
Chapter 5

SYNCHRONOUS DATA FLOW KERNEL IN
SYSTEMC

1. SDF MoC

This chapter describes our implementation of the Synchronous Data
Flow (SDF) kernel in SystemC. We present code fragments for the SDF
data structure, scheduling algorithms, kernel manipulations and designer
guidelines for modeling using the SDF kernel along with an example.

The SDF MoC is a subset of the Data Flow paradigm [32]. This
paradigm dictates that a program is divided into blocks and arcs, repre-
senting functionality and data paths, respectively. The program is rep-
resented as a directed graph connecting the function blocks with data
arcs. From [53], Figure 5.1 shows an example of an SDF graph (SDFG).
An SDF model imposes further constraints by defining the block to be
invoked only when there is sufficient input samples available to carry out
the computation by the function block, and blocks with no data input
arcs can be scheduled for execution at any time.

In Figure 5.1, the numbers at the head and tail of the arcs represent
the production rate of the block and consumption rate of the block
respectively, and the numbers in the middle represent an identification
number for the arc that we call arc labels. An invoked block consumes
a fixed number of data samples on each input data arc and similarly
expunges a fixed number of data samples on each of the output data
arcs. Input and output data rates of each data arc for a block are
known prior to the invocation of the block and behave as infinite FIFO
queues. Please note that we interchangeably use function blocks, blocks
and nodes for referring to blocks of code as symbolized in Figure 5.1 by
A, B, C, D, E, F and G.

56

1

A
1

B

C
D

E

F
2

5

4

3

6

7

2

2

1 2

2

3

1

1

3

1

1

1
1

Figure 5.1. Example of a Synchronous Data Flow Graph [53].

Solution to static scheduling and execution of an executable schedule
for SDF models in SystemC requires solutions to intermediary problems.
The problems encountered are as follows:

1 Designing an appropriate data structure to contain information for
an SDFG.

2 Constructing executable schedules for the SDFGs. In this problem,
there are two sub-problems. They are:

(a) Computing the number of times each SDF block has to be fired
that we refer to as the repetition vector.

(b) Finding the order in which the SDF nodes are be executed, which
we term firing order.

3 Designing a mechanism for heterogeneous execution of existing Discre
te-Event (DE) and SDF kernel.

We define repetition vector and firing order based on [5]. By repetition
vector we mean the number of times each function block in the SDFG is
to be fired. However, a particular order is needed in which the function
blocks in the SDFG are to be fired, that we refer to as the firing order.
Constructing a firing order requires a valid repetition vector. A valid
executable schedule refers to a correctly computed repetition vector and
firing order. The directed nature of the graph and the production and
consumption rates provide an algorithm with which the firing order is
computed.

Synchronous Data Flow Kernel in SystemC 57

Problem 2a is discussed in [38] where Lee et al. describe a method
whereby static scheduling of these function blocks is computed during
compile time rather than runtime. We employ a modification of this
technique in our SDF kernel for SystemC explained later in this chapter.
The method utilizes the predefined consumption and production rates
to construct a set of homogeneous system of linear Diophantine [11]
equations. Solution to Problem 2b uses a scheduling algorithm from [5]
that computes a firing order given that there exists a valid repetition
vector and the SDFG is consistent. A consistent SDFG is a correctly
constructed SDF model whose executable schedule can be computed.

We choose certain implementation guidelines to adhere to as closely
as possible when implementing the SDF kernel.

1.1 General Implementation Guidelines
Implementation of the SDF kernel in SystemC is an addition to the

existing classes of SystemC. Our efforts in isolating the SDF kernel from
the existing SystemC kernel definitions introduces copying existing infor-
mation into the SDF data structure. For example, the process name that
is used to distinguish processes is accessible from the SDF data structure
as well as existing SystemC process classes. The general guidelines we
follow are:

Retain all SystemC version 2.0.1 functionality
Current functionality that is provided with the stable release of Sys-
temC 2.0.1 should be intact after the alterations related to the intro-
duction of the SDF kernel.

SDF Data structure creation
All SDF graph structure representation is performed internal to the
kernel, hiding the information about the data structure, solver, schedul-
ing algorithms from the designer.

Minimize designer access
A separate SDF data structure is created to encapsulate the func-
tionalities and behavior of the SDF. The modeler must only access
this structure via member functions.

2. SDF Data Structure
Representing the SDF graph (SDFG) needs construction of a data

structure to encapsulate information about the graph, such as the pro-
duction and consumption rates, the manner in which the blocks are con-
nected and so on. In this section, we describe the SDF data structure
in detail with figures and code snippets. The majority of our imple-

58

mentation uses dynamically linked lists (vector<...>) provided in the
Standard Template Library (STL) [13]. Figure 5.2 shows the SDF data
structure. A toplevel list called sdf domain of type vector<sdf graph*>
is instantiated that holds the address of every SDF model in the sys-
tem. This allows multiple SDF models to interact with each other along
with the DE models. Furthermore, each sdf graph as shown in Listing
5.1 contains a vector list of pointers to edges which is the second vector
shown in the Figure 5.2. Each edge object stores information about an
SDF function block whose structure we present later in this section.

+sdf_crunch() : void
+sdf_simulate() : void
+sdf_create_schedule() : void

+prefix
-result : int*
-num_arcs : int
-num_nodes : int
-sdflist : vector<edges*>
-sdf_schedule : vector<edges*>

sdf_graph

-sdf_domain : vector<sdf_graph*>

sc_domains

+setname() : void
+set_prod() : void
+set_cons() : void

edges
2*

-delay : int
-cons_rate : int
-arc_name : int
-from_ptr : edges*

«struct»
in_edges

1

*

1

*

1
*

-delay : int
-prod_rate : int
-arc_name : int
-to_ptr : edges*

«struct»
out_edges

1

1

1

1

schedule

Figure 5.2. SDF Class Diagram

The toplevel class is defined as sdf graph as shown in Listing 5.1. This
is the class that holds information pertaining to a single Synchronous
Data Flow Graph (SDFG). The SDFG encapsulates the following in-
formation: the number of blocks and arcs in the SDF, access to the
executable schedule via sdf schedule, the repetition vector through re-
sult, a string to identify the toplevel SDF by prefix, and a list of the
SDF blocks represented by sdflist [Listing 5.1, Line 6 - 13].

All SDF blocks are inserted into the vector<edges*> sdflist list. This
introduces the edges class that encapsulates the incoming and the out-
going arcs of that particular SDF block, an integer valued name for con-

Synchronous Data Flow Kernel in SystemC 59

Listing 5.1. class sdf graph

1 class sd f g raph {
2 public :
3 sd f g raph () ; // Constructor & des t ruc tor
4 ˜ sd f g raph () ;
5

6 vector < edges∗> s d f l i s t ; // SDF block l i s t
7 vector < edges∗> s d f s c h edu l e ; // executab l e schedule
8 int ∗ r e s u l t ;
9

10 int num nodes ; // Number of b locks
11 int num arcs ; // Number of arcs
12

13 s t r i n g p r e f i x ; // Store the name of the SDFG
14 } ;

structing the repetition vector and text based names for comparisons.
We typedef this class to SDFnode.

Our implementation uses process names for comparison since the
SystemC standard requires each object to contain a unique identify-
ing name. When storing the process name either in sdf graph class or
edges class shown in Listing 5.3, we add a dot character followed by the
name of the process.

Listing 5.2. Example showing name()

1SC MODULE(t e s t) {
2

3 // port dec lara t ions
4

5 void entry1 () {name () ; } ;
6 void entry2 () {name () ; } ;
7

8 SC CTOR(t e s t) {
9 name () ;

10 SC METHOD(entry1) ; // f i r s t entry funct ion
11 SC THREAD(entry2) ; // second entry funct ion
12 // s e n s i t i v i t y l i s t
13 } ;
14 } ;

This is necessary to allow multiple process entry functions to be ex-
ecuted when the particular process is found. For clarification, Listing
5.2 presents an example showing SystemC’s process naming convention.
From Listing 5.2, it can be noticed that there are two entry functions
entry1() and entry2(). Returning the name() function from within any
of these functions concatenates the process name, and entry function
name with a dot character in between. So, calling the name() function
from entry1() will return “test.entry1”; calling the same from entry2()
will return “test.entry2” and from the constructor will return “test”.

60

Hence, a process name is a unique identifier describing the hierarchy of
an entry function, for example “test.entry1”. We require both these pro-
cesses to execute for the process name “test” and to avoid much string
parsing we use the substring matching function strstr(...). However, this
will also match a process name other than this module that might have
an entry function with a name with “test”. All processes with a prefix
“test.” belong to the module “test”. Therefore, the unique process name
is constructed by adding the dot character after the process name and
searching for that substring.

Listing 5.3. class edges

1 class edges {
2

3 public :
4 vector<out edges > out ;
5 vector<in edges > in ;
6

7 // constructor / des t ruc tor
8 edges () ;
9 ˜ edges () ;

10

11 // member funct ions
12 void set name (s t r i n g name , vector<edges∗> & in) ; // se t

name
13 void s e t p rod (sc method ∗ to ptr , int prod) ; // se t

production rate
14 void s e t c on s (sc method ∗ f rom ptr , int cons) ; // se t

consumption rate
15

16 // va r i a b l e s tha t w i l l remain pub l i c at the moment
17 s t r i n g name ;
18 int mapped name ;
19 } ;

The edges class encapsulates the incoming edges to an SDF block
and outgoing edges from an SDF block. Lists vector<out edges> out
and vector<in edges> in as shown in [Listing 5.3, Line 4 & 5] where
out edges and in edges are of C type structs as displayed in Listing 5.4
show the data structure used to store the outgoing arcs and incoming
arcs respectively. Every edge object stores the process name as a string
name and a corresponding integer value as mapped name used in creat-
ing the topology matrices for the repetition vectors.

structs out edges and in edges are synonymous to arcs on an SDFG.
The in edges are incoming arcs to a block and out edges are arcs that
leave a block [Listing 5.4, Line 1 & 8]. Each arc has an arc label with the
integer variable arc name, their respective production and consumption
rates and a pointer of type edges either to another SDF block or from
an SDF block, depending on whether it is an incoming or outgoing arc.

Synchronous Data Flow Kernel in SystemC 61

Listing 5.4. struct out edges & in edges

1 struct out edges {
2 int prod rate ; // production rate
3 int arc name ; // arc l a b e l
4 edges ∗ t o p t r ; // pointer to next b lock
5 int delay ; // delay on t h i s arc
6 } ;
7

8 struct i n edge s {
9 int con s r a t e ;

10 int arc name ;
11 edges ∗ f rom ptr ;
12 int delay ;
13 } ;

The struct and class definitions in Listing 5.4 allow us to define an SDF
block shown in Figure 5.3.

string name;
int mappedname;

vector<out_edges> out; vector<in_edges> in;

edges block_name;

Figure 5.3. Synchronous Data Flow Block.

This representation of an SDF block is instantiated from within an
SC MODULE(). This makes an SC MODULE() to be of type SDF
method process. This means that one SDF block can only be represented
by one SC MODULE().

We continue to explain the modeling style needed when modeling with
the SDF kernel later in this chapter. We also describe the function calls
that are required to create an SDF model. We present the prerequisites
for the SDF kernel such as the linear Diophantine equation solver, creat-
ing a repetition vector from the solver and using it to construct a firing
order yielding an executable schedule based on algorithms in [5, 11].

3. Scheduling of SDF
3.1 Repetition vector: Linear Diophantine

Equations
The first issue of creating an executable schedule is discussed in [38]

where Lee et al. describe a method whereby static scheduling of these

62

function blocks can be computed during compile time rather than run
time. The method utilizes the predefined consumption and production
rates to construct a set of linear Diophantine [11] homogeneous system
of equations and represent it in the form of a topology matrix Γ. It was
shown in [38] that in order to have a solution, Γ must be of rank s − 1
where s is the number of blocks in the SDFG. Solution to this system of
equations results in a repetition vector for the SDFG. An algorithm used
to compute Hilbert’s basis [11] solves linear Diophantine equations using
the Completion procedure [11, 51] to provide an integer-valued Hilbert’s
basis. However, the fact that the rank is s − 1 shows that for SDFs the
Hilbert’s basis is uni-dimensional and contains only one basis element
[38].

Solving linear Diophantine equations is crucial in obtaining a valid
repetition vector for any SDF graph. A tidy mechanism using the pro-
duction and consumption rates to construct 2-variable equations and
solving this system of equations results in the repetition vector. The
equations have 2-variables because an arc can only be connected to two
blocks. Though this may seem as a simple problem, the simplicity of the
problem is challenged with the possibility of the solution of Diophantine
equations coming from a real-valued set. This real-valued set of solu-
tions for the Diophantine equations is unacceptable for the purpose of
SDF since the number of firings of the blocks require being integral val-
ues. Not only do the values have to be integers, but they also have to
be non-negative and non-zero, since a strongly connected SDFG can not
have a block that is never fired. These systems of equations in math-
ematics are referred to as linear Diophantine equations and we discuss
an algorithmic approach via the Completion procedure with an added
heuristic to create the repetition vector as presented in [11].

We begin by defining a system of equations parameterized by −→a =
{ai|i = 1...m}, −→

b = {bj |j = 1...n} and {c, m, n ∈ � such that the
general form for an inhomogeneous linear Diophantine equation is:

a1 x1 + ... + amxm − b1y1 − ... − bnyn = c (5.1)

and for a homogeneous Diophantine equation is:

a1 x1 + ... + amxm − b1y1 − ... − bnyn = 0 (5.2)

where only integer valued solutions for −→x and −→y are allowed. Con-
tinuing with the example from Figure 5.1, the arc going from block A to
block B via arc label 1 results in Equation 5.3, where u, v, w, x, y and

Synchronous Data Flow Kernel in SystemC 63

z represent the number of times blocks A, B, C, D, E, F, and G have
to be fired respectively. We refer to the producing block as the block
providing the arc with a token and the consuming block as the block
accepting the token from the same arc. For arc label 1, the consuming
and producing blocks are block B and block A respectively. Therefore,
for every arc, the equation is constructed by multiplying the required
number of firings of the producing block with the production rate sub-
tracted by the multiplication of the required number of firings of the
consuming block with the consumption rate and setting this to be equal
to 0.

1u − 2v + 0w + 0x + 0y + 0z = 0 (5.3)

For the entire SDFG shown in Figure 5.1, the system of equations is
described in Equations 5.4. Note that this is a homogeneous system of
equations in which the total number of tokens inserted into the system
equals the total number of tokens consumed. Our SDF scheduling im-
plementation requires only homogeneous linear Diophantine equations,
hence limiting our discussion to only homogeneous Diophantine equa-
tions.

1u − 2v + 0w + 0x + 0y + 0z = 0 (5.4)
1u + 0v − 2w + 0x + 0y + 0z = 0
0u + 1v + 0w + 0x − 1y + 0z = 0
0u − 1v + 0w + 1x + 0y + 0z = 0
0u + 0v + 2w − 2x + 0y + 0z = 0
0u + 0v + 3w + 0x + 0y − 1z = 0
0u + 0v + 0w + 0x + 3y − 1z = 0

This system of equations as you notice are only 2-variable equations
yielding the topology matrix Γ as:

Γ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 -2 0 0 0 0
1 0 -2 0 0 0
0 1 0 0 -1 0
0 -1 0 1 0 0
0 0 2 -2 0 0
0 0 3 0 0 -1
0 0 0 0 3 -1

⎞
⎟⎟⎟⎟⎟⎟⎠

Solving for −→
X in Γ−→X = 0 yields the repetition vector for the SDFG

in Figure 5.1. A linear Diophantine equation solver [51] solves these

64

topology matrices for system of equations such as in Equations 5.4. The
results from the solver for Equations 5.4 are shown in Table 5.1.

Table 5.1. Results from Diophantine Solver

A=u B=v C=w D=x E=y F=z

2 1 1 1 1 3

Notice that this methodology of creating a repetition vector is spe-
cific for acyclic SDF graphs. We discuss SDF graphs with cycles and
producing repetition vectors for them later in this chapter.

3.2 Linear Diophantine Equation Solver
The problem of solving a system of equations for non-zero, minimal

integer-valued solutions was addressed by many mathematicians such as
Huet in 1978 [30], Fortenbacher in 1983 [18], Guckenbiehl & Herold in
1985 [26] etc. Of these, A. Fortenbacher and M. Clausen [11] introduce
a lexicographic algorithm, which they called the Completion procedure
algorithm. We limit our discussion to the Completion procedure algo-
rithm since the labelled digraph approach they discussed is simply an
extension of the same concept using labelled digraphs to visualize the
problem.

Beginning with some notation, take the general form of a linear in-
homogeneous Diophantine equation in Equation 5.1 where S(a, b, c) is
the set of all nonnegative integer solutions and rewrite it such that the
solution set (−→ξ ,−→η) ∈ �m+n satisfies the inhomogeneous Diophantine
equation Σiaiξi - Σjbjηj = c for {i, j} ∈ �. Evaluation of the left-hand
side of the Diophantine equation is termed as the defect at a certain
point from the set of (−→ξ , −→η) ∈ �m+n [11]. So, the defect of (−→ξ , −→η) is
evaluated by d((−→ξ ,−→η)) := Σiaiξi - Σjbjηj where a solution to the equa-
tion yields d((−→ξ ,−→η)) = c. For homogeneous Diophantine equations the
equations are similar except that c = 0.

The Completion algorithm provided by Fortenbacher and Clausen [11]
begins by creating three sets P, M and Q representing the set of pro-
posals, the set of minimal solutions and a temporary set, respectively, as
shown in Algorithm 5.1. A proposal is the first minimum guess by the al-
gorithm for computing Hilbert’s basis. The initialization of P starts with
the minimal proposals that are used through the completion procedure.
The other two sets M and Q are initially empty sets. The algorithm be-
gins by selecting a proposal P1 and during the Completion procedure it

Synchronous Data Flow Kernel in SystemC 65

increments this proposal according to the defect of that proposal. For a
proposal p = (−→ξ ,−→η), if d(p) < 0 then −→

ξ is incremented, and if d(p) > 0
then −→η is incremented. If d(p) = 0 then a minimal solution is found and
this is added to M . A test for minimality is performed and proposals
that are not minimal with respect to the computed solution are removed
from P . Once there are no more proposals the algorithm terminates. A
Pascal implementation was provided in the paper that was converted to
a C implementation by Dmitrii Pasechnik [51]. We further converted
the C implementation to a C++ implementation

Algorithm 5.1: Completion procedure [11]

{Initialization}
P1 := (e1,

−→
0), ..., (em,

−→
0)

M1 := NULL
Q1 := NULL
{Completion step}
Qk+1 := {p + (

−→
0 , ej)|p ∈ Pk, d(p) > 0, 1 ≤ j ≤ n}

∪{p + (e1,
−→
0)|p ∈ Pk, d(p) < 0, 1 ≤ i ≤ m}

Mk+1 := {p ∈ Qk+1|d(p) = 0}
Pk+1 := {p ∈ Qk+1\ Mk+1| p minimal in p ∪ ⋃k

i=1 Mi}
{ Termination }
Pk = NULL?
M :=

⋃k
i=1 Mi

For our implementation, we employ the same algorithm to solve Dio-
phantine equations with an added heuristic specific for SDFGs. We work
through the running example presented in Figure 5.1 to show the added
heuristic. Let us first explain why there is a need for a heuristic. Fig-
ure 5.1 contains seven equations and six unknowns, over-constraining
the system of equations, but Algorithm 5.1 does not explicitly handle
more than one equation. Hence, there has to be a way in which all
equations can be considered at once on which the Completion procedure
is performed. One may speculate an approach where all the equations
are added and the defect of the sum of all equations is used to perform
the algorithm. However, this is incorrect since the defect of the sum of
the equations can be zero without guaranteeing that the defect for the
individual equations being zero. This case is demonstrated in Step 3 in
Table 5.2. This occurs because the set of solutions when considering the
sum of all equations is larger than the set of solutions of the system of
equations as described in seven equations, which can be confirmed by
taking the rank of the matrices that the corresponding equations yield.
Hence, we provide a heuristic that ensures a correct solution for the
system of equations.

66

Algorithm 5.2: Completion procedure with Heuristic

Given m simultaneous 2 variable homogeneous Diophantine equations on a set of
n variables, this algorithm finds a solution if one exists.
Let E = {(eq1, eq2, ..., eqm)} be the equation set.
Let P be an n tuple of positive integers initially P := {−→1 }
Let x1, x2, ..., xn be a set of variables.
Let eqj ≡ a1

jxlj − a2
jxkj = 0 where (j = 1, 2, ..., m) and a1

j , a2
j are coefficients of

the jth equation eqj where V ARS(eqj) = {xl, xk}
Let rhs(eqj) = a1

jxlj − a2
jxkj which is a function of {xl, xk}

Let INDICES(eqj) = {lj , kj}
Let dj be the defect of eqj evaluated at (α, β) such that dj = d(eqj , α, β) =
(rhs(eqj))|xlj

�→α,xkj
�→β where for any function over two variables u, v, f(u, v)|u �→a,v �→b =

f(a, b)
D = {d(eqj , plj , pkj) | V ARS(eqj) = {lj , kj}} {So D is an m tuple of m integers
called the defect vector}
MAXINDEX(D) = j where j = min{r | d(eqr, plr , pkr) ≥ d(eqn, pln , pkn) ∀ n ∈
{1, 2, ..., m} and {ln, kn} = INDICES(eqn)}
{Repeat until defect vector D is all zeros or the maximum proposal in P is less then
or equal to the lowest-common multiple of all the coefficients in all equations}
while ((D! =

−→
0)

∧
(max(−→p) ≤ (lcm(r=1,2),(j=1..m)(a

r
j))) do

j = MAXINDEX(D)
if (dj < 0) then

Let x be the lth variable and
(x, y) = V ARS(eqj)
for all eqi ∈ E do

if (x ∈ {V ARS(eqi)}) then
Re-evaluate di with [pl �→ pl + 1]

end if
end for
Update pl ∈ P with [pl �→ pl + 1]

else
if (dj > 0) then

Let y be the kth variable and
(x, y) = V ARS(eqj)
for all eqi ∈ E do

if (y ∈ {V ARS(eqi)}) then
Re-evaluate di with [pk �→ pk + 1]

end if
end for
Update pk ∈ P with [pk �→ pk + 1]

end if
end if

end while

The heuristic we implement ensures that before processing the defect
of the proposal, the proposal is a vector of ones. By doing this, we in-
dicate that every function block in the SDFG has to fire at least once.

Synchronous Data Flow Kernel in SystemC 67

After having done that, we begin the Completion procedure by calculat-
ing the defect of each individual equation in the system of equations and
recording these values in a defect vector D. Taking the maximum defect
from D defined as dj for that jth equation, if dj > 0 then the correct
variable for j is incremented and if dj < 0, then the appropriate variable
for the j is incremented for the jth equation. However, updating the
defect dj for that equation is not sufficient because there might be other
occurrences of that variable in other equations whose values also require
being updated. Therefore, we update all occurrences of the variable in
all equations and recompute the defect for each equation. We perform
this by checking if the updated variable exists in the set of variables
for every equation extracted by the VARS() sub-procedure and if that
is true, that equation is re-evaluated. The algorithm repeats until the
defect vector D = −→0 terminating the algorithm. The algorithm also
terminates when the lowest-common multiple of all the coefficients is
reached without making the defect vector D = −→0 [11]. This is because
none of the proposal values can be larger than the lowest-common mul-
tiple of all the coefficients[11]. For Figure 5.1, the linear Diophantine
equations are as follows: u − 2v = 0, u − 2w = 0, v − y = 0, v + x =
0, 2w − 2x = 0, 3w − z = 0, 3y − z = 0,−u − z = 0 and the repetition
vector from these equations is shown in Table 5.1

To further clarify how the algorithm functions, we walk through the
example in Figure 5.1 and compute the repetition vector. We define
the proposal vector P as −→p = (u, v, w, x, y, z) where the elements of −→p
represent the number of firings for that particular block. Similarly, we
define a defect vector −→

d = (eq1, eq2, eq3, eq4, eq5, eq6, eq7) where eqn is
the nth equation in the system of equations. The system of equations
are restated below:

eq1 = 1u − 2v + 0w + 0x + 0y + 0z = 0
eq2 = 1u + 0v − 2w + 0x + 0y + 0z = 0
eq3 = 0u + 1v + 0w + 0x − 1y + 0z = 0
eq4 = 0u − 1v + 0w + 1x + 0y + 0z = 0
eq5 = 0u + 0v + 2w − 2x + 0y + 0z = 0
eq6 = 0u + 0v + 3w + 0x + 0y − 1z = 0
eq7 = 0u + 0v + 0w + 0x + 3y − 1z = 0

and steps in processing this system of equations with Algorithm 5.2
are shown in Table 5.2.

In Table 5.2, the proposal vector begins as a vector of all ones with
its computed defect. The next equations to consider are the ones with

68

Table 5.2. Solution steps for example using Completion procedure

Step −→p −→
d

1 (1, 1, 1, 1, 1, 1, 1) (-1, -1, 0, 0, 0, 2, 2)
2 (1, 1, 1, 1, 1, 1, 2) (-1, -1, 0, 0, 0, 1, 1)
3 (1, 1, 1, 1, 1, 1, 3) (-1, -1, 0, 0, 0, 0, 0)
4 (2, 1, 1, 1, 1, 1, 3) (0, 0, 0, 0, 0, 0, 0, 0)

the highest individual defect. We perform the Completion procedure on
equations with the highest defect, that are eq6 & eq7, and increment z
twice, to reduce the defect of eq6 &eq7 to zero. Then, we reduce the neg-
ative defects for eq1 & eq2, that we compensate by incrementing v. This
results in defect vector being all zeros completing the completion proce-
dure and giving a repetition vector. Though this example is strictly for
acyclic SDFGs, we use the same algorithm in solving cyclic SDFGs. We
present our discussion and algorithms for creating executable schedules
for cyclic SDF graphs in the next section.

3.3 Firing Order: repetition vectors for
non-trivial cyclic SDF graphs

Most DSP systems have feedback loops and since the SDF MoC is
used for DSP, we expect occurrences of loops in SDFGs. These feedback
loops are represented as cycles in an SDFG and it is necessary for our
SDF kernel to be able to efficiently handle these types of cycles. In this
section we explain how cycles affect the repetition vector and discuss the
firing order produced by the algorithm developed in [5].

We previously described the algorithm used in creating a repetition
vector and we employ the same algorithm in calculating the repetition
vector for cyclical SDFGs. However, the order in which these blocks
have to be fired needs to be computed. The firing order is important
because the SDF paradigm requires a specific order in which the function
blocks are executed. SystemC’s DE kernel schedules its processes in an
unspecified manner, so it could schedule block F from Figure 5.4 as the
first block for execution, which is incorrect for the SDF model. The
repetition vector only describes the number of times F needs to be fired
and not in which order F is fired. Until the proper firing order is found
the system would deadlock due to F not having enough input on the
incoming arcs from blocks C and E. We can see that blocks C and E
have to be fired before F can be fired to correctly execute the SDFG.

For acyclic graphs as shown in Figure 5.4, one can use a topological
sorting via Depth-First Search (DFS) algorithm to compute the firing
order. However, in the presence of a cycle, a topological ordering does

Synchronous Data Flow Kernel in SystemC 69

Figure 5.4. Example of a cyclic Synchronous Data Flow Graph [53].

not exist. Since, our goal is to obtain the firing order regardless of the
SDFG containing cycles or not we employ another algorithm in con-
structing the firing order.

Bhattacharyya, Murthy and Lee in [5] developed scheduling algo-
rithms for SDF of which one scheduling algorithm determines the fir-
ing order of non-trivial (cyclic or acyclic) SDFGs. However, before we
present scheduling Algorithm 5.3, we discuss the delay terminology for
an SDFG shown in Figure 5.4. Note the production rate at the head
of the arcs, consumption rate at the tail of the arcs (marked by the
arrow head), arc label or name in the middle of the arc and a newly
introduced delay(α) = γ where α is an arc label and γ is the delay on
that arc. delay [5] represents the number of tokens the designer has to
inject initially into arc α for the SDF model to execute. The concept
of delay is necessary when considering cyclical SDFGs. This is because
of the additional constraint set by the SDF paradigm that every block
only executes when it has sufficient input tokens on its input arcs, thus
a cycle as indicated by arc label 8 in Figure 5.1 without the delay causes
the SDFG to deadlock. Hence, no blocks can be fired. The delay acts as
an initial token on that arc to allow simulation to begin. We introduce
the concept of delay on all arcs, except we omit displaying the delays
that are zero, like on arc label 1 and 2 and so on.

Scheduling Algorithm 5.3 creates a firing order by using the repetition
vector from the Hilbert’s solver. If the firing order is valid then the SDF

70

kernel executes the SDF processes in the correct sequence for the correct
number of times. The simulation terminates if either the repetition vector
is invalid or the SDFG is inconsistent. An SDFG is inconsistent when
the number of times every block scheduled in the firing order is not
reflected by the number of times the block is supposed to be scheduled
for execution as per the repetition vector.

Algorithm 5.3: Construct Valid Schedule Algorithm [5]
Require:

Let ready to be a queue of function block names
Let queued and scheduled to be vectors of non-negative integers indexed by the
function blocks in SDFG
Let S be a schedule and initialize S to null schedule
Let state be a vector representing the number of tokens on each edge indexed by
the edges
Let rep be a vector showing results from the Diophantine equation solver computed
by Algorithm 5.2 (repetition vector indexed by the function block names)

for all function blocks in SDFG do
for each incoming edge α do

store delay on α to state(α)
end for

for each outgoing edge β do
store delay on β to state(β)

end for
end for
for each function block N in SDFG do

save rep for N in temporary variable temp rep
for each incoming edge α do

set del cons equal to 	delay(α)/cons rate(α)

temp rep = min(temp rep, del cons)

end for
if temp rep > 0 then

store temp rep in queued(N)
store 0 in scheduled(N)

end if
end for

while ready is not empty do
pop function block N from ready
add queued(N) invocations to S
increment scheduled(N) by value of queued(N)
store temp n to queued(N)
set queued(N) value to 0
for each incoming edge α of function block N do

set state for α is decremented by (temp n × cons rate on (α))
end for

Synchronous Data Flow Kernel in SystemC 71

for each outgoing edge β of function block N do
set state for β is incremented by (n × prod rate on (β))

end for
for each ougoing edge α of function block N do

to node is the function block pointed by α
temp r = subtract rep for to node by scheduled(to node)

end for
for each incoming edge γ of to node(α) do

set del cons to 	state value for γ / cons rate on γ

end for
if (temp r > queued(to node)) then

push to node to ready
set queued(to node) to temp r

end if
end while
for each function block N in SDFG do

if (scheduled vector for N �= to rep for N) then
Error::Inconsistent Graph
Exit

end if
end for
S contains schedule

In Algorithm 5.3, state is a vector that initially contains the delays
on each of the arcs in the SDFG and is indexed by the arc names labelled
α or β. During execution, state denotes the number of tokens on each
arc. Similarly, queued and scheduled are vectors indexed by function
block name N for the purpose of storing the number of times the block
is scheduled and the number of times a block has to be scheduled to
be fired is queued, respectively. rep is a temporary pointer to point to
the repetition vector and ready holds the blocks that can be fired. The
algorithm iteratively determines whether the SDFG is consistent and if
so, results in an executable schedule.

The initialization begins by first traversing through all the function
blocks in the SDFG and setting up the state vector with its correspond-
ing delay for all the arcs on every block. Once this is done, every block
is again traversed and for every incoming arc, the minimum between the
repetition vector for that block and the delay(α)/cons rate(α) is sought.
If this minimum is larger than zero, then this block needs to be sched-
uled and added to ready since that means it has sufficient tokens on the
incoming arcs to fire at least once. This initialization also distinguishes
the blocks that are connected in cycles with sufficient delay values and
schedules them. Scheduling of the remaining blocks is performed in a
similar fashion with slight variation.

72

If the SDFG is consistent, the first block from ready is popped and
appended to the schedule for the number of times the block is to be
invoked. For all the incoming edges of this block the delay for this arc is
recalculated. For the outgoing edges a similar calculation is done except
this time the state for the arc is incremented by the production rate
multiplied by temp n. Basically, the algorithm looks at all the outgoing
edges and the blocks pointed by these outgoing edges and proceeds to
traverse focusing on all blocks pointed by the outgoing edges of the block
just popped of the ready. Finally, a check for inconsistency is performed
where the number of times each block is scheduled has to be equivalent
to the number of times it is supposed to be fired from the repetition
vector. The algorithm concludes with the correct schedule in S for a
consistent SDFG.

This scheduling algorithm yields the schedule in the correct firing
order with the number of times it is to be fired. The kernel will fire ac-
cording to this schedule. Acyclic and cyclic SDFGs are handled correctly
by this algorithm. The final executable schedule is stored in sdf schedule
accessible to the kernel for execution.

4. SDF Modeling Guidelines

Stimulus

FIR

Display

1

1 1

1

11

3

1

delay(3) = 1

2

Figure 5.5. FIR Example of a Synchronous Data Flow Graph [53].

Efforts in reducing difficulty of modeling other MoCs have been a
key consideration in implementing the SDF kernel. Though, we believe
that we have reduced the level of difficulty in designing SDF models in
SystemC by increasing the modeling fidelity, we also provide guidelines in
creating SDF models. A simple example with full source code segments
demonstrates the style. We use the FIR example from Figure 5.5 to
compare the FIR example provided with the SystemC 2.0.1 distribution
modeled with the DE kernel (that has already been shown in Chapter

Synchronous Data Flow Kernel in SystemC 73

3) with the converted model using the SDF kernel. We edit the source
code to remove some std :: cout statements to make the output from
DE FIR example to match the output of the SDF FIR model, but the
functionality of the FIR in DE and SDF remains the same. fir const.h
is not included in the listings since it is a list of constants that will be
available in the full source prints at [36].

Listing 5.5. stimulus.h

1#include <queue>
2 extern sd f g raph sd f1 ;
3 using namespace std ;
4

5SC MODULE(st imulus) {
6 edges s t imu lus edge ;
7 s c i n t <8> send va lue1 ;
8 SC CTOR(st imulus) {
9 s t imu lus edge . set name (name () , sd f1 . s d f l i s t) ;

10 SC METHOD(entry) ;
11 send va lue1 = 0 ;
12 }
13 void entry () ;
14 } ;

Notice in Listing 5.5 that the Stimulus block has no input or output
ports along or control signal ports. This refers to declarations of ports
using sc in<...> or sc out<...>. These are no longer required in an SDF
model because static scheduling does not require control signals and our
method of data passing is through STL queue<...> structures. We do
not strictly enforce their removal and if the designer pleases to use Sys-
temC channels and ports for data paths then that can also be employed.
However, the SDF kernel statically schedules the SDF blocks for execu-
tion at compile time, hence there is no need for one block to signal to
the following block when data is ready to be passed on, obviating the
need for control signals. For data paths, using signals and channels in
SystemC generate events reducing simulation efficiency. Our advised ap-
proach is to use queue<...> STL queues to transfer data within the SDF
model instead of using SystemC. Only the data that has to be passed
from one block to another requires an instantiation of a queue such as
the extern queue<int> stimulusQ [Listing 5.6, Line 6]. Instantiation
of stimulus edge object is crucial in defining this SC MODULE() as an
SDF method process [Listing 5.5, Line 5 & 6]. This object is used to
pass the name of the SC MODULE() and the SDFG which this block
belongs to as shown in [Listing 5.5, Line 9].

The queues used in the FIR model are stimulusQ and firQ, where stim-
ulusQ connects the Stimulus block to the FIR block and firQ connects
from the FIR block to the Display [Listing 5.8, Line 4 & 5]. However,

74

Listing 5.6. stimulus.cpp

1#include <systemc . h>
2#include ” st imulus . h”
3#include <queue>
4

5 using namespace std ;
6 extern queue<int > stimulusQ ;
7

8 void s t imulus : : entry () {
9 stimulusQ . push (send va lue1) ;

10 send va lue1++;
11 }

instantiation of these queues has to be done in a particular manner.
Since every arc connects two blocks implies that two blocks must have
the same queue visible to them. So, stimulusQ should be accessible by
the Stimulus block as well as the FIR block. The easiest approach is
to instantiate these queues globally in the toplevel file and make them
extern keyword when a block needs to refer to the queue<...>s (if in a
different file). With this method all the files must be a part of one com-
pilation since extern informs the compiler that the particular variable
(in this case queue<...>) is instantiated in some other file external to
the current scope. Furthermore, memory is not allocated when extern
keyword is encountered because the compiler assumes that the variables
with extern keyword have been properly defined elsewhere.

Listing 5.7. fir.h

1#include <queue>
2 extern sd f g raph sd f1 ;
3 using namespace std ;
4

5SC MODULE(f i r) {
6 s c i n t <9> c o e f s [1 6] ;
7 s c i n t <8> sample tmp ;
8 s c i n t <17> pro ;
9 s c i n t <19> acc ;

10 s c i n t <8> s h i f t [1 6] ;
11 edges f i r e d g e ;
12 SC CTOR(f i r) {
13 f i r e d g e . set name (name () /∗”process body”∗/ , sd f1 . s d f l i s t)

;
14 SC METHOD(entry) ;
15 #inc lude ” f i r c o n s t . h”
16 for (int i = 0 ; i < 15 ; i++) {
17 s h i f t [i] = 0 ;
18 }
19 void entry ()
20 } ;

Synchronous Data Flow Kernel in SystemC 75

Every SDF block (SDF SC MODULE()) must also have access to the
SDFG that it is to be inserted in. This means the sdf graph object that is
instantiated globally must be available to the SC MODULE()s such as in
[Listing 5.7, Line 2]. However, the integral part of the SC MODULE()
declaration is the instantiation of the edges object as shown in [List-
ing 5.7, Line 11]. This object is accessed by the SDF kernel in deter-
mining certain characteristics during scheduling. These characteristics
are set by member functions available in the edges class. One of the
first member functions encountered in the SC MODULE() declaration
is the set name(...) [Listing 5.7, Line 13] function that is responsible
for providing the edges object with the module name and the storage
list of SDF method processes. The name() function from within the
SC MODULE() returns the name of the current module. In [Listing 5.7,
Line 13] sdf1.sdflist is the list where the addresses of the SC METHOD()
processes are stored for access by the SDF kernel. Apart from those alter-
ations, the structure of an SC MODULE() is similar to regular SystemC
processes.

Listing 5.8. fir.cpp

1#include <systemc . h>
2#include ” f i r . h”
3

4 extern queue<int > stimulusQ ;
5 extern queue<int > f i rQ ;
6

7 void f i r : : entry () {
8 sample tmp = stimulusQ . f r on t () ; stimulusQ . pop () ;
9 acc = sample tmp∗ c o e f s [0] ;

10 for (int i =14; i >=0; i−−) {
11 pro = s h i f t [i]∗ c o e f s [i +1] ;
12 acc += pro ;
13 }
14 for (int i =14; i >=0; i−−) {
15 s h i f t [i +1] = s h i f t [i] ;
16 }
17 s h i f t [0] = sample tmp ;
18 f i rQ . push ((int) acc) ;
19 }

Note that the functions used to insert data onto the queue<...>s are
STL functions push() and pop() [Listing 5.8, Line 8 & 18]. There is also
no check for the number of tokens ready to be received by each block.
Naturally, this is not required since we are statically scheduling the SDF
blocks for an appropriate number of times according to their consump-
tion and production rates. However, this burdens the designer with the
responsibility of carefully inserting sufficient tokens on the queue<...>s
to ensure the simulation does not attempt at using invalid data.

76

Listing 5.9. display.h

1#include <queue>
2 extern sd f g raph sd f1 ;
3 using namespace std ;
4

5SC MODULE(d i sp l ay) {
6 int i , tmp1 ;
7 edges d i sp l ay edge ;
8 SC CTOR(d i sp l ay)
9 { d i sp l ay edge . set name (name () /∗” d i sp lay ”∗/ , sd f1 . s d f l i s t) ;

10 SC METHOD(entry) ;
11 i = 0 ;
12 }
13 void entry () ;
14 } ;

Listing 5.10. display.cpp

1#include <systemc . h>
2#include ” d i sp l ay . h”
3 extern queue<int > f i rQ ;
4 void d i sp l ay : : entry () {
5 tmp1 = f i rQ . f r on t () ; f i rQ . pop () ;
6 cout << tmp1 << endl ;
7 i++;
8 i f (i == 5000000) {
9 s c s t op () ;

10 } ;
11 }
12 // EOF

The SDF kernel requires the modeler to specify the terminating value
as in the DE kernel example. This is similar to the termination situa-
tions posed in [23]. However, we define a period of SDF as a complete
execution of the SDF. In this example since there is a cycle, every period
is an execution of the SDF model. We halt the execution after a specified
number of samples using the sc stop() [Listing 5.10, Line 9] which tells
the kernel that the modeler has requested termination of the simulation.

The toplevel SC METHOD() process labelled toplevel in [Listing 5.12,
Line 2] constructs the SDF graph encapsulating that entire SDF model
inside it. The choice of the toplevel process can be of any SystemC type.
The entry function has to be manipulated according to the process type
since they continue to follow SystemC semantics. The construction of
this module is straightforward whereby pointers to each of the SDF
methods are member variables and are initialized to their correspond-
ing objects in the constructor. The important step is in constructing the
SDFG within the constructor (SC CTOR()) since the constructor is only
invoked once per instantiation of the object. The functions set prod(...)
and set cons(...) set the arcs on the SDFG. Every SC MODULE() de-

Synchronous Data Flow Kernel in SystemC 77

Listing 5.11. main.cpp

1#include <systemc . h>
2#include ” st imulus . h”
3#include ” d i sp l ay . h”
4#include ” f i r . h”
5 sd f g raph sd f1 ;
6 queue < int > stimulusQ ;
7 queue < int > f i rQ ;
8 // General METHOD process to v e r i f y proper execution of ordinary

DE METHODs
9SC MODULE(foo) {

10 s c i n c l k c l ock ;
11 void message () {
12 cout << sc t ime stamp () << ” foo with n e x t t r i g g e r executed

” << endl ;
13 n e x t t r i g g e r (2 , SC NS) ;
14 }
15 SC CTOR(foo) {
16 SC METHOD(message) {
17 s e n s i t i v e << c l o ck . pos () ;
18 } ;
19 }
20 } ;
21 // General CTHREAD process to v e r i f y proper execution of

ordinary DE THREADs
22SC MODULE(foo c th r ead) {
23 sc out<bool> data sd f ;
24 s c i n c l k c l ock ;
25 void msg () {
26 bool b= fa l se ;
27 while (1) {
28 cout << sc t ime stamp () << ” CTHREAD executed ” << endl ;
29 wait (3) ;
30 cout << ” In s t r u c t SDF to f i r e ” << endl ;
31 i f (b == true)
32 b = fa l se ;
33 else
34 b = true ;
35 data sd f . wr i t e (b) ;
36 }
37 }
38 SC CTOR(foo c th r ead) {
39 SC CTHREAD(msg , c l o ck . pos ()) {
40 s e n s i t i v e << c l o ck . pos () ;
41 } ;
42 }
43 } ;

fines an SDF block that requires the arcs being set. The arguments of
these set functions are: the address of the edges object instantiated in a
module that it is pointed to or from, the production or consumption rate
depending on which function is called and the delay. We also enforce
a global instantiation of sdf graph [Listing 5.11, Line 5] type object for
every SDFG that is present in the model. Using the schedule class and
the add sdf graph(...), the SDFG is added into a list that is visible by the
overlaying SDF kernel [Listing 5.12, Line 23]. In addition, this toplevel
process must have an entry function that calls sdf trigger() [Listing 5.12,

78

Listing 5.12. toplevel and main()

1 // Top Level METHOD encapsu lat ing the SDFG
2SC MODULE(t op l e v e l) {
3 s c i n <bool> data ;
4 f i r ∗ f i r 1 ; // (” process body ∗”) ;
5 d i sp l ay ∗ d i sp l ay1 ; // (” d i sp l ay ”) ;
6 s t imulus ∗ s t imulus1 ; //(” s t imu lus b l ock ”) ;
7 void en t r y sd f () {
8 s d f t r i g g e r (name ()) ;
9 }

10 SC CTOR(t op l e v e l) {
11 SC METHOD(en t r y sd f)
12 s e n s i t i v e << data ;
13

14 f i r 1 = new f i r (” process body ∗”) ;
15 d i sp l ay1 = new d i sp l ay (” d i sp l ay ”) ;
16 s t imulus1 = new s t imulus (” s t imulus ”) ;
17 st imulus1−>s t imu lus edge . s e t p rod (& f i r 1 −>f i r e d g e , 1 , 0) ;
18 f i r 1 −>f i r e d g e . s e t c on s (&st imulus1−>s t imulus edge , 1 , 0) ;
19 f i r 1 −>f i r e d g e . s e t p rod (&disp lay1−>d i sp lay edge , 1 , 0) ;
20 disp lay1−>d i sp l ay edge . s e t c on s (& f i r 1 −>f i r e d g e , 1 , 0) ;
21 disp lay1−>d i sp l ay edge . s e t p rod (&stimulus1−>s t imulus edge

, 1 , 1) ;
22 st imulus1−>s t imu lus edge . s e t c on s (&disp lay1−>d i sp lay edge

, 1 , 1) ;
23 schedu le : : add sd f graph (name () , & sd f1) ;
24 }
25 } ;
26

27 int sc main (int argc , char ∗ argv []) {
28 s c c l o c k c l ock ;
29 s c s i g n a l <bool> data ;
30 t o p l e v e l t o p l e v e l (” t o p l e v e l ∗ sd f ∗”) ;
31 t o p l e v e l . data (data) ;
32 foo foobar (” foobar ”) ;
33 foobar . c l o ck (c l o ck) ;
34 f o o c th r ead f o o c (” foo C”) ;
35 f o o c . c l o ck (c l o ck) ;
36 f o o c . da ta sd f (data) ;
37 s c s t a r t (−1) ;
38 return 0 ;
39 }

Line 8] signalling the kernel to process all the SDF methods correspond-
ing to this toplevel SDF module. These guidelines enable the modeler
to allow for heterogeneity in the models since the toplevel process can
be sensitive to any signal that is to fire the SDF. The SC CTHREAD()
[Listing 5.11, Line 39] partakes in this particular role where every three
cycles the SDF model is triggered through the signal data. However, the
designer has to be careful during multi-MoC modeling due to the trans-
fer of data from the DE blocks to the SDF blocks. This is because there
is no functionality in the SDF kernel or for that matter even the DE ker-
nel that verifies that data on an STL queue<...> path is available before
triggering the SDF method process. This has to be carefully handled by
the designer. These style guides for SDF are natural to the paradigm

Synchronous Data Flow Kernel in SystemC 79

and we believe that this brief explanation of modeling in SDF provides
sufficient exposure in using this SDF kernel along with the existing DE
kernel.

4.1 Summary of Designer Guidelines for SDF
implementation

The designer must remember the following when constructing an SDF
model:

To represent each SC MODULE() as a single SDF function block as
in Listing 5.5.

Ensure that each process type is of SC METHOD() process [Listing
5.5, Line 10].

The module must have access to the instance of sdf graph that it is
to be inserted in [Listing 5.7, Line 2].

An object of edges is instantiated as a member of the SC MODULE()
and the set name() function is called with the correct arguments
[Listing 5.7, Line 11 & 13].

The instance of sdf graph is added into the SDFG kernel list by calling
the static add sdf graph() function from schedule class as in [Listing
5.12, Line 23].

Set delay values appropriately for the input and output samples on
the queue<...> channels for every arc [Listing 5.12, Line 22].

Introduce a sc clock object to support the timed DE MoC [Listing
5.12, Line 28].

Ensure that the entire SDFG is encapsulated in a toplevel process of
any type [Listing 5.12, Line 2 - 39].

Toplevel process must have an entry function that calls sdf trigger()
ensuring that when this process is fired, its corresponding SDF pro-
cesses are also executed [Listing 5.12, Line 8].

5. SDF Kernel in SystemC
We implement the SDF kernel and update the DE kernel function

calls through the use of our API discussed in Chapter 8. We limit our
alterations to the original source, but some change in original source code
is unavoidable. Our approach for kernel implementation is in a particular
manner where the SDF kernel exists within the Discrete-Event kernel.

80

Listing 5.13. split processes() function from API class

1 void sc domains : : s p l i t p r o c e s s e s () {
2 s c p r o c e s s t a b l e ∗ m proce s s tab l e = de kerne l−>

g e t p r o c e s s t a b l e () ;
3 const sc method vec& method vec = m proces s tab le−>method vec

() ;
4 i f (sdf domain . s i z e () != 0) {
5 for (int sd f g raphs = 0 ; sd f g raphs < (signed) sdf domain .

s i z e () ; sd f g raphs++) {
6 // Extract the address of SDFG
7 sd f g raph ∗ p ro c e s s s d f g r aph = sdf domain [sd f g raphs] ;
8 sd f ∗ p r o c e s s s d f = & proce s s sd f g raph−>s d f l i s t ;
9 for (int i = 0 ; i < method vec . s i z e () ; i ++) {

10 sc method handle p method h ;
11 sc method handle method h = method vec [i] ;
12 i f (method h−>d o i n i t i a l i z e ()) {
13 s t r i n g m name = method h−>name () ;
14 bool found name = fa l se ;
15 for (int j = 0 ; j < (signed) p r o c e s s sd f−>s i z e () ; j++)

{
16 edges ∗ edge pt r = (∗ p r o c e s s s d f) [j] ;
17 i f (s t r s t r (method h−>name () , edge ptr−>name . c s t r ())

!= NULL) {
18 found name = true ;
19 p method h = method h ;
20 }/∗ END IF ∗/
21 }/∗ END FOR ∗/
22 // Check to see i f the name of the current process i s

in the SDF l i s t and route
23 // according ly to the correct METHODs l i s t .
24 i f (found name == true) {
25 proce s s sd f g raph−>sd f method handles . push back (

p method h) ;
26 found name = fa l se ;
27 }
28 else {
29 // This must be a DE process − w i l l be inser t ed

i t s e l f
30 }/∗ END IF−ELSE ∗/
31 }/∗ END IF ∗/
32 }/∗ END FOR ∗/
33 // remove the method handles added to SDF l i s t from DE

l i s t
34 for (int k = 0 ; k < (signed) p roc e s s sd f g raph−>

sd f method handles . s i z e () ; k++) {
35 sc method handle del method h = proce s s sd f g raph−>

sd f method handles [k] ;
36 m proces s tab le−>remove (del method h)−>name () ;
37 }/∗ END FOR ∗/
38 }
39 } else {
40 schedu le : : err msg (”NO SDF GRAPHS TO SPLIT PROCESS” , ”WW”) ;
41 }/∗ END IF−ELSE ∗/
42 }/∗ END sp l i t p r o c e s s e s ∗/

This implies that execution of SDF processes is performed from the DE
kernel making the DE kernel the parent kernel supporting the offspring
SDF kernel. We employ the parent-offspring terminology to suggest
that SystemC is an event-driven modeling and simulation framework
through which we establish the SDF kernel. However, this does not

Synchronous Data Flow Kernel in SystemC 81

mean that a DE model can not be present within an SDF model, though
careful programming is required in ensuring the DE block is contained
within one SDF block. For the future extension we are working on a
more generic design for hierarchical kernels through an evolved API.
Algorithm 5.4 displays the altered DE. The noticeable change in the
kernel is the separation of initialization roles. We find it necessary to
separate what we consider two distinct initialization roles as:

Preparing model for simulation in terms of instantiating objects, set-
ting flags, etc.

Pushing processes (all types) onto the runnable queues and executing
crunch() (see Chapter 3) once.

If there are manipulations required to the runnable process lists prior
to inserting all the processes onto the runnable queues for execution dur-
ing initialization, then the separation in initialization is necessary. For
example, for the SDF kernel we require the processes that are SDF meth-
ods to be separated and not available to be pushed onto the runnable
queues. This separation is performed using the split processes() in the
API class as shown in Figure 5.13, that identifies SDF methods and re-
moves them from the list that holds all SC METHOD() processes. This
is not possible if the original initialization function for the DE kernel is
unchanged because it makes all processes runnable during initialization.
We are fully aware of the implications of this implementation in that it
departs from the SystemC standard. However, the SystemC standard
does not dictate how a Synchronous Data Flow kernel or programming
paradigm is to behave, hence we feel comfortable in implementing such
changes as long as the DE kernel concurs with SystemC standards. An-
other difference of the standard is allowing the designer to specify the
order of execution of processes through an overloaded sc start(...) func-
tion call. If the user has prior knowledge of a certain order in which
the system, especially in the case of DE and SDF heterogeneous models,
then the user should have flexibility in allowing for definition of order
instead of using control signals to force order. The limitations of the Sys-
temC standard will progressively become apparent once more MoCs are
implemented resulting in more dissonance between SystemC standards
and the goal of a heterogeneous modeling and simulation framework.

In addition to the separation of SC METHOD() processes, the
crunch() function that executes all the processes is slightly altered in
execution of the processes. If a modeler specifies the order in which to
fire the processes, then this order needs to be followed by the kernel.
This requires popping all the processes from its respective runnable list

82

and storing them separately onto a temporary queue. These processes
are then selected from this temporary queue and executed according
to an order if it is specified, after which the remaining processes are
executed. The need for this is to enable support for signal updates
and next trigger() to function correctly. When a process is sensitive to
a signal and an event occurs on the signal, then this process can be
ready-to-run causing it to be pushed onto the runnable list. If there
is no ordering specified by the designer then the processes are popped
regularly without requiring a temporary queue.

Likewise, the simulate() function suffered some alterations to incor-
porate one period of execution in a cycle. The simulate() function uses a
clock count variable to monitor the edges of the clock. This is necessary
to enforce the SDF graph is executed once every cycle. To understand
the need for it to execute once every cycle, we have to understand how
an sc clock object is instantiated. A clock has a positive and a neg-
ative edge and for the kernel the sc clock creates two SC METHOD()
processes one with a positive edge and the second with a negative edge.
These are then processed like normal SC METHOD() processes, causing
the crunch() function to be invoked twice. Therefore, the clock count
variable ensures that the SDF execution is only invoked once per cycle
as per definition of a period. However, there is an interesting problem
that this might result in when modeling in SDF. If there is to be a stand-
alone SDF model, then there has to be an instance of sc clock even if it
is not connected to any ports in the SDF model. This is essential for the
SDF graph to function correctly. We envision the SDF to be executed
alongside with DE modules, hence it does not seem unnatural to expect
this condition.

5.1 Specifying Execution Order for Processes
Providing the kernel with an execution order has to be carefully used

by the modeler. This is because the semantics that belong to each pro-
cess category (SC METHOD(), SC THREAD(), SC CTHREAD()) are
still followed. Hence, the blocks that trigger the SDF also adhere to the
semantics, which can complicate execution when specifying order. Sup-
pose an SC CTHREAD()’s responsibility is to fire an SDF block and
these are the only two blocks in the system such that they are called
CTHREAD1 and SDF1. If the modeler specified the execution order
as “SDF1 CTHREAD1” then the correct behavior will involve an ex-
ecution of SDF1 followed by CTHREAD1 and then again SDF1. As
expected, with flexibility comes complexity, but we believe allowing this
kind of flexibility is necessary for modeler who understand how their
model works.

Synchronous Data Flow Kernel in SystemC 83

5.2 SDF Kernel

The pseudo-code for the algorithm employed in altering the DE kernel
to accept the SDF kernel is shown below.

Algorithm 5.4: DE Kernel and SDF Kernel
{classes edges, sdf graph, schedule and sc domains are already defined}

void de initialize1()
perform update on primitive channel registries;
prepare all THREADs and CTHREADs for simulation;
{ END initialize1()}

void de initialize2()
push METHOD handle onto regular DE METHOD runnable list;
push all THREADs onto THREAD runnable list;
process delta notifications;
execute crunch() to perform Evaluate-Update once.
{ END initialize2()}

void simulate()
initialize1();
if (clock count mod 2 == 0) then

set run sdf to true;
end if
execute crunch() until no timed notifications or runnable processes;
increment clock count;
{ END simulate()}

void crunch()
while (true) do

if (there is a user specified order) then
pop all methods and threads off runnable list and store into temporary
while (parsed user specified order is valid) do

find process handle in temporary lists and execute;
end while

else
execute all remaining processes in the temporary lists;

end if
{ Evaluate Phase }
execute all THREAD/CTHREAD processes;
break when no processes left to execute;

end while
{ Update Phase}
update primitive channel registries;
increment delta counter;
process delta notifications;
{ END crunch()}

84

SDF initialization is responsible for constructing an executable sched-
ule for all SDFGs in the system. If any of the SDFGs is inconsistent then
the simulation stops immediately, flagging that the simulation cannot be
performed. This involves creating the input matrices for the Diophan-
tine solver and creating an executable SDF schedule. A user calling the
sc start(...) function invokes the global function that in turn uses an
instance of sc domains that begins the initialization process of both the
DE and SDF kernels as shown in Listing 5.14. init domain(...) initial-
izes the domains that exist in SystemC (SDF and DE so far) and then
begins the simulation of the DE kernel (since SDF is written such that
it is within the DE kernel). The sdf trigger(...) global function is to
be only called from the entry function of the toplevel SDF encapsulat-
ing the entire SDF model. This ensures execution of all SDF method
processes specific for that SDFG.

Listing 5.14. Global functions

1 void s c s t a r t (const s c t ime& duration , s t r i n g in)
2 {
3 model . i n i t doma ins (duration , in) ;
4 model . de kerne l−>s imulate (durat ion) ;
5 }/∗ END sc s t a r t ∗/
6

7 in l ine void s d f t r i g g e r (s t r i n g topname) {
8

9 i f (model . sdf domain . s i z e () > 0) {
10 // SDFG ex i s t s
11 model . s d f t r i g g e r (topname) ;
12 }/∗ END IF ∗/
13 else {
14 schedu le : : err msg (”No SDFGs in cur rent model , ensure

add sd f graph () c a l l e d ” , ”EE”) ;
15 return ;
16 }/∗ END IF−ELSE ∗/
17 }/∗ END sd f t r i g g e r ∗/

The API class sc domains described in Chapter 8 has function dec-
larations to initialize the DE and SDF kernels implemented at the API
level to invoke their respective DE or SDF functions. The
init domains(...) function shown in Listing 5.15 is responsible for ini-
tializing all the existing domains in SystemC. This function sets the user
order string if specified then prepares the simulation in terms of instan-
tiating objects and setting the simulation flags, splits the processes as
explained earlier and readies the runnable queues. Followed by initial-
ization of the SDF, which traverses through all SDFGs present in the
system and creates an executable schedule for each one if one can be
computed. Given that all conditions are satisfied and simulation is not
halted during the scheduling process, the simulation begins.

Synchronous Data Flow Kernel in SystemC 85

Listing 5.15. init domain() in sc domains

1 // i n i t i a l the domains
2 void sc domains : : i n i t doma ins (const s c t ime & duration , s t r i n g

in) {
3

4 i f (in . s i z e () > 0)
5 use r i nput (in) ;
6

7 // i n i t i a l i z e the s imulat ion f l a g s
8 i n i t d e () ;
9 // s p l i t the processes for every SDFG

10 s p l i t p r o c e s s e s () ;
11 // i n i t i a l i z e the runnable l i s t s
12 model . de kerne l−>d e i n i t i a l i z e 2 () ;
13 // i n i t i a l i z e SDF for execut ion
14 i n i t s d f () ;
15 }

Listing 5.16. sdf trigger() and find sdf graph() in sc domains

1 void sc domains : : s d f t r i g g e r (s t r i n g topname) {
2

3 s t r i n g sdfname = topname+” . ” ;
4 sd f g raph ∗ r un th i s ;
5

6 for (int sd f g raphs = 0 ; sd f g raphs < (signed) model .
sdf domain . s i z e () ; sd f g raphs++) {

7 // pointer to a par t i cu l a r SDF graph
8 sd f g raph ∗ p ro c e s s s d f g r aph = model . sdf domain [sd f g raphs

] ;
9 i f (strcmp (proc e s s sd f g raph−>p r e f i x . c s t r () , sdfname . c s t r

())==0) {
10 r un th i s = p ro c e s s s d f g r aph ;
11 i f (run sd f == true){
12 // execute the SDF METHODs
13 run th i s−>s d f s imu l a t e (sdfname) ;
14 run sd f = fa l se ;
15 }/∗ END IF ∗/
16 }/∗ END IF ∗/
17 }/∗ END FOR ∗/
18 }/∗ END sd f t r i g g e r ∗/
19

20 sd f g raph ∗ sc domains : : f i nd sd f g r aph (s t r i n g s d f p r e f i x) {
21

22 for (int sd f g raphs = 0 ; sd f g raphs < (signed) model .
sdf domain . s i z e () ; sd f g raphs++) {

23 // pointer to a par t i cu l a r SDF graph
24 sd f g raph ∗ p ro c e s s s d f g r aph = model . sdf domain [sd f g raphs

] ;
25 i f (strcmp (proc e s s sd f g raph−>p r e f i x . c s t r () , s d f p r e f i x .

c s t r ())==0) {
26 return (p r o c e s s s d f g r aph) ;
27 }/∗ END IF ∗/
28 }/∗ END FOR ∗/
29 return NULL;
30 }/∗ END f ind sd f g raph ∗/

Listing 5.16 shows the definition of sdf trigger() that calls the
sdf simulate() function responsible for finding the appropriate SDFG

86

(with the helper function find sdf graph(...) and executing the SDF
processes corresponding to that SDFG.

The creation of the schedules is encapsulated in the
sdf create schedule(...) function that constructs the topology matrix for
the Diophantine equations solver, returns the solution from the solver
and creates an executable schedule if one exists as demonstrated in List-
ing 5.17.

Listing 5.17. SDF initialization function

1 void sd f g raph : : s d f c r e a t e s c h e du l e () {
2

3 // Repeat for a l l the SDF graphs that are modelled
4 // Extract the address of f i r s t SDF
5 sd f g raph ∗ p ro c e s s s d f g r aph = this ;
6 int ∗ input matr ix = schedu le : : c r e a t e s ch edu l e (

p r o c e s s s d f g r aph) ;
7

8 i f (input matr ix != NULL) {
9 hbs (p roc e s s sd f g raph−>num arcs , p ro c e s s sd f g raph−>

num nodes , input matr ix ,& proce s s sd f g raph−>r e s u l t) ;
10

11 i f (p roc e s s sd f g raph−>r e s u l t != NULL) {
12 // Stored the address of the schedule in the r e s u l t l i s t .
13 }
14 else {
15 schedu le : : err msg (”The r e s u l t schedu le i s i n v a l i d . Halt

s imu la t i on ” , ”EE”) ;
16 // Attempt at clean up for Matrix Input
17 f r e e (input matr ix) ;
18 // Exit s imulat ion
19 e x i t (1) ;
20 }/∗ END IF−ELSE ∗/
21 f r e e (input matr ix) ;
22 }/∗ END IF ∗/
23 else {
24 schedu le : : err msg (” Input Matrix f o r SDF i s i n v a l i d . Halt

s imu la t i on ” , ”EE”) ;
25 e x i t (1) ;
26 }/∗ END IF−ELSE ∗/
27 schedu le : : c o n s t r u c t v a l i d s c h edu l e (∗ p ro c e s s s d f g r aph) ;
28 }/∗ END sd f c r ea t e s chedu l e ∗/

The compilation of SystemC requires passing a compiler flag
SDF KERNEL ENABLE ; hence the #ifndef s with that variable. The
first stage is in creating a matrix representation that can be the input for
the linear Diophantine equation solver. This is performed by traversing
through all SDFGs that might exist in the system and passing a pointer
to the SDFG as an argument to the create schedule(...) function that
creates the topology matrix. If the pointer to the topology matrix called
input matrix is valid (not NULL) then it is passed to the Diophantine
equation solver via the hbs(...) call, which depending on whether there
exists a solution returns a pointer with the result or returns NULL.
The address of the matrix with the result is stored in that SDFG’s re-

Synchronous Data Flow Kernel in SystemC 87

sult data member. Once the result is calculated it is checked whether
it is not NULL and if it is then the simulation exits, otherwise the
simulation proceeds by executing the construct valid schedule(...) func-
tion. Remember that the schedule class is a purely static class with all
its member functions being static hence all function calls precede with
schedule::. If at any point during the schedule construction either of the
input to the Diophantine solver, or the result or even the scheduling for
firing order finds inconsistencies then the simulation exits. The method
of exit might not be the safest exit using the exit(1) function and an im-
provement might involve creating a better cleanup and exit mechanism
or perhaps the use of sc stop().

Upon construction of the SDF execution schedules the simulation be-
gins. When a toplevel SDF process is identified, the user is required to
invoke sdf trigger() from its entry function leading to a brief discussion
of that function shown in Listing 5.18. The underlying function called
from within sdf trigger is sdf crunch() that actually executes the SDF
processes as shown in Listing 5.18. This function traverses through the
SDF method processes stored in this particular SDFG and executes them
in the order created by the scheduling algorithm. It must be noted that
these SDF processes are not pushed onto the runnable queues restricting
their functionality by not allowing a safe usage of next trigger() or the
sensitivity lists.

The sdf simulate(...) function simply calls the sdf crunch(...) func-
tion as in Listing 5.19. The full source with changes in the original
kernel to incorporate the SDF kernel is available at [36]. We have only
discussed the main functions that are used to invoke the SDF kernel and
point out to the reader to the few changes made to the original DE ker-
nel to accommodate the SDF kernel. To summarize, we list the changes
made to the existing kernel:

Separation of initialization roles to allow for separation of processes.

Splitting of SC METHOD() processes. Not all SC METHOD() pro-
cesses are made runnable since we remove SDF block methods from
the method process list.

Specifying user order handles processes of all types. If a user order
is specified then a temporary queue is used to pop the runnable lists,
find the appropriate processes and execute them.

Addition of a clock counter to invoke the SDF execution only once
per cycle when the toplevel entry function is fired.

We believe these to be moderate changes given that we implement a
completely new kernel working alongside with the DE kernel and accept

88

Listing 5.18. SDF crunch function

1 void sd f g raph : : sd f c runch (s t r i n g s d f p r e f i x) {
2

3 sc method handle method h ;
4 #i f d e f SDF KERNEL ENABLE
5 /∗ Executes only the SDF methods that have been i n i t i a l i z e d .

Ordinary DE based
6 METHODs w i l l be executed l a t e r .
7 ∗/
8 sd f g raph ∗ p r o c e s s t h i s s d f g r a ph = this ; // f ind sd f g raph (

s d f p r e f i x) ;
9

10 i f (p r o c e s s t h i s s d f g r a ph != NULL) {
11 // pointer to par t i cu l a r edges ∗ l i s t
12 sd f ∗ p r o c e s s s d f = & pr o c e s s t h i s s d f g r aph −>s d f s c h edu l e ;
13

14 // t raverse through a l l the scheduled nodes in that
pa r t i cu l a r order

15 for (int j = 0 ; j < (signed) p r o c e s s sd f−>s i z e () ; j++) {
16 edges ∗ edg ptr = (∗ p r o c e s s s d f) [j] ;
17 for (int i = 0 ; i < (signed) p r o c e s s t h i s s d f g r aph −>

sd f method handles . s i z e () ; i++) { //
asd fasd fas fdasd fasd

18 method h = p ro c e s s t h i s s d f g r aph −>sd f method handles [i
] ;

19 i f (s t r s t r (method h−>name () , edg ptr−>name . c s t r ())) {
20 try {
21 method h−>execute () ;
22 }
23 catch (const s c ex c ep t i on & ex) {
24 cout << ”\n” << ex . what () << endl ;
25 return ;
26 }
27 }/∗ END IF ∗/
28 }/∗ END FOR ∗/
29 }/∗ END FOR ∗/
30 }
31 else {
32 schedu le : : err msg (”SDF Graph not found ” , ”EE”) ;
33 }/∗ END IF−ELSE ∗/
34 #end i f
35 }/∗ END sdf crunch ∗/

Listing 5.19. SDF simulate function

1 void s c s imcontext : : s imulate (const s c t ime& durat ion) {
2 // Execute for a period (one execut ion of SDF)
3 sd f c runch (p r e f i x) ;
4 }

that there can be better conceivable methods of implementing this as
the C++ language allows an infinite number of implementations.

6. SDF Specific Examples
Experimentation of the SDF kernel has been an incremental process

beginning with pure SDF models followed by heterogeneous models. To

Synchronous Data Flow Kernel in SystemC 89

evaluate the efficiency enhancement by our SDF kernel we set out to
experiment with a few models that are amenable to SDF style modeling.
In this section, we show the results of simulating the same models for
three distinct modeling styles and different sample sizes of data. The
first set of experiments are pure SDF models for the Finite Impulse
Response (FIR), Fast Fourier Transform (FFT), and the Sobel edge
detection algorithm [47]. The second set involves creating a combination
of Discrete-Event and Synchronous Data Flow models shown in Chapter
9. In [62] around 50% or more improvement in simulation efficiency over
threaded models have been reported. Our aim has been to improve upon
those results reported in [62], which we call “Non-Threaded” models.
Furthermore, we aspire in betterment of the modeling paradigm for SDF-
like systems.

7. Pure SDF Examples
Three systems are modeled using the SDF kernel and the SDF mod-

eling style. They are Finite Impulse Response Filter (FIR), Fast Fourier
Transform (FFT), and a Sobel edge detection system. The same sys-
tems are modeled with the original standard SystemC DE kernel and
the data is shown in Figures 5.6. These experiments are executed on a
Linux 2.4.18 platform with an Intel� Pentium� IV CPU 2.00GHz pro-
cessor, 512KB cache size, and 512MB of RAM. The first two are taken
from SystemC examples distribution.

We already discussed the FIR model in earlier chapters allowing us to
move on to the next example, which is the FFT model. The FFT model
is also a three-staged model with a Source block, FFT block and a Sink
block having the responsibilities of creating the input, performing FFT
on the input, and displaying the result, respectively. Figure 5.7 shows
the block diagram describing this model.

The third example chosen is the Sobel example [53, 62]. This example
is a five-staged model shown in Figure 5.8. The Input block simply reads
the matrix from an input file and pushes the values into the data path
queue. This queue is an input to the CleanEdges block that clears
the edges of the matrix and pushes the values through the Channel
block to the Sobel operator block. This Sobel block performs the Sobel
computations and pushes the results to the Output block completing the
entire edge detection example.

We construct these three models with the following underlying sce-
narios:

Discrete-Event kernel using SC THREAD()/ SC CTHREAD() pro-
cesses for modeling.

90

(a) FIR (b) FFT

(c) Sobel

(Black = Original DE models, Dark Gray = Non-Threaded models,
White = SDF models)

Figure 5.6. Results from Experiments

Figure 5.7. FFT Block Diagram

Discrete-Event kernel with the non-threaded models (transformed us-
ing the transformation technique specified in [62]).

Synchronous Data Flow implementation using the implemented SDF
kernel.

Synchronous Data Flow Kernel in SystemC 91

Input CleanEdges Channel Sobel OutputInput CleanEdges Channel Sobel Output

Figure 5.8. Sobel Block Diagram

The graphs in Figure 5.6 present results from these three scenarios.
They show that every model demonstrates significant improvement in
the amount of simulation time over the original model and the non-
threaded model. The three bars on each chart refer to the time taken
in seconds for the entire model to be executed in their respective mod-
eling scenarios. The leftmost bar being the original, middle bar being
non-threaded are modeled using the DE kernel and the rightmost bar
using the SDF kernel. The bar charts show that increasing the num-
ber of sample size will still preserve the efficiency presented by the set
of collected data. The FIR and FFT yielded approximately 75% im-
provement in simulation time compared to the original model and the
Sobel yielded a 53% improvement in simulation time. Comparing re-
sults from the SDF kernel to the non-threaded models, the FIR, FFT
and Sobel, showed 70%, 57% and 47% improvement in simulation time
respectively. All results show better performance with the SDF kernel
than both the original and non-threaded models. We conducted an in-
vestigation on the relative lower improvement for the Sobel model and
understand that the Input block in Sobel is only executed once to read
in the entire matrix of values. However, when this is altered to se-
lect segments of the matrix then the performance reflects the FIR and
FFT model results. This indicates that simulation efficiency depends
on the number of invocations of the blocks required to perform certain
functions. The Sobel model using the DE kernel required a lot more
invocations when collecting segments of the matrix increasing the sig-
nal communication and data passing. Future experimentation proposes
comparison with different matrix segment sizes for this edge detection
algorithm. The percentage improvement over the non-threaded model
in [62] is also consistent with the Sobel edge detection yielding a lower
improvement and for the same reason.

