of sc main(...).

A global object of type FSMkernel holds the fsm model that is to ex-
ecute. The simulation starts using the sc start(...) function call [Listing
7.6, Line 25].

