
Chapter 4

FEW WORDS ABOUT IMPLEMENTATION
CLASS HIERARCHY

baseReceiver

___Receiver ___node11___kernel

1 1..*

1

*

___element

Figure 4.1. General Implementation Class Hierarchy

This chapter informs the reader about the organization of our ker-
nel implementation. During the development process of alternative ker-
nels for SystemC, several implementation hierarchies and data structures
were investigated. In this book we did not make an effort to unify them.
This book presents a snapshot of the current status of the project so
that other interested developers can use the concepts and ideas to de-

46

velop their own multi-MoC kernels. Once the reader goes through the
Synchronous Data Flow, Communicating Sequential Processes and Fi-
nite State Machine chapters, a distinct difference in class hierarchy with
the SystemC kernel development can be noticed. We expect further
gradual changes in implementation hierarchy in the future as we im-
prove our SystemC kernel implementations. Nonetheless, we propose a
hierarchy that allows for an extensible design for multi-MoC modeling.
We simply lay a foundation that can support this, but do not currently
employ it to its maximum potential.

In general, the class hierarchy resembles the class diagram shown in
Figure 4.1. Some of the terminology used in Figure 4.1 are borrowed
from [25]. It is not necessary to strictly conform to this class hierarchy,
because some implementations do not require such a class structure and
some require more encapsulation. The terminology used are as follows:

Kernel: A class that allows for creation and simulation of multiple in-
stances of a model represented by a specific MoC.

Node: A representation of a specific function block that exhibits behav-
ior specified by the MoC. For example, a CSPnode is a representation
for a CSP process by encapsulating an instance of CSPReceiver.

Receiver: An encapsulation class to separate the data structure of an
MoC from its communication with the designer and MoC-specific
nodes. The common functionalities can be derived from a baseRe-
ceiver class.

baseReceiver: A class that encapsulates common functionalities and
data structures employed by a receiver. Examples are queues that
are used in DE and CSP MoCs as runnable lists and graph structures
as used in representing an SDF and CSP model.

Element: Embedded deepest of all classes in terms of class hierarchy,
an element class defines a structure that aids in creating the main
data structure used to construct a model for an MoC.

This class hierarchy is only to provide minimal organization in devel-
oping the additional kernels and classes for encapsulation and function-
ality. Additional classes if required, should be added for better object
oriented programming practices.

The CSP kernel class diagram in Figure 4.2 illustrates the CSP ker-
nel implementation loosely employing the general implementation class
hierarchy.

A CSP model is best represented as a graph. This graph is represented
in CSPReceiver by a list-based data structure using Standard Template

Few words about Implementation Class Hierarchy 47

baseReceiver

CSPReceiver CSPnode
11

CSPkernel

1

*

1

*

CSPelement

3

3

CSPnodelist2

*

sc_domains

1

*

sc_thread_process

1

1

1

1

Figure 4.2. CSP Implementation Class Hierarchy

Library (STL) vector class. This list contains pointers to CSPelement.
The CSPelement class provides the CSPReceiver with information about
which nodes are connected via channels and the data to be transferred
on each channel. CSPchannel inherits from CSPelement as shown later
in this chapter, because in essence they exhibit the exact same behavior.
A CSPnode has one instance of a CSPReceiver and contains a pointer
to the SystemC thread class sc thread process. The modeler creates an
instance of CSPnode within an SC MODULE(...) to distinguish that
module as a CSP module. An additional class called CSPnodelist holds
pointers to CSPnodes and this class contains member functions that
simulates the CSP MoC.

The FSM implementation hierarchy is simple where class FSMRe-
ceiver once again is a derived class from baseReceiver. However, the
data structure present in this receiver uses a map<...> STL structure.
This structure contains a string key field that holds the name of the
state and a pointer to class sc method handle. FSMnode class is not

48

baseReceiver

FSMReceiver FSMkernel1*

1

*

sc_method_process sc_domains

1

*

Figure 4.3. FSM Implementation Class Hierarchy

presented in Figure 4.3 because FSM transitions are explicitly defined
within the state or entry function of that module. Hence, there is no
need for communication between states other than signaling the FSM
with the next state to carry out FSM simulation, which is done within
the entry function of the process.

The sc domains class in both Figure 4.2 and Figure 4.3 is a toplevel
encapsulation class that implements the Application Protocol Interface
(API). The purpose of sc domains is to allow different kernels to interact
with each other. Another use of the API is to allow for multiple models
of the same MoC, for example three SDF models to function in the
same model. Additional information regarding the API is discussed in
Chapter 8.

1. MoC Specific Ports and Channels
MoC-specific ports and channels are needed due to the differences in

communication protocols of the new kernels and the Discrete-Event ker-
nel in SystemC. For example, SDF channels do not require the channels
to generate events when pushing data onto a channel. Furthermore, the
CSP rendez-vous semantics require its own event and event handling
mechanism because the channels themselves play an important role in

Few words about Implementation Class Hierarchy 49

sc_moc_port<T>

SDFport<T> CSPport<T> FSMport<T>

Figure 4.4. sc moc port Implementation Class Hierarchy

Table 4.1. Some Member functions of class sc moc port

Member Function Purpose

operator() Overloaded operator for binding a sc moc channel to
a port.

getport() Returns a pointer to the channel bound to this port.

push(...) Inserts a value onto the channel

pop(...) Returns the first value on the channel

the suspension and resumption of processes rather than simply providing
a medium through which data is transferred.

MoC-Specific Ports
Figure 4.4 describes a class hierarchy for ports that accommodates multi-
ple MoC communication. Basic functionality of the ports is implemented
in sc moc port class and specializations are implemented in the derived
classes. All the derived port classes are also polymorphic by making
them template classes.

Listing 4.1 shows the class declaration and definition for sc moc port.
The private data member of this class is a pointer to an sc moc channel
object called port. This variable addresses the channel that is bound to
this port. The roles of the member functions are shown in Table 4.1.
Most of the generic roles of the port are implemented in the base class.
If there is a need to add specific functionality for a particular port or
channel then it can be added to the derived class.

50

Listing 4.1. class sc moc port

1 template <class T> class sc moc port
2 {
3 private :
4 sc moc channel<T> ∗ port ;
5 void bind (sc moc channel<T> ∗ p) ;
6

7 public :
8 sc moc port<T>() ;
9 ˜ sc moc port<T>() ;

10 sc moc port (sc moc channel<T> ∗ p) ;
11

12 void operator () (sc moc channel<T> ∗ port) { bind (port) ; } ;
13 void operator () (sc moc channel<T> & port) { bind(&port) ; } ;
14 T ∗ getpor t () ;
15

16 // Vector push/pop funct ions
17 void push (T p) ;
18 void push (T ∗ p) ;
19 T pop () ;
20

21 void pr in t () { i f (port != NULL) { port−>pr in t () ; } } ;
22 } ;
23

24 template <class T >
25 sc moc port<T> : : s c moc port () {
26 port = NULL;
27 } ;
28

29 template <class T >
30 sc moc port<T> : :˜ sc moc port () { } ;
31

32 template <class T >
33 sc moc port<T> : : s c moc port (sc moc channel<T> ∗ p) { port = p

; } ;
34

35 template < class T >
36 void sc moc port<T> : : bind (sc moc channel<T> ∗ p) { port = p

; } ;
37

38 template < class T>
39 T ∗ sc moc port<T> : : g e tpor t () { return port ; } ;
40

41 template < class T>
42 void sc moc port<T> : : push (T p) { port−>push (p) ; } ;
43 template < class T>
44 void sc moc port<T> : : push (T ∗ p) { port−>push (p) ; } ;
45

46 template < class T>
47 T sc moc port<T> : : pop () { return (port−>pop ()) ; } ;

MoC-Specific Channels
Similarly, channels for the these MoC-specific ports follow a hierarchy
displayed in Figure 4.5. The base class is sc moc channel from which the
SDFchannel, CSPchannel and FSMchannel are all derived. Basic func-
tions of a channel are implemented in the base class sc moc channel and
MoC-specific channel implementations are contained in their respective
derived class. The SDFchannel and FSMchannel are used to transport

Few words about Implementation Class Hierarchy 51

sc_moc_channel<T>

SDFchannel<T> FSMchannel<T>

-value

CSPchannel<T>

Figure 4.5. sc moc channel Implementation Class Hierarchy

data from one node to another. However, a CSPchannel plays an inte-
gral role in the rendez-vous communication, which requires additional
implementation details to the channel. Figure 4.5 shows a data member
value in CSPchannel that holds the value to be transferred once rendez-
vous synchronization occurs. This value is of templated type allowing for
all values of different types to be transferred. This is an example where
specialization of an MoC-specific channel is done. Nonetheless, note that
these MoC-specific channels and ports have no relation with sc channel
or sc port and MoC-specific channels and ports are implemented using
C++ data types.

Listing 4.2 displays the declaration and definition of the class
sc moc channel. A list data structure is used to preserve the tokens
pushed onto a channel. We use the vector class from STL. The push(...)
member function inserts a value into the list and pop() returns the first
value in the list. Note that both sc moc port and sc moc channel are
template classes allowing for any type of data to be transferred through
these ports and channels.

Note about SDF Ports and Channels
In Chapter 5, SDF ports and channels are not presented. However,
the implementation does have SDF ports and SDF channels similar to
FSM ports and FSM channels in Chapter 7. Class SDFport derives
from sc moc port without any need for specialization since its purpose
is to only transfer data and the SDFchannel is a derived class from
sc moc channel. They are both templated classes as shown in Figure

52

Listing 4.2. class sc moc channel

1 template <class T>
2 class sc moc channel {
3 private :
4 vector<T> ∗ mainQ ;
5

6 public :
7 sc moc channel<T >() ; // constructor
8 ˜ sc moc channel<T>() ; // des t ruc tor
9

10 // Vector push/pop funct ions
11 void push (T p) ;
12 void push (T ∗ p) ;
13 T pop () ;
14

15 } ;
16

17 template <class T >
18 sc moc channel<T> : : sc moc channel () { mainQ = new vector<T>() ;

} ;
19

20 template <class T >
21 sc moc channel<T> : :˜ sc moc channel () { delete mainQ ; } ;
22

23 template < class T>
24 void sc moc channel<T> : : push (T p) { mainQ−>push back (p) ; } ;
25

26 template < class T>
27 void sc moc channel<T> : : push (T ∗ p) { mainQ−>push back (∗p) ; } ;
28

29 template < class T>
30 T sc moc channel<T> : : pop () {
31 T newT = mainQ−>f r on t () ;
32 mainQ−>e ra s e (mainQ−>begin ()) ;
33 return (newT) ;
34 }

4.4 and Figure 4.5. We provide SDF examples that employ the SDF
ports and channels at our website [36].

baseReceiver class
baseReceiver currently only holds the receiver type, indicating whether
an FSMReceiver or CSPReceiver has been derived. However, the usage
of this base class can extend to encompass common data structures and
helper functions. One such use of the baseReceiver can be to allow for
implementation of the data structure required to represent MoCs that
require a graph construction. We consider a graph like structure for SDF,
FSM and CSP and currently we employ individual representations for
each kernel shown in Figure 4.6. However, our current implementation
does not unify the idea of representing commonly used data structures
in the baseReceiver class and leave it aside as future work.

Few words about Implementation Class Hierarchy 53

A=green
B=red

A=yellow
B=red

A=red
B=green

A=red
B=yellow

S0

S1

S2

S3

A := yellow

A := red
B := green

A := green
B := red

B := yellow

No change No change

T0

T
1

T2 T3

T4

T5

(a) FSM Traffic Light Controller

PHIL0

PHIL1

PHIL2
PHIL3

PHIL4

(b) CSP Dining Philosopher

(c) SDF FIR

Figure 4.6. Graph-like Representation for SDF, FSM, CSP

2. Integration of Kernels
Kernel integration is a challenging task especially for kernels based on

MoCs that exhibit different simulation semantics other than the existing
DE scheduler semantics of SystemC. The MoC implementation chapters
discuss the addition of a particular MoC in SystemC and documenta-
tion is provided describing the integration of these different MoCs. MoCs
such as SDF and FSM are easy to integrate with the reference imple-
mentation and themselves, whereas CSP requires an understanding of
QuickThreads [35] and the coroutine packages in SystemC. Integration of
the SDF and FSM kernels are relatively straightforward, requiring minor
additions to the existing source with the usage of Autoconf/Automake
[21, 22]. In Appendix B we describe a method of adding newly created
classes to the SystemC distribution using Autoconf/Automake. This
approach is used for all MoC integration. However, the CSP kernel
integration is non-trivial, which we describe in detail in Chapter 6.

