Chapter 10

EPILOGUE

In this epilogue, we reemphasize the importance of creating multi-
MoC extensions of SystemC one more time, and summarize some of
the contributions and goals of this book. The basic objective of this
endeavor has been to disseminate our experience in extending SystemC
with a multi-MoC kernel implementation, and the implementation itself.

One of the major advantages of SystemC over other forms of hard-
ware description languages is the full expressive power of C++ at the
designers disposal while modeling in SystemC. However, this advantage
often shows the flip side of the coin, becoming a disadvantage. The free-
dom of using any C++ construct introduces programming errors, and
often leads designers to use C++ constructs that are not synthesizable as
hardware. Moreover, the lack of structure for creating models for specific
MoCs leads to lack of fidelity. The term fidelity of a modeling frame-
work in this case refers to an informal measure of how accurately one
can model behaviors specific to an MoC using the modeling structures
and facilities available in the framework. Besides fidelity, not exploiting
the MoC specific properties of models implies less efficient simulation,
as we have shown in the case of SDF models.

When SystemC was introduced in September 1999, there were two
main selling points discussed in the industry and academia. First, Sys-
temC is a class library based on C++, and hence any standard C++
compiler can create executables from SystemC models, which implies
free simulation platform rather than expensive VHDL or Verilog sim-
ulator. Second, the flexibility of C++ allows designers to be creative,
and using C++ makes it easier for software/hardware co-simulation,
avoiding PLIs which incur lots of overhead during simulation.



152

It was quickly realized by industry practitioners that (i) using C++ by
itself is not going to provide faster simulation, and (ii) free use of C++
is more of a liability than advantage, as synthesizability becomes an
issue with arbitrary C++ constructs. In fact, if the level of abstraction
remains at the RTL level, using C++, or using the industry best HDL
simulators provide almost equivalent performance. However, if one has
to synthesize hardware from SystemC model, it is almost necessary to
remain at the RTL level of abstraction barring a few exceptions.

In 2001, SystemC-2.0 was introduced with some radical new features,
and it borrowed a lot of concepts from the SpecC language. The most no-
table of those were the idea of channels, events, and interfaces. The idea
of communication refinement, transaction level modeling, and interface
based design were motivating factors for such changes. However, trans-
action level models are difficult to synthesize from, and tools that are
commercialized since then can synthesize efficient hardware only from
very limited set of constructs. Most problematic with such evolution
of SystemC has been that heterogeneous and multi-MoC modeling does
not have a direct support in SystemC-2.x yet.

Although we have discussed this extensively throughout this book,
we would discuss this again here. Current SystemC simulation kernel
is geared towards Discrete-Event (DE) simulation semantics, incorpo-
rating delta cycles which is very appropriate to model RTL level digital
hardware, but not suitable for other Models of Computation. One can
model any other Model of Computation by programmatic innovations,
but eventually the simulation targeted kernel has the DE simulation se-
mantics. This kernel uses dynamic event scheduling, and delta events
to trigger delta cycles. For models which naturally belong to other al-
ternative MoCs and are amenable to static scheduling, or other kinds of
optimizations, when mapped to a DE kernel become inefficient in their
simulation timing. So we believe that the only way SystemC can be
made a full fledged system level design language is to enable SystemC to
handle multi-MoC modeling and simulation, and support for behavioral
hierarchy. This will allow designers to model systems which consist of
heterogeneous components, modeled in different MoCs, and are hierar-
chically described. Moreover, the simulation of such models should not
require flattening of hierarchy.

The reason why such heterogeneous modeling and simulation is im-
portant becomes clear if one looks at any embedded system or a System-
on-Chip that goes in a consumer electronics equipment today. For exam-
ple, a digital camera chip would consist of DSP, microcontrollers, A/D
and D/A converters, memory elements and so on. Such systems are
conglomerates of components best modeled in multiple MoC domains.



Epilogue 153

Embedded software or real-time light-weight operating system stacks
could also be modeled in a heterogeneous modeling framework, which is
currently difficult with SystemC.

SystemC standards body, and open SystemC initiative (OSCI) have
been working over the last few years to make changes to SystemC stan-
dards to accommodate some of these needs. SystemC-AMS or SystemC-
4.0 is slated to incorporate the libraries that will allow continuous do-
main modeling, which will facilitate the modeling of Analog and Mixed
Signal Components. We are also aware of some activities related to soft-
ware APIs for modeling embedded software in SystemC-3.0, but we are
not aware of the current status of these efforts.

However, adding more libraries is not necessarily the solution to the
problem at hand. Our belief is that once we create ways to adjoin multi-
ple MoC specific simulation kernels and modeling constructs to SystemC,
we will not only enable heterogeneous modeling, but also enable design-
ers of SystemC based tools to easily add capabilities that are planned
for SystemC-3.0 or SystemC-4.0.

We have therefore gone ahead, and created our prototype for exten-
sions of System(C-2.0.1 that enables us to create multi-MoC models, and
allows us to exploit through the features of these enhanced kernels the
MoC specific properties of these models to obtain simulation efficiency.
In particular, in this book we have presented three MoC specific ker-
nels, SDF, CSP and FSM, which we thought were very important MoCs
for many embedded system components. Since our effort is limited by
personnel and funding, we have not been able to provide a full indus-
trial strength system, but we are putting forth a prototype-scale proof
of concept. We have implemented three kernels, created some APIs that
will allow others to add their own MoC specific kernels and function-
alities, and we have created some heterogeneous models that use these
kernels in conjunction. We have also shown efficiency gain in case of
SDF, but due to lack of resources we have not done benchmarking for
the CSP or FSM kernels, but we believe that with proper experimenta-
tion it would be easily revealed that exploiting MoC specific properties
can only enhance the simulation performance.

Our hope is that this book would be able to convince some industry
groups that multi-MoC extensions of SystemC is not only justified, it is
necessary for SystemC to become a true system level modeling language.
If our prototype can spark discussions within the SystemC community
regarding the usefulness of such extensions, and about the best ways to
implement such extensions, we would feel that our endeavor has been
amply rewarded. Our implementation specifics of the design of the ker-
nels may not be the only way or the best possible way to achieve these



154

extensions, but it is one of the many possibilities. We urge the readers
of the book to download our prototype, experiment with it, and send us
comments and feedback [36].



