
Chapter 6

COMMUNICATING SEQUENTIAL
PROCESSES KERNEL IN SYSTEMC

Any multi-MoC framework designed to model and simulate embed-
ded systems, or any other complex system composed of concurrently
executing components which are communicating intermittently, needs
to implement some MoCs that are geared for specific communicating
process models. Current SystemC reference implementation lets the
user create concurrently executing modules using SC THREAD() or
SC CTHREAD() constructs. Modules that have such threads in them
communicate via channels which are usually of the sc fifo, sc mutex and
other predefined channel types and their derivatives. These channels
have blocking and non-blocking read/write interfaces that the threads
can call to block themselves or attempt communication with other threads.
These thread constructs also can synchronize with clock signals, or
events using wait() or wait until() function calls directly, or through
read/write calls on one of the channel types. Clearly, such threading
mechanisms and structures are provided with the Discrete-Event (DE)
kernel in mind. What if one wants to model software components which
are not necessarily synchronized with a global clock when they suspend
or do not need to synchronize with events that are created at the DE
kernel level? Often, designers want to model a software system without
the notion of clock based synchronization, and later on refine the model
to introduce clocks. For such untimed models of concurrent components,
designers would much prefer a different MoC than the clock-based DE
MoC.

In [28], Communicating Sequential Processes (CSP) is introduced as
a model of computation for concurrency that originally dates back to
1978 [27]. In this MoC, sequential processes are combined with process
combinators to form a concurrent system of communicating components.

94

The protocol for communication in such an MoC is fully synchronous as
opposed to data flow networks. For example, in data flow networks,
buffers in the channels connecting two computing entities are assumed,
and, based on buffer size, the computations proceed asynchronous to
each other, leaving the communicable data at the buffers for the other
components to pick up as and when ready. Of course, in real implemen-
tations buffers are of limited size and hence often times requires process
blockings. In CSP, the communication happens through a rendez-vous
mechanism [27]. This necessitates synchronization at the data commu-
nication points between the processes, as buffering is not allowed on the
channels, and the communicating processes both need to be ready to
communicate for communication to take place. If one of the two com-
municating processes is not ready, the other blocks until both are ready.
This imposes a structure and semantics that is amenable to trace the-
ory, and in later work to failure-divergence semantics. Such theoretical
underpinnings make this MoC quite useful for formal analysis, and in
recent times formal verification and static analysis tools for CSP models
have appeared [40].

CSP provides a convenient MoC for creating a system model which
consists of components that need to communicate with each other and
their communication is based on synchronous rendez-vous, rather than
buffered asynchronous communication. Refining such models with a
clocked synchronous model later on is easier than refining a fully asyn-
chronous model. Moreover, the models built can be formally analyzed
for deadlock and livelock kind of problems more easily. We therefore
picked CSP MoC as one of the first concurrency related MoC for our
extension of SystemC.

Rendez-vous Communication
Implementation of the Communicating Sequential Processes Model

of Computation requires understanding of rendez-vous communication
protocol. Every node or block in a CSP model is a thread-like pro-
cess that continuously executes unless suspended due to communication.
The rendez-vous communication protocol dictates that communication
between processes only occurs when both the processes are ready to com-
municate. If either of the processes is not ready to communicate then
it suspends until its corresponding process is ready to communicate, at
which it is resumed for the transfer of data.

Figure 6.1 illustrates how the rendez-vous protocol works. T1 and T2
are threads that communicate through the channel labelled C1. T1 and
T2 are both runnable and have no specific order in which they are exe-
cuted. Let us consider process point 1, where T1 attempts to put a value

Communicating Sequential Processes Kernel in SystemC 95

T1 T2
CSP channel

Threads

put(…)

put(…)

get(…)

get(…)

Point 1

Point 2

Point 3

Point 4

T
im

e
p

ro
gre

ss

Figure 6.1. CSP Rendez-vous Communication

on the channel C1. However, process T2 is not ready to communicate,
causing T1 to suspend when the put(...) function within T1 is invoked.
When process T2 reaches point 2 where it invokes the get(...) function
to receive data from C1, T1 is resumed and data is transferred. In this
case T2 receives the data once T1 resumes its execution. Similarly, once
T2 reaches its second invocation of get(...) it suspends itself since T1 is
not ready to communicate. When T1 reaches its invocation of put(...),
the rendez-vous is established and communication proceeds. CSP chan-
nels used to transfer data are unidirectional. That means if the channel
is going from T1 to T2, then T1 can only invoke put(...) on the channel
and T2 can only invoke get(...) on the same channel.

1. Implementation Details
We present some design considerations in this section followed by the

data structure employed for CSP and implementation details.

1.1 Design Considerations and Issues
Careful thought must be given to the inclusion of a CSP kernel in

SystemC. This is necessary because CSP is an MoC disjoint from con-
ventional hardware models. Though CSP is more generally considered

96

a software MoC, it is an effective MoC when targeting models for con-
currency. Clearly, the semantics of CSP are different from the semantics
of a Discrete-Event MoC. This implies that, unlike the SDF implemen-
tation in SystemC where we targeted for the simulation semantics to
remain exactly the same as the DE semantics, in CSP we want them to
be completely distinct. Therefore, the Evaluate-Update paradigm is not
employed in the implementation.

1.2 Data Structure

baseReceiver

CSPReceiver CSPnode
11

CSPkernel

1

*

1

*

CSPelement

3

3

CSPnodelist2

*

sc_domains

1

*

sc_thread_process

1

1

1

1

Figure 6.2. CSP Implementation Class Hierarchy

Chapter 4 familiarizes the reader with general implementation class
hierarchies that present a minimal organization structure followed by the
CSP kernel. This section describes implementation of the class hierarchy
shown in Figure 6.2.

A baseReceiver class preserves basic information about the receiver
that inherits from the baseReceiver. This class presently only holds the
type of the inheriting receiver, but this can be extended to encompass

Communicating Sequential Processes Kernel in SystemC 97

Listing 6.1. class baseReceiver

1 class baseRece iver {
2 private :
3 rece iverType type ;
4

5 protected :
6 rece iverType getType () ;
7 void setType (rece iverType t) ;
8 void setCSP () ;
9

10 public :
11 baseRece iver () ;
12 ˜ baseRece iver () ;
13

14 } ;

common functionality as described in Chapter 4. Listing 6.1 shows the
baseReceiver class with an enumerated receiverType data type. Variable
type is set via the derived class, identifying the derived class as a CSP
receiver by the use of setCSP() function.

CSPnode 2

CSPnode 4CSPnode 1

CSPnode 3

Figure 6.3. Simple CSP model

CSP models require a data structure that represents a graph, which
we call a CSP graph (CSPG). The CSPelement class is responsible for
encapsulating information used to construct this CSPG. Figure 6.3 shows
an example of a CSPG. The graph representation is implemented by a
list of pointers to objects of type CSPelement, which is discussed later
in this section. However, for the purpose of creating this CSPG, each
object of CSPelement contains a pointer to the CSPnodes that this
CSPelement is connected to and from.

From Listing 6.2 toNode and fromNode point to the objects of type
CSPnode (defined later in this section) distinguishing the direction of
the communication as well. There are two Boolean flags called putcalled
and getcalled that store the state of the channel. The putcalled Boolean
value is set to true if a corresponding CSPnode connected to this chan-
nel invokes the put(...) function call. Similarly, getcalled is set when the

98

Listing 6.2. class CSPelement

1 class sc module ;
2 class CSPnode ;
3

4 class CSPelement {
5

6 private :
7 CSPnode ∗ me;
8 CSPnode ∗ toNode ;
9 CSPnode ∗ fromNode ;

10 stat ic int id ;
11 bool put ca l l ed ;
12 bool g e t c a l l e d ;
13 c sp event ∗ ev ; // s tore the event tha t t h i s element i s

going to be t r i g g e r ed on
14

15 public :
16

17 CSPelement () ;
18 ˜CSPelement () ;
19

20 CSPelement (CSPnode ∗ from , CSPnode ∗ to , int id) ;
21 CSPelement (CSPnode ∗ from , CSPnode ∗ to) ;
22 void s e t i d (int i) ;
23 void s e t t o (CSPnode ∗ to) ;
24 void set f rom (CSPnode ∗ from) ;
25 int ge t id () ;
26

27 bool getput () ;
28 bool ge tge t () ;
29 void se tput (bool p) ;
30 void s e t g e t (bool g) ;
31

32 void s e t ev (c sp event ∗ e) ;
33 c sp event ∗ getev () ;
34 void c l e a r e v () ;
35

36 CSPnode∗ getme () ;
37 void setme (CSPnode ∗ m) ;
38

39 CSPnode∗ get to () ;
40 CSPnode∗ getfrom () ;
41 CSPnode∗ get r e sume ptr (CSPnode ∗ mysel f) ;
42 CSPnode∗ ge t su spend pt r (CSPnode∗ mysel f) ;
43 s t r i n g ∗ getmyname (CSPnode ∗ mysel f) ;
44

45 //over loaded operators
46 bool operator==(const CSPelement & a) ;
47 bool amIfrom (CSPnode ∗ from) ;
48

49 friend ostream& operator << (ostream& os , CSPelement & p) ;
//output

50 } ;

get(...) function is invoked by its corresponding CSP process. Another
Boolean variable typedefed to csp event represents whether there exists
an event on the channel. If an event exists then one of the processes con-
nected to this channel was suspended. SystemC events are not used for

Communicating Sequential Processes Kernel in SystemC 99

csp event, but regular bool data types. This avoids the use of SystemC’s
DE semantics and events.

Other than general set and get functions for the private members of
this class, the important member function is the overloaded equals op-
erator. The implementation of this overloaded operator compares the
fromNode and toNode to verify that the CSPelement objects on both
sides of the equals operator have the same addresses for the fromNode
and toNode. If they do, then a particular channel or CSPelement that
connects two CSPnodes is found. The responsibility of CSPelement is
exactly the same as that of a channel. This is a result of adhering to the
general implementation hierarchy, where the CSP channels are effectively
represented by CSPelement objects. Hence, we inherit CSPelement in
CSPchannel, which is discussed later. This is the mechanism that we em-
ploy in searching for the channels through which communication occurs.
However, this imposes a limitation that there can only be a maximum
of two channels between the two same CSPnodes. This gives rise to a
problem that if there exists two channels in the same direction between
the two same nodes, then according to the equals operator, they will be
indistinguishable. Thus, we limit the users to only one channel in the
same direction between two CSPnodes. We justify this implementation
in the following manner:

By allowing for a templatized data transfer communication that can
transfer a data type defined by the user. This allows the user to pass
in different values through the communication channel through the
user defined data type.

A single CSPchannel can result to multiple suspension points with
multiple calls to get(...) or put(...).

Figure 6.3 shows a simple CSP model with four CSP processes that are
connected via channels. The analogous representation of this simple CSP
model using our data structure is shown in Figure 6.4, which shows how
objects of CSPelement are used to construct a CSPG. The list holding
the CSPelements is the CSPReceiver. CSPReceiver objects are data
members of a CSPnode that are composed with CSPelement objects.

Figure 6.4 shows four CSPnodes and their respective CSPelements
for the purpose of providing a connection between two CSP processes.
The gray box displays objects of CSPReceiver. The role of the receiver
is simply to encapsulate the CSPelements as shown in Figure 6.4. A
simple data structure is employed to represent the CSPG. We employ
C++ STL vector<...> class to store the addresses of every CSPelement
inserted in the CSPG and iterate through the list to find the appropriate

100

CSPnode 2

CSPnode 4

CSPnode 1

CSPnode 3

CSPelement
CSPnode 1 points to CSPnode 2

CSPReceiver

1 2

1 3

3 4

CSPReceiver

4 2

3 4

CSPReceiver

4 2

1 2

CSPReceiver

1 3

1 2

CSPReceiver

Figure 6.4. Implementation of a Simple CSP Model

channel for communication when required. Every CSPnode has its own
CSPReceiver object that contains the CSPelements that address that
particular CSP process. Listing 6.3 displays the class definition describ-
ing the elementlst as the container of the CSPelement addresses along
with a private helper function that is used to traverse through the list
and identify the requested channel.

We discuss some of the important member functions from this class
and their input and output arguments.

put(...):
Inputs:

A pointer to the CSPelement to identify what channel it is to be
passed on to.

The CSPnode that is responsible for sending this token.

Outputs:

Communicating Sequential Processes Kernel in SystemC 101

Listing 6.3. class CSPReceiver

1 class CSPReceiver : public baseRece iver {
2

3 private :
4 vector<CSPelement∗> e l ement l s t ;
5 int id ;
6

7 // pr i va te he lper funct ions
8 CSPelement ∗ f indElement (CSPelement ∗ e) ;
9

10 public :
11 CSPReceiver () ;
12 ˜CSPReceiver () ;
13

14 // overloaded Constructors
15 CSPReceiver (CSPnode ∗ fromNode , CSPnode ∗ toNode) ;
16

17 // funct ions
18 void get (CSPelement ∗ e , CSPnode ∗ me) ;
19 void put (CSPelement ∗ e , CSPnode ∗ me) ;
20

21 void push into (CSPelement ∗ e) ;
22 friend ostream& operator<<(ostream& os , CSPReceiver & p) ;
23

24 // event f inder s
25 c sp event ∗ getevent (CSPelement ∗ e l) ;
26 void s e t event (CSPelement ∗ e l , c sp event ∗ ev) ;
27

28 void suspendProc (CSPelement ∗ e , CSPnode ∗ me) ;
29 void resumeProc (CSPelement ∗ e , CSPnode ∗ me) ;
30 } ;

The process suspends if a get(...) has not been called on the
channel.

get(...):

Inputs:

A pointer to the CSPelement that a token is to be received from.

The address of the CSPnode making the get(...) invocation.

Outputs:

If a put(...) has been called the suspended process that called the
put(...) is scheduled for execution (resumption).

suspendProc(...): Suspends the currently executing thread.

Inputs:

A pointer to the CSPelement that requires suspension due to
rendez-vous protocols.

102

A pointer to the CSPnode that is to be suspended.

Outputs:

The CSPnode currently executing suspends itself.

resumeProc(...): Resumes a particular thread for execution.
Inputs:

A pointer to the CSPelement that is to be resumed due to rendez-
vous protocols.
A pointer to the CSPnode that is to be resumed.

Outputs:

The CSPnode is scheduled for resumption.

It may seem redundant to supply these functions with the owner of the
call, where the owner is the process invoking the member function. How-
ever, this is necessary because every CSPnode contains all the CSPele-
ments that addresses that process, either as a fromNode or a toNode.
Furthermore, the direction is preserved when inserting the address of the
CSPelement objects in their respective receiver lists. This is to allow the
process to know whether it is the calling process or the called process.

To avoid a convoluted written explanation, let us consider Figure
6.3 where the direction of the communication is from CSPnode 1 and
towards CSPnode 3. Our implementation adds a pointer in CSPnode
1’s receiver and the same pointer in CSPnode 3’s receiver pointing to an
object of CSPelement whose fromNode points to CSPnode 1 and toNode
is CSPnode 3. For the purpose of the CSPnode knowing the direction of
communication, it is necessary to compare the process’s pointer to both
the fromNode and toNode to realize the direction of communication.

Listing 6.4 defines the CSPnode class that encapsulates the CSPRe-
ceiver as shown in Figure 6.4. Other important private members of
this class are sc thread and my thread list. sc thread holds a pointer
to SystemC’s sc thread process object and my thread list is a pointer to
an object that contains a list of CSPnodes in a model. These private
data members are used during the simulation of the CSP model. The
remainder of the member functions are mandatory set(...) and get(...)
functions.

A CSP channel implemented as a class called CSPchannel inherits
from base class sc moc channel, but CSPchannels must also support
rendez-vous communication as well as the capability to transfer data.
For this reason, the CSPchannel is specialized. Listing 6.5 shows the
definition of this class.

Communicating Sequential Processes Kernel in SystemC 103

Listing 6.4. class CSPnode

1 class CSPnodel ist ;
2 class CSPnode {
3

4 private :
5 CSPReceiver ∗ cspbox ; // one CSPnode has one rece i ver
6 int c sp id ;
7 ProcInfo ∗ proce s s ;
8 s c th r ead hand l e s c th r ead ;
9 CSPnodel ist ∗ my th r ead l i s t ;

10

11 // he lper funct ions
12 int ge t id () ;
13

14 public :
15 CSPnode () ;
16 ˜CSPnode () ;
17

18 // Set up Process Information
19 void se tprocaddr (void ∗ a) ;
20 void setprocname (s t r i n g ∗ n) ;
21 void setprocname (const s t r i n g & n) ;
22 void ∗ getprocaddr () ;
23 s t r i n g ∗ getprocname () ;
24

25 // setup the l i n k between two or more nodes
26 void po i n t s t o (CSPnode∗ to) ;
27 void po i n t s t o (CSPnode ∗ to , CSPelement ∗ e l) ;
28 void po i n t s t o (CSPnode & to , CSPelement & e l) ;
29

30 //member funct ions
31 bool send () ;
32 bool send (CSPelement ∗ sendTo) ;
33 void send (CSPelement & sendTo) ;
34 void get (CSPelement ∗ getFrom) ;
35 void get (CSPelement & getFrom) ;
36 bool suspend () ;
37 void portbind (CSPelement ∗ e) ;
38

39 // se t which CSPnodelist i t be longs to
40 void s e t my th r e ad l i s t (CSPnodel ist ∗ my l i s t) ;
41 CSPnodel ist ∗ g e t my th r e ad l i s t () ;
42

43 void pr in t () ;
44

45 void setnodeev (CSPelement ∗ thisNode , c sp event ∗ e) ;
46 c sp event ∗ getnodeev (CSPelement ∗ getFrom) ;
47

48 // a f t e r execut ion reschedu le immediately
49 void r e s chedu l e () ;
50

51 void setmodule (s c th r ead hand l e mod) ;
52 s c th r ead hand l e getmodule () ;
53 } ;

Notice from Figure 6.5 that multiple inheritance is used to define
CSPchannel. Inheritance from sc moc channel and CSPelement pro-
vides functionality and data structure available in both these base classes.
From an object oriented programming sense, the CSPelement actually
defines a channel between two CSP processes. Thus, the relationships of

104

Listing 6.5. class CSPchannel

1 template <class T> class CSPchannel :
2 public CSPelement , public sc moc channel<T>
3 {
4 public :
5

6 CSPchannel<T>() {} ;
7 ˜CSPchannel<T>() {} ;
8

9 void push (T & val , CSPnode & node) ;
10 T get (CSPnode & node) ;
11 } ;
12

13 template <class T>
14 void CSPchannel<T> : : push (T & val , CSPnode & node) {
15 sc moc channel<T> : : push (va l) ;
16 node . send ((CSPelement ∗) this) ;
17

18 } ;
19

20 template <class T>
21 T CSPchannel<T> : : get (CSPnode & node) {
22 node . get ((CSPelement ∗) this) ;
23 return (sc moc channel<T> : : pop ()) ;
24 } ;

CSPelement

-value

CSPchannel<T>

sc_moc_channel<T>

Figure 6.5. Class diagram for CSPchannel

CSPchannel is one of an “is a” with both sc moc channel and CSPele-
ment. The member functions in CSPchannel are shown in Table 6.1.

Table 6.1. Member function for class CSPchannel

Member Function Purpose

push(...) Attempts to send a token on the channel

get(...) Attempts to receive a token from the channel

Communicating Sequential Processes Kernel in SystemC 105

It follows that there is a need to specialize the CSPport class such
as to support this specialized CSPchannel. Using the sc moc port base
class data structure, CSPport appropriately calls member functions of
CSPchannel when a value is to be inserted or extracted. Listing 6.6
displays the class definition for CSPport. The implementation of the
CSPport class serves the basic purpose of allowing two CSPnodes vis-
ibility of the CSPchannel that connects them. We have implemented
overloaded () operators to allow CSP port binding. However, we do not
perform any checks for port binding errors.

Listing 6.6. class CSPport

1 template <class T> class CSPport : public sc moc port<T> {
2 public :
3 CSPport<T>() {} ;
4 ˜CSPport<T>() {} ; CSPelement & read () ;
5 void push (T & p , CSPnode & node) ;
6 T get (CSPnode & node) ;
7

8 } ;
9

10 template <class T >
11 void CSPport<T> : : push (T & p , CSPnode & node)
12 {
13 CSPchannel<T> ∗ castchn = static cast < CSPchannel<T> ∗ > (port

) ;
14 i f (port != NULL) {
15 castchn−>push (p , node) ;
16 }
17 } ;
18

19 template <class T >
20T CSPport<T> : : get (CSPnode & node) {
21 CSPchannel<T> ∗ castchn = static cast < CSPchannel<T> ∗ > (port

) ;
22 return (castchn−>get (node)) ;
23 } ;

The CSPnodelist class shown in Listing 6.7 can be considered to be the
class that defines the CSP simulator object in SystemC. Hence, an object
of CSPnodelist performs the simulation for CSP. The private members
are simply two vector<...> lists where nodelist is the list of pointers to
all the CSPnodes and runlist is a list of the runnable CSP processes.
Though the runlist is of type vector<...> we have implemented a queue
with it. This behavior is necessary to correctly simulate a CSP model.
Other private members are pointers to the coroutine packages used to
implement QuickThreads [35] in SystemC. m cor identifies the executing
simulation context’s coroutine whereas m cor pkg is a pointer to a file
static instance of the coroutine package through which blocking and re-
sumption of thread processes can be performed. For further details about
QuickThread implementation in SystemC please refer to Appendix A.

106

Coroutine is SystemC’s implementation of the QuickThread core pack-
age as the client package.

Some of the important member functions are listed below:

void push runnable(CSPnode & c) The CSPnode is pushed onto
the runlist such that it can be executed.

CSPnode * pop runnable() Retrieves the top runnable thread.

void next thread() Selects the next CSP process to execute.

void sc csp switch thread(CSPnode * c) Used in blocking the cur-
rently executing thread and resuming execution of the thread identi-
fied by the pointer c.

sc cor* next cor() Retrieves a pointer to the next thread coroutine
to be executed.

Implementation details of these classes are not presented, but we di-
rect the reader to refer to implementation details available at our website
[36]. This brief introduction of the CSP data structure allows us to pro-
ceed to describing how the CSP scheduling and simulation is performed.
For some readers it may be necessary to refer to Appendix A where we
describe the coroutine package for SystemC based on [35].

2. CSP Scheduling and Simulation

Table 6.2. Few Important Member Functions of CSP Simulation class CSPnodelist

Method / Variable name Maintained by
CSP Kernel QuickThread Package

runlist � -

nodelist � -

m cor pkg � �
m cor � �
push(...) � -

push runnable(...) � -

sc switch switch thread(...) � -

pop runnable(...) � -

next cor(...) � -

run csp(...) � -

Simulation of a CSP model uses a simple queue based data structure
that contains pointers to all the CSPnodes. This queue is constructed
by using C macros that work similar to the existing SC THREAD()
macros. We introduce the macro SC CSP THREAD() that takes three

Communicating Sequential Processes Kernel in SystemC 107

Listing 6.7. class CSPnodelist

1 class CSPnodel ist {
2

3 private :
4 vector<CSPnode∗ > ∗ r u n l i s t ;
5 vector<CSPnode∗ > ∗ nod e l i s t ;
6

7 public :
8 CSPnodel ist () ;
9 ˜CSPnodel ist () ;

10

11 void push runnable (CSPnode & c) ;
12 void push (CSPnode & c) ;
13

14 void next thread () ;
15

16 CSPnode ∗ pop runnable () ;
17 void removefront () ;
18

19 // s i z e s of l i s t s
20 int n o d e l i s t s i z e () ;
21 int r unnab l e s i z e () ;
22

23 void c s p t r i g g e r () ;
24 void runcsp (CSPnodel ist & c) ;
25 s c co r pkg ∗ cor pkg ()
26 { return m cor pkg ; }
27 s c c o r ∗ next co r () ;
28

29 vector<CSPnode∗> ∗ g e t n od e l i s t () ;
30 vector<CSPnode∗> ∗ g e t r u n l i s t () ;
31 void i n i t () ;
32 void c l ean () ;
33 void i n i t i a l i z e (bool nocrunch) ;
34

35 void s c c s p sw i t ch th r e ad (CSPnode ∗ c) ;
36 void p r i n t r u n l i s t () ;
37

38 void push top runnable (CSPnode & node) ;
39

40 private :
41 s c co r pkg ∗ m cor pkg ; // the simcontext ’ s

corout ine package
42 s c c o r ∗ m cor ; // the simcontext ’ s

coroutine
43

44 } ;

arguments: the entry function, the CSPnode object specific for that
SC CSP THREAD() and the CSPnodelist to which it will be added.
This macro calls a helper function that registers this CSP thread process
by inserting it in the CSPnodelist that is passed as an argument.

Invoking the function runcsp(...), initializes the coroutine package and
the current simulation context is stored in the variable main cor. The
simulation of the CSP model starts by calling the sc csp start(...) func-
tion. Table 6.2 shows a listing of some important functions and vari-
ables and whether the CSP kernel or the QuickThread package manages

108

them. The variable m cor pkg is a pointer to the file static instance of
the coroutine package. This interface for the coroutine package is better
explained in Appendix A. All thread processes require being prepared
for simulation. The role of this preparation is to allocate every thread
its own stack space as required by the QuickThread package. After this
preparation, the first process is popped from the top of the runlist using
pop runnable(...) and executed. The thread continues to execute until
it is either blocked by executing another thread process or it terminates.
This continues until there are no more processes on the runlist.

Listing 6.8. class csp trigger() function

1 void CSPnodel ist : : c s p t r i g g e r () {
2 while (true) {
3 s c th r ead hand l e thread h = pop runnable ()−>getmodule () ;
4 removefront () ;
5 while (thread h != 0 && ! thread h−>r eady to run ()) {
6 thread h = pop runnable ()−>getmodule () ;
7 removefront () ;
8 }
9 i f (thread h != 0) {

10 m cor pkg−>y i e l d (thread h−>m cor) ;
11 }
12

13 i f (r unnab l e s i z e () == 0) {
14 // no more runnable processes
15 break ;
16 }
17 } ;
18 }

We present the function csp trigger() in Listing 6.8 that is responsi-
ble for performing the simulation. The pop runnable() function extracts
the topmost pointer to a CSPnode that has an sc thread handle as a
private member, which is retrieved by invoking the getmodule() mem-
ber function. The m cor pkg→yield(thread h→m cor) function invokes
a function implemented in the sc cor qt class. This yield(...) function
is responsible for calling a helper function to switch out the currently
executing process, saving it on its own stack and introducing the new
process for execution. The process coroutine is sent by the thread→m cor
argument. A check is done if the runnable queue is empty and then the
simulation is terminated. However, most CSP processes are suspended
during their execution, which requires brief understanding of how block-
ing is performed using QuickThreads. For most readers it will suffice to
explain that when a process suspends via the suspendProc(...) function,
the state of the current process is saved and a helper function called
next cor() is invoked. The next cor() returns a pointer of type sc cor
which is the coroutine for the next thread to execute.

Communicating Sequential Processes Kernel in SystemC 109

Listing 6.9. function next cor() function

1 s c c o r ∗ CSPnodel ist : : n ex t co r ()
2 {
3 s c th r ead hand l e thread h = pop runnable ()−>getmodule () ;
4 removefront () ;
5 while (thread h != 0 && ! thread h−>r eady to run ()) {
6 thread h = pop runnable ()−>getmodule () ;
7 removefront () ;
8 }
9 i f (thread h != 0) {

10 return (thread h−>m cor) ;
11 } else
12 return m cor ;
13 }

Implementation of the next cor() function is similar to the csp trigger()
function. This is because once a CSP process is suspended, the next pro-
cess must continue to execute. So, next cor() implements a similar func-
tionality as csp trigger() with the exception of calling yield(...) on the
process to execute, and the coroutine is returned instead. Furthermore,
if there are no more processes on the runlist, then the main coroutine
of the simulation is returned by returning m cor as shown in Listing
A.11. Therefore, the suspension of processes is in essence performed
by yielding to another process, where QuickThreads serve their purpose
by making it relatively simple for blocking of thread processes. Like-
wise, resumption of the threads is simple as well. Using the coroutine
package, resumption is done by rescheduling the process for execution.
Therefore, when resumeProc(...) is invoked, the address of the process
to be resumed is inserted into the runlist queue. Once the top of the
queue reaches this process, the thread is resumed for execution. During
modeling, non-deterministic behavior is introduced by randomization in
the user constructed models. According to this implementation, CSP
models have the potential for executing infinitely such as the Dining
Philosopher problem. We visit the implementation of this example us-
ing our CSP kernel for SystemC.

3. Example of CSP Model in SystemC
Early in Chapter 2, we introduced the Dining Philosopher problem.

A schematic of the way it can be implemented is shown in Figure 6.6.
In this section, we revisit this example and provide the reader with
modeling guidelines along with code fragments to describe how it is
modeled using our kernel. However, during our earlier discussion, we did
not present the possibility of deadlock. A deadlock occurs in the Dining
Philosopher problem when for instance every philosopher feels hungry

110

PHIL0

PHIL1

PHIL2PHIL3

PHIL4

toRight1

toLeft2

to
R

ig
ht

2

to
Le

ft
5

toRight5

toLeft1

Fork0

Fork1

Fork2

Fork3

Fork4

Figure 6.6. CSP Implementation of Dining Philosopher

and picks up the fork to their left. That prevents any of the philosophers
eating since two forks are required to eat causing the model to deadlock.
We use a simple deadlock avoidance technique where we have a footman
that takes the philosophers to their respective seats and, if there are four
philosophers at the table, asks the fifth philosopher to wait and seats
him only after one is done eating. This is a rudimentary solution, but
for our purpose it is sufficient.

We begin by describing the module declaration of a philosopher in
Listing 6.10. The original implementation that we borrow is available
at [60]. That implementation is a pure C++ based implementation that
we modify to make a CSP SystemC example. Each philosopher has a
unique id and an object of ProcInfo. This ProcInfo class is implemented
as a debug class to hold the address of the process and the name of the
process purely for the reasons of output and debugging. The full source
description will have the implementation of this class, though we do not
describe it since it is not directly relevant to the implementation of the
CSP kernel in SystemC. There is an instantiation of a CSPnode called
csp through which we enable our member function invocations for CSP
and two CSPports, toRight and toLeft. The toRight connects to the
CSPchannel that connects the philosopher to the fork on its right and
toLeft to the one on its left. There are several intermediate functions
defined in this module along with the main entry function. The entry
function is called soln() that is bound to a CSP process through the
SC CSP THREAD() macro.

Communicating Sequential Processes Kernel in SystemC 111

Listing 6.10. Philosopher Module Declaration

1SC MODULE(PHIL) {
2

3 int id ;
4 int s t ;
5 s t r i n g s t r i d ;
6 int timeToLive ;
7

8 CSPnode csp ;
9 CSPport<int > toRight ;

10 CSPport<int > toLe f t ;
11

12 int ∗ drop ;
13 int ∗ pick ;
14 ProcInfo proc ;
15

16 void askSeat (int id) ;
17 void ge t f o rk () ;
18 void dropfork () ;
19 void so ln () ;
20 int g e t s t a t e () ;
21 void pr in t () ;
22

23 // footman required for deadlock f r ee so lu t i on
24 bool reqSeat () ;
25

26 SC CTOR(PHIL) {
27 s t = −1;
28 SC CSP THREAD(soln , DP, csp) {
29 } ;
30 } ;
31 } ;

We begin describing the implementation of the PHIL class by dis-
playing the entry function soln() as shown in Listing 6.11. Many print
statements are inserted to view the status of each of the philosophers
and the forks. This is handled by the print states() function. However,
the core functionality of the entry function begins by invoking getfork().
Listing 6.12 shows the implementation of this function. The state[x]
array is global and simply holds the state value for every philosopher,
which is updated immediately to allow the print states() to output the
updated values. The philosopher requests a fork on either the left or
right of himself by calling the get(...) member function on the port. If
the fork is available to be picked up and has been recognized by the
CSPchannel then the philosopher process will continue execution and
request the other fork. However, if the fork is not ready to be picked up,
this process will suspend.

Once the philosopher has both the forks in hand, soln() goes to its
eating state where we simply output EATING and wait for a random
amount of time defined by functions from [60]. After the eating state,

112

Listing 6.11. function soln()

1 void PHIL : : s o ln () {
2 int durat ion = timeToLive ;
3 int eatCount = 0 ;
4 int totalHungryTime = 0;
5 int becameHungryTime ;
6 int startTime = msecond () ;
7

8 while (1) { // (msecond () − startTime < duration ∗ 1000) {
9

10 i f ((reqSeat () == true) && ((s t a t e [id] != 0) | | (s t a t e [id
] != 6))) {

11 becameHungryTime = msecond () ;
12 p r i n t s t a t e s () ;
13 cout << ” PICKING UP FORKS ” << endl ;
14 ge t f o rk () ;
15 cout << ” DONE PICKING UP FORKS ” << endl ;
16 p r i n t s t a t e s () ;
17 totalHungryTime += (msecond () − becameHungryTime) ;
18 eatCount++;
19 cout << ” EATING ” endl ;
20 s t a t e [id] = 3 ;
21 us l e ep (1000L ∗ random int (MeanEatTime)) ;
22 cout << ” DONE EATING ” << endl ;
23 p r i n t s t a t e s () ;
24 cout << ” DROPPING FORKS ” << endl ;
25 dropfork () ;
26 us l e ep (1000L ∗ random int (MeanThinkTime)) ;
27 cout << ” DONE DROPPING FORKS ” << endl ;
28 p r i n t s t a t e s () ;
29 cout << ” THINKING ” << endl ;
30 s t a t e [id] = 6 ;
31 us l e ep (1000L ∗ random int (MeanThinkTime)) ;
32 s t a t e [id] = 0 ;
33 p r i n t s t a t e s () ;
34 −−space ;
35 csp . r e s chedu l e () ;
36 } else {
37 cout << ” STANDING ” << endl ;
38 csp . r e s chedu l e () ;
39 }
40 }
41 s t a t e [id] = 7 ;
42 totalNumberOfMealsServed += eatCount ;
43 totalTimeSpentWaiting += (totalHungryTime / 1 0 0 0 . 0) ;
44 cout << ”Total meals served = ” << totalNumberOfMealsServed

<< ”\n” ;
45 cout << ”Average hungry time = ” <<
46 (totalTimeSpentWaiting / totalNumberOfMealsServed) << ”\n”

;
47 } ;

the philosopher enters the state where he attempts to drop the forks by
calling dropfork() described in Listing 6.13.

Dropping of the forks is modeled by sending a value on the channel
which is performed via the push(...) on the port. If the push(...) is
invoked without the corresponding CSP node at the end of the channel
ready to accept the token, the process will suspend. Returning back to
the entry function, after the forks have been dropped there is a random

Communicating Sequential Processes Kernel in SystemC 113

Listing 6.12. function getfork()

1 void PHIL : : g e t f o rk () {
2 i f (numPhil % 2) {
3 // even−numbered phi losophers pick l e f t then r i g h t
4 s t a t e [id] = 1 ;
5 p r i n t s t a t e s () ;
6 toLe f t . get (csp) ;
7

8 s t a t e [id] = 2 ;
9 p r i n t s t a t e s () ;

10 toRight . get (csp) ;
11 }
12 else {
13 // odd−numbered phi losopher ; pick r i g h t then l e f t
14 s t a t e [id] = 2 ;
15 p r i n t s t a t e s () ;
16 toRight . get (csp) ;
17

18 s t a t e [id] = 1 ;
19 toLe f t . get (csp) ;
20 p r i n t s t a t e s () ;
21 }
22 } ;

Listing 6.13. function dropfork()

1 void PHIL : : dropfork () {
2 // drop l e f t f i r s t , then r i g h t not tha t i t matters
3 s t a t e [id] = 4 ;
4 p r i n t s t a t e s () ;
5 toLe f t . push (∗drop , csp) ;
6 s t a t e [id] = 5 ;
7 p r i n t s t a t e s () ;
8 toRight . push (∗drop , csp) ;
9 } ;

usleep(...) that suspends execution for microsecond intervals. This com-
pletes the eating process for the philosopher such that he returns to his
thinking state followed by a random valued usleep(...). According to the
queue based implementation, once the process completes its first itera-
tion of the entry function, it must be rescheduled so that the process
address is added onto the runlist. We provide the reschedule() function
that the user must invoke to reinsert the CSP process address into the
runlist.

For the behavior of the fork, we define the module as shown in Listing
6.14. The FORK module also has an id to differentiate the different
forks on the table, an integer valued variable queryFork that represents
the state of the fork where 1 means that the fork is down and -1 means
the fork is not down. There is an instance of a CSPnode object called
csp and two CSPports called fromRight and fromLeft. The fromLeft port
connects to a CSPchannel coming from the toRight port of a philosopher

114

Listing 6.14. Module FORK

1SC MODULE(FORK) {
2 int id ;
3 int queryFork ;
4 CSPnode csp ;
5 CSPport<int > fromRight ;
6 CSPport<int > f romLeft ;
7 int ∗ drop ;
8 int ∗ pick ;
9

10 ProcInfo proc ;
11

12 void reqFork () ;
13 void addressFork () ;
14

15 SC CTOR(FORK) {
16 queryFork = 1;
17 SC CSP THREAD(addressFork , DP, csp) ;
18 } ;
19 } ;

and the fromRight connects to the neighboring philosopher’s toLeft. The
entry function addressfork() is described next.

The addressFork() function dictates the fork’s behavior. This behav-
ior is dependent on the state of the philosophers. Listing 6.15 shows
that there are four cases that have implementation for the fork. Cases 1
and 2 only occur when the fork is down on the table and cases 4 and 5
only occur when the fork is not available on the table. We implemented
a function that gets the ids of the philosophers that surround the fork.
We use simple tricks with the id of the forks and philosophers to locate
the neighbors as shown in Listing 6.16. Our heuristic for finding the
neighbors involves looking to the left of the fork and then the right of
the fork. We identify each fork with a corresponding id as well. Based on
this id we locate the ids of the neighboring philosophers with sufficient
cases to ensure that ids of forks with id 4 and 0 perform an appropriate
wrap around to complete the circular setup as shown in Figure 6.6. The
addressFork() function checks the state of the neighbors and accordingly
either gives itself (the fork) to the philosopher or requests itself back,
otherwise it simply does nothing. We list the functionality of the fork
as follows:

Case 1: The philosopher to the right has requested a fork so the fork
gives itself through the put(...) function to the philosopher on the
right.

Case 2: The philosopher to the left has requested this fork, so the fork
gives itself to the requesting philosopher since the fork is still down
for Cases 1 and 2.

Communicating Sequential Processes Kernel in SystemC 115

Listing 6.15. addressfork() member function

1 void FORK: : addressFork () {
2 while (true) {
3 // Get my neighbors
4 int ∗ nbors = get my neighbors (id) ;
5 bool resched = fa l se ;
6 for (int i =0 ; i < 2 ; i++) {
7 cout << ”PHIL ” << nbors [i]+1 << ” FORK ” << id +1 ;
8 switch (s t a t e [nbors [i]]) {
9 case 1 : {

10 // Guy asks on h i s Lef t so Send Right
11 i f ((i != 0) && (queryFork ==1)) {
12 queryFork = −1;
13 f o r k s [id] = queryFork ;
14 s t a t e [nbors [i]] = 8 ;
15 p r i n t s t a t e s () ;
16 fromRight . push (∗ pick , csp) ;
17 }
18 break ;
19 }
20 case 2 : {
21 // Guy asks on h i s Right so Send Lef t
22 i f ((i != 1) && (queryFork ==1)) {
23 queryFork = −1;
24 f o r k s [id] = queryFork ;
25 s t a t e [nbors [i]] = 9 ;
26 p r i n t s t a t e s () ;
27 f romLeft . push (∗ pick , csp) ;
28 }
29 break ;
30 }
31 case 4 : {
32 i f ((i != 0) && (queryFork !=1)) {
33 queryFork = 1;
34 f o r k s [id] = queryFork ;
35 p r i n t s t a t e s () ;
36 fromRight . get (csp) ;
37 }
38 break ;
39 }
40 case 5 : {
41 i f ((i != 1)&& (queryFork !=1)) {
42 queryFork = 1;
43 f o r k s [id] = queryFork ;
44 p r i n t s t a t e s () ;
45 f romLeft . get (csp) ;
46 }
47 break ;
48 }
49 default : {
50 break ;
51 } ;
52 } ;
53 cout << ”\ t ” ;
54 } ;
55 csp . r e s chedu l e () ;
56 delete nbors ;
57 } // END WHILE
58

59 } ;

116

Listing 6.16. get my neighbors function

1 int ∗ get my neighbors (int id) {
2 int ∗ nbors = new int [2] ;
3

4 i f ((id != 0) && (id != 4)) {
5 nbors [0] = id ;
6 nbors [1] = id +1;
7 } else {
8 i f (id == 0) {
9 nbors [0] = 0 ;

10 nbors [1] = id + 1;
11

12 } else {
13 i f (id == 4) {
14 nbors [0] = id ;
15 nbors [1] = 0 ;
16 } ;
17 }
18 }
19 cout << ” −−−−==== PHIL ” << nbors [0]+1 << ” FORK ” << id

+ 1 << ” PHIL ” << nbors [1]+1 << ” ====−−−−” << endl ;
20

21 return nbors ;
22 } ;

Case 4: The fork was given to the philosopher on the right so request
the fork back from the philosopher.

Case 5: The fork was given to the philosopher on the left so this is
requested back.

This model of the Dining Philosopher executes infinitely unless the
conditions are un-commented in the soln() function [Listing 6.11, Line
8] which causes the while() loop to execute for a limited number of
executions and terminates, causing the philosophers to in essence, die
(perhaps die from over eating).

4. Modeling Guidelines for CSP Models in
SystemC

There are some basic modeling guidelines that the implementation
of the CSP kernel in SystemC imposes. A modeler should follow a
particular scheme in constructing such models. To better understand
these construction rules we present some basic modeling guidelines as
follows:

1 Only use CSPchannels for unidirectional communication as per CSP
specifications.

Communicating Sequential Processes Kernel in SystemC 117

2 Every SC MODULE() can have multiple CSP processes initialized
as long as there is no multiplicity in the communication channels
between the same two CSP processes.

3 The current version of the CSP kernel requires instantiation of a
CSPnodelist that is accessible by all modules so the use of the key-
word extern may be required if separate files are used for creating
models.

4 The simulation can be initialized by calling the member function
runcsp(...) of the CSPnodelist object.

5 Simulation begins by invoking sc csp start(...).

6 It may be necessary to update global variables such as the state[x]
array in the Dining Philosopher problem to allow interpretation of
immediate behaviors and responses.

7 Non-deterministic behavior may require the use of randomization
functions.

5. Example of Producer/Consumer
A trivial example using CSP is the Producer/Consumer model. This

model is simple and has two processes, a Producer, a Consumer and
one channel between them. The communication direction between the
processes goes from the Producer to the Consumer. This example is
similar to the simple fifo example in the SystemC distribution. The
differences are that the processes are CSP processes and instead of an
sc fifo channel between the processes, there is a CSPchannel.

Producer Consumer

Figure 6.7. Producer/Consumer Example in CSP

Listing 6.17 shows the module declaration for the PRODUCER class.
Notice an instance of CSPnode and a CSPport. The production pointer
holds the string that the Producer sends to the Consumer one char-
acter at a time [Listing 6.17, Line 5]. In [Listing 6.17, Line 12], the
at(...) member function from the string class returns a character at the
location defined by the argument and stores it in a variable ch. This
character is pushed onto the channel by invoking the push(...) member

118

function on the port that connects the two CSP processes. An instance
of CSPnodelist labelled as DP is accessible by both the PRODUCER
and CONSUMER objects.

The if construct repeatedly sends the same string by the Producer
when the sz string location counter is equal to the number of characters
in the string. This makes the model run infinitely. The constructor of
PRODUCER module sets the production pointer to a string and invokes
the SC CSP THREAD() macro for registering this process as a CSP
process.

Listing 6.17. PRODUCER module declaration

1SC MODULE(PRODUCER) {
2

3 CSPnode csp ;
4 CSPport<char> toConsumer ;
5 s t r i n g ∗ product ion ;
6 ProcInfo proc ;
7

8 void sendChar () {
9 int sz = 0 ;

10 while (1)
11 {
12 char ch = production−>at (sz) ;
13 ++sz ;
14 toConsumer . push (ch , csp) ;
15 //csp . send ((token)&ch , toConsumer . read ()) ;
16 // al low for i n f i n i t e execut ion
17 i f (sz == (signed) production−>s i z e ())
18 sz = 0 ;
19 csp . r e s chedu l e () ;
20 }
21 } ;
22

23 SC CTOR(PRODUCER) {
24 product ion = new s t r i n g () ;
25 ∗product ion = ”This i s a t e s t s t r i n g f o r Produced/Consumer

example :] ” ;
26 SC CSP THREAD(sendChar , DP, csp) ;
27 } ;
28 } ;

The Consumer process shown in Listing 6.18 again has an instance
of CSPnode and CSPport. The Consumer accepts a character from the
channel and prints it out. The constructor is straightforward where
SC CSP THREAD() macro registers the CONSUMER class as a CSP
process.

The driver program for this model is presented in Listing 6.19. The
channel that connects the Producer and Consumer is ptoc. This channel
is bound with the processes’ respective ports. The direction of the chan-
nel is set by using the points to(...) member function from the CSPnode
class. runcsp(...) prepares the CSP simulation for execution, and a
global function sc csp start(...) triggers this CSP model.

Communicating Sequential Processes Kernel in SystemC 119

Listing 6.18. CONSUMER module declaration

1SC MODULE(CONSUMER) {
2 CSPnode csp ; // CSP node
3 CSPport<char> fromProducer ;
4 ProcInfo proc ;
5

6 void getChar () {
7 while (1)
8 {
9 char ch ;

10 ch = fromProducer . get (csp) ; //(char ∗) csp . ge t (fromProducer .
read ()) ;

11 cout << ”<<<<<<<<<< Received ” << ch << endl ;
12 csp . r e s chedu l e () ;
13 }
14 } ;
15

16 SC CTOR(CONSUMER) {
17 SC CSP THREAD(getChar , DP, csp) ;
18 } ;
19 } ;

Listing 6.19. Driver program for Producer/Consumer Example

1 int sc main (int argc , char ∗ argv []) {
2 CSPchannel<char> ptoc ; // Channel from Producer to Consumer
3 PRODUCER p(”Producer”) ; // Producer Instance
4 p . toConsumer (ptoc) ; // Bind Producer
5 p . csp . setprocname (”Producer”) ; //Debug information
6

7 CONSUMER c (”Consumer”) ; // Consumer Instance
8 c . fromProducer (ptoc) ; // Bind Consumer
9 c . csp . setprocname (”Consumer”) ; //Debug information

10

11 p . csp . p o i n t s t o (c . csp , ptoc) ; // Set d i r ec t i on of channel
12

13 DP. runcsp (DP) ; // Prepare CSP for execut ion
14 s c c s p s t a r t (”” ,&DP) ; // Star t s imulat ion
15 return 0 ;
16 } ;

6. Integrating CSP & DE kernels
An understanding of QuickThreads and their implementation in Sys-

temC as coroutine packages is required for integrating these two MoCs.
We advise the reader to read Appendix A for a better understanding of
QuickThreads and coroutine packages in SystemC.

Appendix A explains the workings of the reference kernel for the Sys-
temC scheduler with focus on the coroutine packages. We briefly reit-
erate how SystemC manages its coroutines and thread processes. Our
interest is primarily in thread processes because CSP processes are also
thread processes that we want to schedule differently and separate from
the DE kernel. The SystemC scheduler initializes thread processes by

120

creating stack space along with initializing the stack with the appropriate
function and its arguments. After thread initialization, the threads are
executed by invoking the yield(...) function from the sc cor pkg that
switches out the current executing process and prepares the new pro-
cess (passed via the argument of the function) to execute. Suspension
functions such as wait(...) perform this switch to allow other runnable
processes to execute. The QuickThread package uses preswitch for con-
text switching that allows for this implementation. A function called
next cor(...) is used to determine the next thread to execute. Once the
runnable queues are empty, the control is returned to the main coroutine
identified by the main cor coroutine. This main coroutine can also be
suspended, which is what happens when a new thread process is sched-
uled for execution. It is also resumed after no more thread processes are
runnable.

Listing 6.20. Overloaded Constructor and helper function in sc cor pkg qt

1 s c c o r pkg q t : : s c c o r pkg q t (CSPnodel ist ∗ simc)
2 : s c c o r pkg (simc)
3 {
4 i f (++ ins tance count == 1) {
5 // i n i t i a l i z e the current coroutine
6 a s s e r t (c u r r c o r == 0) ;
7 cu r r c o r = &main cor ;
8

9 }
10

11 s c c o r ∗
12 s c c o r pkg q t : : get demain ()
13 {
14 return cu r r c o r ;
15 }

Different semantics for Discrete-Event based simulation and CSP sim-
ulation justifies the need for separation of these two kernels. However,
SystemC reference implementation treats the sc simcontext class as the
toplevel scheduler class with the main coroutine and coroutine package
accessible only through an instance of sc simcontext. For isolation, we
included functionality in the CSP encapsulation to have pointers to the
coroutine package and the main coroutine. We also implemented a CSP-
specific next cor() function along with several other thread core functions
discussed earlier. The CSP kernel as a stand-alone kernel works with-
out any concerns. However, we encounter an interesting problem when
invoking the DE kernel to execute a DE model. As we know, SystemC
is designed as a single scheduler simulation framework, which means the
coroutine package is created from the sc simcontext class in the initial-
ize(...) function. When trying to invoke initialize(...) while in a CSP

Communicating Sequential Processes Kernel in SystemC 121

simulation, the loss of process stack space is experienced. This is due
to a singleton pattern used in creating SystemC’s DE scheduler. Hence,
only one instance of the coroutine package must exist and given that we
attempt to invoke the DE kernel from within the CSP kernel, the DE
kernel must address the coroutine package created in the CSP kernel
instance. This requires a couple of changes in the the coroutine package
files and the sc simcontext class. We first discuss the changes we made
in the coroutine packages.

Listing 6.21. Overloaded Constructor in sc cor pkg class

1 class s c co r pkg
2 {
3 public :
4 . . .
5 // overloaded constructor
6 s c co r pkg (CSPnodel ist ∗ simc)
7 : m simcsp (simc) { a s s e r t (simc != 0) ; }
8 . . .
9

10 void s e t s imc (s c s imcontext ∗ simc) { m simc = simc ; } ;
11 void s e t c s p (CSPnodel ist ∗ csp) { m simcsp = csp ; } ;
12

13 // get the s imulat ion context
14 s c s imcontext ∗ s imcontext ()
15 { return m simc ; }
16 CSPnodel ist ∗ cspcontext ()
17 { return m simcsp ;}
18 private :
19

20 s c s imcontext ∗ m simc ;
21 CSPnodel ist ∗ m simcsp ;
22 private :
23 . . .
24 } ;

Creating an instance of type sc cor pkg qt makes a check for having
one instance with the instance count and its interface class constructor
is also invoked. An object of sc cor pkg qt results in the constructor of
sc cor pkg being invoked. Hence, the overloaded constructor described in
Listing 6.20 invokes the constructor of class sc cor pkg with an argument
containing the CSPnodelist pointer. A helper function get demain()
is added to retrieve the curr cor that signifies the current executing
context. We use this to make a call-back to the process that performs the
invocation of the DE kernel. The interface also undergoes modification
to accommodate calls to the interface to extract the correct information.
Listing 6.21 displays the additions to the sc cor pkg class.

A pointer to the CSPnodelist is added as a private variable and its
respective member functions to set and get address of this pointer. These
are the changes that have to be done in the coroutine packages to allow
for a CSP model to execute using the coroutine package. At this point we

122

Listing 6.22. next cor() member function in class sc simcontext

1 s c c o r ∗ s c s imcontext : : next co r ()
2 {
3 i f (m error) {
4 return m cor ;
5 }
6 s c th r ead hand l e thread h = pop runnable thread () ;
7 while (thread h != 0 && ! thread h−>r eady to run ()) {
8 thread h = pop runnable thread () ;
9 }

10 i f (thread h != 0) {
11 return thread h−>m cor ;
12 } else {
13 return (o ldcontext) ;
14 }
15 }

only show the inclusion of one CSPnodelist (one CSP model) addressed
by the coroutine packages. However, we plan to extend this later to
support multiple CSP models using the same coroutine package.

We are considering invocations of the DE kernel through the CSP ker-
nel, which requires altering the initialization code for the sc simcontext
class. We need to point the m cor pkg private member of class
sc simcontext to the sc cor pkg pointer in the CSPnodelist class. This is
performed by invoking the cor pkg() from the CSPnodelist followed by
an invocation of get main() to retrieve the main coroutine. We introduce
a new private data member in sc simcontext called oldcontext of type
sc cor*, which we set by invoking the get demain() member function on
variable m cor pkg. We use oldcontext during the next cor() function for
class sc simcontext as shown in Listing 6.22.

Variable oldcontext is returned when there are no more runnable
threads in the system, similar to the original implementation of the
next cor() function where main cor was being returned. The purpose of
saving oldcontext is to allow the simulation to return to the coroutine
that invoked the DE kernel. Suppose a CSP process invokes a DE ker-
nel for some computation. oldcontext would then store the coroutine of
the calling CSP process. The DE simulation returns to oldcontext once
it has no more processes for execution, resuming the execution of the
calling CSP process.

We illustrate the invocation of the DE kernel from the CSP in Figure
6.8. The assigned addresses are made up and do not resemble real ad-
dresses in our simulation, but we merely present them to further clarify
the manner in which the oldcontext is used. During initialization of the
CSP model, shown by the CSP block, m cor pkg and main cor are set
to their correct addresses. Every thread process has an m cor variable

Communicating Sequential Processes Kernel in SystemC 123

A

B

c

D
DE BLOCK:

E

main_cor = 0x8100f00

m_cor_pkg = 0x8000001

main_cor = 0x8100f00

m_cor_pkg = 0x8000001

oldcontext = 0x81b0f01

m_cor = 0x81a0f01

m_cor = 0x81b0f01

m_cor = 0x81c0f01

m_cor = 0x81d0f01

CSP BLOCK

Figure 6.8. Example of DE kernel invocation in CSP

that holds the coroutine for that particular thread. At some point dur-
ing the execution of process B, a DE model is supposed to execute. This
DE model requires that the CSP kernel yield to the DE kernel to simu-
late the DE block. Hence, the initialization functions of the DE kernel
are called where the addresses of the private data members m cor pkg
and main cor are extracted from the CSP kernel and the current sim-
ulation context is saved in oldcontext. Notice that the address of the
oldcontext is the same as the m cor value of process B. According to the
next cor(...) function definition in Listing 6.22, oldcontext is returned
once there are no more threads to execute, implying that once the DE
simulation model is complete and there are events to be updated, the
scheduler returns control to oldcontext which is the calling CSP thread.
This in effect allows for DE kernel invocations from CSP as we show via
an implemented example in Chapter 9.

